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LINEAR REGULARITY FOR AN INFINITE SYSTEM FORMED BY
p-UNIFORMLY SUBSMOOTH SETS IN BANACH SPACES

Zhou Wei

Abstract. In this paper, we introduce and study p-uniform subsmoothness of a
collection of infinitely many closed sets in a Banach space. Using variational
analysis and techniques, we mainly study linear regularity for a collection of
infinitely many closed sets satisfying p-uniform subsmoothness. The necessary
or/and sufficient conditions on the linear regularity are obtained in this case. In
particular, we extend the characterizations of linear regularity for a collection
of infinitely many closed convex sets to the nonconvex setting.

1. INTRODUCTION

R. A. Poliquin and R. T. Rockafellar [1] introduced and studied the concept
of prox-regularity for functions and sets in the finite-dimensional context. This
notion is an extension of convexity and has been extensively studied by many au-
thors (see [2, 3, 4] and references therein). Aussel, Daniilidis and Thibaut [5]
introduced and studied the notion of subsmoothness for a closed set which is an
extension of prox-regularity and smoothness, and established several interesting and
valuable properties for approximate convex functions and submonotone subdiffer-
ential mappings therein. Recently, the authors [6] introduced and considered the
uniform subsmoothness of infinitely-many closed subsets in Banach spaces, and
used it to study the interrelationship among linear regularity, property(G), CHIP and
strong CHIP. Motivated by [5] and [6], in this paper, we introduce and consider the
p-uniform subsmoothness for a collection of infinitely many closed sets in Banach
space setting.
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The concept of linear regularity is well-known in mathematical programming
since it plays an important role in metric regularity/subregularity, error bounds and
approximation theory. In particular, it is utilized to establish a linear convergence
rate of iterates generated by the cyclic projection algorithm for finding the projec-
tion from a point to the intersection of finitely many closed convex sets (see [7] and
references therein). In early 1970s, Jameson [8] presented a characterization for the
linear regularity of two closed convex cones. In terms of Jameson’s property(G),
Bauschke, Borwein and Li [9] provided a characterization of the linear regularity
for a finite system of closed convex cones. Recently, Ng and Yang [10] extended
the results in [9] to a finite collection of closed convex sets in a Banach space. Fur-
thermore Li, Ng and Pong [11] and Zheng and Ng [12] studied the linear regularity
for a collection of infinitely many closed convex sets in a Banach space, respec-
tively. In [12], Zheng and Ng introduced the notion of weak∗ p-sum for infinitely
many closed convex sets in dual spaces and generalized Jameson’s property(G) to
an infinite system of closed convex cones of a Banach space. Zheng and Ng con-
sidered the local linear regularity for the nonconvex setting in [13] where the case
of finitely many subsmooth sets was studied and several necessary and/or sufficient
conditions for the local linear regularity of this case were given. They further in
[14] introduced the notion of L-subsmoothness for locally Lipschizian functions and
studied metric regularity for this class of functions. Inspired by [6, 12, 13] and [14],
in this paper, we mainly study the case of infinitely many closed sets in nonconvex
setting, and provide some sufficient and/or necessary conditions for the local linear
regularity of a collection formed by infinitely many closed sets satisfying p-uniform
subsmoothness.

The paper is organized as follows. In Section 2, we recall some notions in
variational analysis and approximate projection theorems established recently in
[13], which will be of use in the proof of our main results. In Section 3, we introduce
and study a notion of p-uniform subsmoothness. Then, we provide necessary and/or
sufficient conditions for the p-local linear regularity of a collection of infinitely
many closed sets with the assumption of p-uniform subsmoothness.

2. PRELIMINARIES

Let X be a Banach space with topological dual X∗, and 〈·, ·〉 be the duality
pairing between X and X ∗. Let BX and BX∗ denote the closed unit balls of X
and X∗, respectively. For a nonempty subset A of X , we denote ∂A the boundary
of A with respect to the norm topology.

Let φ : X → R ∪ {+∞} be a proper lower semicontinuous function. Let
x ∈ dom(φ) := {y ∈ X : φ(y) < +∞} and h ∈ X . We denote the generalized
Rockafellar directional derivative of φ at x along the direction h by φ◦(x; h) which
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is defined by (see [15])

φ◦(x; h) := lim
ε↓0

lim sup
z

φ→x, t↓0
inf

w∈h+εBX

φ(z + tw) − φ(z)
t

,

where z
φ→ x means that z → x and φ(z) → φ(x). When φ is locally Lipschitzian

around x, φ◦(x; h) reduces to Clarke’s directional derivative; that is

φ◦(x; h) = lim sup
z→x, t↓0

φ(z + th) − φ(z)
t

.

Recall [16] that φ is regular at x if φ is Lipschitz around x and admits directional
derivatives φ′(x; h) at x for all h ∈ X with φ′(x; h) = φ◦(x; h), where φ′(x; h) is
defined by

φ′(x; h) := lim
t→0+

φ(x + th) − φ(x)
t

.

The Clarke subdifferential of φ at x is defined by

∂cφ(x) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ φ◦(x; h) ∀h ∈ X},

and the Fréchet subdifferential of φ at x is defined by

∂̂φ(x) :=
{

x∗ ∈ X∗ : lim inf
y→x

φ(y) − φ(x) − 〈x∗, y − x〉
‖y − x‖ ≥ 0

}
.

