TAIWANESE JOURNAL OF MATHEMATICS
Vol. 16, No. 2, pp. 605-619, April 2012
This paper is available online at http://journal.taiwanmathsoc.org.tw

(2,1)-TOTAL NUMBER OF JOINS OF PATHS AND CYCLES

Weifan Wang*, Jing Huang, Sun Haina and Danjun Huang

Abstract. The (2, 1)-total number A\, (G) of a graph G is the width of the
smallest range of integers that suffices to label the vertices and edges of G
such that no two adjacent vertices or two adjacent edges have the same label
and the difference between the label of a vertex and its incident edges is at
least 2. In this paper, we characterize completely the (2, 1)-total number of
the join of two paths and the join of two cycles.

1. INTRODUCTION

Motivated by the Frequency Channel Assignment problem, Griggs and Yeh [7]
introduced the L(2, 1)-labelling of graphs. This notion was subsequently generalized
to the L(p, ¢)-labelling problem of graphs. Let p and ¢ be two nonnegative integers.
An L(p, q)-labelling of a graph G is a function f from its vertex set V' (G) to the set
{0,1,..., k} for some positive integer k such that | f(z) — f(y)| > p if z and y are
adjacent, and |f(x) — f(y)| > ¢ if x and y are at distance 2. The L(p, q)-labelling
number A, ,(G) of G is the smallest £ such that G has an L(p, ¢)-labelling f with
max{f(v)|veV(G)} =k.

The L(p, q)-labelling of graphs have been studied rather extensively in recent
years [3, 4, 13, 15, 16, 17, 18]. Whittlesey, Georges and Mauro investigated the
L(2, 1)-labelling of incidence graphs [21]. The incidence graph of a graph G is the
graph obtained from G by replacing each edge by a path of length 2. The L(2,1)-
labelling of the incidence graph of G is equivalent to an assignment of integers
to each element of V' (G) U E(G) such that adjacent vertices have different labels,
adjacent edges have different labels, and incident vertex and edge have labels that
differ by at least 2. Such a labelling is called a (2, 1)-total labelling of G, which
was introduced by Havet and Yu and generalized to the (d, 1)-total labelling [8].
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Let d > 1 be an integer. A k-(d, 1)-total labelling of a graph G is a function
f from V(G) U E(G) to the set {0,1,...,k} such that f(u) # f(v) if u and
v are two adjacent vertices, f(e) # f(¢) if e and e’ are two adjacent edges, and
|f(u)—f(e)| > d if vertex u is incident to edge e. The (d, 1)-total number, denoted
by X, (G), is the least & such that G has a k-(d, 1)-total labelling.

When d = 1, the (1, 1)-total labelling is the well-known total coloring of a
graph, which has been extensively studied [2, 10, 12, 19].

Let A(G) (or simply A) denote the maximum degree of a graph G. Havet and
Yu [8] proposed the following conjecture.

(d,1)-Total Labelling Conjecture. \,(G) < min{A +2d —1,2A +d — 1}.

In [8], it was shown that for any graph G, (i) \;(G) < 2A + d — 1; (ii)
MY(G) < 2A — 2log(A + 2) + 2log(16d — 8) +d — 1, (iii) M5(G) < 2A; and (iv)
A(G) <2A—1if A > 5isodd. The (d,1)-total labelling for a few special graphs
has been studied, e.g., complete graphs [8], complete bipartite graphs [11], planar
graphs [1], outerplanar graphs [5], trees [9, 20], products of graphs [6], graphs with
a given maximum average degree [14], etc.

The join G v H of two vertex-disjoint graphs G and H is the graph obtained
by joining each vertex of GG to each vertex of H. If G, = wjus...upnup and
Cp = v1v2 . . .vnv1, With n,m > 3, are vertex-disjoint cycles, then

V(Crn VCp) =V(Cp) UV(C,),

E(CnVC,) =ECy) UE(C,)U{uw;:i=1,2,...,m;j=1,2,...,n}.
If P, = ujus...uy and P, = vive...v,, n,m > 1, are vertex-disjoint paths,
then

V(PnV P,) =V (P, UV(P,),

E(P,V P,)=E(Py)UE(P,) U{uwj:i=1,2,...,m;j=1,2,...,n}.

In this paper, we will characterize completely the (2, 1)-total number of the join
of two paths and the join of two cycles.

2. JoiNnoF CycCLES

The following two lemmas appeared in [8]:

Lemma 1. Let G be a graph. Then
(1) M5(G) > A +1.

