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THE INITIAL VALUE PROBLEM AROSE FROM UNPERTURBED
HUMAN TUMOUR CELL LINES

Yu-Hsien Chang, Kang Fang and Guo-Chin Jau

Abstract. To learn more of the phase distributions in unperturbed human
tumour cells is a prerequisite prior to understanding of those in the perturbed
cells. The work is important in understanding the efficiency of anti-cancer
therapy. In this paper we investigate the existence, uniqueness and growth
rate of the solution to a mathematical model of unperturbed human tumour
cell line. At first, we construct the solution of this mathematical model by
the method of continuation of solution, and then show the solution is unique.
Finally, we find that the growth rate of the solution with respect to time
is faster than exponential function. The basic mathematical techniques used
here are variation of parameters and upper and lower solutions for differential
equations. These results allowed one to estimate the cells population in each
phase at specific time while one does not have cells mitosis DNA distribution
data and it can also be used to compare with the perturbed cell lines.

1. INTRODUCTION

Cell proliferation is closely associated with cell growth, programmed cell death
and tumor formation. The progression lays foundation for cell differentiation. As
cells enter mitotic division, the two daughter cells acquire the same genetic informa-
tion and, as they grow, the heredity propagates from generation to generation. The
growth of cells involves DNA duplication before mitosis, which constitutes part of
cell cycle. Most of the cells stay at the interphase between the two successive cell
divisions. During mitosis, the cell chromosomes undergo DNA duplication first and
the tetraploid chromosomes are distributed evenly to two daughter nuclei following
mitosis. Cell cycle can be divided into four distinct phases, e.g., G1-, S-, G2- and
M -phases (Fig. 1). DNA replication occurs during synthesis phase or S-phase, in
which the new chromosome components were formed. The duration between previ-
ous mitosis and the initiation of S-phase is termed G1-phase. The enzymes required
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for DNA synthesis appeared at the final stage of G1-phase. As cells leave S-phase
and enter G2-phase, an increase of protein assists in cell division. The completion
of G2-phase marks transition into M -phase, i.e. the initiation of mitosis.
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Fig. 1. Cell cycle

This diagram is the phase transition of a cell population. The cell cycle has four distinct phases: G1-, S-,

G2- and M-phase. Here k1 is the hourly rate of transition of cells from G1-phase to S-phase, k2 is the

hourly rate of transition of cells from G2-phase to M-phase and b is the hourly rate of cell division from

M-phase to G1-phase. The square box shaped in the S-phase depicts the assumption that cells spend a

fixed time (TS hours) in the S-phase.

One way to describe the progression of cell cycle in a cohort of cells is achieved
by measuring their DNA variation through flow cytometry. The method involves
DNA staining with fluorescent materials and the emitted fluorescence is proportional
to cellular DNA contents. The histograms obtained in analyzed cells signify cell
phase distributions, in which similar DNA contents at each phase are sorted together.

Anticancer drugs affected growth of cancer cells through programmed cell death
(apoptosis) and cell cycle arrest. Due to different sensitivities to the drugs on
various cell lines, the characteristic durations at each phase as obtained from DNA
histograms by flow cytometry reflect the efficacy after treatment. In this work, we
will define “perturbed” as the cancer cells having been exposed to therapy, while
“unperturbed” as those unexposed. In order to understand the efficiency of anti-
cancer therapy, it is important to understand the proliferation of unperturbed cells
at first. For that purpose, we have developed a mathematical model to analyze and
compare cell lines unperturbed by any therapy. This essential step is a prerequisite
prior to comparison with the perturbed cell lines, since all designed experiments
begin with unperturbed cells. The results from our analysis yield good results with
significant implications.

Recently, the mathematical modeling of the cell population was broadly studied
(see e.g., [1-13, 20-21, 23-27]). In [2] (2004), Basse and others proposed a mathe-
matical model concerning the dynamics of unperturbed human tumor cell population.
This mathematical model involves the following four differential equations:

∂

∂t
G1 (x, t) = 4bM (2x, t)− k1G1 (x, t),
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∂

∂τ
S (x, t; τ) +

∂

∂t
S (x, t; τ) = D

∂2

∂x2
S (x, t; τ)− gS

∂

∂x
S (x, t; τ),

∂

∂t
G2 (x, t) = S (x, t; TS)− k2G2 (x, t),

∂

∂t
M (x, t) = k2G2 (x, t)− bM (x, t) ,

which accompany with the following initial and boundary conditions:

G1 (x, 0) = G1,0 (x), 0 ≤ x ≤ L,

S (x, 0; τ) = S0 (x; τ), 0 ≤ τ ≤ TS , 0 ≤ x ≤ L,

S (x, t; 0) = k1G1 (x, t), t ≥ 0, 0 ≤ x ≤ L,

D ∂
∂xS (0, t; τ)− gSS (0, t; τ) = 0, t > 0, 0 < τ ≤ TS ,

D ∂
∂xS (L, t; τ)− gSS (L, t; τ) = 0, t > 0, 0 < τ ≤ TS ,

G2 (x, 0) = G2,0 (x), 0 ≤ x ≤ L,

M (x, 0) = M0 (x), 0 ≤ x ≤ L.

More precisely, G1 (x, t) represents the number density of cells in G1-phase at time
t > 0 (hours) where 0 ≤ x ≤ L is the relative DNA content (dimensionless) and
L is the maximum DNA content. The number density of cells that have been in
the S-phase for τ hours at time t is S (x, t; τ) and S (x, t) =

∫ TS

0 S (x, t; τ)dτ ,
while the number densities of cells in the G2-phase and M -phase are G2 (x, t) and
M (x, t) , respectively. Model parameters with their descriptions are the following:

k1 is the hourly rate of transition between the G1- and the S-phase;

D is the dispersion coefficient;

gS is the rate of DNA increase per hour in S-phase;

TS is the time in S-phase;

k2 is the hourly rate of transition between the G2- and the M -phase;

b is the hourly rate of division from the M -phase.

In [5], by integrating the differential equations (with boundary conditions) with
respect to x from 0 to L, they proposed a new unperturbed tumor cell population
mathematical model to describe the population functions of cells in G1-, S-, G2-
and M -phases respectively as follows:

(1.1) d

dt
n1 (t) = 2bnM (t) − k1n1 (t) ,

(1.2) ∂

∂τ
nS (t, τ) +

∂

∂t
nS (t, τ) = 0,
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(1.3) d

dt
n2 (t) = nS (t, TS) − k2n2 (t) ,

(1.4) d

dt
nM (t) = k2n2 (t) − bnM (t) ,

where t > 0, 0 < τS ≤ TS , n1 (t) =
∫ L
0 G1 (x, t) dx, nS (t, τ) =

∫ L
0 S (x, t; τ)dx,

n2 (t) =
∫ L
0 G2 (x, t)dx and nM (t) =

∫ L
0 M (x, t) dx. The functions n1 (t), n2 (t)

and nM (t) represent the tumour cell populations in G1-, G2- and M -phases at time
t, respectively; and the function nS (t, τ) represents the tumour cell population in
S-phase at time t for them already stated in there for τ hours. In equation (1.1)
nM (t) =

∫ 2L
0 M (x, t) dx while in equation (1.4) nM (t) =

∫ L
0 M (x, t) dx, which

is based on the fact that the cell fission only occurred while the DNA content has
duplicated. They assumed that the maximum DNA content L is chosen large enough
so that the two integrals are equal (that is

∫ 2L
0 M (x, t) dx =

∫ L
0 M (x, t) dx).