Let A be a closed subset of X and a ∈ A. The Clarke normal cone of A at a,
denoted by Nc(A, a), is defined by

Nc(A, a) := ∂cδA(a),

where δA denotes the indicator function of A; that is δA(y) = 0 if y ∈ A and
δA(y) = +∞ if y /∈ A. For ε ≥ 0, the set of ε-normal to A at a is defined by

N̂ε(A, a) := {x∗ ∈ X∗ : lim sup
y

A→a

〈x∗, y − a〉
‖y − a‖ ≤ ε},

where y
A→ a means y → a and y ∈ A. When ε = 0, N̂ε(A, a) is a convex cone

which is called the Fréchet normal cone of A at a and is denoted by N̂ (A, a). It is
known (cf.[17, Corollary 1.96]) that N̂ (A, u) ∩ BX∗ = ∂̂d(·, A)(u) for all u ∈ A.
Hence x∗ ∈ N̂ (A, u) ∩ BX∗ if and only if for any ε > 0 there exists r > 0 such
that

(2.1) 〈x∗, x− u〉 ≤ d(x, A) + ε‖x − u‖ ∀x ∈ B(u, r).
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When A is convex, one has

N̂(A, a) = Nc(A, a) = {x∗ ∈ X∗ : 〈x∗, x− a〉 ≤ 0 ∀x ∈ A}.
Recall that a Banach space X is called an Asplund space if every continuous

convex function defined on an open convex subset D of X is Fréchet differentiable
at each point of a dense Gδ subset of D. It is well known that X is an Asplund
space if and only if every separable subspace of X has a separable dual space
(cf.[18]). In particular, every reflexive Banach space is an Asplund space.

Recall that a closed set A in X is said to be subsmooth at a ∈ A if for any
ε > 0 there exists r > 0 such that

〈x∗ − u∗, x − u〉 ≥ −ε‖x − u‖
whenever x, u ∈ A ∩ B(a, r) , x∗ ∈ Nc(A, x)∩ BX∗ and u∗ ∈ Nc(A, u) ∩ BX∗ .

It follows from [13] that if A is subsmooth at a, then A is Clarke regular at a;
that is

(2.2) subsmoothness of A at a =⇒ Nc(A, a) = N̂ (A, a).

The following approximate projection results(recently established in [13]) will
be useful in the proofs of our main results.

Lemma 2.1. Let X be a Banach space (resp., an Asplund space) and A be
a closed nonempty subset of X . Let γ ∈ (0, 1). Then for any x /∈ A there exist
a ∈ ∂A and a∗ ∈ Nc(A, a)(resp., a∗ ∈ N̂(A, a)) with ‖a∗‖ = 1 such that

γ‖x− a‖ < min
{

d(x, A), 〈a∗, x− a〉
}
.

In Sections 3, we will need the following inequality.

Lemma 2.2. Let p ∈ [1, +∞). Then there exists M = M(p) > 0 such that

(2.3) (a + b)p ≤ M
(|a|p + |b|p) ∀ a, b ∈ R.

Taking M = 2p and by virtue of the trivial inequality a + b ≤ 2 max
{|a|, |b|},

the proof can be obtained.

3. p-LOCAL LINEAR REGULARITY OF p-UNIFORMLY SUBSMOOTH SETS

In this section, we study p-local linear regularity of a collection of infinitely
many closed sets in Banach space X . Let I be an arbitrary nonempty index and
let p ∈ [1, +∞). Recall that lp(I) is a classic Banach space and its interesting and
important properties can be found in Day [19]. We denote

lp+(I) := {(ti)i∈I ∈ lp(I) : ti ≥ 0 ∀i ∈ I}.
We first recall the notion of p-local linear regularity (cf.[12]).
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Definition 3.1. Let {Ai : i ∈ I} be a collection of closed sets in X . Assume
that A :=

⋂
i∈I Ai is nonempty. Let p ∈ [1, +∞). We say that the collection

{Ai : i ∈ I} is p-locally linearly regular at a ∈ A if there exist τ, δ ∈ (0, +∞) such
that

(3.1) d(x, A) ≤ τ
(∑

i∈I

(d(x, Ai))p
) 1

p ∀x ∈ B(a, δ).

Note that (3.1) holds trivially if
(∑

i∈I(d(x, Ai))p
) 1

p = +∞, so we are inspired
to consider the general case and it is necessary to study the following concept
introduced in [12].

Definition 3.2. We say that d(·, Ai)i∈I is of type lp if (d(x, Ai))i∈I ∈ lp(I) for
each x ∈ X .

In order to study p-local linear regularity for the collection of closed sets, we in-
troduce a new notion of p-uniform subsmoothness which is inspired by the definition
of subsmoothness ([cf. [4, 6, 7, 13 and references therein]).

Definition 3.3. Let {Ai : i ∈ I} be a collection of closed sets in X . Suppose
that A :=

⋂
i∈I Ai is nonempty. We say that

(i) the collection {Ai : i ∈ I} is p-uniformly subsmooth at a ∈ A, if for any ε > 0
there exist δ > 0 and (ωi)i∈I ∈ lp(I) with

∑
i∈I |ωi|p ≤ 1 such that whenever

i ∈ I , ai ∈ Ai ∩ B(a, δ) and a∗i ∈ Nc(Ai, ai) ∩ BX∗ , one has

(3.2) 〈a∗i , x − ai〉 ≤ |ωi|ε‖x − ai‖ ∀x ∈ Ai ∩ B(a, δ);

(ii) the collection {Ai : i ∈ I} is p-uniformly subsmooth on A, if {Ai : i ∈ I} is
p-uniformly subsmooth at each a ∈ A.

It is easy to verify from the definition that the collection {Ai : i ∈ I} is p-
uniformly subsmooth on A if each Ai is closed and convex.

The following proposition gives a characterization for the notion of p-uniform
subsmoothness.

Proposition 3.1. Let X be a Banach space and {Ai : i ∈ I} be a collection
of closed subsets in X . Suppose that A :=

⋂
i∈I Ai is nonempty. Then {Ai : i ∈

I} is p-uniformly subsmooth at a ∈ A if and only if for any ε > 0 there exist
δ > 0 and (ωi)i∈I ∈ Blp(I) such that whenever i ∈ I , ai ∈ Ai ∩ B(a, δ) and
a∗i ∈ Nc(Ai, ai) ∩ BX∗ , one has

(3.3) 〈a∗i , x− ai〉 ≤ d(x, Ai) + |ωi|ε‖x − ai‖ ∀x ∈ B(a, δ).