(2) Forany (A+1)-(2,1)-total labelling f of G using the labels 0,1, ..., A+1,
every vertex of maximum degree of G is assigned 0 or A + 1.

(3) If H is a subgraph of G, then AL(H) < ML(G).
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Lemma 2. Let n > 3 be any integer. Then

‘ _f n+1, ifn=26,80rnisodd;
Az (Kn) = { n+2, otherwise.

Let Ga denote the subgraph induced by all vertices of maximum degree in G.
Chen and Wang [5] proved the following result:

Lemma 3. If A(Ga) > A — 1, then M5(G) > A + 2.
Lemma 4. If G is not bipartite, then A\L(G) > A + 2.

Proof. By Lemma 1, we may assume to the contrary that X,(G) = A +1. Let
f bea (A+1)-(2,1)-total labelling of G using 0,1, ..., A+ 1. Thus, every vertex
v of maximum degree of G has f(v) =0 or f(v) = A + 1. This implies that f is
a 2-coloring restricted on Ga, hence G is bipartite, contradicting the assumption
on Ga. ]

Given a k-(2,1)-total labelling f of the graph G using the label set B =
{0,1,...,k}, let o; and 3; denote the number of vertices and edges having the label
i, respectively. Moreover, {x1, 2z, ...,x5} — (b1, b, ..., b;) denotes that the se-
quences of vertices or edges 1, xo, . . ., z are alternately labelled with repeated uses
of the sequences of labels b1, bo, . . ., b;. For example, {vy, e1, va, €2, vs, €3, v4, €4, V5 }
— (1,2,3,4) means that all elements in the subset {v1, vs,v5} are labelled with
1, {e1, e3} with 2, {ve,v4} with 3, and {eq, e4} with 4, respectively. For a subset
S CV(G)UE(G) and a label i € B, let f(S) = i denote that all the elements in
S are assigned label i, i.e., f(x) =i for each z € S. In particular, we simply write
to indicate f(x) = for each x € {a,b,...,c}.

Theorem 5. Let n, m be integers with n > m > 3. Then

n+3 if either n > m + 2 and m is even,
Mo(C Vv Cy) = orn=m+1and m=2,4 (mod 12);
n+4 otherwise.

Proof. Let G = C,, Vv C,, and write A = A(G). Since n > m > 3, we see that
A = n + 2 by definition. We assume that all indices are taken modulo m for u;
and modulo n for v; in the following argument. The proof is split into two cases.

Case 1. m is even.
Subcase 1.1. n > m + 3.

By Lemma 1(1), Xo(G) > A+ 1 = n+ 3. It thus suffices to establish an
(n+ 3)-(2, 1)-total labelling f of G using the labels 0,1,...,n+ 3:
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{’LLl, ULU2, U2, U2UZ, « -« y Um—1Um, Um, umul} i (07 27 n—+ 37 3)!

flor) = f(v3) =1, fv2) =2,

flj))=j—2ford<j<n—-m+2, f(vj)=jforn—m+3<j<n,

f(’l)j’l)j+1) =m-+3+jforj=1,23,

f(’l)j’l)j+1) =7+1 f0r4§j <n—-m+1,

f(vn—m+2vn—m+3) = 0.

Letn—m+3<7<n.

If n is odd, we set f(v;vj+1) = 2 when j is even, and f(vjv;41) = 3 when j
is odd.

If n is even, we set f(vjv;41) = 3 when j is even, and f(v;vj+1) = 2 when j
is odd.

Forall ¢,j withi+ 5 > 3,if i +j+1 <n+ 3, we set f(uvj) =i+ j+1;
otherwise, f(u;vj) =p+3, wherei+j+1=p (mod (n+3))and p > 1.

We relabel w,,vy,—mr1 With 0, %, —mio With 1 and wiv; with n + 3. For
i=2,4,...,m— 2, the edge w;v; with f(u;v;) = n + 2 is relabelled 1, and the
edge u;v;41 With f(u;vj41) = n + 3 is relabelled 0.

For example, a 14-(2, 1)-total labelling of Cs \V Cy; is given in Table 1.

Table 1: A 14-(2,1)-total labelling of Cg Vv Cy;.

