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DERIVATIONS ON MATRIX ALGEBRAS WITH APPLICATIONS TO
HARMONIC ANALYSIS

H. Samea

Abstract. In this paper, the derivations between ideals of the Banach alge-
bra E∞(I) are characterized. Necessary and sufficient conditions for weak
amenability of Banach algebras Ep(I), 1 ≤ p ≤ ∞, are found. Also, some
applications to compact groups and hypergroups are given.

1. INTRODUCTION

The Banach algebras Ep(I), where p ∈ [1,∞] ∪ {0}, were introduced and
extensively studied in Section 28 of [5]. For a compact group G with dual Ĝ, the
Banach algebras Ep(Ĝ), where p ∈ [1,∞] ∪ {0}, and multipliers on these Banach
algebras were introduced and extensively studied in [5]. The present paper continues
of the study of these algebras, and investigate multipliers and derivations on ideals
of E∞(I) with applications to compact groups and hypergroups.

The organization of this paper is as follows. The preliminaries and notations are
given in section 1. Section 2 is devoted to derivations between ideals of E∞(I). In
this paper, the set of all M ∈ E(I) such that MA, AM ∈ B (A ∈ A), and Mi = 0
(i ∈ I, di = 1) is denoted by M1(A, B). It is shown that if A and B are ideals of
E∞(I), and E00(I) ⊆ A, and moreover there exist norms ‖.‖A on A, and ‖.‖B on
B such that with these norms A and B are Banach algebras, then B is a Banach
A-bimodule with the product of E(I) giving the two module multiplications. It is
shown that if D is a derivation from A into B, then D is continuous. Furthermore, if
at least one of the spaces M1(A, B) and B is a dual Banach E∞(I)-bimodule, then
there exists M ∈ M1(A, B) such that D(A) = AM − MA (A ∈ A). In section
3, the Banach space M1(A, B), where A and B are any of Banach spaces Ep(I)
(1 ≤ p ≤ ∞), is formulated. Indeed, Theorem 35.4 of [5] is generalized from ideals
of E∞(Ĝ), where G is a compact group with dual Ĝ, to ideals of E∞(I). In section
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4 a number of results on derivations between Banach algebras of Ep(I) (1 ≤ p ≤ ∞)
are stated and proved, and applied in investigating the weakly amenability of Banach
algebras Ep(I) (1 ≤ p ≤ ∞). It is proved that H1(E∞(I), Ep(I)) = 0 for each
1 ≤ p ≤ ∞. Also it is shown that for 1 ≤ p, q � ∞, H1(Ep(I), Eq(I)) = 0 if and
only if the set {i ∈ I : di � 1} is finite. Moreover it is proved that for 1 ≤ p � ∞,
H1(Ep(I), E∞(I)) = 0 if and only if sup{ai : i ∈ I, di � 1} < ∞. Applications
of these results enables one to prove that for each 1 < p < ∞, Ep(I) is is weakly
amenable if and only if the set {i ∈ I : di � 1} is finite. Also E1(I) is weakly
amenable if and only if sup{ai : i ∈ I, di � 1} < ∞. However it is well-known
that E∞(I) is weakly amenable. In section 5 some applications of the previous
sections in compact groups and hypergroups are given. Among other results, it is
proved that if G is a compact group, then the convolution Banach algebra A(G)
is weakly amenable if and only if sup

π∈Ĝ
dπ < ∞, where Ĝ is the dual of G and

for each π ∈ Ĝ, dπ = dim π. Also, a necessary and sufficient condition for weak
amenability of the convolution Banach algebra A(K), for a compact hypergroup K,
is proved.

2. PRELIMINARIES

Let H be an n-dimensional Hilbert space and suppose that B(H) be the space
of all linear operators on H . Clearly B(H) can be identified with Mn(C) (the space
of all n × n-matrices on C) as vector spaces. For A ∈ Mn(C), let A∗ ∈ Mn(C)
by (A∗)ij = Aji (1 ≤ i, j ≤ n), and let |A| denote the unique positive-definite
square root of AA∗. A is called unitary if A∗A = AA∗ = I , where I is the n× n-
identity matrix. For E ∈ B(H), let (λ1, . . . , λn) be the sequence of eigenvalues of
operator |E|, written in any order. Define ‖E‖ϕ∞ = max1≤i≤n |λi|, and ‖E‖ϕp =

(
∑n

i=1 |λi|p)
1
p (1 ≤ p < ∞). For more details see Definition D.37 and Theorem

D.40 of [5].
Let I be an arbitrary index set. For each i ∈ I , let Hi be a finite dimensional

Hilbert space of dimension di, and let ai be a real number ≥ 1. These notations will
remain in place throughout the paper. The ∗-algebra

∏
i∈I B(Hi) will denoted by

E(I); scalar multiplication, addition, multiplication, and the adjoint of an element
are defined coordinate-wise. Let E = (Ei) be an element of E(I). Define ‖E‖p :=(∑

i∈I ai‖Ei‖p
ϕp

) 1
p (1 ≤ p < ∞), and ‖E‖∞ = supi∈I ‖Ei‖ϕ∞ . For 1 ≤ p ≤ ∞,

Ep(I) is defined as the set of all E ∈ E(I) for which ‖E‖p < ∞, and E0(I) is
defined as the set of all E ∈ E(I) such that {i ∈ I : ‖Ei‖ϕ∞ ≥ ε} is finite for all
ε > 0. The set of all E ∈ E(I) such that {i ∈ I : ‖Ei‖ϕ∞ 	= 0} is finite is denoted
by E00(I). By Theorems 28.25, 28.27, and 28.32(v) of [5], both (Ep(I), ‖.‖p)
(1 ≤ p ≤ ∞), and (E0(I), ‖.‖∞) are Banach algebras.