Proof. Note that d(x, Ai) = 0 for all x ∈ Ai; so the sufficiency part follows
from that (3.3) implies (3.2). Conversely, suppose that {Ai : i ∈ I} is p-uniformly
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subsmooth at a. Let any ε ∈ (0, +∞). Then there exist δ > 0 and (ωi)i∈I ∈ Blp(I)

such that whenever i ∈ I , ai ∈ Ai ∩ B(a, δ) and a∗i ∈ Nc(Ai, ai) ∩ BX∗ , one has

(3.4) 〈a∗i , x− ai〉 ≤ |ωi|ε
2

‖x− ai‖ ∀x ∈ B(a, 2δ) ∩ Ai.

Fix i ∈ I , and let x ∈ B(a, δ), ai ∈ Ai ∩ B(a, δ) and a∗i ∈ Nc(Ai, ai) ∩ BX∗ .
Noting that d(x, Ai) ≤ ‖x− a‖ < δ, one can take a sequence {un} ⊂ Ai ∩B(x, δ)
such that ‖x − un‖ → d(x, Ai). Since ‖un − a‖ ≤ ‖un − x‖ + ‖x − a‖ < 2δ, it
follows from (3.4) that

〈a∗i , x − ai〉 = 〈a∗i , x − un〉 + 〈a∗i , un − ai〉
≤ ‖x − un‖ +

|ωi|ε
2

‖un − ai‖

≤ ‖x − un‖ +
|ωi|ε

2
(‖un − x‖ + ‖x− ai)‖

Taking limits as n → ∞, one has

〈a∗i , x− ai〉 ≤ d(x, Ai) +
|ωi|ε

2
(d(x, Ai) + ‖x − ai‖) ≤ d(x, Ai) + |ωi|ε‖x− ai‖.

This shows that the necessity part holds. The proof is completed.

Let {Ci : i ∈ J} be a family of subsets of X containing the origin. The set∑
i∈J

Ci is defined by

∑
i∈J

Ci :=

{ {∑
i∈J0

ai : ai ∈ Ci, ∅ �= J0 ⊂ J being finite
}

if J �= ∅
{0} if J = ∅

Proposition 3.2. Let X be a Banach space, {Ai : i ∈ I} be a collection of
closed subsets in X , a ∈ A :=

⋂
i∈I Ai and p, q ∈ (1, +∞) with 1

p + 1
q = 1.

Suppose that {Ai : i ∈ I} is p-uniformly subsmooth at a and that d(·, A i)i∈I is of
type lp. Then for any µ = (µi)i∈I ∈ lq+(I) with ‖µ‖ ≤ 1, one has

∑
i∈I

µi(Nc(Ai, a) ∩ BX∗)
w∗

⊂ ∂̂
((∑

i∈I

d(·, Ai)p
) 1

p

)
(a).

Proof. Let x∗ be an arbitrary point in
∑

i∈I µi(Nc(Ai, a) ∩ BX∗)
w∗

and take a
generalized sequence {x∗

k} ⊂∑i∈I µi(Nc(Ai, a)∩BX∗) such that x∗
k

w∗→ x∗. Then,
for each k, there exist a finite subset Ik ⊂ I , x∗

k(j) ∈ Nc(Aj, a) ∩ BX∗(j ∈ Ik)
such that

x∗
k =

∑
j∈Ik

µjx
∗
k(j).
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Since {Ai : i ∈ I} is p-uniformly subsmooth, for each ε > 0 there exist δ > 0 and
(ωi)i∈I ∈ Blp(I) such that (3.3) holds. Thus, for any x ∈ B(a, δ), by (3.3) and
Hölder inequality, one has

〈x∗
k, x − a〉 ≤

∑
j∈Ik

µj〈x∗
k(j), x− a〉 ≤

∑
j∈Ik

µj

(
d(x, Aj) + |ωj|ε‖x − a‖)

≤
(∑

i∈I

µq
i

) 1
q
((∑

i∈I

d(x, Ai)p
) 1

p + ε‖x − a‖
(∑

i∈I

|ωi|p
) 1

p
)

≤
((∑

i∈I

d(x, Ai)p
) 1

p + ε‖x − a‖

(thanks to ‖µ‖ ≤ 1 and (ωi)i∈I ∈ Blp(I)). By passing to the limits, one has

〈x∗, x− a〉 ≤
(∑

i∈I

d(x, Ai)p
) 1

p + ε‖x − a‖

for all x ∈ B(a, δ). This implies that x∗ ∈ ∂̂
((∑

i∈I d(·, Ai)p
) 1

p

)
(a). The proof

is completed.

Using the results presented in Section 2, we will provide necessary or/and suf-
ficient conditions for p-local linear regularity under the assumption of p-uniform
subsmoothness. First, we need to establish the following lemmas which are of some
independent interests and inspired by [12, Lemma 3.1 and Lemma 3.2].

Lemma 3.1. Let {Ai : i ∈ I} be a collection of closed sets of a Banach space
X such that A :=

⋂
i∈I Ai is nonempty. Let a ∈ A and p, q ∈ (1, +∞) with

1
p + 1

q = 1. Suppose that {Ai : i ∈ I} is p-uniformly subsmooth at a and that
d(·, Ai)i∈I is of type lp. Let φ : X → R ∪ {+∞} be defined by

φ(x) :=
(∑

i∈I

d(x, Ai)p
) 1

p ∀x ∈ X.

Then
φ′(a; h) =

(∑
i∈I

d◦Ai
(a; h)p

) 1
p ∀h ∈ X.