3
|12 13 14 5 0 2 3 2 3 2

oCy 1 ]2 |1 |2 |3 |6 |7 |8 |9 |01

— 0 ] 14 |4 |5 |6 |7 |8 |9 |10 1| 1213
21214 |5 |6 |7 [ 8 |9 | 101|121 |oO
30 |5 |6 |7 |8 |9 |10 11| 12] 13| 14 | 4
312146 |7 |8 |9 |01 |12]1 [0 [4 |5
370 [ 7 | 8 |9 |10 | 11 |12 |13 |14 [5 |6
2218 |9 | 101|121 |0 |4 |5 [6 |7
30 9 10 1|12 13144 [5 |6 |7 |8
21101 12]0 [1 [4 |5 |6 |7 |8 |9

In Table 1, the label 3 in the first row is assigned to the edge vqiv;. The
sequence of labels 12,13,14,...,3,2 in the second row are assigned to edges
V12, VU3, U3V4, - - ., UgU10, V10V11, FESPectively. The sequence of labels 1,2, 1, .. .,
10, 11 in the third row are assigned to vertices vy, vo, vs, ..., v10, V11, respectively.
The label 3 in the first column is assigned to the edge ugu;. The sequence of la-
bels 2,3,2,...,3,2 in the second column are assigned to edges ujus, usus, ugty,
..., ugur, urug, respectively. The sequence of labels 0, 14,0, ...,0, 14 in the third
column are assigned to vertices ui, uo, us, . . ., u7, ug, respectively. Other labels in
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the table are assigned to edges u;v; fori =1,2,...,8and j =1,2,...,11.

Subcase 1.2. n = m + 2.

Since \5(G) > A +1 = n+ 3 by Lemma 1, it suffices to give an (n + 3)-
(2,1)-total labelling f of G using the labels 0,1,...,n + 3:

flu;)) =0ifi>1isodd, f(u;) =n+3ifi>2iseven.

fluuipr)=i+1fori=1,2,...,m—1, f(upur) =m+ L.

f(vive) =n+2, f(vyv)) =n+ 1.

floj)=7if1<j<m—=2, floma)=m, fvj)=j—1ifm<j<n

Forall i, > 1,ifi+j+1<n+ 3, weset f(uv;) =i+ j+ 1; otherwise,
f(ujv;) =p+1, wherei+j+1=p(mod (n+3))and p > 1.

For i =3,7,11,..., the edge w;v; with f(u;vj) = n + 2 is relabelled n + 3,
and w;v; with f(u;v;) = n + 3 is relabelled n + 2.

Afterwards, we consider two subcases:

(@) If m =0 (mod 4), we set {wovs, v304,...,0p—10} — (0,n+ 2,1, n+ 3).

For i = 2,6, 10, ..., the edge w;v; with f(u;v;) = n+ 2 is relabelled 0, and
wjv; With f(u;vj) = n + 3 is relabelled 1.

For i =4,8,12,..., the edge w;v; with f(u;v;) = n+ 2 is relabelled 1, and
wjv; With f(u;vj) = n + 3 is relabelled 0.

Finally, we relabel u;v3 with n+3, uiu; with j—2forall j = 7,11,15,...,n—
3.

(b) If m =2 (mod 4), we set {vov3, V304, ..., U105} — (0,n+ 3,1, n+ 2).

For i =4,8,12,..., the edge w;v; with f(u;v;) = n + 2 is relabelled 0, and
wjv; With f(u;vj) = n + 3 is relabelled 1.

For i = 2,6, 10, ..., the edge u;v; with f(u;v;) = n + 2 is relabelled 1, and
wjv; With f(u;vj) = n + 3 is relabelled 0.

Finally, we relabel v, vy with n+3, uiv; with j—2forall j=5,9,13,...,n-3.

Subcase 1.3. n=m+ 1.
Subcase 1.3.1. m # 2,4 (mod 12).

First, we give an (n + 4)-(2, 1)-total labelling f of G using 0,1,...,n + 4:
flur) =0, f(uruz) =n+3, f(uz) =1, f(uguz) = n+4,

{us, usug, . . ., U, upur b — (0,3,1,4).
fv1)) =n+4, f(vive) =n+2, f(va) =1, f(vavs) =n+3, f(vs) =2,
{vsvyg, vy, ..., vp,vpv1} — (0,3,1,4).

Foralli,j > 1,if i+ j < n+4, we set f(u;v;) =i+ j; otherwise, f(u;v;) =
p+4, wherei+ j=p (mod (n+4))and p > 1.
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Fori=15,7,9,..., the edge u;v; with f(u;v;) = 5 is relabelled 2. Moreover,
we relabel uqvs with n + 4.