Since n1 (t) represents the tumour cell population in G1-phase at time t, nS (t, τ)
represents the tumour cell population in S-phase at time t for them already stated in
there for τ hours and k1 represent the hourly rate of transition from G1-phase to S-
phase, these imply that nS (t, 0) = k1n1 (t) for τ = 0. Thus, the initial condition in
the S-phase for equation (1.2) corresponding to τ = 0 is nS (t, 0) = k1n1 (t). The
initial conditions in each phases corresponding to t = 0 are obtained by integration
over x of the initial DNA distributions G1,0 (x), S0 (x; τ), G2,0 (x) and M0 (x),
respectively; i.e., the initial conditions of cells population functions in each phases
are given by:

(1.5) n1,0 = n1 (0) =
∫ L
0 G1,0 (x) dx,

(1.6) nS,0 (τ) = nS (0, τ) =
∫ L
0 S0 (x, τ) dx, 0 ≤ τ ≤ TS,

(1.7) n2,0 = n2 (0) =
∫ L
0 G2,0 (x) dx,

(1.8) nM,0 = nM (0) =
∫ L
0 M0 (x) dx

(1.9) nS (t; 0) = k1n1 (t) , t ≥ 0

Since both nS (t, τ) and n1 (t) are continuous functions, we have

nS,0 (0) = nS (0, 0) = lim
t→0

nS (t, 0) = lim
t→0

k1n1 (t) = k1n1,0.

In [5], they used finite difference method with Matlab as a tool to get the nu-
merical solution of this differential system; they also compared the solution with the
experimental data to illustrate the validity of this mathematical model. This human
tumor cell mathematical model allowed one to estimate the cells population in each
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phase at specific time while one does not have cells mitosis DNA distribution data.
Hence one can obtain the flow cytometric profile at any particular time (see e.g.,
[27]) and study the problem of the steady DNA distribution (so called SDD prob-
lem) for human tumor cell’s DNA. Furthermore, one can extrapolate the efficiency
of the anticancer therapy.

In section 2, we are trying to find the representations of the solutions of (1.1)-
(1.9) in terms of closed forms. At first, we declare without proof a well-known
result that the solutions of the differential system (1.1)-(1.4) are also the solutions
of an integral system (2.1)-(2.4) (please see theorem 2.1), and then we apply the
continuation of the solution method to construct the solutions of the integral system.
We proved the uniqueness of the solutions of the integral system in theorem 2.2.
Under the assumption nS,0 (τ) to be a continuously differentiable function on [0, TS]
with nS,0 (0) = k1n1,0, we prove that the solution of the integral system (2.1)-(2.4)
is also the solution of the differential system (1.1)-(1.9) except possibly on the line
t = τ (please see Theorem 2.3). At the end of section 2, we show that if the initial
function nS,0 satisfying the condition d

dτ nS,0 (0) = k2
1n1,0 − 2bk1nM,0 then the

solution of the integral system (2.1)-(2.4) is also the solution the differential system
(1.1)-(1.9) (please see Theorem 2.4). However, this condition just comes from the
mathematical point of view.

If one understands the populations of unperturbed cell lines at a certain time, he
can follow the procedure in the proof of Theorem 2.2 to compute the unperturbed
cell populations in each phase at any time afterwards. From the closed form of
unperturbed cell line population functions

n1 (t) = exp (−k1t) n1,0 + 2b

∫ t

0

exp (−k1 (t − η))nM (η) dη,

nS (t, τ) =

{
nS,0 (τ − t) if TS ≥ τ ≥ t ≥ 0,

k1n1 (t − τ) if ∞ > t ≥ τ ≥ 0,

n2 (t) = exp (−k2t) n2,0 +
∫ t

0
exp (−k2 (t − η))nS (η, TS) dη,

nM (t) = exp (−bt) nM,0 + k2

∫ t

0
exp (−b (t − η))n2 (η)dη,

for all t ∈ [0,∞) and τ ∈ [0, TS], the populations in each phase were depending
on the initial functions and transition coefficients, respectively. The work explains
why the populations in each phase of different unperturbed cell lines are distributed
differently. Furthermore, if the populations of human tumor cells in each of G1-,
S-, G2- and M -phase of unperturbed cells at a certain time can be understood, it
is then predictable how those in each phase of unperturbed cells be like. The result
can be further extended to compare with the phase distributions in tumor cells under
anticancer treatments and hence to predict their efficiency.
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In Section 3, we are going to estimate the growth rate of the unperturbed
cell line populations in each phase. For achieving this goal, we apply the up-
per and lower solutions method. We first show that if

{(
n

(m)
1 , n

(m)
S , n

(m)
2 , n

(m)
M

)}
and

{(
n

(m)
1 , n

(m)
S , n

(m)
2 , n

(m)
M

)}
, m ∈ N are maximal and minimal sequences for

this mathematical model, then they possess the monotone property n̂i ≤ n
(m)
i ≤

n
(m+1)
i ≤ n

(m+1)
i ≤ n

(m)
i ≤ ñi (i = 1, 2, S or M ) for all m ∈ N. We prove

the maximal and the minimal sequences converge monotonically from above and
below respectively to a unique solution (n1, nS, n2, nM) of the system (1.1)-(1.4)
(please see Lemmas 3.1-3.3 and Theorem 3.1). In general, as long as the tumour
cell is observed, the populations in each phase are positive. So, we may assume
that n1 (0) > 0, minτ∈[0,TS]nS (0, τ) > 0, n2 (0) > 0 and nM (0) > 0. Under these
assumptions, we find the functions

n̂1 (t) = ρ
k1

eεt, n̂S (t, τ) = ρeε(t−τ ), n̂2 (t) = (1+δ)2

2k2
ρeεt and n̂M (t) = 1+δ

2b ρeεt

are lower solutions for the system (1.1)-(1.4), and hence the population functions
satisfy

n1 (t) ≥ ρ
k1

eεt, nS (t, τ) ≥ ρeε(t−τ ), n2 (t) ≥ (1+δ)2

2k2
ρeεt and nM (t) ≥ 1+δ

2b ρeεt

for all t ∈ [0,∞) and all τ ∈ [0, TS]. In these inequalities, δ, ε and ρ are positive
constants depending on the initial functions and transition coefficients (please see
Theorem 3.2). Thus the growth rate of the population in each of the G1-, S-, G2-
and M -phase of unperturbed cells is faster than an exponential function.

The results of section 2 and section 3 can be further extended to compare with the
phase distributions in tumor cells under anticancer treatments and hence to predict
their efficiency (please see the last section).

2. EXISTENCE AND UNIQUENESS

In this section we show the existence and uniqueness of a solution of the initial-
boundary value problem (1.1)-(1.9). We start with the statement of a well-known
result that a solution of the differential system is also the solution of a corresponding
integral system. However, the proof of this theorem is standard and straight forward;
we left the details of the proof for the interesting reader.