Proof. We first show that d(·, Ai) is regular at a for each i ∈ I ; that is

(3.5) d◦Ai
(a; h) = d′Ai

(a; h) ∀h ∈ X,

where d◦Ai
(a; h) and d′Ai

(a; h) denote the Clarke’s directional derivative and the
directional derivative of d(·, Ai) at a along the direction h, respectively.
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Let h ∈ X and ε ∈ (0, +∞). Since (Ai)i∈I is p-uniformly subsmooth at a,
for each ε > 0 there exist δ1 ∈ (0, +∞) and (ωi)i∈I ∈ Blp(I) such that whenever
i ∈ I , ai ∈ Ai ∩ B(a, δ1) and a∗i ∈ Nc(Ai, ai) ∩ BX∗ , one has

(3.6) 〈a∗i , z − ai〉 ≤ d(z, Ai) + |ωi|ε‖a− ai‖ ∀ z ∈ B(a, δ1).

Fix i ∈ I and take t > 0 sufficiently small such that a+ th ∈ B(a, δ1). Noting that
∂cd(·, Ai)(a) ⊂ Nc(Ai, a)∩BX∗(cf. [15, Proposition 2.4.2]), it follows from (3.6)
and [15, Proposition 2.1.1] that

(3.7) d◦Ai
(a; h) ≤ d(a + th, Ai)

t
+ ε‖h‖, ∀ t > 0 small enough

(thanks to d(x, Ai) = 0). Taking limits as ε → 0+, one has

(3.8) d◦Ai
(a; h) ≤ lim inf

t→0+

d(a + th, Ai)
t

.

On the other hand, from the definition of Clarke’s directional derivative, one has

lim sup
t→0+

d(a + th, Ai)
t

≤ d◦Ai
(a; h).

This and (3.8) imply that d◦
Ai

(a; h) = d′Ai
(a; h).

Next, we show that for each h ∈ X , one has

(3.9) φ′(a; h) =
(∑

i∈I

(
d◦Ai

(a; h)
)p) 1

p
.

Let h ∈ X and ε ∈ (0, 1
2 ). By Proposition 3.1, there exist δ2 > 0 and (ωi)i∈I ∈

Blp(I) such that whenever i ∈ I , ai ∈ Ai ∩ B(a, δ2) and a∗i ∈ Nc(Ai, ai) ∩ BX∗ ,
one has

(3.10) 〈a∗i , y − ai〉 ≤ d(y, Ai) +
|ωi|
2

ε‖x − ai‖ ∀ y ∈ B(a, δ2).

Take δ3 ∈ (0, δ2
2 ) such that δ3‖h‖ ∈ (0, δ2

2 ). Let t ∈ (0, δ3]. We denote a+th by zt.
Fix i ∈ I and we consider that zt ∈ B(a, δ3‖h‖)\Ai. Then d(zt, Ai) ≤ ‖zt−a‖ <

δ3‖h‖. Let γ ∈ (max{d(zt,Ai)
δ3‖h‖ , ε}, 1). By Lemma 2.1, there exist z ∈ ∂Ai and

z∗ ∈ Nc(Ai, z) with ‖z∗‖ = 1 such that

(3.11) γ‖zt − z‖ < min
{
〈z∗, zt − z〉, d(zt, Ai)

}
.

Thus,

‖z − a‖ ≤ ‖z − zt‖ + ‖zt − a‖ <
d(zt, Ai)

γ
+ δ3‖h‖ < δ2.
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Note that

zt =
t

δ3
(a + δ3h) +

δ3 − t

δ3
a and a + δ3h ∈ B(a, δ2).

By (3.10), one has

γ‖zt − z‖ < 〈z∗, zt − z〉 =
t

δ3
〈z∗, (a + δ3h) − z〉 +

δ3 − t

δ3
〈z∗, a− z〉

≤ t

δ3
d(a + δ3h, Ai) +

|ωi|
2

ε(
t

δ3
‖a + δ3h − z‖ +

δ3 − t

δ3
‖a − z‖)

≤ t

δ3
d(a + δ3h, Ai) + |ωi|ε t

δ3

δ3 − t

δ3
δ3‖h‖ +

|ωi|
2

ε‖zt − z‖

≤ t

δ3
d(a + δ3h, Ai) + |ωi|tε‖h‖ + ε‖zt − z‖.

This implies that

(γ − ε)d(zt, Ai) ≤ t

δ3
d(x + δ3h, Ai) + |ωi|tε‖h‖

Taking limits as γ → 1−, one has

d(a + th, Ai)
t

≤ 1
1− ε

d(a + δ3h, Ai)
δ3

+
ε

1 − ε
|ωi|‖h‖

≤ 2
δ3

d(a + δ3h, Ai) + 2|ωi|ε‖h‖.

By using Lemma 2.2, there exists M = M(p) > 0 such that for any t ∈ (0, δ3],
one has

∑
i∈I

(d(x + th, Ai)
t

)p ≤ M

(
(

2
δ3

)p
∑
i∈I

(
d(a + δ3h, Ai)

)p
+(2ε‖h‖)p

∑
i∈I

|ωi|p
)

< +∞

since (d(·, Ai))i∈I is of type lp and
∑

i∈I |ωi|p ≤ 1. This and (3.5) imply that

lim
t→0+

∑
i∈I

(
d(a + th, Ai)

t

)p

=
∑
i∈I

(
d◦Ai

(a; h)
)p

.

Hence
φ′(a; h) = lim

t→0+

φ(a + th)
t

=
(∑

i∈I

(
d◦Ai

(x; h)
)p) 1

p

(thanks to φ(a) = 0). The proof is completed.
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Let P and Q be metric spaces. Recall that a set-valued mapping F : P → 2Q

is lower semicontinuous if, for any x0 ∈ P, y0 ∈ F (x0) and any neighborhood V
of y0, there exists a neighborhood U of x0 such that V ∩F (x) �= ∅ for each x ∈ U .
It is clear that F : P → 2Q is lower semicontinuous if and only if, for each y ∈ Q,
the real-valued function x �→ d(y, F (x)) is upper semicontinuous(see [20]).