To show that A\5(G) > n+4 = m + 5, we suppose to the contrary that
M(G) < n+3=m+4. Let f bean (m + 4)-(2,1)-total labelling using B =
{0,1,...,m + 4}. We may, by Lemma 1(2), assume that f(v;) = 0 if 4 is odd,
and f(u;) = m + 4 if i is even. This implies that 09 = oy 44 = . Since
[V(G)| =2m+1and |E(G)| = m(m+1)+m+m+1 =m?+3m+1, we have

m+4
(1) > oi=2m+1,
=0
and
m+4
©) > Bi=m?+3m+1.
=0

From (1), we conclude that oy + 09+ -+ 4+ o3 =m+ 1. Let S; = 0,1 +
o; + 0,41 for each i € B, where 0_1 = 0,,,45 = 0. Thus,

2m+1-S5; 1 1
3) Bi < |————]<m+5-58
2 2
Further,
m—+4 1 1m+4
Zﬂiﬁ(m+5)(m+§)—§zsi
=0 1=0
1 1
= (m+5)(m+ 5) — 5[200—1—3(01 + oo+ 4 Omts) + 20m44]
11 5 1
2
= —m+ - —=(2
me+ om et o 2(m—|—3m+3)
= m?+3m+ 1.

m—+4
By (2) and (3), . B = m? + 3m + 1 if and only if 3, = Z=5 for all

1 € B. So, all Si’é r%ust be odd. Since m is even, to finish the proof, we have two
possibilities as follows:

(1) Assume that m = 0 (mod 4). In this case, 09 = 0,14 = 5 is even. Since
So = oo+ o is odd, it follows that o1 = Sy — o¢ is odd. Since S1 = o¢+01 + 09
is odd, it follows that o9 = S| — 09 — o1 is even. Since Sy = o1 + 09 + 03 IS
odd, it follows that 03 = S5 — o7 — o9 is even. Continuing this process, we derive
that o1,04,07,...,0m,0mys are odd, and og, 02, 03, 05, 06, Tm+1, Om+2, Omtd
are even. This implies that m + 5 = 0 (mod 3), so m = 3k; + 1 for some integer
k1 > 1. Note that m = 0 (mod 4), i.e., m = 4ky for some integer ky > 2.
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Combining these two facts, we obtain that m = 4 (mod 12), which contradicts the
assumption.

(ii) Assume that m = 2 (mod 4). We note that o9 = oy, 44 = 5 is odd.
Since Sy = o¢ + o1 is odd, similar to discussion for (i), o; is odd for precisely
1=20,3,6,9,...,m+ 1, m + 4, where m + 4 divides 3. This implies that m = 2
(mod 3) and (by assumption) m = 2 (mod 4), so we have a contradiction that m = 2
(mod 12).

Subcase 1.3.2. m = 2 (mod 12).

It suffices to give an (n + 3)-(2, 1)-total labelling f of G using 0,1,...,n+ 3:

f(u;j) =0ifi>1isodd, f(u;) =n+3ifi>2iseven.

f(uiqu) =i+1fori=1,2,....m—1, f(upui) =m+ 1.

f(v;) =j—1if j =0 (mod 3); otherwise, we set f(v;) =j + 1.

fviv2) =0, f(vovg) =n+2, f(vpv1) =n+3,

{vsvyg, v4v5, ..., vp—10n} — (0,n+ 3,1, n+ 2).

Forall i, > 1,ifi+j+1<n+ 3, weset f(u;v;) =i+ j+ 1; otherwise,
f(ujv;) =p+1, wherei+j+1=p(mod (n+3))and p > 1.

For i = 1 (mod 4), the edge w;v; with f(u;v;) = n+2 is relabelled n + 3, and
wjv; With f(u;v;) = n + 3 is relabelled n + 2.

For i = 2 (mod 4), the edge w;v; with f(u;v;) = n + 2 is relabelled 0, and
wjv; With f(u;v;) = n + 3 is relabelled 1.

For i = 0 (mod 4), the edge w;v; with f(u;v;) = n + 2 is relabelled 1, and
ujv; With f(u;v;) = n + 3 is relabelled 0.

Finally, we relabel ujvq with n + 2, uyve with n + 3, uqv, with n + 1, and
uiv; with j — 1 for all j # 0 (mod 3) and j > 4. Relabel w,,v,, with 0, w,,v2 With
1, and w,,v; with j 4+ 1 for all j =0 (mod 3) and 3 < j < n.

Subcase 1.3.3. m =4 (mod 12).