Theorem 2.1. If (n1 (t) , nS (t, τ) , n2 (t) , nM (t)) is the solution of the initial-
boundary value problem (1.1)-(1.9) with the initial condition (n 1,0, nS,0 (τ) , n2,0,

nM,0) on [0,∞)× [0, TS], then the solution (n1 (t) , nS (t, τ) , n2 (t) , nM (t)) sat-
isfies the following integral system:

(2.1) n1 (t) = exp (−k1t) n1,0 + 2b

∫ t

0
exp (−k1 (t − η))nM (η) dη,
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(2.2) nS (t, τ) =

{
nS,0 (τ − t) if TS ≥ τ ≥ t ≥ 0,

k1n1 (t − τ) if ∞ > t ≥ τ ≥ 0,

(2.3) n2 (t) = exp (−k2t) n2,0 +
∫ t

0
exp (−k2 (t − η))nS (η, TS) dη,

(2.4) nM (t) = exp (−bt) nM,0 + k2

∫ t

0
exp (−b (t − η)) n2 (η)dη.

We prove that the integral system (2.1)-(2.4) has a unique solution (n1 (t) , nS

(t, τ) , n2 (t) , nM (t)).

Theorem 2.2. Suppose n1,0, n2,0, nM,0 ∈ R, and nS,0 (τ) is a continuous
function on [0, TS] with nS,0 (0) = k1n1,0. Then the system (2.1)-(2.4) has a
unique solution (n1 (t) , nS (t, τ) , n2 (t) , nM (t)).

Proof. To construct a solution of the integral system (2.1)-(2.4), we divide
the interval [0,∞) into subintervals [(n − 1)TS, nTS] for all n ∈ N. Firstly, we
consider the case that (t, τ) ∈ [0, TS] × [0, TS]. Let u1,2 : [0, TS] → R be defined
by

u1,2 (t) = exp (−k2t) n2,0 +
∫ t

0
exp (−k2 (t − η))nS,0 (TS − η) dη.

From assumption, u1,2 (t) is a continuous function on [0, TS]. Thus we can
subsequently define functions u1,M : [0, TS] → R, u1,1 : [0, TS] → R and u1,S :
[0, TS] × [0, TS] → R by

u1,M (t) = exp (−bt)nM,0 + k2

∫ t

0
exp (−b (t − η)) u1,2 (η) dη,

u1,1 (t) = exp (−k1t) n1,0 + 2b

∫ t

0
exp (−k1 (t − η)) u1,M (η)dη,

u1,S (t, τ) =

{
nS,0 (τ − t) if TS ≥ τ ≥ t ≥ 0,

k1u1,1 (t − τ) if TS ≥ t ≥ τ ≥ 0.

Obviously, u1,M (t) and u1,1 (t) are continuous functions on [0, TS]. Since both
nS,0 and k1u1,1 are continuous in their domain, and

lim
τ−t→0+

nS,0 (τ − t) = nS,0 (0) = k1n1,0 = lim
t−τ→0+

k1u1,1 (t − τ) ,

u1,S (t, τ) is also a continuous function on [0, TS] × [0, TS] . According to this
definition, u1,S (η, TS) = nS,0 (TS − η) provided that TS ≥ t ≥ η ≥ 0 and hence

u1,2 (t) = exp (−k2t)n2,0 +
∫ t

0
exp (−k2 (t − η))u1,S (η, TS) dη
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for all TS ≥ t ≥ η ≥ 0. These imply that (u1,1 (t) , u1,S (t, τ) , u1,2 (t) , u1,M (t))
is a solution of the system (2.1)-(2.4).

Secondary, we consider the case that (t, τ) ∈ [TS, 2TS] × [0, TS] . Let u2,2 :
[TS, 2TS] → R be defined by

u2,2 (t) = e−k2(t−TS)u1,2 (TS) + k1

∫ t−TS

0

exp (−k2 (t − TS − η))u1,1 (η)dη.

Since u1,1(t) is a continuous function on [0, TS], u2,2(t) is a continuous function
on [TS, 2TS]. Set functions u2,M : [TS, 2TS] → R, u2,1 : [TS, 2TS] → R and
u2,S : [TS, 2TS] × [0, TS] → R subsequently by

u2,M (t) = exp (−b (t − TS)) u1,M (TS) + k2

∫ t

TS

exp (−b (t − η)) u2,2 (η) dη,

u2,1 (t) = exp (−k1 (t − TS)) u1,1 (TS) + 2b

∫ t

TS

exp (−k1 (t − η))u2,M (η)dη,

u2,S (t, τ) =

{
k1u1,1 (t − τ) if TS + τ ≥ t ≥ TS ,

k1u2,1 (t − τ) if 2TS ≥ t ≥ TS + τ .

respectively. Then u2,M (t) and u2,1 (t) are continuous functions on [TS, 2TS].
Moreover, since both k1u1,1 and k1u2,1 are continuous in their domain, and

lim
t−τ→T−

S

u1,1 (t − τ) = u1,1 (TS) = u2,1 (TS) = lim
t−τ→TS

+
u2,1 (t − τ) ,

u2,S (t, τ) is also a continuous function on [TS, 2TS] × [0, TS]. Let functions n1 :
[0, 2TS] → R, n2 : [0, 2TS] → R, nM : [0, 2TS] → R and nS : [0, 2TS]× [0, TS] →
R be defined by

n1 (t) =

{
u1,1 (t) if 0 ≤ t ≤ TS ,
u2,1 (t) if TS ≤ t ≤ 2TS;

n2 (t) =

{
u1,2 (t) if 0 ≤ t ≤ TS ,
u2,2 (t) if TS ≤ t ≤ 2TS;

nM (t) =

{
u1,M (t) if 0 ≤ t ≤ TS,
u2,M (t) if TS ≤ t ≤ 2TS;

nS (t, τ) =

{
u1,S (t, τ) if 0 ≤ t ≤ TS , 0 ≤ τ ≤ TS ,
u2,S (t, τ) if TS ≤ t ≤ 2TS , 0 ≤ τ ≤ TS.

Then they are solutions of (2.1)-(2.4). In fact, from the definitions of these
functions, we have
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nM (t) = u1,M (t) = exp (−bt) nM,0 + k2

∫ t

0
exp (−b (t − η))u1,2 (η)dη

= e−btnM,0 + k2

∫ t

0
e−b(t−η)n2 (η) dη for all 0 ≤ t ≤ TS,

and
nM (t) = u2,M (t)

= exp (−b (t − TS)) u1,M (TS) + k2

∫ t

TS

exp (−b (t − η)) u2,2 (η) dη

= e−b(t−TS)

[
e−bTSnM,0 + k2

∫ TS

0
e−b(TS−η)u1,2 (η)dη

]
+k2

∫ t

TS

e−b(t−η)u2,2 (η)dη

= e−btnM,0 + k2

∫ TS

0
e−b(t−η)n2 (η)dη + k2

∫ t

TS

e−b(t−η)n2 (η)dη

= e−btnM,0 + k2

∫ t

0
e−b(t−η)n2 (η)dη for all TS ≤ t ≤ 2TS.