For a Banach algebra A, an A-bimodule will always refer to a Banach A-
bimodule X , that is a Banach space which is algebraically an A-bimodule, and for
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which there is a constant CA,X ≥ 0 such that

‖a.x‖X, ‖x.a‖X ≤ CA,X‖a‖A‖x‖X (a ∈ A, x ∈ X).

A linear map D : A → X is called an X-derivation, if

D(ab) = D(a).b + a.D(b) (a, b ∈ A).

For every x ∈ X , adx is defined by adx(a) = a.x − x.a (a ∈ A). It is easily seen
that adx is a derivation. Derivations of this form are called inner derivations. The
set of all derivations from A into X is denoted by Z1(A, X), and the set of all inner
X-derivations is denoted by B1(A, X). Clearly, Z1(A, X) is a linear subspace of
the space of all linear operators of A into X and B1(A, X) is a linear subspace
of Z1(A, X). The difference space of Z1(A, X) modulo B1(A, X) is denote by
H1(A, X). The set of all continuous derivations from A into X is denoted by
Z1(A, X), and the set of all (continuous) X-derivations is denoted by B1(A, X).
Clearly, Z1(A, X) is a linear subspace of the space of all bounded linear operators
of A into X and B1(A, X) is a linear subspace of Z1(A, X). Let H1(A, X) be the
difference space of Z1(A, X) modulo B1(A, X).

The Banach space A∗ with the dual module multiplications defined by

(f.a)(b) = f(ab), (a.f)(b) = f(ba) (a, b ∈ A, f ∈ A∗),

is a Banach A-bimodule called the dual Banach A-bimodule A∗. A Banach algebra
A is called weakly amenable if H1(A, A∗) = 0.

For a locally compact group G and a function f : G → C, f̌ is defined by
f̌(x) = f(x−1) (x ∈ G). Let A(G) (or with the notation K(G) defined in 35.16 of
[5]) consist of all functions h in C0(G) that can be written in at least one way as∑∞

n=1 fn∗ ǧn, where fn, gn ∈ L2(G), and
∑∞

n=1 ‖fn‖2‖gn‖2 < ∞. For h ∈ A(G),
define

‖h‖A(G) = inf

{ ∞∑
n=1

‖fn‖2‖gn‖2 : h =
∞∑

n=1

fn ∗ ǧn

}
.

With this norm A(G) is a Banach space. For more details see 35.16 of [5]. In the
case where G is a compact group, A(G) with convolution and the norm ‖.‖A(G) is
a Banach algebra (see 34.35 of [5]).

Throughout this paper K is a compact hypergroup as defined by Jewett ([6]). By
Theorem 1.3.28 of [1], K admits a left Haar measure. Throughout the present paper
the normalized Haar measure ωK on the compact hypergroup K (i.e. ωK(K) = 1) is
used. If π ∈ K̂, (where K̂ is the set of equivalence classes of continuous irreducible
representations of K, c.f. [1], 11.3 of [6], and [10]), then by Theorem 2.2 of [10],
π is finite dimensional. Furthermore by the proof of Theorem 2.2 of [10], there
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exists a constant cπ such that for each ξ ∈ Hπ with ‖ξ‖ = 1∫
K
|〈π(x)ξ, ξ〉|2 dωK(x) = cπ.

Let kπ = c−1
π . By Theorem 2.6 of [10], kπ ≥ dπ . Moreover if K is a group

then kπ = dπ. For each π ∈ K̂, let Hπ be the representation space of π and
dπ = dim Hπ. The algebras E(K̂) and Ep(K̂) for p ∈ [1,∞] ∪ {0}, are defined
as above with each aπ = kπ. Let µ ∈ M(K). The Fourier transform of µ at
π ∈ K̂ is denoted by µ̂(π) and defined as the operator µ̂(π) =

∫
Kπ(x̄) dµ(x) on

Hπ. Define µ̂ ∈ E(K̂) by µ̂π = µ̂(π) ∈ B(Hπ) (for more details see Theorem
3.2 of [10]). If f ∈ L1(K), and

∑
π∈K̂

kπ‖f̂(π)‖ϕ1 < ∞, then f is said to have
an absolutely convergent Fourier series. The set of all functions with absolutely
convergent Fourier series is denoted by A(K) and called the Fourier space of K .
For f ∈ A(K), define ‖f‖A(K) = ‖f̂‖1. By Proposition 4.2 of [10], A(K) with the
convolution product is a Banach algebra and isometrically isomorphic with E1(K̂).
Note that the two definitions of A(G) and A(K) agree when K = G.

