TAIWANESE JOURNAL OF MATHEMATICS

Vol. 16, No. 2, pp. 605-619, April 2012

This paper is available online at http://journal.taiwanmathsoc.org.tw

(2,1)-TOTAL NUMBER OF JOINS OF PATHS AND CYCLES

Weifan Wang*, Jing Huang, Sun Haina and Danjun Huang

Abstract. The (2,1)-total number $\lambda_2^t(G)$ of a graph G is the width of the smallest range of integers that suffices to label the vertices and edges of G such that no two adjacent vertices or two adjacent edges have the same label and the difference between the label of a vertex and its incident edges is at least 2. In this paper, we characterize completely the (2,1)-total number of the join of two paths and the join of two cycles.

1. Introduction

Motivated by the Frequency Channel Assignment problem, Griggs and Yeh [7] introduced the L(2,1)-labelling of graphs. This notion was subsequently generalized to the L(p,q)-labelling problem of graphs. Let p and q be two nonnegative integers. An L(p,q)-labelling of a graph G is a function f from its vertex set V(G) to the set $\{0,1,\ldots,k\}$ for some positive integer k such that $|f(x)-f(y)|\geq p$ if x and y are adjacent, and $|f(x)-f(y)|\geq q$ if x and y are at distance 2. The L(p,q)-labelling number $\lambda_{p,q}(G)$ of G is the smallest k such that G has an L(p,q)-labelling f with $\max\{f(v)\mid v\in V(G)\}=k$.

The L(p,q)-labelling of graphs have been studied rather extensively in recent years [3, 4, 13, 15, 16, 17, 18]. Whittlesey, Georges and Mauro investigated the L(2,1)-labelling of incidence graphs [21]. The *incidence graph* of a graph G is the graph obtained from G by replacing each edge by a path of length 2. The L(2,1)-labelling of the incidence graph of G is equivalent to an assignment of integers to each element of $V(G) \cup E(G)$ such that adjacent vertices have different labels, adjacent edges have different labels, and incident vertex and edge have labels that differ by at least 2. Such a labelling is called a (2,1)-total labelling of G, which was introduced by Havet and Yu and generalized to the (d,1)-total labelling [8].

Received March 5, 2009, accepted December 24, 2010.

Communicated by Hung-Lin Fu.

 $2010\ \textit{Mathematics Subject Classification:}\ 05\text{C}15.$

Key words and phrases: (2,1)-Total number, Path, Cycle, Join, Maximum degree.

^{*}Supported partially by NSFC (No. 11071223) and ZJNSF (No. Z6090150).

^{*}Corresponding author.

Let $d \geq 1$ be an integer. A k-(d,1)-total labelling of a graph G is a function f from $V(G) \cup E(G)$ to the set $\{0,1,\ldots,k\}$ such that $f(u) \neq f(v)$ if u and v are two adjacent vertices, $f(e) \neq f(e')$ if e and e' are two adjacent edges, and $|f(u)-f(e)| \geq d$ if vertex u is incident to edge e. The (d,1)-total number, denoted by $\lambda_d^t(G)$, is the least k such that G has a k-(d,1)-total labelling.

When d=1, the (1,1)-total labelling is the well-known total coloring of a graph, which has been extensively studied [2, 10, 12, 19].

Let $\Delta(G)$ (or simply Δ) denote the maximum degree of a graph G. Havet and Yu [8] proposed the following conjecture.

$$(d,1)\text{-Total Labelling Conjecture.} \quad \lambda_d^t(G) \leq \min\{\Delta + 2d - 1, 2\Delta + d - 1\}.$$

In [8], it was shown that for any graph G, (i) $\lambda_d^t(G) \leq 2\Delta + d - 1$; (ii) $\lambda_d^t(G) \leq 2\Delta - 2\log(\Delta + 2) + 2\log(16d - 8) + d - 1$, (iii) $\lambda_2^t(G) \leq 2\Delta$; and (iv) $\lambda_2^t(G) \leq 2\Delta - 1$ if $\Delta \geq 5$ is odd. The (d,1)-total labelling for a few special graphs has been studied, e.g., complete graphs [8], complete bipartite graphs [11], planar graphs [1], outerplanar graphs [5], trees [9, 20], products of graphs [6], graphs with a given maximum average degree [14], etc.

The join $G \vee H$ of two vertex-disjoint graphs G and H is the graph obtained by joining each vertex of G to each vertex of H. If $C_m = u_1u_2 \dots u_mu_1$ and $C_n = v_1v_2 \dots v_nv_1$, with $n, m \geq 3$, are vertex-disjoint cycles, then

$$V(C_m \vee C_n) = V(C_m) \cup V(C_n),$$

$$E(C_m \vee C_n) = E(C_m) \cup E(C_n) \cup \{u_i v_j : i = 1, 2, \dots, m; j = 1, 2, \dots, n\}.$$

If $P_m = u_1 u_2 \dots u_m$ and $P_n = v_1 v_2 \dots v_n$, $n, m \ge 1$, are vertex-disjoint paths, then

$$V(P_m \vee P_n) = V(P_m) \cup V(P_n),$$

$$E(P_m \vee P_n) = E(P_m) \cup E(P_n) \cup \{u_i v_j : i = 1, 2, \dots, m; j = 1, 2, \dots, n\}.$$

In this paper, we will characterize completely the (2,1)-total number of the join of two paths and the join of two cycles.

2. Join of Cycles

The following two lemmas appeared in [8]:

Lemma 1. Let G be a graph. Then

- (1) $\lambda_2^t(G) \ge \Delta + 1$.
- (2) For any $(\Delta+1)$ -(2,1)-total labelling f of G using the labels $0,1,\ldots,\Delta+1$, every vertex of maximum degree of G is assigned 0 or $\Delta+1$.
- (3) If H is a subgraph of G, then $\lambda_2^t(H) \leq \lambda_2^t(G)$.

Lemma 2. Let $n \geq 3$ be any integer. Then

$$\lambda_2^t(K_n) = \begin{cases} n+1, & \text{if } n=6,8 \text{ or } n \text{ is odd;} \\ n+2, & \text{otherwise.} \end{cases}$$

Let G_{Δ} denote the subgraph induced by all vertices of maximum degree in G. Chen and Wang [5] proved the following result:

Lemma 3. If
$$\Delta(G_{\Delta}) \geq \Delta - 1$$
, then $\lambda_2^t(G) \geq \Delta + 2$.

Lemma 4. If G_{Δ} is not bipartite, then $\lambda_2^t(G) \geq \Delta + 2$.