Thus,

nM (t) = exp (−bt) nM,0+k2

∫ t

0
exp (−b (t − η)) n2 (η)dη for all t ∈ [0, 2TS] .

Similarly, we have

n1 (t) = e−k1tn1,0 + 2b

∫ t

0
e−k1(t−η)nM (η)dη for all t ∈ [0, 2TS] ,

and

n2 (t) = u1,2 (t) = exp (−k2t)n2,0 +
∫ t

0
exp (−k2 (t − η))u1,S (η, TS) dη

= e−k2tn2,0 +
∫ t

0
e−k2(t−η)nS (η, TS) dη for all 0 ≤ t ≤ TS.

Since nS (η, TS) = u2,S (η, TS) = k1u1,1 (η − TS) as long as 2TS ≥ t ≥ η ≥
TS , this implies that

n2 (t) = u2,2 (t)

= e−k2(t−TS)u1,2 (TS) + k1

∫ t−TS

0
e−k2(t−TS−η)u1,1 (η)dη

= e−k2(t−TS)n2 (TS) + k1

∫ t

TS

e−k2(t−η)u1,1 (η − TS) dη
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= e−k2tn2,0 +
∫ TS

0
e−k2(t−η)nS (η, TS) dη +

∫ t

TS

e−k2(t−η)nS (η, TS) dη

= exp (−k2t)n2,0 +
∫ t

0
exp (−k2 (t − η))nS (η, TS) dη

for all TS ≤ t ≤ 2TS. Now, we consider the function nS (t, τ) on the region
[0, 2TS] × [0, TS]. As (t, τ) in the region [0, TS] × [0, TS], we have

nS (t, τ)=u1,S (t, τ)=

{
nS,0 (τ−t) if TS ≥ τ ≥ t ≥ 0,

k1u1,1 (t−τ) = k1n1 (t−τ) if TS ≥ t ≥ τ ≥ 0.

As (t, τ) in the region [TS, 2TS] × [0, TS], then either TS + τ ≥ t ≥ TS or
2TS ≥ t ≥ TS + τ . If TS + τ ≥ t ≥ TS , that is TS ≥ t − τ ≥ 0, then

nS (t, τ) = u2,S (t, τ) = k1u1,1 (t − τ) = k1n1 (t − τ) .

On the other hand, if 2TS ≥ t ≥ TS + τ , that is 2TS ≥ t − τ ≥ TS , then

nS (t, τ) = u2,S (t, τ) = k1u2,1 (t − τ) = k1n1 (t − τ) .

These imply that

nS (t, τ) =

{
nS,0 (τ − t) if TS ≥ τ ≥ t ≥ 0,

k1n1 (t − τ) if 2TS ≥ t ≥ τ ≥ 0.

With a similar argument, one can extend (n1 (t) , nS (t, τ) , n2 (t) , nM (t)) to a
global solution of the system (2.1)-(2.4).

This theorem will be proved as long as we show that (n1 (t) , nS (t, τ) , n2 (t) ,

nM (t)) is the unique solution of (2.1)-(2.4). Suppose that (v1 (t) , vS (t, τ) , v2 (t) ,
vM (t)) is a solution of the system (2.1)-(2.4), then they satisfy

v1 (t) = exp (−k1t) n1,0 + 2b

∫ t

0
exp (−k1 (t − η)) vM (η) dη,

vS (t, τ) =

{
nS,0 (τ − t) if TS ≥ τ ≥ t ≥ 0,

k1v1 (t − τ) if ∞ > t ≥ τ ≥ 0,

v2 (t) = exp (−k2t) n2,0 +
∫ t

0
exp (−k2 (t − η)) vS (η, TS) dη,

vM (t) = exp (−bt)nM,0 + k2

∫ t

0
exp (−b (t − η)) v2 (η)dη
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From the closed forms of n1 (t), nM (t), v1 (t), vM (t), we have

|n1 (t) − v1 (t)| ≤ 2b

∫ t

0

exp (−k1 (t − η)) |nM (η)− vM (η)| dη,

and
|nM (t) − vM (t)| ≤ k2

∫ t

0
exp (−b (t − η)) |n2 (η)− v2 (η)| dη.

Since

v2 (t) = exp (−k2t) n2,0 +
∫ t

0
exp (−k2 (t − η)) vS (η, TS) dη

= e−k2tn2,0 +
∫ TS

0
e−k2(t−η)nS,0 (TS − η)dη

+k1

∫ t

TS

e−k2(t−η)v1 (η − TS) dη

= e−k2tn2,0+
∫ TS

0
e−k2(t−η)nS,0 (TS − η)dη

+k1e
k2TS

∫ t−TS

0
e−k2(t−η)v1 (η) dη,

we have

|n2 (t) − v2 (t)| ≤ k1e
k2TS

∫ t−TS

0
exp (−k2 (t − η)) |n1 (η)− v1 (η)| dη

≤ k1e
k2TS

∫ t

0
exp (−k2 (t − η)) |n1 (η)− v1 (η)| dη.

Let K = max
{
k1e

k2TS , k2, 2b
}
, α = min{k1, k2, b} and

g (t) = |n1 (t) − v1 (t)|+ |n2 (t) − v2 (t)|+ |nM (t) − vM (t)| forall t ∈ [0,∞) .

Then
g (t) ≤ 2b

∫ t

0
e−k1(t−η) |nM (η)− vM (η)| dη

+k1e
k2TS

∫ t

0

e−k2(t−η) |n1 (η)− v1 (η)| dη

+k2

∫ t

0
e−b(t−η) |n2 (η)− v2 (η)| dη

≤ K

∫ t

0
e−α(t−η) (|nM (η)− vM (η)|

+ |n1 (η)− v1 (η)| + |n2 (η)− v2 (η)|) dη

= K

∫ t

0
e−α(t−η)g (η) dη forallt ∈ [0,∞) .
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This implies that eαtg (t) ≤ K
∫ t
0 eαηg (η)dη for all t ∈ [0,∞). By Gronwall’s

inequality eαtg (t) = 0 for all t ∈ [0,∞), and hence

g (t) = |n1 (t) − v1 (t)|+ |n2 (t) − v2 (t)| + |nM (t) − vM (t)| = 0

for all t ∈ [0,∞). Therefore n1 (t) = v1 (t), n2 (t) = v2 (t) and nM (t) = vM (t)
for all t ∈ [0,∞). These imply that nS (t, τ) = vS (t, τ) on [0,∞) × [0, TS] , and
the proof of this theorem is complete.

We will end this section by proving the solution (n1 (t) , nS (t, τ) , n2 (t) , nM (t))
of the integral system (2.1)-(2.4) satisfies the differential equations (1.1) and (1.3)-
(1.9), and nS (t, τ) satisfies the differential equation (1.2) for all (t, τ) ∈ [0,∞)×
[0, TS] except possibly on the line t = τ . Furthermore, we will show that if the
initial condition (n1,0, nS,0 (τ) , n2,0, nM,0) satisfies that n1,0, n2,0, nM,0 ∈ R, and
nS,0 (τ) is a continuously differentiable function on [0, TS] with nS,0 (0) = k1n1,0

and n′
S,0 (0) = k2

1n1,0 − 2bk1nM,0, then the solution satisfies the initial-boundary
value problem (1.1)-(1.9). In fact, we have following two theorems.