It suffices to give an (n + 3)-(2, 1)-total labelling f of G using 0,1,...,n+ 3:

flu;)) =0ifi>1isodd, f(u;) =n+3ifi>2iseven.

f(ulug) =3, f(uiui+1) =4 fori= 2, 3, o, m = 1, f(umul) =m.

f(v1) =1, f(v2) =n+2, f(v;) =j—2if j =2 (mod 3) and j > 3; otherwise,
we set f(v;) = J.

f(vive) = 3, {vous, v3v4, . . ., Vy—1Un, VU1 } — (0,n+ 3,1, n+ 2).

Forall i,j > 1,if i+ j < n+ 3, we set f(u;v;) =i+ j; otherwise, f(u;v;) =
p+1, where i+ j =p (mod (n+3)) and p > 1.

For i = 1 (mod 4), the edge w;v; with f(u;v;) = n+2 is relabelled n + 3, and
ujv; With f(u;v;) = n + 3 is relabelled n + 2.

For i = 2 (mod 4), the edge w;v; with f(u;v;) = n + 2 is relabelled 0, and
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ujv; With f(u;v;) = n + 3 is relabelled 1.

For i = 0 (mod 4), the edge w;v; with f(u;v;) = n + 2 is relabelled 1, and
wjv; With f(u;v;) = n + 3 is relabelled 0.

Then, we relabel vy with n, uyve with n+ 3, uvs with n 42, and u;v; with
j—2forall j #2 (mod 3) and j > 4. Relabel ugv; with 1, u,,v1 With 2, w,,ve
with n + 1, and u,,v; with j for all j =2 (mod 3) and j > 5. Finally, we need to
exchange the obtained labels of w;v1 and w;vo forall i =1,2,..., m.

Subcase 1.4. n = m.

This means that G is an (n+2)-regular graph. By Lemma 3, \5(G) > A+2 =
n + 4. It thus suffices to give an (n + 4)-(2, 1)-total labelling f of G using the
labels 0,1,...,n+4:

{u1, urug, ug, ugug, . . ., Up—1Unp, Up, upui } — (1,3,0,4).

{v1, v1v2, V2, VU3, .« . ., Up—1Up, Un, 1} — (3,1,4,0).

Foralli,j =1,2,....n, ifi+j+1<n+4, weset f(uv;) =i+ j+1;
otherwise, f(u;vj) =p+4, wherei+j+1=p (mod (n+4))and p > 1.

We relabel wqv1 with n + 3, both wjve and uovy with n + 4, and u,;v; with 2
if j is even and f(u;vj) = 5.
Case 2. m is odd.
Subcase 2.1. n > m + 1.

Since C,, is an odd cycle and Gao = C,,, Lemma 4 shows that \(G) >
A+2 =n+4. Itsuffices to establish an (n+4)-(2, 1)-total labelling f of G using
0,1,...,n+4:

flu) =n+4, furug) = 2, {ug, ugus, . .., U, upur } — (0,3,1,4).

f(’l)l) =m + 4, f(UQ) =3, f(Ug) =2, f(UQ’Ug) =m + 5.

Forall i, > 1,ifi+j+1 <n+4, weset f(u;v;) =i+ j+ 1; otherwise,
f(uvj) =p+4, wherei+j+1=p(mod (n+4))and p > 1. Afterwards, when
i > 4 is even, the edge w;v; with f(u;v;) = 5 is relabelled 2.

If n is odd, we set f(viv2) = 1 and relabel u;vo with O, and

{vsvy, vy, V4Vs5, . . ., Up—1Up, U, 1} — (0,3,1,4).

If n is even, we set f(viv2) = 0 and relabel u;v, with 1, and

{vsvy, vy, V4Vs5, . . ., Up—1Up, Up, o1} — (0,4, 1, 3).

Subcase 2.2. n = m.

Since C3 v Cj is just K¢, A\5(Kg) = 7 by Lemma 2. Thus, we only need to
consider the case for n = m > 5. It is obvious that \,(G) > A +2 =n+4 by
Lemma 4. It suffices to give an (n+4)-(2, 1)-total labelling f of G using the labels
0,1,...,n+4:
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flup) =n+1, f(vn) =n, flurug) =n+2, f(viv) =2,

fluj))=1if1<i<n-—2isodd, f(u;)=0if2<i<n-—1Iiseven,

fvj)) =n+3if1<j<n—2isodd, f(v;)=n+4if2<j<n—1Iseven,

{ugus, usug, . . ., Up—1Up, upur } — (n+ 3,n+4),

{vous, V304, . . ., Vy—1Vp, VU1 + — (0, 1),

f(ulvn) =n+3, f(u2vn) =n-+4, f(un—lvn) =n+2, f(unvn) =2,

flujvy) =ifor3 <i<n-—2.