Proof. By Lemma 1, we may assume to the contrary that $\lambda_2^t(G) = \Delta + 1$. Let f be a $(\Delta + 1)$ -(2, 1)-total labelling of G using $0, 1, \ldots, \Delta + 1$. Thus, every vertex v of maximum degree of G has f(v) = 0 or $f(v) = \Delta + 1$. This implies that f is a 2-coloring restricted on G_{Δ} , hence G_{Δ} is bipartite, contradicting the assumption on G_{Δ} .

Given a k-(2,1)-total labelling f of the graph G using the label set $B=\{0,1,\ldots,k\}$, let σ_i and β_i denote the number of vertices and edges having the label i, respectively. Moreover, $\{x_1,x_2,\ldots,x_s\} \to (b_1,b_2,\ldots,b_l)$ denotes that the sequences of vertices or edges x_1,x_2,\ldots,x_s are alternately labelled with repeated uses of the sequences of labels b_1,b_2,\ldots,b_l . For example, $\{v_1,e_1,v_2,e_2,v_3,e_3,v_4,e_4,v_5\} \to (1,2,3,4)$ means that all elements in the subset $\{v_1,v_3,v_5\}$ are labelled with $1,\{e_1,e_3\}$ with $2,\{v_2,v_4\}$ with 3, and $\{e_2,e_4\}$ with 4, respectively. For a subset $S\subseteq V(G)\cup E(G)$ and a label $i\in B$, let f(S)=i denote that all the elements in S are assigned label i, i.e., f(x)=i for each $x\in S$. In particular, we simply write to indicate f(x)=i for each $x\in \{a,b,\ldots,c\}$.

Theorem 5. Let n, m be integers with $n \ge m \ge 3$. Then

$$\lambda_2^t(C_m \vee C_n) = \begin{cases} n+3 & \text{if either } n \geq m+2 \text{ and } m \text{ is even,} \\ & \text{or } n = m+1 \text{ and } m \equiv 2,4 \text{ (mod 12);} \\ n+4 & \text{otherwise.} \end{cases}$$

Proof. Let $G = C_m \vee C_n$ and write $\Delta = \Delta(G)$. Since $n \geq m \geq 3$, we see that $\Delta = n + 2$ by definition. We assume that all indices are taken modulo m for u_i and modulo n for v_i in the following argument. The proof is split into two cases.

Case 1. m is even.

Subcase 1.1. $n \ge m + 3$.

By Lemma 1(1), $\lambda_2^t(G) \ge \Delta + 1 = n+3$. It thus suffices to establish an (n+3)-(2, 1)-total labelling f of G using the labels $0, 1, \ldots, n+3$:

$$\begin{aligned} &\{u_1,u_1u_2,u_2,u_2u_3,\ldots,u_{m-1}u_m,u_m,u_mu_1\}\to (0,2,n+3,3),\\ &f(v_1)=f(v_3)=1,\ f(v_2)=2,\\ &f(v_j)=j-2\ \text{for}\ 4\leq j\leq n-m+2,\ \ f(v_j)=j\ \text{for}\ n-m+3\leq j\leq n,\\ &f(v_jv_{j+1})=m+3+j\ \text{for}\ j=1,2,3,\\ &f(v_jv_{j+1})=j+1\ \text{for}\ 4\leq j\leq n-m+1,\\ &f(v_{n-m+2}v_{n-m+3})=0.\\ &\text{Let}\ n-m+3\leq j\leq n. \end{aligned}$$

If n is odd, we set $f(v_jv_{j+1})=2$ when j is even, and $f(v_jv_{j+1})=3$ when j is odd.

If n is even, we set $f(v_jv_{j+1})=3$ when j is even, and $f(v_jv_{j+1})=2$ when j is odd

For all i, j with $i + j \ge 3$, if $i + j + 1 \le n + 3$, we set $f(u_i v_j) = i + j + 1$; otherwise, $f(u_i v_j) = p + 3$, where $i + j + 1 \equiv p \pmod{(n+3)}$ and $p \ge 1$.

We relabel $u_m v_{n-m+1}$ with 0, $u_m v_{n-m+2}$ with 1 and $u_1 v_1$ with n+3. For $i=2,4,\ldots,m-2$, the edge $u_i v_j$ with $f(u_i v_j)=n+2$ is relabelled 1, and the edge $u_i v_{j+1}$ with $f(u_i v_{j+1})=n+3$ is relabelled 0.

For example, a 14-(2,1)-total labelling of $C_8 \vee C_{11}$ is given in Table 1.

		0												
	12 13 14 5								0 2 3 2 3 2					
3	2 3 2 3 2 3 2	C_8 C_{11}	1	2	1	2	3	6	7	8	9	10	11	
		0	14	4	5	6	7	8	9	10	11	12	13	
		14	4	5	6	7	8	9	10	11	12	1	0	
		0	5	6	7	8	9	10	11	12	13	14	4	
		14	6	7	8	9	10	11	12	1	0	4	5	
		0	7	8	9	10	11	12	13	14	4	5	6	
		14	8	9	10	11	12	1	0	4	5	6	7	
		0	9	10	11	12	13	14	4	5	6	7	8	
		14	10	11	12	0	1	4	5	6	7	8	9	

Table 1: A 14-(2,1)-total labelling of $C_8 \vee C_{11}$.

In Table 1, the label 3 in the first row is assigned to the edge $v_{11}v_1$. The sequence of labels $12, 13, 14, \ldots, 3, 2$ in the second row are assigned to edges $v_1v_2, v_2v_3, v_3v_4, \ldots, v_9v_{10}, v_{10}v_{11}$, respectively. The sequence of labels $1, 2, 1, \ldots, 10, 11$ in the third row are assigned to vertices $v_1, v_2, v_3, \ldots, v_{10}, v_{11}$, respectively. The label 3 in the first column is assigned to the edge u_8u_1 . The sequence of labels $2, 3, 2, \ldots, 3, 2$ in the second column are assigned to edges $u_1u_2, u_2u_3, u_3u_4, \ldots, u_6u_7, u_7u_8$, respectively. The sequence of labels $0, 14, 0, \ldots, 0, 14$ in the third column are assigned to vertices $u_1, u_2, u_3, \ldots, u_7, u_8$, respectively. Other labels in

the table are assigned to edges $u_i v_j$ for i = 1, 2, ..., 8 and j = 1, 2, ..., 11.

Subcase 1.2. n = m + 2.