Theorem 2.3. Suppose n1,0, n2,0, nM,0 ∈ R, and nS,0 (τ) is a continu-
ously differentiable function on [0, T S] with nS,0 (0) = k1n1,0, then the solution
(n1 (t) , nS (t, τ) , n2 (t) , nM (t)) of the system (2.1)-(2.4) satisfies the differen-
tial system (1.1), (1.3)-(1.9), and nS (t, τ) satisfies the differential equation (1.2)
except possibly on the line t = τ .

Proof. Since (n1 (t) , nS (t, τ) , n2 (t) , nM (t)) is the unique solution of the
system (2.1)-(2.4), we see that nM (t), nS (t, TS), n2 (t) are continuous on [0,∞)
and

n1 (t) = exp (−k1t)n1,0 + 2b

∫ t

0
exp (−k1 (t − η))nM (η)dη,

n2 (t) = exp (−k2t)n2,0 +
∫ t

0
exp (−k2 (t − η))nS (η, TS) dη,

nM (t) = exp (−bt) nM,0 + k2

∫ t

0
exp (−b (t − η))n2 (η) dη.

Obviously, n1 (t), n2 (t), nM (t) are continuously differentiable on [0,∞). In
fact, we have

d

dt
n1 (t) = 2bnM (t) − k1n1 (t) ,

d

dt
n2 (t) = nS (t, TS) − k2n2 (t) ,

d

dt
nM (t) = k2n2 (t) − bnM (t) ,
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for all 0 < t < ∞. Since nS,0 (τ) is a continuously differentiable function on
[0, TS] and

nS (t, τ) =

{
nS,0 (τ − t) if TS ≥ τ ≥ t ≥ 0,

k1n1 (t − τ) if ∞ > t ≥ τ ≥ 0.

We have
∂

∂t
nS (t, τ) +

∂

∂τ
nS (t, τ) = 0, forall 0 < t < ∞, 0 < τ ≤ TS, t �= τ.

We also have n1 (0) = n1,0, n2 (0) = n2,0, nM (0) = nM,0, nS (0, τ) = nS,0 (τ)
for all 0 ≤ τ ≤ TS and nS (t, 0) = k1n1 (t) for all 0 ≤ t < ∞. The assertion of
this theorem is established. qed

Theorem 2.4. Suppose n1,0, n2,0, nM,0 ∈ R, and nS,0 (τ) is a continuously
differentiable function on [0, TS] with nS,0 (0) = k1n1,0 and d

dτ nS,0 (0) = k2
1n1,0−

2bk1nM,0. Then the initial-boundary value problem (1.1)-(1.9) has a unique solution
(n1 (t) , nS (t, τ) , n2 (t) , nM (t)).

Proof. From Theorem 2.2 and Theorem 2.3, the system (2.1)-(2.4) has a unique
solution (n1 (t) , nS (t, τ) , n2 (t) , nM (t)). Moreover, (n1 (t) , nS (t, τ) , n2 (t) , nM (t))
satisfies (1.1), (1.3)-(1.9) and nS (t, τ) satisfy the differential equation (1.2) except
possibly for t = τ . Since d

dτ nS,0 (0) = k2
1n1,0 − 2bk1nM,0 and

nS (t, τ) =

{
nS,0 (τ − t) if TS ≥ τ ≥ t ≥ 0,

k1n1 (t − τ) if ∞ > t ≥ τ ≥ 0,

both ∂
∂tnS (t, τ) and ∂

∂τ nS (t, τ) exist, and they satisfy the equation ∂
∂tnS (t, τ) +

∂
∂τ nS (t, τ) = 0 for all 0 < t < ∞, 0 < τ ≤ TS . The conclusion of this theorem
follows.

3. GROWTH RATE

In this section we study the growth rate of the solution of the initial-boundary
value problem (1.1)-(1.9). To achieve this goal, we need the following lemmas as
preliminaries. In fact, they are crucial for this purpose. To simplify the notations,
we denote by C1 [0,∞) and C1 ([0,∞)× [0, TS]) as the sets of functions that are
continuously differentiable in [0,∞) and [0,∞)× [0, TS] , respectively.

Lemma 3.1. Suppose w ∈ C1 ([0,∞)× [0, TS]) satisfies following inequalities
[c]l

∂

∂τ
w (t, τ) +

∂

∂t
w (t, τ) ≥ 0 for all 0 < t < ∞, 0 < τ ≤ TS;

w (0, τ) ≥ 0 for all 0 ≤ τ ≤ TS;

w (t, 0) ≥ 0 for all 0 ≤ t < ∞.
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Then w ≥ 0 on [0,∞)× [0, TS].

Proof. As (t, τ) ∈ [0,∞) × [0, TS], we define z (η) = w (t + η, τ + η) for all
max {−t,−τ} ≤ η ≤ TS−τ . Then z′ (η) = wt (t + η, τ + η)+wτ (t + η, τ + η) ≥
0. If t ≥ τ , then −τ ≤ η ≤ 0 ≤ TS −τ and hence z (0)−z (−τ) =

∫ 0
−τ z′ (η) dη ≥

0. This implies that w (t, τ) ≥ w (t − τ, 0) ≥ 0. On the other hand, if t ≤ τ , then
−t ≤ η ≤ 0 ≤ TS − τ and hence z (0) − z (−t) =

∫ 0
−t z′ (η) dη ≥ 0. These imply

that w (t, τ) ≥ w (0, τ − t) ≥ 0. Therefore, w ≥ 0 on [0,∞) × [0, TS], and the
proof of this lemma is complete.

Lemma 3.2. Suppose γ > 0 is a constant and v ∈ C 1 [0,∞) satisfies following
inequalities 

d

dt
v (t) + γv (t) ≥ 0 for all 0 < t < ∞;

v (0) ≥ 0.

Then v ≥ 0 on [0,∞).
The proof of this lemma is trivial, we omit here.

We call a vector function

(ñ1, ñS, ñ2, ñM) ∈ C1 [0,∞)× C1 ([0,∞) × [0, TS]) × C1 [0,∞)× C1 [0,∞)

to be an upper solution of (1.1)-(1.9) if it satisfies the following inequalities:

(3.1) d

dt
ñ1 (t) + k1ñ1 (t) ≥ 2bñM (t) , forall 0 < t < ∞,

(3.2) ∂

∂τ
ñS (t, τ) +

∂

∂t
ñS (t, τ) ≥ 0, forall 0 < t < ∞, 0 < τ ≤ TS,

(3.3) d

dt
ñ2 (t) + k2ñ2 (t) ≥ ñS (t, TS) , forall 0 < t < ∞,

(3.4) d

dt
ñM (t) + bñM (t) ≥ k2ñ2 (t) , forall 0 < t < ∞,

(3.5) ñ1 (0) ≥ n1,0,

(3.6) ñS (0, τ) ≥ nS,0 (τ) , forall 0 ≤ τ ≤ TS

(3.7) ñ2 (0) ≥ n2,0,

(3.8) ñM (0) ≥ nM,0,

(3.9) ñS (t, 0) ≥ k1ñ1 (t) , forall 0 ≤ t < ∞.
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Similarly, (n̂1, n̂S, n̂2, n̂M) ∈ C1 [0,∞)× C1 ([0,∞)× [0, TS])× C1 [0,∞)×
C1 [0,∞) is called a lower solution if it satisfies the above inequalities in reversed
order. The pair of upper solution and lower solution are said to be ordered if

(ñ1, ñS, ñ2, ñM) ≥ (n̂1, n̂S, n̂2, n̂M) .