Proposition 3.3. Let X be a Banach space, I be a metric space and let {A i :
i ∈ I} be a collection of closed sets of X . Suppose that A :=

⋂
i∈I Ai is nonempty,

i �→ Ai is lower semicontinuous and that {A i : i ∈ I} is p-uniformly subsmooth at
a ∈ A. Then, for each h ∈ X , i �→ d◦Ai

(a; h) is upper semicontinuous.

Proof. Since {Ai : i ∈ I} is p-uniformly subsmooth at a, (3.5) holds; that is

d◦Ai
(a; h) = d′Ai

(a; h) ∀h ∈ X.

Let h ∈ X . It suffices to show that for any ik → i0 ∈ I , one has

lim sup
k→∞

d′Aik
(a; h) ≤ d′Ai0

(a; h).

Let ε ∈ (0, 1
2 ). By Proposition 3.1, there exist δ2 ∈ (0, ε) and (ωi)i∈I ∈ Blp(I) such

that (3.10) holds whenever i ∈ I , ai ∈ Ai ∩ B(a, δ2) and a∗i ∈ Nc(Ai, ai) ∩ BX∗ .
Take δ3 ∈ (0, δ2

2 ) such that δ3‖h‖ ∈ (0, δ2
2 ). Let t ∈ (0, δ3]. Fix ik ∈ I and

consider a + th ∈ B(a, δ3‖h‖)\Aik . By the computation in the proof of Lemma
3.1, one has

d(a + th, Aik)
t

≤ 1
1 − ε

d(a + δ3h, Aik)
δ3

+
ε

1 − ε
|ωik |‖h‖

Noting that i �→ Ai is lower semicontinuous, by [20, Corollary 1.4.17], i �→ d(a +
δ3h, Ai) is upper semicontinuous. Then, for any k large enough, one has

d(a + δ3h, Aik) ≤ d(a + δ3h, Ai0) + δ2
3 .

This implies that for any k large enough,

d(a + th, Aik)
t

≤ 1
1 − ε

(d(a + δ3h, Ai0)
δ3

+ δ3

)
+

ε

1 − ε
‖h‖

Taking limits as ε → 0+, we have

lim sup
k→∞

d′Aik
(a; h) ≤ d′Ai0

(a; h).

The proof is completed.

Next, we give several definitions with respect to weak∗- summable family. Read-
ers are invited to see [7] for more details.
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Definition 3.4. Let {x∗
i : i ∈ I} be a family of elements and {Ai : i ∈ I} be a

collection of subsets in X ∗. We say that

(i) {x∗
i : i ∈ I} is weak∗-summable if there exists x∗ ∈ X∗ such that for all

h ∈ X , one has
〈x∗, h〉 =

∑
i∈I

〈x∗
i , h〉.

We denote it by x∗ =
∑∗

i∈I x∗
i .

(ii) {Ai : i ∈ I} is weak∗-summable if {x∗
i : i ∈ I} is weak∗-summable whenever

{x∗
i : i ∈ I} ⊂ X∗ with x∗

i ∈ Ai(∀i ∈ I).
We denote by

∑∗
i∈I Ai the set

{∑∗
i∈I x∗

i : x∗
i ∈ Ai, i ∈ I

}
.

If (tiAi)i∈I is weak∗-summable for each (ti)i∈I ∈ lp+(I) with
∑

i∈I tpi = 1, we
define

∑p
i∈I(Ai) as

(3.12)
∑p

i∈I
(Ai) :=

⋃
(ti)i∈I∈lp+(I),

∑
i∈I

tpi =1

∑∗
i∈I

tiAi.

The following lemma provides a characterization for Clarke’s subdifferential of
φ defined in Lemma 3.1. We will give its proof which goes along the way as [12,
Lemma 3.2] with a minor modification for the sake of completeness.

Lemma 3.2. Let {Ai : i ∈ I} be a collection of closed sets of a Banach space
X such that A :=

⋂
i∈I Ai is nonempty. Let a ∈ A and p, q ∈ (1, +∞) with

1
p + 1

q = 1. Suppose that {Ai : i ∈ I} is p-uniformly subsmooth at a and that
d(·, Ai)i∈I is of type lp. Let φ be as in Lemma 3.1. Suppose that φ is regular at a.
Then

(3.13) ∂cφ(a) =
∑q

i∈I

(
N̂ (Ai, a) ∩ BX∗

)
.

Proof. Since φ is regular at a, φ is locally Lipschitzian around a and

φ◦(a; h) = φ′(a; h) ∀h ∈ X.

We denote d(x, Ai) by fi(x) for each i ∈ I . We claim that

(3.14) ∂cφ(a) =
∑q

i∈I

(
∂cfi(a)

)
.

We will divide it into three steps to prove (3.14):

Step 1. We show that
∑q

i∈I(∂cfi(a)) is well defined.
Applying the proof of Lemma 3.1 and by virtue of [15, Proposition 2.1.2], one

has
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f◦
i (a; h) ≥ 0 and f◦

i (a; h) = max
{
〈x∗, h〉 : x∗ ∈ ∂cfi(a)

}
.

Hence, for any subset J ⊂ I , any (ti)i∈I ∈ l
q
+(I) with

∑
i∈I t

q
i = 1, any x∗i ∈

∂cfi(a)(i ∈ I), and any h ∈ X , by Hölder inequality,

(3.15)
∑
i∈J

ti〈x∗
i , h〉 ≤

∑
i∈J

tif
◦
i (a; h) ≤

(∑
i∈J

[f◦
i (a; h)]p

) 1
p ≤ φ◦(a; h),

(the last inequality is from Lemma 3.1).

Step 2. We prove that
∑q

i∈I(∂cfi(a)) is convex and weak∗ closed.
It is not hard to verify that

∑q
i∈I(∂cfi(a)) is convex. It remains to show that it

is weak∗ closed. To do this, let x∗ ∈∑q
i∈I(∂cfi(a))

w∗
. Then there exist a direct set

Λ and nets (ti(k))k∈Λ, (x∗
i (k))k∈Λ(i ∈ I) such that ti(k) ≥ 0,

∑
i∈I(ti(k))q = 1,

x∗
i (k) ∈ ∂cfi(a), and

(3.16)
∑∗

i∈I
ti(k)x∗

i (k) w∗−→ x∗.