Since $\lambda_2^t(G) \ge \triangle + 1 = n+3$ by Lemma 1, it suffices to give an (n+3)-(2, 1)-total labelling f of G using the labels $0, 1, \ldots, n+3$:

 $f(u_i) = 0$ if $i \ge 1$ is odd, $f(u_i) = n + 3$ if $i \ge 2$ is even.

$$f(u_iu_{i+1}) = i+1$$
 for $i = 1, 2, ..., m-1$, $f(u_mu_1) = m+1$.

 $f(v_1v_2) = n + 2$, $f(v_nv_1) = n + 1$.

$$f(v_j) = j$$
 if $1 \le j \le m - 2$, $f(v_{m-1}) = m$, $f(v_j) = j - 1$ if $m \le j \le n$.

For all $i, j \ge 1$, if $i + j + 1 \le n + 3$, we set $f(u_i v_j) = i + j + 1$; otherwise, $f(u_i v_j) = p + 1$, where $i + j + 1 \equiv p \pmod{(n+3)}$ and $p \ge 1$.

For $i = 3, 7, 11, \ldots$, the edge $u_i v_j$ with $f(u_i v_j) = n + 2$ is relabelled n + 3, and $u_i v_j$ with $f(u_i v_j) = n + 3$ is relabelled n + 2.

Afterwards, we consider two subcases:

(a) If $m = 0 \pmod{4}$, we set $\{v_2v_3, v_3v_4, \dots, v_{n-1}v_n\} \to (0, n+2, 1, n+3)$.

For $i = 2, 6, 10, \ldots$, the edge $u_i v_j$ with $f(u_i v_j) = n + 2$ is relabelled 0, and $u_i v_j$ with $f(u_i v_j) = n + 3$ is relabelled 1.

For $i = 4, 8, 12, \ldots$, the edge $u_i v_j$ with $f(u_i v_j) = n + 2$ is relabelled 1, and $u_i v_j$ with $f(u_i v_j) = n + 3$ is relabelled 0.

Finally, we relabel u_1v_3 with n+3, u_1u_j with j-2 for all $j=7,11,15,\ldots,n-3$

(b) If $m = 2 \pmod{4}$, we set $\{v_2v_3, v_3v_4, \dots, v_{n-1}v_n\} \to (0, n+3, 1, n+2)$.

For i = 4, 8, 12, ..., the edge $u_i v_j$ with $f(u_i v_j) = n + 2$ is relabelled 0, and $u_i v_j$ with $f(u_i v_j) = n + 3$ is relabelled 1.

For $i = 2, 6, 10, \ldots$, the edge $u_i v_j$ with $f(u_i v_j) = n + 2$ is relabelled 1, and $u_i v_j$ with $f(u_i v_j) = n + 3$ is relabelled 0.

Finally, we relabel u_1v_1 with n+3, u_1v_j with j-2 for all $j=5, 9, 13, \ldots, n-3$.

Subcase 1.3. n = m + 1.

Subcase 1.3.1. $m \not\equiv 2, 4 \pmod{12}$.

First, we give an (n+4)-(2,1)-total labelling f of G using $0,1,\ldots,n+4$:

$$f(u_1) = 0$$
, $f(u_1u_2) = n + 3$, $f(u_2) = 1$, $f(u_2u_3) = n + 4$,

 $\{u_3, u_3u_4, \dots, u_m, u_mu_1\} \rightarrow (0, 3, 1, 4).$

$$f(v_1) = n + 4$$
, $f(v_1v_2) = n + 2$, $f(v_2) = 1$, $f(v_2v_3) = n + 3$, $f(v_3) = 2$,

 $\{v_3v_4, v_4, \dots, v_n, v_nv_1\} \rightarrow (0, 3, 1, 4).$

For all $i, j \ge 1$, if $i + j \le n + 4$, we set $f(u_i v_j) = i + j$; otherwise, $f(u_i v_j) = p + 4$, where $i + j \equiv p \pmod{(n+4)}$ and $p \ge 1$.

For i = 5, 7, 9, ..., the edge $u_i v_j$ with $f(u_i v_j) = 5$ is relabelled 2. Moreover, we relabel $u_1 v_3$ with n + 4.

To show that $\lambda_2^t(G) \geq n+4=m+5$, we suppose to the contrary that $\lambda_2^t(G) \leq n+3=m+4$. Let f be an (m+4)-(2,1)-total labelling using $B=\{0,1,\ldots,m+4\}$. We may, by Lemma 1(2), assume that $f(u_i)=0$ if i is odd, and $f(u_i)=m+4$ if i is even. This implies that $\sigma_0=\sigma_{m+4}=\frac{m}{2}$. Since |V(G)|=2m+1 and $|E(G)|=m(m+1)+m+m+1=m^2+3m+1$, we have

(1)
$$\sum_{i=0}^{m+4} \sigma_i = 2m+1,$$

and

(2)
$$\sum_{i=0}^{m+4} \beta_i = m^2 + 3m + 1.$$

From (1), we conclude that $\sigma_1 + \sigma_2 + \cdots + \sigma_{m+3} = m+1$. Let $S_i = \sigma_{i-1} + \sigma_i + \sigma_{i+1}$ for each $i \in B$, where $\sigma_{-1} = \sigma_{m+5} = 0$. Thus,

(3)
$$\beta_i \le \lfloor \frac{2m+1-S_i}{2} \rfloor \le m + \frac{1}{2} - \frac{1}{2}S_i.$$

Further,

$$\sum_{i=0}^{m+4} \beta_i \le (m+5)(m+\frac{1}{2}) - \frac{1}{2} \sum_{i=0}^{m+4} S_i$$

$$= (m+5)(m+\frac{1}{2}) - \frac{1}{2} [2\sigma_0 + 3(\sigma_1 + \sigma_2 + \dots + \sigma_{m+3}) + 2\sigma_{m+4}]$$

$$= m^2 + \frac{11}{2}m + \frac{5}{2} - \frac{1}{2}(2m+3m+3)$$

$$= m^2 + 3m + 1$$

By (2) and (3), $\sum_{i=0}^{m+4} \beta_i = m^2 + 3m + 1$ if and only if $\beta_i = \frac{2m+1-S_i}{2}$ for all $i \in B$. So, all S_i 's must be odd. Since m is even, to finish the proof, we have two possibilities as follows:

(i) Assume that $m \equiv 0 \pmod 4$. In this case, $\sigma_0 = \sigma_{m+4} = \frac{m}{2}$ is even. Since $S_0 = \sigma_0 + \sigma_1$ is odd, it follows that $\sigma_1 = S_0 - \sigma_0$ is odd. Since $S_1 = \sigma_0 + \sigma_1 + \sigma_2$ is odd, it follows that $\sigma_2 = S_1 - \sigma_0 - \sigma_1$ is even. Since $S_2 = \sigma_1 + \sigma_2 + \sigma_3$ is odd, it follows that $\sigma_3 = S_2 - \sigma_1 - \sigma_2$ is even. Continuing this process, we derive that $\sigma_1, \sigma_4, \sigma_7, \ldots, \sigma_m, \sigma_{m+3}$ are odd, and $\sigma_0, \sigma_2, \sigma_3, \sigma_5, \sigma_6, \sigma_{m+1}, \sigma_{m+2}, \sigma_{m+4}$ are even. This implies that $m+5\equiv 0 \pmod 3$, so $m=3k_1+1$ for some integer $k_1\geq 1$. Note that $m\equiv 0 \pmod 4$, i.e., $m=4k_2$ for some integer $k_2\geq 2$.