3. DERIVATIONS BETWEEN IDEALS OF E∞(I)

Throughout the paper for A ∈ B(Hi), define Ai as an element of E(I) given
by (

Ai
)
j

=

{
A for j = i

0 otherwise.

We denote the identity di × di-matrix (i.e. the identity operator in B(Hi)) by Ii.

Proposition 3.1. Let A be a subalgebra of E(I) such that E00(I) ⊆ A, and B

be a subspace of E(I). Suppose that (A, ‖.‖A) is a Banach algebra and (B, ‖.‖B)
is a Banach space. Then each linear mapping Θ : A → B that satisfies

Θ(AI i
i) = Θ(A)I i

i (A ∈ A, i ∈ I),

is continuous.

Proof. Let (An) be a sequence in A such that ‖An‖A → 0 and ‖Θ(An) −
B‖B → 0, where B ∈ B. Let i ∈ I . Since B(Hi) is finite dimensional, so
by Lemma 1.20 of [8] the linear mapping Θi : B(Hi) → B : Ai 
→ Θ(Ai

i) is
continuous. On the other hand since A is a Banach algebra, so for each i ∈ I

‖AnI i
i‖A ≤ ‖An‖A‖I i

i‖A −→ 0.

Therefore for each i ∈ I
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BI i
i = lim

n−→∞Θ(An)I i
i = lim

n−→∞Θ(AnI i
i)

= lim
n−→∞Θi ((An)i) = Θi

(
lim

n−→∞AnI i
i

)
= Θi(0) = 0.

Hence B = 0. By the Closed Graph Theorem Θ is continuous.

Corollary 3.2. Let A be a subalgebra of E(I) such that E 00(I) ⊆ A, and B

be a subspace of E(I). Suppose that (A, ‖.‖A) is a Banach algebra and (B, ‖.‖B)
is a Banach A-bimodule. Then Z 1(A, B) = Z(A, B). That is each derivation D
from A into B is continuous.

Proof. Let i ∈ I . By Proposition 1.8.2 of [3], D(Ii
i) = 0. Hence for each

A ∈ A

D(AI i
i) = D(A)I i

i + AD(I i
i) = D(A)I i

i .

So by Proposition 3.1, D is continuous.

Example 3.3. Let I be an infinite set. Fix i0 ∈ I , and suppose that {in : n ∈ N}
be an infinite countable subset of distinct elements of I \ {i0}. Moreover suppose
that for each n ∈ N, dim(Hin) ≥ 2. Define

A =
{
A ∈ E0(I) : Ain ∈ CE in

12 for n ∈ N, and Ai = 0 for all other i’s
}

,

with the norm ‖A‖A = ‖A‖∞ (A ∈ A). Then A is a Banach subalgebra of E∞(I).
Clearly {Ein

12 : n ∈ N} is a linearly independent subspace of the vector space A.
Let B be a basis for A such that {E in

12 : n ∈ N} ⊆ A. Let D : A → A be
the linear mapping given by D(Ein

12) = nE i0
11, where n ∈ N, and D(E) = 0, where

E ∈ B\{E in
12 : n ∈ N}. Let A, B ∈ A. Then AB = 0, and so D(AB) = 0. Clearly

D(A)B = AD(B) = 0 for each A, B ∈ A. Hence D is a derivation from A into
A. Clearly D is not continuous (indeed, for each n ∈ N, ‖D‖ ≥

∥∥∥D(E in
12)
∥∥∥
∞

= n).
So the condition E00(I) ⊆ A, can not be omitted in Proposition 3.2.

Definition 3.4. Let A and B be subsets of E(I). An element E in E(I)
is said to be a left (right, respectively) (A, B)-multiplier if EA ∈ B (AE ∈
B, respectively) for all A ∈ A. The set of all left (right, respectively) (A, B)-
multipliers will be denoted by M(A, B) (RM(A, B), respectively). The set of all
E ∈ M(A, B) ∩ RM(A, B) such that Ei = 0 whenever di = 1, will be denoted
by M1(A, B).

Lemma 3.5. Let A and B be ideals of E∞(I). Then B is an algebraic A-
bimodule with the product of E(I) giving the two module multiplications. Also
M1(A, B) is a E∞(I)-bimodule.
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Proof. Clearly B is an algebraic A-bimodule, and M1(A, B) is a subspace
of E(I). Let L ∈ M1(A, B) and E ∈ E∞(I). Since B is an ideal of E∞(I),
so if A ∈ A, then (EL)A = E(LA) ∈ B. Hence EL ∈ M1(A, B). Similarly
since A is an ideal of E∞(I), so LE ∈ M1(A, B). Therefore M1(A, B) is a
E∞(I)-bimodule.

Proposition 3.6. Let A and B be ideals of E∞(I), and E00(I) ⊆ A. Then
B is an algebraic A-bimodule with the product of E(I) giving the two module
multiplications. Moreover, if D is a derivation from A into B, then there exists a
derivation D̃ from E∞(I) into M1(A, B) such that D̃(A) = D(A) (A ∈ A).