Define gk := (ti(k))i∈I(∀ k ∈ Λ). Noting that {gk}k∈Λ is a net in the unit ball of
lq(I), without loss of generality(considering subnet if necessary), we can assume
that gk weak∗-converges to some (λi)i∈I ∈ l/q+(I) and

∑
i∈I λq

i = 1. Let I+ :=
{i ∈ I : λi > 0}. Then I+ is at most countable. Noting that lim

k
ti(k) = λi = 0

for each i ∈ I\I+, it follows from (3.15) that∑∗
i∈I\I+

ti(k)x∗
i (k) w∗−→ 0.

This and (3.16) imply that

(3.17)
∑∗

i∈I+
ti(k)x∗

i (k) w∗−→ x∗.

Without loss of generality we can assume I+ to be the set N of natural numbers.
Noting that ∂cfi(a) is weak∗ compact and {x∗

i (k)}k∈Λ ⊂ ∂cfi(a) for each i ∈ N,
there exists a subnet Λ1 ⊂ Λ such that {x∗

1(k)}k∈Λ1 weak∗-converges to some
a∗1 ∈ ∂cf1(a). Thus there exists a subnet Λ2 ⊂ Λ1 such that {x∗

2(k)}k∈Λ2 weak∗-
converges to some a∗2 ∈ ∂cf2(a),· · · . By this way, there must exist a subnet Λn+1 ⊂
Λn such that {x∗

n+1(k)}k∈Λn+1 weak∗-converges to some a∗n+1 ∈ ∂cfn+1(a),· · · ,
and so on. We claim that

(3.18) x∗ =
∑∗

i∈N
λia

∗
i .

To see this, let h ∈ X and ε > 0. By (3.15), there exists n0 ∈ N such that

max

{( ∞∑
i=n0

[f◦
i (a; h)]p

) 1
p
,
( ∞∑

i=n0

[f◦
i (a;−h)]p

) 1
p

}
< ε.
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Then, for any n ≥ n0, any (ti)i∈N ∈ lq+(N) with
∑

i∈N tqi = 1 and any x∗
i ∈

∂cfi(a)(i ∈ N), by (3.15), one has∣∣∣∣∣
∞∑

i=n+1

ti〈x∗
i , h〉

∣∣∣∣∣ ≤ max

{( ∞∑
i=n0

[f◦
i (a; h)]p

) 1
p ,
( ∞∑

i=n0

[f◦
i (a;−h)]p

) 1
p

}
< ε.

Noting that
{
ti(k)

}
k∈Λn

converges to λi and
{
x∗

i (k)
}

k∈Λi
weak∗-converges to a∗i

for 1 ≤ i ≤ n, it follows from (3.17) that∣∣∣∣∣
n∑

i=1

〈λia
∗
i , h〉 − 〈x∗, h〉

∣∣∣∣∣ ≤ ε ∀n ≥ n0.

This shows that (3.18) holds. Hence x∗ =
∑∗

i∈N λia
∗
i ∈ ∑q

i∈I(∂cfi(a)). This
implies that

∑q
i∈I(∂cfi(a)) is weak∗ closed.

Step 3. We prove that
(∑

i∈I[f
◦
i (a; ·)]p) 1

p is the support function of the weak∗

closed set
∑q

i∈I(∂cfi(a)).
Granting this, it follows from Step 2, Lemma 3.1 and [15, Proposition 2.1.4]

that
∑q

i∈I(∂cfi(a)) = ∂cφ(a) since φ◦(a; ·) is the support function of the weak∗

closed convex set ∂cφ(a).
Let h ∈ X . By (3.15), one has

(3.19) sup
{
〈x∗, h〉 : x∗ ∈

∑q

i∈I
(∂cfi(a))

}
≤
(∑

i∈I

[f◦
i (a; h)]p

) 1
p

On the other hand, since fi is Lipschitz, it follows from [15, Proposition 2.1.2] that
for each i ∈ I , there exists z∗i ∈ ∂cfi(a) such that

〈z∗i , h〉 = f◦
i (a; h).

Noting that lq(I) is reflexive and
(
f◦
i (a; h)

)
i∈I

∈ lp(I) =
(
lq(I)

)∗, by James’s
Theorem(cf.[21]), there exists (ti)i∈I ∈ l

q
+(I) with

∑
i∈I t

q
i = 1 such that

(∑
i∈I

[f◦
i (a; h)]p

) 1
p =

∑
i∈I

tif
◦
i (a; h) =

〈∑∗
i∈I

tiz
∗
i , h
〉
.

Thus
(∑

i∈I [f
◦
i (a; ·)]p) 1

p is the support function of
∑q

i∈I(∂cfi(a)).
Next, we prove that

(3.20) ∂cfi(a) = N̂ (Ai, a) ∩ BX∗ ∀i ∈ I

Fix i ∈ I . Since Ai is subsmooth at a, it follows from (2.2) that Nc(Ai, a) =
N̂(Ai, a). Hence
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∂cfi(a) ⊂ Nc(Ai, a) ∩ BX∗ = N̂ (Ai, a) ∩ BX∗ = ∂̂fi(a) ⊂ ∂cfi(a).

This implies that
∂cfi(a) = N̂ (Ai, a) ∩ BX∗ .

Hence (3.13) holds by (3.14) and (3.20). The proof is completed.
For convenience to state the main results in this section, we need some notations.