Combining these two facts, we obtain that $m \equiv 4 \pmod{12}$, which contradicts the assumption.

(ii) Assume that $m \equiv 2 \pmod{4}$. We note that $\sigma_0 = \sigma_{m+4} = \frac{m}{2}$ is odd. Since $S_0 = \sigma_0 + \sigma_1$ is odd, similar to discussion for (i), σ_i is odd for precisely $i = 0, 3, 6, 9, \ldots, m+1, m+4$, where m+4 divides 3. This implies that $m \equiv 2 \pmod{3}$ and (by assumption) $m \equiv 2 \pmod{4}$, so we have a contradiction that $m \equiv 2 \pmod{12}$.

Subcase 1.3.2. $m \equiv 2 \pmod{12}$.

It suffices to give an (n+3)-(2,1)-total labelling f of G using $0,1,\ldots,n+3$: $f(u_i)=0$ if $i\geq 1$ is odd, $f(u_i)=n+3$ if $i\geq 2$ is even.

 $f(u_iu_{i+1}) = i+1$ for i = 1, 2, ..., m-1, $f(u_mu_1) = m+1$.

 $f(v_j) = j - 1$ if $j \equiv 0 \pmod{3}$; otherwise, we set $f(v_j) = j + 1$.

 $f(v_1v_2) = 0$, $f(v_2v_3) = n + 2$, $f(v_nv_1) = n + 3$,

 $\{v_3v_4, v_4v_5, \dots, v_{n-1}v_n\} \to (0, n+3, 1, n+2).$

For all $i, j \ge 1$, if $i + j + 1 \le n + 3$, we set $f(u_i v_j) = i + j + 1$; otherwise, $f(u_i v_j) = p + 1$, where $i + j + 1 \equiv p \pmod{(n+3)}$ and $p \ge 1$.

For $i \equiv 1 \pmod{4}$, the edge $u_i v_j$ with $f(u_i v_j) = n + 2$ is relabelled n + 3, and $u_i v_j$ with $f(u_i v_j) = n + 3$ is relabelled n + 2.

For $i \equiv 2 \pmod{4}$, the edge $u_i v_j$ with $f(u_i v_j) = n + 2$ is relabelled 0, and $u_i v_j$ with $f(u_i v_j) = n + 3$ is relabelled 1.

For $i \equiv 0 \pmod{4}$, the edge $u_i v_j$ with $f(u_i v_j) = n + 2$ is relabelled 1, and $u_i v_j$ with $f(u_i v_j) = n + 3$ is relabelled 0.

Finally, we relabel u_1v_1 with n+2, u_1v_2 with n+3, u_1v_n with n+1, and u_1v_j with j-1 for all $j \not\equiv 0 \pmod 3$ and $j \ge 4$. Relabel u_mv_n with 0, u_mv_2 with 1, and u_mv_j with j+1 for all $j \equiv 0 \pmod 3$ and $3 \le j < n$.

Subcase 1.3.3. $m \equiv 4 \pmod{12}$.

It suffices to give an (n+3)-(2,1)-total labelling f of G using $0,1,\ldots,n+3$:

 $f(u_i) = 0$ if $i \ge 1$ is odd, $f(u_i) = n + 3$ if $i \ge 2$ is even.

 $f(u_1u_2) = 3$, $f(u_iu_{i+1}) = i$ for i = 2, 3, ..., m - 1, $f(u_mu_1) = m$.

 $f(v_1)=1,$ $f(v_2)=n+2,$ $f(v_j)=j-2$ if $j\equiv 2 \pmod 3$ and $j\geq 3$; otherwise, we set $f(v_j)=j$.

 $f(v_1v_2) = 3, \{v_2v_3, v_3v_4, \dots, v_{n-1}v_n, v_nv_1\} \rightarrow (0, n+3, 1, n+2).$

For all $i, j \ge 1$, if $i + j \le n + 3$, we set $f(u_i v_j) = i + j$; otherwise, $f(u_i v_j) = p + 1$, where $i + j \equiv p \pmod{(n+3)}$ and $p \ge 1$.

For $i \equiv 1 \pmod{4}$, the edge $u_i v_j$ with $f(u_i v_j) = n + 2$ is relabelled n + 3, and $u_i v_j$ with $f(u_i v_j) = n + 3$ is relabelled n + 2.

For $i \equiv 2 \pmod{4}$, the edge $u_i v_i$ with $f(u_i v_i) = n + 2$ is relabelled 0, and

 $u_i v_j$ with $f(u_i v_j) = n + 3$ is relabelled 1.

For $i \equiv 0 \pmod{4}$, the edge $u_i v_j$ with $f(u_i v_j) = n+2$ is relabelled 1, and $u_i v_j$ with $f(u_i v_j) = n+3$ is relabelled 0.

Then, we relabel u_1v_1 with n, u_1v_2 with n+3, u_1v_3 with n+2, and u_1v_j with j-2 for all $j \not\equiv 2 \pmod{3}$ and $j \geq 4$. Relabel u_2v_1 with 1, u_mv_1 with 2, u_mv_2 with n+1, and u_mv_j with j for all $j \equiv 2 \pmod{3}$ and $j \geq 5$. Finally, we need to exchange the obtained labels of u_iv_1 and u_iv_2 for all $i=1,2,\ldots,m$.

Subcase 1.4. n=m.