For a given pair of ordered upper and lower solutions, we set

Ω = {(n1, nS, n2, nM) ∈ Y : (n̂1, n̂S, n̂2, n̂M)

≤ (n1, nS, n2, nM) ≤ (ñ1, ñS, ñ2, ñM)}
where Y = C [0,∞)× C ([0,∞)× [0, TS]) × C [0,∞)× C [0,∞).

Given any initial iteration
(
n

(0)
1 , n

(0)
S , n

(0)
2 , n

(0)
M

)
we can construct a sequence(

n
(m)
1 , n

(m)
S , n

(m)
2 , n

(m)
M

)
, m ∈ N, according to the following iteration process:

(3.10) d

dt
n

(m)
1 (t) + k1n

(m)
1 (t) = 2bn

(m−1)
M (t) , forall 0 < t < ∞,

(3.11) ∂

∂τ
n

(m)
S (t, τ) +

∂

∂t
n

(m)
S (t, τ) = 0, forall 0 < t < ∞, 0 < τ ≤ TS,

(3.12) d

dt
n

(m)
2 (t) + k2n

(m)
2 (t) = n

(m−1)
S (t, TS) , forall 0 < t < ∞,

(3.13) d

dt
n

(m)
M (t) + bn

(m)
M (t) = k2n

(m−1)
2 (t) , forall 0 < t < ∞,

(3.14) n
(m)
1 (0) = n1,0,

(3.15) n
(m)
S (0, τ) = nS,0 (τ) , forall 0 ≤ τ ≤ TS

(3.16) n
(m)
2 (0) = n2,0,

(3.17) n
(m)
M (0) = nM,0,

(3.18) n
(m)
S (t, 0) = k1n

(m−1)
1 (t) , forall 0 ≤ t < ∞.

It is obviously that this sequence is well-defined and it can be represented as

(3.19) n
(m)
1 (t) = exp (−k1t)n1,0 + 2b

∫ t

0
exp (−k1 (t − η)) n

(m−1)
M (η) dη,

(3.20) n
(m)
S (t, τ) =

{
nS,0 (τ − t) if TS ≥ τ ≥ t ≥ 0,

k1n
(m−1)
1 (t − τ) if ∞ > t ≥ τ ≥ 0,
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(3.21) n
(m)
2 (t) = exp (−k2t) n2,0 +

∫ t
0 exp (−k2 (t − η))n

(m−1)
S (η, TS) dη,

(3.22) n
(m)
M (t) = exp (−bt)nM,0 + k2

∫ t
0 exp (−b (t − η)) n

(m−1)
2 (η) dη.

We call
{(

n
(m)
1 , n

(m)
S , n

(m)
2 , n

(m)
M

)}
a maximal sequence, if(

n
(0)
1 , n

(0)
S , n

(0)
2 , n

(0)
M

)
= (ñ1, ñS, ñ2, ñM) ,

and we call
{(

n
(m)
1 , n

(m)
S , n

(m)
2 , n

(m)
M

)}
a minimal sequence, if(

n
(0)
1 , n

(0)
S , n

(0)
2 , n

(0)
M

)
= (n̂1, n̂S, n̂2, n̂M) .

The following lemma gives the monotone property of these sequences.

Lemma 3.3. The maximal and minimal sequences possess the following mono-
tone properties:

(3.23) n̂1 ≤ n
(m)
1 ≤ n

(m+1)
1 ≤ n

(m+1)
1 ≤ n

(m)
1 ≤ ñ1,

(3.24) n̂S ≤ n
(m)
S ≤ n

(m+1)
S ≤ n

(m+1)
S ≤ n

(m)
S ≤ ñS ,

(3.25) n̂2 ≤ n
(m)
2 ≤ n

(m+1)
2 ≤ n

(m+1)
2 ≤ n

(m)
2 ≤ ñ2,

(3.26) n̂M ≤ n
(m)
M ≤ n

(m+1)
M ≤ n

(m+1)
M ≤ n

(m)
M ≤ ñM ,

for all m ∈ N.

Proof. Let w1 = n
(0)
1 − n

(1)
1 = ñ1 − n

(1)
1 , wS = n

(0)
S − n

(1)
S = ñS − n

(1)
S ,

w2 = n
(0)
2 − n

(1)
2 = ñ2 − n

(1)
2 and wM = n

(0)
M − n

(1)
M = ñM − n

(1)
M . Then

d

dt
w1 (t) + k1w1 (t) =

(
d

dt
ñ1 (t) + k1ñ1 (t)

)
− 2bñM (t) ≥ 0

d

dt
w2 (t) + k2w2 (t) =

(
d

dt
ñ2 (t) + k2ñ2 (t)

)
− ñS (t, TS) ≥ 0

d

dt
wM (t) + bwM (t) =

(
d

dt
ñM (t) + bñM (t)

)
− k2ñ2 (t) ≥ 0

w1 (0) = ñ1 (0) − n1,0 ≥ 0, w2 (0) = ñ2 (0)− n2,0 ≥ 0,

wM (0) = ñM (0)− nM,0 ≥ 0.
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By Lemma 3.2, we have that w1 (t) ≥ 0, w2 (t) ≥ 0 and wM (t) ≥ 0 on [0,∞).
Therefore,

∂

∂t
wS +

∂

∂τ
wS =

(
∂

∂t
ñS +

∂

∂τ
ñS

)
−

(
∂

∂t
n

(1)
S +

∂

∂τ
n

(1)
S

)
≥ 0,

wS (0, τ) = ñS (0, τ)− nS,0 (τ) ≥ 0, for 0 ≤ τ ≤ TS,

wS (t, 0) = ñS (t, 0)− n
(1)
S (t, 0) = ñS (t, 0) − k1n

(0)
1 (t)

≥ k1ñ1 (t) − k1ñ1 (t) = 0,

for all 0 ≤ t < ∞. By Lemma 3.1, wS (t, τ) ≥ 0 on [0,∞)× [0, TS]. This implies
that (

n
(1)
1 , n

(1)
S , n

(1)
2 , n

(1)
M

)
≤

(
n

(0)
1 , n

(0)
S , n

(0)
2 , n

(0)
M

)
.

A similar argument using the property of a lower solution gives(
n

(0)
1 , n

(0)
S , n

(0)
2 , n

(0)
M

)
≤

(
n

(1)
1 , n

(1)
S , n

(1)
2 , n

(1)
M

)
.