Let {Ki : i ∈ I} be a collection of weak∗ closed subsets of X∗ and p ∈ [1, +∞).
We define the weak∗ p-sum of (Ki)i∈I by

p −
∑∗

i∈I
Ki :=

{∑∗
i∈I

x∗
i : x∗

i ∈ Ki(∀i ∈ I),
∑
i∈I

‖x∗
i ‖p < +∞

}
,

provided that for any (x∗i )i∈I with x∗
i ∈ Ki (i ∈ I) and

∑
i∈I ‖x∗

i ‖p < +∞ there
exists x∗ ∈ X∗ such that x∗ =

∑∗
i∈I x∗

i .
Let p ∈ (1, +∞) and τ > 0. We call that (Ki)i∈I has property (G, τ)p if

(
p −

∑∗
i∈I

Ki

) ∩ BX∗ ⊂ τ
∑p

i∈I
(Ki ∩ BX∗).

If each Ki is a cone, it is easy to verify that

(3.21) (G, τ)p ⇐⇒ (
p −

∑∗
i∈I

Ki

) ∩ BX∗ ⊂ (0, τ ]
∑p

i∈I
(Ki ∩ BX∗).

Under the suitable assumptions, some necessary or/and sufficient conditions for
p-locally linear regularity can be obtained through the following theorems.

Theorem 3.1. Let {Ai : i ∈ I} be a collection of closed sets of a Banach
space X such that A :=

⋂
i∈I Ai is nonempty. Let a ∈ A and p, q ∈ (1, +∞) with

1
p + 1

q = 1. Suppose that {Ai : i ∈ I} is p-uniformly subsmooth on A and that
d(·, Ai)i∈I is of type lp. We consider the following statements :

(i) there exist τ1, δ1 > 0 such that Nc(A, x) = q-
∑∗

i∈I Nc(Ai, x) and the
collection (Nc(Ai, x))i∈I has property (G, τ1)q for all x ∈ ∂A∩ B(a, δ1);

(ii) the collection {Ai : i ∈ I} is p-locally linearly regular at a ∈ A, that is,
there exist τ, r > 0 such that

d(x, A) ≤ τ
(∑

i∈I

d(x, Ai)p
) 1

p ∀x ∈ B(a, r);

(iii) there exist τ , δ > 0 such that N̂ (A, x) = q-
∑∗

i∈I N̂ (Ai, x) and the collection
(N̂(Ai, x))i∈I has property (G, τ)q for all x ∈ ∂A ∩ B(a, δ).

Then, (i) implies (ii). Furthermore, we suppose that
(∑

i∈I d(·, Ai)p
) 1

p is
regular at all x ∈ ∂A close to a. Then (ii) implies (iii).
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Proof. (i)⇒(ii): Let ε ∈ (0, +∞) such that τ1ε < 1. By Proposition 3.1, there
exist δ2 ∈ (0, δ1) and (ωi)i∈I ∈ Blp(I) such that whenever i ∈ I , ai ∈ Ai∩B(a, δ2)
and a∗i ∈ Nc(Ai, ai) ∩ BX∗ , one has

(3.22) 〈a∗i , x− ai〉 ≤ d(x, Ai) + |ωi|ε‖x − ai‖ ∀x ∈ B(a, δ2).

Let r := δ2
2 and x ∈ B(a, r)\A. Then d(x, A) ≤ ‖x − a‖ < r. Let any γ ∈

(max{d(x,A)
r , τ1ε}, 1). By Lemma 2.1, there exist z ∈ ∂A and z∗ ∈ Nc(A, z) with

‖z∗‖ = 1 such that

(3.23) γ‖x− z‖ < min
{
d(x, A), 〈z∗, x− z〉

}
.

Noting that

‖z − a‖ ≤ ‖z − x‖ + ‖x − a‖ <
d(x, A)

γ
+ r < 2r = δ2,

there exist (ti)i∈I ∈ lq+(I) with
∑

i∈I tqi ≤ 1 and x∗
i ∈ Nc(Ai, z) ∩ BX∗(i ∈ I)

such that z∗ = τ1
∑∗

i∈I tix
∗
i . It follows from (3.22), (3.23), Hölder inequality and

Minkowski inequality that

γ‖x− z‖ < τ1

∑
i∈I

ti〈x∗
i , x− z〉 ≤ τ1

∑
i∈I

ti
(
d(x, Ai) + |ωi|ε‖x− z‖)

≤ τ1

(∑
i∈I

tqi

) 1
q
(∑

i∈I

(
d(x, Ai) + |ωi|ε‖x− z‖)p) 1

p

≤ τ1

(∑
i∈I

(
d(x, Ai)

)p) 1
p + τ1

(∑
i∈I

|ωi|p
) 1

p ‖x − z‖ε

≤ τ1

(∑
i∈I

(
d(x, Ai)

)p) 1
p + τ1ε‖x − z‖.

This and d(x, A) ≤ ‖x − z‖ imply that

d(x, A) ≤ τ1

γ − τ1ε

(∑
i∈I

(d(x, Ai))p
) 1

p .

Taking limits as γ → 1−, one has

d(x, A) ≤ τ1

1 − τ1ε

(∑
i∈I

(
d(x, Ai)

)p
) 1

p

.

This shows that (ii) holds with τ := τ1
1−τ1ε
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(ii)⇒ (iii): Let φ(x) :=
(∑

i∈I d(x, Ai)p
) 1

p . Choose σ ∈ (0, r) such that φ is
regular at each x ∈ ∂A ∩ B(a, σ). Take δ = σ

2 . Let x ∈ B(a, δ) ∩ ∂A and x∗ ∈
N̂(A, x)∩BX∗ = ∂̂d(·, A)(x). Then for any ε > 0 there exists r1 ∈ (0, δ−‖x−a‖)
such that

(3.24) 〈x∗, z − x〉 ≤ d(z, A) + τε‖z − x‖ ∀ z ∈ B(x, r1).

Noting that B(x, r1) ⊂ B(a, δ) ⊂ B(a, σ), by (ii), one has

〈x∗, z − x〉 ≤ τφ(z) + τε‖z − x‖ ∀ z ∈ B(x, r1).