Proof. Suppose D is a derivation from A into B. By Corollary 3.2 D is con-
tinuous. By Lemma 3.5, M1(A, B) is a E∞(I)-bimodule.

Define D̃ : E∞(I) → M1(A, B) by(
D̃(E)

)
i
=
(
D(EI i

i)
)
i

(E ∈ E∞(I), i ∈ I).

D̃ is a well-defined continuous derivation. To see this, let E ∈ E00(I). Since
E00(I) ⊆ A, so EIi

i ∈ A for each i ∈ I . Hence D(EIi
i) is well-defined. Let

A ∈ A, and i ∈ I be such that di � 1. Since EA ∈ A, so(
D̃(E)A

)
i

=
(
D(EI i

i)A
)
i
=
(
D(EI i

iA) − EI i
iD(A)

)
i

=
(
D(EA)I i

i − EI i
iD(A)

)
i
= (D(EA)− ED(A))i .

Also if i ∈ I , and di = 1, then AI i
i = AiI

i
i , and EI i

i = EiI
i
i , where Ai, Ei ∈ C.

Hence

(D(EA)− ED(A))I i
i = D(EA)I i

i − E(D(A)I i
i) = D(EAI i

i)− ED(AI i
i)

= EiAiD(I i
i) − EAiD(I i

i) = 0,

and

(D(E)A)I i
i = D(E)(AiI

i
i ) = Ai(D(E)I i

i) = AiD(EI i
i) = AiEiD(I i

i) = 0.

The above equations show that D̃(E)A = D(EA)−ED(A). But, B is an ideal of
E∞(I), and so D̃(E)A = D(EA)− ED(A) ∈ B. Therefore D̃(E) ∈ M(A, B).
Similarly one can prove that AD̃(E) = D(AE) − D(A)E ∈ B, and so D̃(E) ∈
RM(A, B). Hence by definition of M1(A, B), D̃(E) ∈ M1(A, B).

Now, if E, F ∈ E∞(I), and i ∈ I , then(
D̃(EF )

)
i

=
(
D
(
(EF )I i

i

))
i
=
(
D
(
(EI i

i)(FI i
i)
))

i

=
(
D(EI i

i)FI i
i + EI i

iD(FI i
i)
)
i
=
(
D(EI i

i)
)
i
Fi + Ei

(
D(FI i

i )
)
i

=
(
D̃(E)F + ED̃(F )

)
i
.
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Hence D̃ is a derivation. It is clear that if A ∈ A, then D̃(A) = D(A).

Proposition 3.7. Let A and B be ideals of E∞(I), and E00(I) ⊆ A. Suppose
that there exist a norm ‖.‖A on A, and a norm ‖.‖B on B such that with these
norms A and B are Banach E∞(I)-bimodules. Then M1(A, B) is a Banach
E∞(I)-bimodule with the product of E(I) giving the two module multiplications,
and with the norm

‖L‖A,B = sup
A∈A,‖A‖A=1

(‖LA‖B + ‖AL‖B) (L ∈ M1(A, B)).

Proof. Firstly, it is proved that ‖.‖A,B is a well defined norm on M1(A, B).
It is easy to see that B × B is a Banach space under the norm

‖(b1, b2)‖B×B = ‖b1‖B + ‖b2‖B ((b1, b2) ∈ B × B).

For M ∈ M1(A, B), define M̂ : A → B × B by M̂(A) = (MA, AM) (A ∈ A).
By definition ‖M̂‖ = ‖M‖A,B. But, by Proposition 3.1, the mappings A 
→
MA, AM : A → B are continuous, and so ‖M‖A,B < ∞. Let ‖M‖A,B = 0. Then
‖MI i

i‖B ≤ ‖M‖A,B‖I i
i‖A = 0 (note that E00(I) ⊆ A). It follows that MIi

i = 0
for each i ∈ I , and so M = 0. Therefore ‖.‖A,B is a norm on M1(A, B).

Suppose that (Mn)n∈N is a Cauchy sequence in M1(A, B). By completeness
of B(A, B× B) (the set of all continuous linear maps from A into B × B), there
exists Θ ∈ B(A, B×B) such that limn→∞ M̂n = Θ. Let π1, π2 : B×B → B be
the natural projections π1 : (b1, b2) 
→ b1, π2 : (b1, b2) 
→ b2. Define M ∈ E(I) by
MI i

i = π1(Θ(I i
i))I

i
i . Then for A ∈ A

(MA)I i
i = MI i

iAI i
i = π1

(
Θ(I i

i )
)
AI i

i = lim
n−→∞π1

(
M̂n(I i

i )
)

AI i
i

= lim
n−→∞(MnI i

i)AI i
i = lim

n−→∞(MnA)I i
i

= lim
n−→∞π1

(
M̂n(A)

)
I i
i = π1 (Θ(A)) I i

i .