Let v
(1)
1 =n

(1)
1 −n

(1)
1 , v

(1)
S =n

(1)
S −n

(1)
S , v

(1)
2 =n

(1)
2 −n

(1)
2 and v

(1)
M =n

(1)
M −n

(1)
M .

Then

d

dt
v

(1)
1 + k1v

(1)
1 =

(
d

dt
n

(1)
1 +k1n

(1)
1

)
−

(
d

dt
n

(1)
1 +k1n

(1)
1

)
= 2b (ñM − n̂M ) ≥ 0

d

dt
v

(1)
2 + k2v

(1)
2

=
(

d

dt
n

(1)
2 + k2n

(1)
2

)
−

(
d

dt
n

(1)
2 + k2n

(1)
2

)
= ñS (t, TS) − n̂S (t, TS) ≥ 0

d

dt
v

(1)
M + bv

(1)
M =

(
d

dt
n

(1)
M + bn

(1)
M

)
−

(
d

dt
n

(1)
M + bn

(1)
M

)
= k2 (ñ2 − n̂2) ≥ 0

v
(1)
1 (0) = n1,0 − n1,0 = 0, v

(1)
2 (0) = n2,0 − n2,0 = 0,

v
(1)
M (0) = nM,0 − nM,0 = 0.

By Lemma 3.2, we have that v
(1)
1 (t) ≥ 0, v

(1)
2 (t) ≥ 0 and v

(1)
M (t) ≥ 0 on

[0,∞). Therefore,
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∂

∂t
v

(1)
S +

∂

∂τ
v

(1)
S =

(
∂

∂t
n

(1)
S +

∂

∂τ
n

(1)
S

)
−

(
∂

∂t
n

(1)
S +

∂

∂τ
n

(1)
S

)
≥ 0,

v
(1)
S (0, τ) = nS,0 (τ) − nS,0 (τ) = 0, for 0 ≤ τ ≤ TS,

v
(1)
S (t, 0) = n

(1)
S (t, 0) − n

(1)
S (t, 0) = k1n

(0)
1 (t) − k1n

(0)
1 (t)

= k1 (ñ1 (t) − n̂1 (t)) ≥ 0,

for 0 ≤ t < ∞. By Lemma 3.1, v
(1)
S (t, τ) ≥ 0 on [0,∞) × [0, TS]. This implies

that (
n

(1)
1 , n

(1)
S , n

(1)
2 , n

(1)
M

)
≤

(
n

(1)
1 , n

(1)
S , n

(1)
2 , n

(1)
M

)
.

The above conclusions show that(
n

(0)
1 , n

(0)
S , n

(0)
2 , n

(0)
M

)
≤

(
n

(1)
1 , n

(1)
S , n

(1)
2 , n

(1)
M

)
≤

(
n

(1)
1 , n

(1)
S , n

(1)
2 , n

(1)
M

)
≤

(
n

(0)
1 , n

(0)
S , n

(0)
2 , n

(0)
M

)
.

The monotone property (3.23)-(2.26) follows by an induction argument. The
assertion of this lemma is proven.

In view of Lemma 3.3 the pointwise limits

lim
m→∞

(
n

(m)
1 , n

(m)
S , n

(m)
2 , n

(m)
M

)
= (n1, nS , n2, nM) ,

lim
m→∞

(
n

(m)
1 , n

(m)
S , n

(m)
2 , n

(m)
M

)
= (n1, nS , n2, nM)

exist and satisfy

n̂1 ≤ n
(m)
1 ≤ n

(m+1)
1 ≤ n1 ≤ n1 ≤ n

(m+1)
1 ≤ n

(m)
1 ≤ ñ1,

n̂S ≤ n
(m)
S ≤ n

(m+1)
S ≤ nS ≤ nS ≤ n

(m+1)
S ≤ n

(m)
S ≤ ñS ,

n̂2 ≤ n
(m)
2 ≤ n

(m+1)
2 ≤ n2 ≤ n2 ≤ n

(m+1)
2 ≤ n

(m)
2 ≤ ñ2,

n̂M ≤ n
(m)
M ≤ n

(m+1)
M ≤ nM ≤ nM ≤ n

(m+1)
M ≤ n

(m)
M ≤ ñM ,

for every m ∈ N. Letting m → ∞ and using the integral representation of the se-
quences

{(
n

(m)
1 , n

(m)
S , n

(m)
2 , n

(m)
M

)}
,
{(

n
(m)
1 , n

(m)
S , n

(m)
2 , n

(m)
M

)}
show that both

(n1, nS , n2, nM ) and (n1, nS, n2, nM) are solutions the system (2.1)-(2.4). Since
the system (2.1)-(2.4) has a unique solution (n1, nS, n2, nM), it implies that

(n1, nS, n2, nM ) = (n1, nS, n2, nM ) = (n1, nS, n2, nM) .
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Hence we have the following theorem.

Theorem 3.1 Let (ñ1, ñS, ñ2, ñM) and (n̂1, n̂S, n̂2, n̂M) be a pair of ordered
upper and lower solutions of the differential system (1.1)-(1.9). Then the maximal
and the minimal sequences

{(
n

(m)
1 , n

(m)
S , n

(m)
2 , n

(m)
M

)}
,
{(

n
(m)
1 , n

(m)
S , n

(m)
2 , n

(m)
M

)}
converge monotonically from above and below respectively to a unique solution
(n1, nS, n2, nM) of the system (2.1)-(2.4). Moreover,

n̂1 ≤ n
(m)
1 ≤ n

(m+1)
1 ≤ n1 ≤ n

(m+1)
1 ≤ n

(m)
1 ≤ ñ1,

n̂S ≤ n
(m)
S ≤ n

(m+1)
S ≤ nS ≤ n

(m+1)
S ≤ n

(m)
S ≤ ñS ,

n̂2 ≤ n
(m)
2 ≤ n

(m+1)
2 ≤ n2 ≤ n

(m+1)
2 ≤ n

(m)
2 ≤ ñ2,

n̂M ≤ n
(m)
M ≤ n

(m+1)
M ≤ nM ≤ n

(m+1)
M ≤ n

(m)
M ≤ ñM ,

for all m ∈ N.
Based on Theorem 3.1 and a suitable construction of a lower solution we can

obtain a lower bound of the solution for the initial-boundary value problem (1.1)-
(1.9).

Theorem 3.2. Suppose that n1,0 > 0, n2,0 > 0, nM,0 > 0, min
τ∈[0,TS]

nS,0 (τ) > 0.

Then the solution (n1 (t) , nS (t, τ) , n2 (t) , nM (t)) of the initial-boundary value
problem (1.1)-(1.9) with the initial condition (n1,0, nS,0 (τ) , n2,0, nM,0) satisfies
that

n1 (t)≥ ρ

k1
eεt, nS (t, τ)≥ρeε(t−τ ), n2 (t) ≥ (1 + δ)2

2k2
ρeεt and nM (t) ≥ 1 + δ

2b
ρeεt

for all t ∈ [0,∞) and τ ∈ [0, TS], where 0 < ε ≤ min
{
δk1, δk2, δb,

1
TS

ln 2
(1+δ)3

}
,

0 < δ < 3
√

2 − 1 and 0 < ρ ≤ min
{

k1n1,0, min
τ∈[0,TS]

nS,0 (τ) ,
2k2n2,0

(1+δ)2
,

2bnM,0

1+δ

}
.