This implies that x∗ ∈ τ ∂̂φ(x) ⊂ τ∂cφ(x)(thanks to φ(x) = 0). Hence

(3.25) N̂(A, x) ∩ BX∗ ⊂ τ∂cφ(x).

Next, we show that

(3.26) ∂cφ(x) =
∑q

i∈I

(
N̂ (Ai, x) ∩ BX∗

)
N̂(A, x) = q −∑∗

i∈I N̂ (Ai, x)
∀x ∈ ∂A ∩ B(a, δ).

Granting this, it follows from (3.21) and (3.25) that (iii) holds. Let x ∈ ∂A∩B(a, δ).
It follows from Lemmas 3.1 and 3.2 that

(3.27) ∂cφ(x) =
∑q

i∈I

(
N̂ (Ai, x) ∩ BX∗

)
.

Thus, we only need to show that N̂(A, x) = q-
∑∗

i∈I N̂(Ai, x).
To do this, let x∗ ∈ N̂(A, x)\{0}. Then x∗

‖x∗‖ ∈ N̂ (A, x) ∩ BX∗ . It follows
from (3.25) and (3.27) that there exist (ti)i∈I ∈ l

q
+(I) with

∑
i∈I t

q
i = 1 and

x∗
i ∈ N̂ (Ai, x) ∩ BX∗(i ∈ I) such that

x∗ =
∑∗

i∈I
τti · ‖x∗‖ · x∗

i .

Note that ∑
i∈I

∥∥∥τti · ‖x∗‖ · x∗
i

∥∥∥q ≤ τ q‖x∗‖q
∑
i∈I

tqi < +∞.

This implies that x∗ ∈ q-
∑∗

i∈I N̂(Ai, x) and consequently N̂(A, x) = q-
∑∗

i∈I

N̂(Ai, x) since the trivial inclusion N̂(A, x) ⊃ q-
∑∗

i∈I N̂ (Ai, x) holds.

Theorem 3.2. Suppose that X is an Asplund space. Let {A i : i ∈ I} be a
collection of closed sets in X such that A :=

⋂
i∈I Ai is nonempty. Let a ∈ A

and p, q ∈ (1, +∞) with 1
p + 1

q = 1. Suppose that {Ai : i ∈ I} is p-uniformly

subsmooth on A , d(·, Ai)i∈I is of type lp and that
(∑

i∈I d(·, Ai)p
) 1

p is regular at
all x ∈ ∂A close to a. Then the following statements are equivalent:
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(i) there exist τ1, δ1 > 0 such that N̂(A, x) = q-
∑∗

i∈I N̂(Ai, x) and the collec-
tion (N̂ (Ai, x))i∈I has property (G, τ1)q for all x ∈ ∂A∩ B(a, δ1);

(ii) the collection {Ai : i ∈ I} is p-locally linearly regular at a ∈ A, that is,
there exist τ, δ > 0 such that

d(x, A) ≤ τ
(∑

i∈I

d(x, Ai)p
) 1

p ∀x ∈ B(a, δ).

Combining the proof of Theorem 3.1 with the Asplund space version of Lemma
2.1, one can obtain the proof Theorem 3.2 which will be omitted.

REFERENCES

1. R. A. Poliquin and R. T. Rockafellar, Prox-regular functions in variational analysis,
Trans. Amer. Math. Soc., 348 (1996), 1805-1838.

2. F. Bernard and L. Thilbaut, Prox-regularity of functions and sets in Banach spaces,
Set-Valued Anal., 12 (2004), 25-47.

3. R. T. Rockafellar and R. J. Wets, Variational Analysis, Springer, 1998.

4. R. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of distance
functions, Trans. Amer. Math. Soc., 352 (2000), 5231-5249.

5. D. Aussel, A. Daniilidis and L. Thibault, Subsmooth sets: Functional characteriza-
tions and related concepts, Trans. Amer. Math. Soc., 357 (2005), 1275-1301.

6. X. Y. Zheng, Z. Wei and J.-C. Yao, Uniform subsmoothness and linear regularity for
a collection of infinitely many closed sets, Nonlinear Anal., 73 (2010), 413-430.

7. H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex
feasibility problems, SIAM Rev., 38 (1996), 367-426.

8. G. Jameson, The duality of pair of wedges, Proc. Lond. Math. Soc., 24 (1972), 531-
547.

9. H. Bauschke, J. M. Borwein and W. Li, Strong conical hull intersection property,
bounded linear regularity, Jameson’s property(G), and error bounds in convex opti-
mization, Math. Program. Ser. A, 86 (1999), 135-160.

10. K. F. Ng and W. H. Yang, Regularities and their relations to error bounds, Math.
Program., Ser. A, 99 (2004), 521-538.

11. C. Li, K. F. Ng and T. K. Pong, The SECQ, linear regularity, and the strong CHIP
for an infinite system of closed convex sets in normed linear spaces, SIAM J. Optim.,
18 (2007), 643-665.

12. X. Y. Zheng and K. F. Ng, Metric regularity and constraint qualification for convex
inequalities on Banach spaces, SIAM. J. Optim., 15 (2003), 757-772.

13. X. Y. Zheng and K. F. Ng, Linear regularity for a collection of subsmooth sets in
Banach spaces, SIAM J. Optim., 19 (2008), 62-76.



352 Zhou Wei

14. X. Y. Zheng and K. F. Ng, Calmness for L-subsmooth multifunctions in Banach
spaces, SIAM. J. Optim., 19 (2009), 1648-1673.

15. F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.

16. F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth analysis
and control theory, Springer, 1998.

17. B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I/II, Springer-
Verlag, Berlin, Heidelberg, 2006.

18. R. R. Phelps, Convex functions, Monotone operators and Differentiability, Lecture
Notes in Math. 1364, Springer, New York, 1989.

19. M. M. Day, Normed Linear Spaces, Springer-Verlag, Berlin, 1962.

20. J. P. Aubin and Frankowska, Set-Valued Analysis, Birkhäuser Boston, Boston, MA,
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