Forodd j, ifi+j < n+1, we set f(u;v;) =i+ j; otherwise, f(u;v;) =p+1,
where i +j=p (mod (n+1)),p>1and j <n—2.

For even j, if i+j < n+2, we set f(u;v;) = i+j; otherwise, f(u;vj) = p+2,
where i +j=p (mod (n+2)),p>1and j <n— 1.

Finally, we relabel wjv, with n + 1, u,vp With 0, u,ve with 1.

This completes the proof. ]

3. JoIN oF PATHS

In this section, we give a complete classification for the join of two paths
according to their (2, 1)-total numbers. More precisely, we obtain the following
result:

Theorem 6. Let n, m be integers with n > m > 1. Then

n+1 ifm=1and n > 4,

n-+2 ifm=1land1<n<3 orm=2andn >4
n+3 ifm=2andn=3,orm>3and n>m+ 1;
n+4 ifm=n>2.

)‘g(Pm\/Pn):

Proof. We write simply G = P,,, V P, and A = A(G). In the following proof,
all indices are taken modulo m for u; and modulo » for v;. We consider several
cases, depending on the values of m and n.

Case 1. m = 1.

In this case, G is a fan with A = n. If n = 1, then it is easy to check that
G=Kyand \}(G)=3=n+2. If n=2,then G = K3 and \},(G) =4 =n+2.
If n = 3, then G is the graph obtained by removing an edge of Kj. It is not difficult
to verify that \(G) =5 =n + 2.

Assume that n > 4. On the one hand, \5(G) > A +1 =n+1 by Lemma
1(1). On the other hand, an (n + 1)-(2, 1)-total labelling f of G using the labels
0,1,...,n+ 1 is constructed as follows:

f(ul,’l)l’l)g,’l)4’l)5) = 0, f(Ug) = 1, f(Ug,v4,u1v1) = 2, f(ul’l)g) = 3,
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f(vs,v304, urve) = 4, f(v1,vov3) =5, {vsU6, Vg, - - -y Un—1Un, v} — (1,3,5),

f(ulvj) =j+1forj=4,5...,n
Case 2. m = 2.

If n =2, then G is K, and \5(G) = 6 =n+ 4 by Lemma 2.

If n = 4, to show that \,(G) = 6 = n + 2, it suffices to give a 6-(2, 1)-total
labelling f of G using the labels 0,1, ..., 6 as follows:

f(u1, v1v2, ugva) =0, f(vs, ugv1) =1, f(va, uruz) =2, f(va, urv1, ugvs) =3,

J(ugva, uvs) = 4, f(v1,u1v4, v2v3) =5, f(ug, urva, v3vy) = 6.

Assume that n = 3. Since G contains a 3-cycle consisting of three vertices,
u, ug, vo, of maximum degree, we have Xo(G) > A+2 = 6 = n+3 by Lemma 4.
Since P, V Ps is a subgraph of P, vV Py, Nos(PaV P3) < ANy(P,V Py)=6=n+3
by Lemma 1(3) and the previous proof. Thus, \5(G) =6 = n + 3.

Assume that n > 5. Since A\5(G) > A + 1 = n + 2, it suffices to give an
(n+ 2)-(2, 1)-total labelling f of G using the labels 0,1,...,n+ 2:

f(u1, vn—3vn—2,u2vp—1) = 0, f(vp-10n, ugvn—2) = 1.

flurug) =2, f(ugvn) =3, f(u2, vn—2vn_3) =n + 2.

fvj)=jforj=1,2,...,n.
f(ulvj) =j+2forj=1,2,...,n.
f(’u,g’l)j) =j+3forj=1,2,...,n—3.

f(’l)j’l)j+1) =j+5forj=1,2,...,n—4.
Case 3. m > 3.
Subcase 3.1. n =m = 3.

Our goal is to show that A5(G) = n+4 = 7. Since G C Kg and \5(G) <
AL (Kg) = 7 by Lemmas 1(3) and 2, it suffices to prove that \5(G) > 7. Assume
to the contrary that G has a 6-(2, 1)-total labelling f using the label set B =
{0,1,...,6}. Since G has 6 vertices and 13 edges, we derive

6
(4) > 0i=6,
i=0
and
6
5) Zﬂz =13.
i=0

Since ug and vy are vertices of maximum degree, {f(w), f(v2)} = {0,6}
by Lemma 1(2), say f(uz) = 0 and f(ve) = 6. Hence, f(z) ¢ {0,6} for all
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x € V(G) \ {ug,ve}. This implies that 0y = o = 1. Since only w; and us, or v;
and v3, may have the same label, it follows that o; < 2 for all 1 <i < 5.