Proof. Let n̂1 (t) = ρ
k1

eεt, n̂S (t, τ) = ρeε(t−τ ), n̂2 (t) = (1+δ)2

2k2
ρeεt and

n̂M (t) = 1+δ
2b ρeεt. Then

n̂1 (0) =
ρ

k1
≤ n1,0, n̂2 (0) =

(1 + δ)2

2k2
ρ ≤ n2,0, n̂M (0) =

1 + δ

2b
ρ ≤ nM,0,

n̂S (0, τ) = ρe−ετ ≤ ρ ≤ min
τ∈[0,TS]

nS,0 (τ) ≤ nS,0 (τ) and

n̂S (t, 0) = ρeεt = k1n̂1 (t) .
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According to the assumptions and the definition of the functions n̂1 (t), n̂S (t, τ),
n̂2 (t), n̂M (t), we have

d

dt
n̂1 (t) + k1n̂1 (t) − 2bn̂M (t) = ε

ρ

k1
eεt + ρeεt − (1 + δ) ρeεt

=
ρ

k1
[ε + k1 − (1 + δ) k1] eεt

=
ρ

k1
[ε − δk1] eεt

≤ 0,

∂

∂τ
n̂S (t, τ) +

∂

∂t
n̂S (t, τ) = −ερeε(t−τ ) + ερeε(t−τ ) = 0,

d

dt
n̂2 (t) + k2n̂2 (t) − n̂S (t, TS) =

(1 + δ)2

2k2
ερeεt +

(1 + δ)2

2
ρeεt − ρe−εTSeεt

=
(1 + δ)2

2k2
ρ

[
ε + k2 − 2k2

(1 + δ)2
e−εTS

]
eεt

≤ (1 + δ)2

2k2
ρ

[
ε + k2 − k2

(1 + δ)2
(1 + δ)3

]
eεt

=
(1 + δ)2

2k2
ρ [ε − δk2] eεt

≤ 0,

d

dt
n̂M (t) + bn̂M (t) − k2n̂2 (t) = ε

1 + δ

2b
ρeεt +

1 + δ

2
ρeεt − (1 + δ)2

2
ρeεt

=
1 + δ

2b
ρ [ε + b − (1 + δ) b] eεt

=
1 + δ

2b
ρ [ε − δb] eεt

≤ 0.

This implies that (n̂1, n̂S, n̂2, n̂M) is a lower solution of the system (1.1)-(1.4).
Hence

n1 (t) ≥ ρ
k1

eεt, nS (t, τ) ≥ ρeε(t−τ ), n2 (t) ≥ (1+δ)2

2k2
ρeεt and nM (t) ≥ 1+δ

2b ρeεt

for all t ∈ [0,∞) and τ ∈ [0, TS]. The proof of this theorem is completed.

4. CONCLUSION AND DISCUSSION

From the closed form of unperturbed cell line population functions

(2.1) n1 (t) = exp (−k1t) n1,0 + 2b

∫ t

0
exp (−k1 (t − η))nM (η) dη,
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(2.2) nS (t, τ) =

{
nS,0 (τ − t) if TS ≥ τ ≥ t ≥ 0,

k1n1 (t − τ) if ∞ > t ≥ τ ≥ 0,

(2.3) n2 (t) = exp (−k2t) n2,0 +
∫ t

0
exp (−k2 (t − η))nS (η, TS) dη,

(2.4) nM (t) = exp (−bt) nM,0 + k2

∫ t

0
exp (−b (t − η)) n2 (η)dη,

the populations in each phase depend on the initial functions and the transition
coefficients. The work explains why the populations in each phase of different
unperturbed cell lines are distributed differently. Furthermore, according to (2.1)-
(2.4), if the populations of human tumor cells in each of G1-, S-, G2- and M -phase
of unperturbed cells at a certain time can be understood, it is then predictable how
those in each phase of unperturbed cells be like.

On the other hand, the results can be further extended to compare with the phase
distributions in tumor cells under anticancer treatments and hence to predict their
efficiency. For instance, in view of theorem 3.2 the growth rate of the populations
in each phase of unperturbed human tumor cells is faster than exponential functions
which depend on the initial functions, the transition coefficients and the time of the
cells in the S-phase respectively. Specifically, we have

(4.1)

n1 (t) ≥ ρ

k1
eεt, nS (t, τ) ≥ ρeε(t−τ ), n2 (t)

≥ (1 + δ)2

2k2
ρeεt and nM (t) ≥ 1 + δ

2b
ρeεt

for all t ∈ [0,∞) and τ ∈ [0, TS], where 0 < ε ≤ min
{
δk1, δk2, δb,

1
TS

ln 2
(1+δ)3

}
,

0 < δ < 3
√

2 − 1 and 0 < ρ ≤ min
{

k1n1,0, min
τ∈[0,TS ]

nS,0 (τ) ,
2k2n2,0

(1+δ)2
,

2bnM,0

1+δ

}
.

However, in [7] we showed that, under the treatment by radiotherapy or chemother-
apy, if one can suitably control the losing rates µ1 and µM of the cells in the
G1-phase and in the M -phase respectively, or one may control the time of the cells
in the S-phase, then the inequality

(4.2) k1k2kMe−µSTS

[
3
2

+
√

α

β
√

TSπ

(
1 + O

(
T−1

S

))]
< µ1 (µ1 − µ2) (µM − µ2)

hold. The physical meanings of the positive constants kM , µ1, µ2, µS , µM , TS ,
α and β are described in the introduction section of [7]. In there, we show that if
µ1 > µ2, µM > µ2, and the inequality (4.2) hold, then the DNA of tumour cells
G1 (x, t), and hence the population of tumour cells n1 (t) =

∫ L
0 G1 (x, t) dx, in

G1-phase decays exponentially with time t for arbitrarily fixed x ∈ [0,∞) (please



68 Yu-Hsien Chang, Kang Fang and Guo-Chin Jau

see [7, Theorem 6], for detail). Thus the growth of human tumour cells will be
controlled under therapy. On the other hand, in [7] we also got

(4.3)
G1 (x, t) = e−µ1tG1 (x, 0)

+kMk2

[∫ t

0

∫ t

ξ

∫ t

η
eµ1(τ−t)eµM (η−τ )eµ2(ξ−η)I (2x, ξ, TS) dτdηdξ

]
This shows that the DNA of tumour cells G1 (x, t) in G1-phase are depending on

the initial function G1 (x, 0) under the treatment by radiotherapy or chemotherapy.
Inequality (4.1) shows that the growth rate of the population in each phase of
unperturbed human tumour cells is faster than exponential functions, while the
inequalities (4.2) and (4.3) indicate that the population in each phase of perturbed
human tumour cells decays exponentially with time t for arbitrarily fixed x ∈ [0,∞).
Since all the inequalities (4.1)-(4.3) depend on their initial data, these facts show
that early therapy should be a better choice in general.
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