This means that G is an (n+2)-regular graph. By Lemma 3, $\lambda_2^t(G) \ge \Delta + 2 = n+4$. It thus suffices to give an (n+4)-(2,1)-total labelling f of G using the labels $0,1,\ldots,n+4$:

$$\{u_1, u_1u_2, u_2, u_2u_3, \dots, u_{n-1}u_n, u_n, u_nu_1\} \to (1, 3, 0, 4).$$

$$\{v_1, v_1v_2, v_2, v_2v_3, \dots, v_{n-1}v_n, v_n, v_nv_1\} \to (3, 1, 4, 0).$$

For all i, j = 1, 2, ..., n, if $i + j + 1 \le n + 4$, we set $f(u_i v_j) = i + j + 1$; otherwise, $f(u_i v_j) = p + 4$, where $i + j + 1 \equiv p \pmod{(n+4)}$ and $p \ge 1$.

We relabel u_1v_1 with n+3, both u_1v_2 and u_2v_1 with n+4, and u_iv_j with 2 if j is even and $f(u_iv_j)=5$.

Case 2. m is odd.

Subcase 2.1. $n \ge m + 1$.

Since C_m is an odd cycle and $G_{\Delta}=C_m$, Lemma 4 shows that $\lambda_2^t(G)\geq \Delta+2=n+4$. It suffices to establish an (n+4)-(2,1)-total labelling f of G using $0,1,\ldots,n+4$:

$$f(u_1) = n + 4$$
, $f(u_1u_2) = 2$, $\{u_2, u_2u_3, \dots, u_m, u_mu_1\} \rightarrow (0, 3, 1, 4)$.
 $f(v_1) = m + 4$, $f(v_2) = 3$, $f(v_3) = 2$, $f(v_2v_3) = m + 5$.

For all $i, j \ge 1$, if $i + j + 1 \le n + 4$, we set $f(u_i v_j) = i + j + 1$; otherwise, $f(u_i v_j) = p + 4$, where $i + j + 1 \equiv p \pmod{(n+4)}$ and $p \ge 1$. Afterwards, when $i \ge 4$ is even, the edge $u_i v_j$ with $f(u_i v_j) = 5$ is relabelled 2.

If n is odd, we set $f(v_1v_2) = 1$ and relabel u_1v_2 with 0, and

$$\{v_3v_4, v_4, v_4v_5, \dots, v_{n-1}v_n, v_n, v_nv_1\} \rightarrow (0, 3, 1, 4).$$

If n is even, we set $f(v_1v_2) = 0$ and relabel u_1v_2 with 1, and

$$\{v_3v_4, v_4, v_4v_5, \dots, v_{n-1}v_n, v_n, v_nv_1\} \to (0, 4, 1, 3).$$

Subcase 2.2. n=m.

Since $C_3 \vee C_3$ is just K_6 , $\lambda_2^t(K_6) = 7$ by Lemma 2. Thus, we only need to consider the case for $n = m \geq 5$. It is obvious that $\lambda_2^t(G) \geq \Delta + 2 = n + 4$ by Lemma 4. It suffices to give an (n+4)-(2,1)-total labelling f of G using the labels $0,1,\ldots,n+4$:

$$\begin{split} &f(u_n)=n+1,\,f(v_n)=n,\,f(u_1u_2)=n+2,\,f(v_1v_2)=2,\\ &f(u_i)=1\text{ if }1\leq i\leq n-2\text{ is odd},\,\,f(u_i)=0\text{ if }2\leq i\leq n-1\text{ is even},\\ &f(v_j)=n+3\text{ if }1\leq j\leq n-2\text{ is odd},\,\,f(v_j)=n+4\text{ if }2\leq j\leq n-1\text{ is even},\\ &\{u_2u_3,u_3u_4,\ldots,u_{n-1}u_n,u_nu_1\}\to(n+3,n+4),\\ &\{v_2v_3,v_3v_4,\ldots,v_{n-1}v_n,v_nv_1\}\to(0,1),\\ &f(u_1v_n)=n+3,\,f(u_2v_n)=n+4,\,f(u_{n-1}v_n)=n+2,\,f(u_nv_n)=2,\\ &f(u_iv_n)=i\text{ for }3\leq i\leq n-2. \end{split}$$

For odd j, if $i+j \le n+1$, we set $f(u_iv_j) = i+j$; otherwise, $f(u_iv_j) = p+1$, where $i+j \equiv p \pmod{(n+1)}, p \ge 1$ and $j \le n-2$.

For even j, if $i+j \le n+2$, we set $f(u_iv_j) = i+j$; otherwise, $f(u_iv_j) = p+2$, where $i+j \equiv p \pmod{(n+2)}$, $p \ge 1$ and $j \le n-1$.

Finally, we relabel u_1v_1 with n+1, u_nv_1 with 0, u_nv_2 with 1.

This completes the proof.

3. Join of Paths

In this section, we give a complete classification for the join of two paths according to their (2,1)-total numbers. More precisely, we obtain the following result:

Theorem 6. Let n, m be integers with $n \ge m \ge 1$. Then

$$\lambda_2^t(P_m \vee P_n) = \begin{cases} n+1 & \text{if } m=1 \text{ and } n \geq 4; \\ n+2 & \text{if } m=1 \text{ and } 1 \leq n \leq 3, \text{ or } m=2 \text{ and } n \geq 4; \\ n+3 & \text{if } m=2 \text{ and } n=3, \text{ or } m \geq 3 \text{ and } n \geq m+1; \\ n+4 & \text{if } m=n \geq 2. \end{cases}$$

Proof. We write simply $G = P_m \vee P_n$ and $\Delta = \Delta(G)$. In the following proof, all indices are taken modulo m for u_i and modulo n for v_j . We consider several cases, depending on the values of m and n.

Case 1. m = 1.

In this case, G is a fan with $\Delta=n$. If n=1, then it is easy to check that $G=K_2$ and $\lambda_2^t(G)=3=n+2$. If n=2, then $G=K_3$ and $\lambda_2^t(G)=4=n+2$. If n=3, then G is the graph obtained by removing an edge of K_4 . It is not difficult to verify that $\lambda_2^t(G)=5=n+2$.

Assume that $n \geq 4$. On the one hand, $\lambda_2^t(G) \geq \Delta + 1 = n+1$ by Lemma 1(1). On the other hand, an (n+1)-(2,1)-total labelling f of G using the labels $0, 1, \ldots, n+1$ is constructed as follows:

$$f(u_1, v_1v_2, v_4v_5) = 0, f(v_3) = 1, f(v_2, v_4, u_1v_1) = 2, f(u_1v_3) = 3,$$

$$f(v_5, v_3v_4, u_1v_2) = 4$$
, $f(v_1, v_2v_3) = 5$, $\{v_5v_6, v_6, \dots, v_{n-1}v_n, v_n\} \rightarrow (1, 3, 5)$, $f(u_1v_j) = j + 1$ for $j = 4, 5, \dots, n$.