But

MI i
i = π1(Θ(I i

i ))I
i
i = π1

(
M̂n(I i

i)
)

I i
i

= π1

(
MnI i

i , I
i
iMn

)
I i
i = π2

(
MnI i

i , I
i
iMn

)
I i
i

= π2

(
M̂n(I i

i)
)

I i
i = π2(Θ(I i

i))I
i
i ,

and so by a similar method it can be proved that (AM)Ii
i = π2 (Θ(A)) I i

i . It follows
that Θ = M̂ , and M ∈ M1(A, B). Therefore M1(A, B) is a Banach space.
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Let L ∈ M1(A, B) and E ∈ E∞(I). Since B is an ideal of E∞(I), so if
A ∈ A, then (EL)A = E(LA) ∈ B. Similarly since A is an ideal of E∞(I),
so A(EL) = (AE)L ∈ B. Clearly if di = 1, then (LE)i = 0. Therefore
LE ∈ M1(A, B). Similarly EL ∈ M1(A, B). Now,

‖EL‖A,B = sup
‖A‖A=1

(‖(EL)A‖B + ‖A(EL)‖B)

≤ sup
‖A‖A=1

‖E(LA)‖B + sup
‖A‖A=1

‖(AE)L‖B

≤ CE∞(I),B‖E‖∞ sup
‖A‖A=1

‖LA‖B + ‖L‖A,B sup
‖A‖A=1

‖AE‖A

≤ CE∞(I),B‖E‖∞ sup
‖A‖A=1

‖LA‖B + CE∞(I),A‖L‖A,B‖E‖∞

≤ max
(
CE∞(I),A, CE∞(I),B

) ‖E‖∞‖L‖A,B.

Similarly

‖LE‖A,B ≤ max
(
CE∞(I),A, CE∞(I),B

) ‖E‖∞‖L‖A,B.

Hence M1(A, B) is a Banach E∞(I)-bimodule.

Lemma 3.8. Let I be a finite set, and X be a Banach E∞(I)-bimodule. If
D : E∞(I) → X is a derivation, then there exists x ∈ X such that ‖x‖X ≤ ‖D‖,
and

D(A) = A.x − x.A (A ∈ E∞(I)).

Proof. Clearly E∞(I) can be identified with �∞ −⊕i∈I Mdi(C). Let G
be the set of all elements E of �∞ −⊕i∈I Mdi(C) such that (Ei)kl ∈ {−1, 0, 1}
(i ∈ I, 1 ≤ k, l ≤ di) and each column and each row of Ei (i ∈ I) contains exactly
one non-zero term. By a similar method as the proof of Proposition 1.9.20, it is
proved that 1

card(G)

∑
E∈G E⊗E−1 whenever (E−1)i = E−1

i (i ∈ I), is a diagonal
for �∞ −⊕i∈I Mdi(C), and so if

x =
1

card(G)

∑
E∈G

E.D(E−1),

then D = adx (see the proof of Theorem 1.9.21((b)⇒(a)) of [3], or the proof of
Theorem 2.2.4((ii)⇒(i)) of [9]). Clearly for each E ∈ G, ‖E‖ϕ∞ = ‖E−1‖ϕ∞ = 1.
Hence

‖x‖X =

∥∥∥∥∥ 1
card(G)

∑
E∈G

E.D(E−1)

∥∥∥∥∥
X

≤ 1
card(G)

∑
E∈G

‖E.D(E−1)‖X

≤ 1
card(G)

∑
E∈G

‖E‖ϕ∞‖D‖‖E−1‖ϕ∞ = ‖D‖.
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Theorem 3.9. Let A be a subspace of E(I), and there exists a norm ‖.‖A such
that with this norm A is a dual Banach E∞(I)-bimodule. Then Z1(E∞(I), A) =
Z1(E∞(I), A) = 0. I. e. each derivation D from E∞(I) into A is continuous and
inner.

Proof. Let D be a derivation from E∞(I) into A. By Corollary 3.2, D is
continuous. For each finite subset F of I , let

EF
∞(I) = {E ∈ E∞(I) : Ei = 0 (i /∈ F )},

and define DF : EF∞(I) → A by DF (A) = D(A) (A ∈ EF∞(I)). By Lemma 3.8,
there exists EF ∈ A such that ‖EF‖A ≤ ‖DF‖ ≤ ‖D‖, and D(A) = AEF −EF A

(A ∈ EF∞(I)). Since A is a dual Banach space, by Banach-Alaoglue’s Theorem
there exist E ∈ A, and a subnet (EFα)α of (EF )F such that weak*-limα EFα = E .
Let A∗ be a predual of A (i.e. A∗∗ = A). For each A ∈ E∞(I), i ∈ I , and x ∈ A∗

〈x, (AE − EA)I i
i〉 = 〈x.AI i

i − AI i
i .x, E〉

= lim
α,i∈Fα

〈x.AI i
i − AI i

i .x, EFα〉

= lim
α,i∈Fα

〈x, (AI i
i .EFα − EFα .AI i

i )〉
= lim

α,i∈Fα

〈x, D(AI i
i)〉 = 〈x, D(A)I i

i〉.

Hence D(A) = AE − EA, and so D is inner.