Claim 1. For each i € B, f; < | &%-1202%41 | where ¢y = o7 = 0.

Claim 1 implies that 8; < 3 for all ¢ € B. Furthermore, since g = 06 = 1, we
have 3; < 2 for i = 0,1, 5,6. We consider two cases as follows:

Case (i). There is some k € B such that 3, = 3.

We notice that k& € {2, 3,4}. By symmetry, we consider two subcases:

° /62 = 3. Then o1 = 09 = o3 = 0, and f(ul) = f(’LL3) = 47 and f(?)l) =
f(vs) =i with {iq, 2} = {4,5}. Itis easy to see that 55 =0, B4, 06 < 1, B3 < 2
by Claim 1. Thus,

6
Zﬁi§2+2+3+2+1+0+1:11,
i=0

which contradicts (5).

e 3 = 3. We note that oo = 03 = 04 = 0, and f(u1) = f(us) = i; and
f(v1) = f(vs) = iz with {i1,io} = {1,5}. It follows that 3y, 81, B85, B < 1,
B2, B4 < 2 and hence

6
Y Bi<3+2x24+4x1=11,
i=0
again contradicting (5).
Case (ii). Forall i € B, 3; < 2.

If o; < 1 for all i € B, then there must exist two distinct labels p, ¢ €

{1,2,...,5} such that 0,_1 = 0, = opp1 = 1l and 041 = 04 = 0g41 = 1,
which implies that 3, = 3, = 1 by Claim 1 and therefore

6

Y Bi<2x145x2=12,

i=0

which contradicts (5).

Suppose that o;, = 2 for some iy € B. It is immediate to derive that iy €
{1,2,...,5}. By symmetry, it suffices to handle the case for 4 € {1, 2, 3}.

If igc =1,thenog+o1 =142 =3 and Gy = 81 = 1 by Claim 1. Consequently,

6
S B <2x1+5x2=12.
i=0
Assume that ip = 2. Sinceop =1and o =2, 51 < |[(6—-1—-2)/2] =1. If
6

o1 >1o0ro3>1,then oy + oy +03 >3 tomake that 5o =1 and > 3; < 12. If
i=0

6
o1 =o03=0,thenoy+o5+0 =6—1—2 =3,and hence 3 = 1and >_ 3; < 12.
i=0
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Assume that ig = 3. If oo > 1 or o4 > 1, then 83 = 1 and at least one of

6
B2 and (B4 is equal to 1, thus > 3; < 12. If oo = 04 = 0, then o1 + 05 = 2. If
i=0

6
o1 =05 =1,then By = By =1and > 5; < 12. If oy = 2 or o5 = 2, then we
i=0
may assume that o1 = 2 (up to symmetry). Since this is the case that ip = 1, we
6

can obtain that > 3; < 12.
i=0

6
Since each assumption yields the contradiction >  3; < 12, Subcase 3.1 is
i=0
concluded.

Subcase 3.2. n = m > 4.

Since G contains a 3-cycle consisting of three vertices of maximum degree,
M(G) > A +2=mn+4by Lemma 4. Since B, V P, is a subgraph of C,, v Cp,,
we derive \5(G) < n + 4 by Lemma 1, Subcases 1.3 and 2.2 in Theorem 5.
Consequently, \5(G) = n + 4.

Subcase 3.3. n =m + 1.

It is obvious that A5(G) > A+ 1 =n+ 3 by Lemma 1. It suffices to establish
an (n + 3)-(2, 1)-total labelling f of G using the labels 0,1,...,n + 3:

f(uj) =0ifi>1isodd, f(u;) =n+3ifi>2iseven.

fri))=n+2, flvj)=j—1forj=2,3,...,n

f(ulug) =3, f(uiui+1) =qfori= 2,3,....,m—1.

Forall i,j > 1,if i+ j < n+ 3, we set f(u;v;) =i+ j; otherwise, f(u;v;) =
p+1, where i+ j =p (mod (n+3))and p > 1.

f(’l)l’l)g) =3, f(UQ’Ug) =n+ 2.

If m is odd, then {vsvy, v4vs, ..., vp—10,} — (0,n+ 2,1, n+ 3).