Case 2. m = 2.

If n=2, then G is K_4 and $\lambda_2^t(G)=6=n+4$ by Lemma 2.

If n=4, to show that $\lambda_2^t(G)=6=n+2$, it suffices to give a 6-(2,1)-total labelling f of G using the labels $0,1,\ldots,6$ as follows:

$$f(u_1, v_1v_2, u_2v_4) = 0$$
, $f(v_3, u_2v_1) = 1$, $f(v_2, u_1u_2) = 2$, $f(v_4, u_1v_1, u_2v_3) = 3$, $f(u_2v_2, u_1v_3) = 4$, $f(v_1, u_1v_4, v_2v_3) = 5$, $f(u_2, u_1v_2, v_3v_4) = 6$.

Assume that n=3. Since G contains a 3-cycle consisting of three vertices, $u_1,u_2,v_2,$ of maximum degree, we have $\lambda_2^t(G) \geq \Delta+2=6=n+3$ by Lemma 4. Since $P_2 \vee P_3$ is a subgraph of $P_2 \vee P_4, \ \lambda_2^t(P_2 \vee P_3) \leq \lambda_2^t(P_2 \vee P_4)=6=n+3$ by Lemma 1(3) and the previous proof. Thus, $\lambda_2^t(G)=6=n+3$.

Assume that $n \geq 5$. Since $\lambda_2^t(G) \geq \Delta + 1 = n+2$, it suffices to give an (n+2)-(2,1)-total labelling f of G using the labels $0,1,\ldots,n+2$:

$$\begin{split} &f(u_1,v_{n-3}v_{n-2},u_2v_{n-1})=0,\ f(v_{n-1}v_n,u_2v_{n-2})=1.\\ &f(u_1u_2)=2,\ f(u_2v_n)=3,\ f(u_2,v_{n-2}v_{n-3})=n+2.\\ &f(v_j)=j\ \text{for}\ j=1,2,\ldots,n.\\ &f(u_1v_j)=j+2\ \text{for}\ j=1,2,\ldots,n.\\ &f(u_2v_j)=j+3\ \text{for}\ j=1,2,\ldots,n-3.\\ &f(v_iv_{i+1})=j+5\ \text{for}\ j=1,2,\ldots,n-4. \end{split}$$

Case 3. $m \ge 3$.

Subcase 3.1. n = m = 3.

Our goal is to show that $\lambda_2^t(G) = n+4=7$. Since $G \subseteq K_6$ and $\lambda_2^t(G) \le \lambda_2^t(K_6) = 7$ by Lemmas 1(3) and 2, it suffices to prove that $\lambda_2^t(G) \ge 7$. Assume to the contrary that G has a 6-(2,1)-total labelling f using the label set $B = \{0,1,\ldots,6\}$. Since G has 6 vertices and 13 edges, we derive

$$\sum_{i=0}^{6} \sigma_i = 6,$$

and

(5)
$$\sum_{i=0}^{6} \beta_i = 13.$$

Since u_2 and v_2 are vertices of maximum degree, $\{f(u_2), f(v_2)\} = \{0, 6\}$ by Lemma 1(2), say $f(u_2) = 0$ and $f(v_2) = 6$. Hence, $f(x) \notin \{0, 6\}$ for all

 $x \in V(G) \setminus \{u_2, v_2\}$. This implies that $\sigma_0 = \sigma_6 = 1$. Since only u_1 and u_3 , or v_1 and v_3 , may have the same label, it follows that $\sigma_i \leq 2$ for all $1 \leq i \leq 5$.

Claim 1. For each
$$i \in B$$
, $\beta_i \leq \lfloor \frac{6-\sigma_{i-1}-\sigma_i-\sigma_{i+1}}{2} \rfloor$, where $\sigma_{-1} = \sigma_7 = 0$.

Claim 1 implies that $\beta_i \leq 3$ for all $i \in B$. Furthermore, since $\sigma_0 = \sigma_6 = 1$, we have $\beta_i \leq 2$ for i = 0, 1, 5, 6. We consider two cases as follows:

Case (i). There is some $k \in B$ such that $\beta_k = 3$.

We notice that $k \in \{2, 3, 4\}$. By symmetry, we consider two subcases:

• $\beta_2 = 3$. Then $\sigma_1 = \sigma_2 = \sigma_3 = 0$, and $f(u_1) = f(u_3) = i_1$ and $f(v_1) = f(v_3) = i_2$ with $\{i_1, i_2\} = \{4, 5\}$. It is easy to see that $\beta_5 = 0$, $\beta_4, \beta_6 \le 1$, $\beta_3 \le 2$ by Claim 1. Thus,

$$\sum_{i=0}^{6} \beta_i \le 2 + 2 + 3 + 2 + 1 + 0 + 1 = 11,$$

which contradicts (5).

• $\beta_3 = 3$. We note that $\sigma_2 = \sigma_3 = \sigma_4 = 0$, and $f(u_1) = f(u_3) = i_1$ and $f(v_1) = f(v_3) = i_2$ with $\{i_1, i_2\} = \{1, 5\}$. It follows that $\beta_0, \beta_1, \beta_5, \beta_6 \leq 1$, $\beta_2, \beta_4 \leq 2$ and hence

$$\sum_{i=0}^{6} \beta_i \le 3 + 2 \times 2 + 4 \times 1 = 11,$$

again contradicting (5).

Case (ii). For all $i \in B$, $\beta_i \leq 2$.

If $\sigma_i \leq 1$ for all $i \in B$, then there must exist two distinct labels $p,q \in \{1,2,\ldots,5\}$ such that $\sigma_{p-1}=\sigma_p=\sigma_{p+1}=1$ and $\sigma_{q-1}=\sigma_q=\sigma_{q+1}=1$, which implies that $\beta_p=\beta_q=1$ by Claim 1 and therefore

$$\sum_{i=0}^{6} \beta_i \le 2 \times 1 + 5 \times 2 = 12,$$

which contradicts (5).

Suppose that $\sigma_{i_0}=2$ for some $i_0\in B$. It is immediate to derive that $i_0\in\{1,2,\ldots,5\}$. By symmetry, it suffices to handle the case for $i_0\in\{1,2,3\}$.