The following is the main theorem of this paper.

Theorem 3.10. Let A and B be ideals of E∞(I), and E00(I) ⊆ A. Suppose
that there exist norms ‖.‖A on A, and ‖.‖B on B such that with these norms A

and B are Banach algebras. Suppose one of the following statements are valid:

(i) M1(A, B) is a dual Banach E∞(I)-bimodule,
(ii) B is a dual Banach E∞(I)-bimodule.

If D is a derivation from A into B, then D is continuous and there exists M ∈
M1(A, B) such that D(A) = AM − MA (A ∈ A).

Proof. By Proposition 3.6, there exists a derivation D̃ from E∞(I) into
M1(A, B) such that D̃(A) = D(A) (A ∈ A).

Suppose (i) is valid. By Theorem 3.9, D̃ is inner. Hence there exists M ∈
M1(A, B) such that D(A) = AM − MA (A ∈ A).

Now, suppose that (ii) is valid. By the proof of Theorem 3.9, for each finite
subset F of I , there exists MF ∈ M1(A, B) such that D̃(A) = AMF − MF A

(A ∈ EF∞(I)). Let M be a cluster point of (MF ) in the weak*-operator topology
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(note that since B is a dual Banach space, so the weak*-operator topology is well-
defined, see also Remark 3.4 of [4]). Then by a method as the proof of the Theorem
3.9, D̃(A) = AM − MA (A ∈ E∞(I)). Hence D(A) = AM − MA (A ∈ A).

From the above theorem, one can obtain the following result.

Proposition 3.11. Let A and B be ideals of E∞(I), and E00(I) ⊆ A. Suppose
that there exist norms ‖.‖A on A, and ‖.‖B on B such that with these norms A

and B are Banach algebras. Then B is a Banach A-bimodule with the product of
E(I) giving the two module multiplications. Moreover if at least one of the spaces
M1(A, B) and B is a dual Banach E∞(I)-bimodule, then

Z1(A, B) = Z1(A, B) = {DE : E ∈ M1(A, B} ,

where DE(A) = AE − EA (A ∈ A).

The following elementary result is needed.

Lemma 3.12. Let A be a subalgebra of E(I) such that E 00(I) ⊆ A. If E ∈ E(I)
is such that for each A ∈ A, AE = EA, then there exists a set {λ i : i ∈ I} � C
such that for each i ∈ I , Ei = λiIi.

Proof. Let i ∈ I . For each di × di-matrix A,

AEi =
(
AiE

)
i
=
(
EAi

)
i
= EiA,

and hence by Corollary 27.10 of [5], there exists λi ∈ C such that Ei = λiIi.

Notation. Throughout the paper the set of all E ∈ E(I) such that Ei = λiIi

(i ∈ I), for a set {λi : i ∈ I} � C, is denoted by C(E(I)).

Proposition 3.13. Let A and B be ideals of E∞(I), and E00(I) ⊆ A. Suppose
that there exist a norm ‖.‖A on A, and ‖.‖B on B such that with these norms A

and B are Banach algebras. Then B is a Banach A-bimodule with the product of
E(I) giving the two module multiplications. Moreover if at least one of the spaces
M1(A, B) and B is a dual Banach E∞(I)-bimodule, then

H1(A, B) = H1(A, B) ∼= M1(A, B) + C(E(I))
B + C(E(I))

,

where ∼= denoted vector isomorphism.

Proof. Define

Θ : M1(A, B) + C(E(I)) → Z1(A, B); E 
→ DE,
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where DE(A) = AE − EA (A ∈ A). By Proposition 3.11 Θ is onto. By Lemma
3.12 kerΘ = C(E(I). Therefore

M1(A, B) + C(E(I))
C(E(I))

∼= Z1(A, B),

through the mapping

Θ̃ : E + C(E(I)) 
→ Θ(E) = DE (E ∈ M1(A, B) + C(E(I))).

It is easy to show that

Θ̃
(

B + C(E(I))
C(E(I)

)
= {DE : E ∈ B} = B1(A, B).

Hence

H1(A, B) =
Z1(A, B)
B1(A, B)

∼= M1(A, B) + C(E(I))
B + C(E(I))

.

By Proposition 3.2 H1(A, B) = H1(A, B).

Corollary 3.14. Let A and B be ideals of E∞(I), and E00(I) ⊆ A. Suppose
that there exist a norm ‖.‖A on A, and ‖.‖B on B such that with these norms A

and B are Banach algebras. Moreover if at least one of the spaces M 1(A, B)
and B is a dual Banach E∞(I)-bimodule. Then H1(A, B) = 0 if and only if
M1(A, B) ⊆ B + C(E(I)).

4. GENERAL RESULTS ABOUT THE BANACH ALGEBRAS Ep(I) (1 ≤ p ≤ ∞)

For each i ∈ I , and 1 ≤ m, n ≤ di, let E i
mn be the elementary di × di-matrix

such that for 1 ≤ k, l ≤ di,

(E i
mn

)
kl

=
{

1 if k = m, l = n

0 otherwise.

The following lemma is indeed a generalization of Theorem D.54 of [5].