If m is even, then {vsvg, v4v5, ..., V10, } — (R +3,0,n+2,1).

To relabel some edges, we need to consider two cases as follows:

(@ If m=0or 3 (mod 4), we relabel u; v, with n+ 3, usvy With 0, usv,, with 1.
For i =4,8,12,..., the edge u;v; with f(u;v;) = n + 2 is relabelled 0, and
wjvj41 With f(uvj41) = n+ 3 is relabelled 1.

For i = 6,10, 14, .., the edge w;v; with f(u;v;) = n+2 is relabelled 1, and
wjvj41 With f(u;vj11) = n+ 3 is relabelled 0.

Fori=5,9,13,..., the edge u;v; with f(u;v;) = n+ 2 is relabelled n + 3,
and w;vj11 With f(u;vj41) = n+ 3 is relabelled n + 2.

(b) If m =1 or 2 (mod 4), we relabel u;ve with n + 3, usvy with 1, ugv,, with
0.
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For i =4,8,12,..., the edge w;v; with f(u;v;) = n + 2 is relabelled 1, and
w;jvj41 With f(u;vj41) = n+ 3 is relabelled 0.

For i = 6,10, 14, .., the edge w;v; with f(u;v;) = n+2 is relabelled 0, and
wjvj41 With f(uvj11) = n+ 3 is relabelled 1.

Fori=3,7,... the edge u;v; with f(u;v;) = n+ 2 is relabelled » + 3, and
w;jvj41 With f(uvj11) = n+ 3 is relabelled n + 2.

Subcase 3.4. n = m + 2.

By Lemma 1(1), Xo(P, V P,) > A+1=mn+3.

If m is even, the result follows from Subcase 1.2 in Theorem 5.

If m is odd, we only need to give an (n + 3)-(2, 1)-total labelling f of G using
the labels 0,1, ...,n + 3:

flu;)) =0ifi>1isodd, f(u;) =n+3ifi>2iseven.

f(ri)=n+1, flvj)=j—1forj=2,3,...,n

f(ulug) =3, f(uiui+1) =qfori= 2,3,....,m—1.

f(vive) =3, f(vavs) = n+ 2, f(vsvg) =n+ 3.

If m =1 (mod 4), then {v4vs5, v506, ..., vp—10n} — (1, n+ 2,0, n+ 3).

If m =3 (mod 4), then {v4vs, v506, - . ., Vp—10,} — (0,n+2,1,n+ 3).

Foralli,j > 1,if i+ j <n+ 3, we set f(u;v;) =i+ j; otherwise, f(u;v;) =
p+1, where i+ j =p (mod (n+3))and p > 1.

If m =1 (mod 4), for i = 3,7,11,.. ., the edge wv; with f(uv;) =n+21is
relabelled n + 3, and w;v;41 with f(u;vj41) = n+ 3 is relabelled n + 2.

If m =3 (mod 4), for i = 5,9,13,..., the edge wv; with f(u,v;) =n+21is
relabelled n + 3, and w;v;41 with f(u;vj41) = n+ 3 is relabelled n + 2.

We relabel w;ve with n + 3, ugvy with 0, usv,, with 1.

For i = 4,8,12,..., the edge w;v; with f(u;v;) = n + 2 is relabelled 0, and
wjvj41 With f(uvj11) = n + 3 is relabelled 1.

For i = 6,10, 14, ..., the edge w;v; with f(u;v;) = n + 2 is relabelled 1, and
wjvj41 With f(uvj11) = n + 3 is relabelled 0.

Subcase 3.5. n > m + 3.

By Lemma 1(1), Xs(P,, V P,) > A+ 1 = n + 3. It suffices to give an
(n+ 3)-(2,1)-total labelling f of G using 0,1,...,n+ 3:

f(vive) =m+4, f(vevs) = m + 5, f(vsvg) = m + 6.

{’U;l, ULU2, U2, U2UZ, - - .y Um—1Um, um} - (07 27 n—+ 37 3)

fvj)=jforj=1,2,...,n, {vsvs,vs06,..., 910} — (2,3).

Forall i, > 1,ifi+j+1<n+ 3, weset f(uv;) =i+ j+ 1; otherwise,
f(ujvj) =p+3,wherei+j+1=p(mod (n+3))andp > 1.



618

Weifan Wang, Jing Huang, Sun Haina and Danjun Huang

For i = 2,4,6,... the edge w;v; with f(u;v;) = n + 2 is relabelled 0, and
wjvj41 With f(uvj11) = n + 3 is relabelled 1. [ ]
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