If $i_0=1$, then $\sigma_0+\sigma_1=1+2=3$ and $\beta_0=\beta_1=1$ by Claim 1. Consequently, $\sum_{i=0}^6\beta_i\leq 2\times 1+5\times 2=12.$

Assume that $i_0=2$. Since $\sigma_0=1$ and $\sigma_2=2$, $\beta_1\leq \lfloor (6-1-2)/2\rfloor=1$. If $\sigma_1\geq 1$ or $\sigma_3\geq 1$, then $\sigma_1+\sigma_2+\sigma_3\geq 3$ to make that $\beta_2=1$ and $\sum\limits_{i=0}^6\beta_i\leq 12$. If $\sigma_1=\sigma_3=0$, then $\sigma_4+\sigma_5+\sigma_6=6-1-2=3$, and hence $\beta_5=1$ and $\sum\limits_{i=0}^6\beta_i\leq 12$.

Assume that $i_0=3$. If $\sigma_2\geq 1$ or $\sigma_4\geq 1$, then $\beta_3=1$ and at least one of β_2 and β_4 is equal to 1, thus $\sum\limits_{i=0}^6\beta_i\leq 12$. If $\sigma_2=\sigma_4=0$, then $\sigma_1+\sigma_5=2$. If $\sigma_1=\sigma_5=1$, then $\beta_2=\beta_4=1$ and $\sum\limits_{i=0}^6\beta_i\leq 12$. If $\sigma_1=2$ or $\sigma_5=2$, then we may assume that $\sigma_1=2$ (up to symmetry). Since this is the case that $i_0=1$, we can obtain that $\sum\limits_{i=0}^6\beta_i\leq 12$.

Since each assumption yields the contradiction $\sum\limits_{i=0}^6 \beta_i \leq 12$, Subcase 3.1 is concluded.

Subcase 3.2. $n = m \ge 4$.

Since G contains a 3-cycle consisting of three vertices of maximum degree, $\lambda_2^t(G) \geq \Delta + 2 = n+4$ by Lemma 4. Since $P_n \vee P_n$ is a subgraph of $C_n \vee C_n$, we derive $\lambda_2^t(G) \leq n+4$ by Lemma 1, Subcases 1.3 and 2.2 in Theorem 5. Consequently, $\lambda_2^t(G) = n+4$.

Subcase 3.3. n = m + 1.

It is obvious that $\lambda_2^t(G) \ge \Delta + 1 = n+3$ by Lemma 1. It suffices to establish an (n+3)-(2,1)-total labelling f of G using the labels $0,1,\ldots,n+3$:

$$f(u_i) = 0$$
 if $i > 1$ is odd, $f(u_i) = n + 3$ if $i > 2$ is even.

$$f(v_1) = n + 2$$
, $f(v_j) = j - 1$ for $j = 2, 3, ..., n$.

$$f(u_1u_2) = 3$$
, $f(u_iu_{i+1}) = i$ for $i = 2, 3, ..., m - 1$.

For all $i, j \ge 1$, if $i + j \le n + 3$, we set $f(u_i v_j) = i + j$; otherwise, $f(u_i v_j) = p + 1$, where $i + j \equiv p \pmod{(n+3)}$ and $p \ge 1$.

$$f(v_1v_2) = 3, f(v_2v_3) = n + 2.$$

If m is odd, then $\{v_3v_4, v_4v_5, \dots, v_{n-1}v_n\} \to (0, n+2, 1, n+3)$.

If m is even, then $\{v_3v_4, v_4v_5, \dots, v_{n-1}v_n\} \to (n+3, 0, n+2, 1)$.

To relabel some edges, we need to consider two cases as follows:

(a) If $m \equiv 0$ or 3 (mod 4), we relabel u_1v_2 with n+3, u_2v_1 with 0, u_2v_n with 1.

For $i = 4, 8, 12, \ldots$, the edge $u_i v_j$ with $f(u_i v_j) = n + 2$ is relabelled 0, and $u_i v_{j+1}$ with $f(u_i v_{j+1}) = n + 3$ is relabelled 1.

For i = 6, 10, 14, ..., the edge $u_i v_j$ with $f(u_i v_j) = n + 2$ is relabelled 1, and $u_i v_{i+1}$ with $f(u_i v_{i+1}) = n + 3$ is relabelled 0.

For $i = 5, 9, 13, \ldots$, the edge $u_i v_j$ with $f(u_i v_j) = n + 2$ is relabelled n + 3, and $u_i v_{j+1}$ with $f(u_i v_{j+1}) = n + 3$ is relabelled n + 2.

(b) If $m \equiv 1$ or 2 (mod 4), we relabel u_1v_2 with n+3, u_2v_1 with 1, u_2v_n with 0.

For i = 4, 8, 12, ..., the edge $u_i v_j$ with $f(u_i v_j) = n + 2$ is relabelled 1, and $u_i v_{j+1}$ with $f(u_i v_{j+1}) = n + 3$ is relabelled 0.

For $i = 6, 10, 14, \ldots$, the edge $u_i v_j$ with $f(u_i v_j) = n + 2$ is relabelled 0, and $u_i v_{j+1}$ with $f(u_i v_{j+1}) = n + 3$ is relabelled 1.

For i = 3, 7, ..., the edge $u_i v_j$ with $f(u_i v_j) = n + 2$ is relabelled n + 3, and $u_i v_{j+1}$ with $f(u_i v_{j+1}) = n + 3$ is relabelled n + 2.

Subcase 3.4. n = m + 2.

By Lemma 1(1), $\lambda_2^t(P_m \vee P_n) \ge \Delta + 1 = n + 3$.

If m is even, the result follows from Subcase 1.2 in Theorem 5.

If m is odd, we only need to give an (n+3)-(2,1)-total labelling f of G using the labels $0,1,\ldots,n+3$:

 $f(u_i) = 0$ if $i \ge 1$ is odd, $f(u_i) = n + 3$ if $i \ge 2$ is even.

 $f(v_1) = n + 1$, $f(v_j) = j - 1$ for j = 2, 3, ..., n.

 $f(u_1u_2) = 3$, $f(u_iu_{i+1}) = i$ for i = 2, 3, ..., m - 1.

 $f(v_1v_2) = 3$, $f(v_2v_3) = n + 2$, $f(v_3v_4) = n + 3$.

If $m \equiv 1 \pmod{4}$, then $\{v_4v_5, v_5v_6, \dots, v_{n-1}v_n\} \rightarrow (1, n+2, 0, n+3)$.

If $m \equiv 3 \pmod{4}$, then $\{v_4v_5, v_5v_6, \dots, v_{n-1}v_n\} \to (0, n+2, 1, n+3)$.

For all $i, j \ge 1$, if $i + j \le n + 3$, we set $f(u_i v_j) = i + j$; otherwise, $f(u_i v_j) = p + 1$, where $i + j \equiv p \pmod{(n+3)}$ and $p \ge 1$.