Lemma 4.1. Let H be a finite-dimensional Hilbert space and A ∈ B(H),
and 1 ≤ p ≤ ∞. Then there exists B ∈ B(H) with ‖B‖ϕp = 1 such that
‖A‖ϕ∞ = ‖AB‖ϕ∞ . Moreover

‖A‖ϕ∞ = sup
{‖AB‖ϕ∞ : B ∈ B(H) and ‖B‖ϕp = 1

}
.
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Proof. By Theorem D.30 of [5], there exists a unitary operator U0 ∈ B(H)
such that AU0 = |A|. Let (λ1, . . . , λn) be the sequence of eigenvalues of the
operator |A|, written in any order. By Spectral Theorem (see for example Theorem
6.4.4 of [7], or Corollary 5.4 of section of section II of [2]) there exists a unitary
matrix U ∈ B(H) such that U−1|A|U =

∑n
i=1 λiEii. Let λi0 = ‖A‖ϕ∞ . If

B = U0UEi0i0 , then by Theorem D.41 of [5], ‖B‖ϕp = ‖Ei0i0‖ϕp = 1. On one
hand since U is a unitary matrix, so is U−1. Therefore by Theorem D.41 of [5]

‖AB‖ϕ∞ = ‖A (U0UEi0i0)‖ϕ∞ = ‖|A|UEi0i0‖ϕ∞ =
∥∥(U−1|A|U)Ei0i0

∥∥
ϕ∞

=

∥∥∥∥∥
(

n∑
i=1

λiEii

)
Ei0i0

∥∥∥∥∥
ϕ∞

= ‖λi0Ei0i0‖ϕ∞ = λi0 = ‖A‖ϕ∞.

Hence ‖A‖ϕ∞ ≤ sup{‖AB‖ϕ∞ : ‖B‖ϕp = 1}. On the other hand if ‖B‖ϕp = 1,
then by Theorems D.51 and D.52 of [5],

‖AB‖ϕ∞ ≤ ‖A‖ϕ∞‖B‖ϕ∞ ≤ ‖A‖ϕ∞‖B‖ϕp = ‖A‖ϕ∞ .

Therefore ‖A‖ϕ∞ = sup{‖AB‖ϕ∞ : ‖B‖ϕp = 1}.

The following theorem is a generalization of parts IV and V of Theorem 35.4
of [5].

Proposition 4.2. Let 1 ≤ p < q ≤ ∞. Then M(Ep(I), Eq(I)) = E∞(I), if
and only if supi∈Iai < ∞.

Proof. Since p < q, so by Theorem 28.32(iii),(iv) of [5], E∞(I)Ep(I) ⊆
Ep(I) ⊆ Eq(I). Hence E∞(I) ⊆ M(Ep(I), Eq(I)).

Suppose supi∈I ai < ∞. We modify the proof of part IV Theorem 35.4 of [5],
using Lemma 4.1. Let E ∈ E(I)\E∞(I). For each n ∈ N, there exists in ∈ I with
‖Ein‖ϕ∞ > n3 and such that in 	= im for n 	= m. By applying Lemma 4.1, there
exists Bin ∈ B(Hin) such that ‖Bin‖ϕp = 1 and ‖EinBin‖ϕ∞ = ‖Ein‖ϕ∞ > n3.
Define Ain as n−2Bin for each n and Ai = 0 for all other i’s. Since

‖A‖p =

(∑
i∈I

ai‖Ai‖p
ϕp

) 1
p

=

(∑
n∈N

ainn−2p

) 1
p

≤
(

sup
i∈I

ai

) 1
p

(∑
n∈N

n−2p

) 1
p

< ∞,

so A ∈ Ep(I). Since for each n ∈ N, ‖EinAin‖ϕ∞ > n, so EA /∈ E∞(I).
Hence EA /∈ Eq(I), and so E /∈ M(Ep(I), Eq(I)). Therefore M(Ep(I), Eq(I)) =
E∞(I).

Suppose supi∈I ai = ∞. Define E ∈ E(I) by Ei = a
1
p
− 1

q

i Ii for all i ∈ I .
Clearly E /∈ E∞(I). For A ∈ Ep(I), by the same method of the proof of part V
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of Theorem 35.4 of [5], one can prove that ‖EA‖∞ ≤ ‖EA‖q ≤ ‖A‖p < ∞, and
hence E ∈ M(Ep(I), Eq(I)). So E∞(I) � M(Ep(I), Eq(I)).

Proposition 4.3. If 1 ≤ p ≤ ∞, then M(Ep(I), Ep(I)) = E∞(I).

Proof. By 28.32(iii),(iv) of [5], E∞(I) ⊆ M(Ep(I), Ep(I)). Let E ∈
E(I) \E∞(I). As in the proof of Theorem 4.2, for each n ∈ N, there exists in ∈ I

such that ‖Ein‖ϕ∞ > n and such that in 	= im for n 	= m. Also there exists
Bin ∈ B(Hin) such that ‖Bin‖ϕp = 1 and ‖EinBin‖ϕ∞ ≥ n. Define Ain as
(ainn2)−

1
p Bin for each n, and Ai = 0 for all other i’s. By the same method of

the proof of part II of Theorem 35.4 of [5], one can prove that A ∈ Ep(I) and
EA /∈ Ep(I). Therefore M(Ep(I), Ep(I)) = E∞(I).