If $m \equiv 1 \pmod{4}$, for $i = 3, 7, 11, \ldots$, the edge $u_i v_j$ with $f(u_i v_j) = n + 2$ is relabelled n + 3, and $u_i v_{j+1}$ with $f(u_i v_{j+1}) = n + 3$ is relabelled n + 2.

If $m \equiv 3 \pmod{4}$, for $i = 5, 9, 13, \ldots$, the edge $u_i v_j$ with $f(u_i v_j) = n + 2$ is relabelled n + 3, and $u_i v_{j+1}$ with $f(u_i v_{j+1}) = n + 3$ is relabelled n + 2.

We relabel u_1v_2 with n+3, u_2v_1 with 0, u_2v_n with 1.

For i=4,8,12,..., the edge u_iv_j with $f(u_iv_j)=n+2$ is relabelled 0, and u_iv_{j+1} with $f(u_iv_{j+1})=n+3$ is relabelled 1.

For $i = 6, 10, 14, \ldots$, the edge $u_i v_j$ with $f(u_i v_j) = n + 2$ is relabelled 1, and $u_i v_{j+1}$ with $f(u_i v_{j+1}) = n + 3$ is relabelled 0.

Subcase 3.5. $n \ge m + 3$.

By Lemma 1(1), $\lambda_2^t(P_m \vee P_n) \geq \Delta + 1 = n + 3$. It suffices to give an (n+3)-(2,1)-total labelling f of G using $0,1,\ldots,n+3$:

$$f(v_1v_2) = m + 4$$
, $f(v_2v_3) = m + 5$, $f(v_3v_4) = m + 6$.

$$\{u_1, u_1u_2, u_2, u_2u_3, \dots, u_{m-1}u_m, u_m\} \rightarrow (0, 2, n+3, 3).$$

$$f(v_j) = j \text{ for } j = 1, 2, \dots, n, \{v_4v_5, v_5v_6, \dots, v_{n-1}v_n\} \to (2, 3).$$

For all $i, j \ge 1$, if $i + j + 1 \le n + 3$, we set $f(u_i v_j) = i + j + 1$; otherwise, $f(u_i v_j) = p + 3$, where $i + j + 1 \equiv p \pmod{(n+3)}$ and $p \ge 1$.

For i=2,4,6,..., the edge u_iv_j with $f(u_iv_j)=n+2$ is relabelled 0, and u_iv_{j+1} with $f(u_iv_{j+1})=n+3$ is relabelled 1.

ACKNOWLEDGMENTS

The authors would like to thank the referees for their valuable suggestions to improve this work.

REFERENCES

- 1. F. Bazzaro, M. Montassier and A. Raspaud, (d, 1)-Total labelling of planar graphs with large girth and high maximum degree, *Discrete Math.*, **307** (2007), 2141-2151.
- 2. O. V. Borodin, A. V. Kostochka and D. R. Woodall, List edge and list total coloring of multigraphs, *J. Combin. Theory Ser. B*, **71** (1997), 184-204.
- 3. G. J. Chang and D. Kuo, The L(2,1)-labelling problem on graphs, SIAM J. Discrete Math., 9 (1996), 309-316.
- 4. G. J. Chang, W.-T. Ke, D. Kuo, Daphne D.-F. Liu and R. K. Yeh, On L(d, 1)-labelling of graphs, *Discrete Math.*, **220** (2000), 57-66.
- 5. D. Chen and W. Wang, (2,1)-Total labelling of outerplanar graphs, *Discrete Appl. Math.*, **155** (2007), 2585-2593.
- 6. D. Chen and W. Wang, (2,1)-Total labelling products of two kind of graphs, *J. Zhejiang Normal Univ.* (*Natural Sci.*), **29(1)** (2006), 26-31.
- 7. J. R. Griggs and R. K. Yeh, Labelling graphs with a condition at distance 2, *SIAM J. Discrete Math.*, **5** (1992), 586-595.
- 8. F. Havet and M.-L. Yu, (p, 1)-Total labelling of graphs, *Discrete Math.*, **308** (2008), 496-513.
- 9. J. Huang, H. Sun, W. Wang and D. Chen, (2, 1)-Total labelling of trees with sparse vertices of maximum degree, *Inform. Process. Lett.*, **109** (2009), 199-203.
- 10. A. V. Kostochka, The total chromatic number of any multigraph with maximum degree five is at most seven, *Discrete Math.*, **162** (1996), 199-214.
- 11. K.-W. Lih, Daphne D.-F. Liu and W. Wang, On (*d*, 1)-total numbers of graphs, *Discrete Math.*, **309** (2009), 3767-3773.
- 12. M. Molloy and B. Reed, A bound on the total chromatic number, *Combinatorica*, **18** (1998), 241-280.
- 13. M. Molloy and M. R. Salavatipour, A bound on the chromatic number of the square of a planar graph, *J. Combin. Theory Ser. B*, **94** (2005), 189-213.
- 14. M. Montassier and A. Raspaud, (d, 1)-Total labelling of graphs with a given maximum average degree, J. Graph Theory, **51** (2006), 93-109.

- 15. D. Sakai, Labelling chordal graphs: distance two condition, *SIAM J. Discrete Math.*, 7 (1994), 133-140.
- 16. C. Schwarz and D. S. Troxell, L(2,1)-labelling of products of two cycels, *Discrete Appl. Math.*, **154** (2006), 1522-1540.
- 17. W. Wang and K.-W. Lih, Labelling planar graphs with conditions on girth and distance two, *SIAM J. Discrete Math.*, **17** (2004), 264-275.
- 18. W. Wang, The L(2, 1)-labelling of trees, *Discrete Appl. Math.*, **154** (2006), 598-603.
- 19. W. Wang, Total chromatic number of planar graphs with maximum degree ten, *J. Graph Theory*, **54** (2007), 91-102.
- 20. W. Wang and D. Chen, (2,1)-Total number of trees with maximum degree three, *Inform. Process. Lett.*, **109** (2009), 805-810
- 21. M. A. Whittlesey, J. P. Georges and D. W. Mauro, On the λ -number of Q_n and related graphs, *SIAM J. Discrete Math.*, **8** (1995), 499-506.

Weifan Wang, Jing Huang and Danjun Huang Department of Mathematics Zhejiang Normal University Jinhua 321004 P. R. China

E-mail: wwf@zjnu.cn

Sun Haina
Department of Fundamental Courses
Ningbo Institute of Technology
Zhejiang University
Ningbo 315100
P. R. China