Proposition 4.4. For 1 ≤ q < p ≤ ∞, M(Ep(I), Eq(I)) = Er(I), where r is
defined by 1

r = 1
q − 1

p , with the convention 1
∞ = 0.

Proof. By the same method of the proof of parts VI and VII of Theorem 35.4
of [5], M(Ep(I), Eq(I)) = Er(I).

Theorem 4.5. Let 1 ≤ p < q ≤ ∞, and I1 = {i ∈ I : di � 1}. Then the
following assertions are equivalent:

(i) supi∈I1 ai < ∞.

(ii) M1(Ep(I), Eq(I)) = {E ∈ E∞(I) : Ei = 0 (i /∈ I1)}.

(iii) M1(Ep(I), Eq(I)) ⊆ E∞(I) + C(E(I)).

Proof. (i)⇒(ii): On one hand by Theorem 4.2 M(Ep(I1), Eq(I1)) = E∞(I1).
On the other hand, since p < q, by Theorem 28.32(iii),(iv) of [5],

Ep(I1)E∞(I1) ∪ E∞(I)Ep(I) ⊆ Ep(I) ⊆ Eq(I1).

Therefore M(Ep(I1), Eq(I1)) ∩ RM(Ep(I1), Eq(I1)) = E∞(I1). By regarding
M1(Ep(I), Eq(I)) as a subspace of E(I1), it follows that M1(Ep(I), Eq(I)) =
{E ∈ E∞(I) : Ei = 0 (i /∈ I1)}.

(ii)⇒(iii) is obvious.

(iii)⇒(i): Suppose that supi∈I1 ai = ∞. Define E ∈ E(I) by Ei = a
1
p
− 1

q

i E i
11

for all i ∈ I1, and Ei = 0 for all i /∈ I1. Note that ‖Ei‖ϕq = a
1
p
− 1

q

i . For A ∈ Ep(I),
use (D.51.1) and (D.52.iii) of [5] and the same method of the proof of part V of
Theorem 35.4 of [5] to write
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‖EA‖∞

≤ ‖EA‖q =

(∑
i∈I

(
a

1
q

i ‖EiAi‖ϕq

)q
) 1

q

≤
(∑

i∈I

(
a

1
q

i ‖EiAi‖ϕq

)p
) 1

p

≤
(∑

i∈I

(
a

1
q

i ‖Ei‖ϕq‖Ai‖ϕq

)p
) 1

p

=

(∑
i∈I

ai‖Ai‖p
ϕq

) 1
p

≤
(∑

i∈I

ai‖Ai‖p
ϕp

) 1
p

= ‖A‖p < ∞.

Therefore E ∈ M(Ep(I), Eq(I)). Similarly one can prove that E ∈ RM(Ep(I),
Eq(I)). Hence E ∈ M1(Ep(I), Eq(I)). It can be proved that E /∈ Eq(I)+C(E(I)).
Suppose to the contrary that E ∈ Eq(I) + C(E(I)). Then there exists E ′ ∈ Eq(I)
and a set {λi : i ∈ I} ⊆ C such that for each i ∈ I , Ei = E ′

i + λiIi. Since
supi∈I1 ai = ∞, there exists a subset {in : n ∈ N} of I1 such that im 	= in
for m 	= n and limn ain = ∞. The eigenvalues of |Ein − λinIin | are |λin| with

multiplicity din − 1 and
∣∣∣∣a 1

p
− 1

q

in
− λin

∣∣∣∣ with multiplicity 1. Therefore

‖E ′
in‖ϕq ≥ ‖E ′

in‖ϕ∞ = ‖Ein − λinIin‖ϕ∞

= max
(
|λin | ,

∣∣∣∣a 1
p
− 1

q

in
− λin

∣∣∣∣) ≥ 1
2
a

1
p
− 1

q

in
,

and hence

‖E ′‖q ≥ ‖E ′‖∞ ≥ sup
n∈N

‖E ′
in‖ϕ∞ ≥ 1

2
sup
n∈N

a
1
p
− 1

q

in
=

1
2

(
lim
n

ain

) 1
p
− 1

q = ∞.

This contradiction shows that E /∈ Eq(I)+C(E(I)). Therefore M1(Ep(I), Eq(I)) �
E∞(I) + C(E(I)).

By Propositions 4.3 and 4.4, the following results are obtained.

Proposition 4.6. Let 1 ≤ p ≤ ∞, and I1 = {i ∈ I : di � 1}. Then
M1(Ep(I), Ep(I)) = {E ∈ E∞(I) : Ei = 0 (i /∈ I1)}.

Proposition 4.7. Let 1 ≤ q < p ≤ ∞, and I1 = {i ∈ I : di � 1}. Then
M1(Ep(I), Eq(I)) = {E ∈ Er(I) : Ei = 0 (i /∈ I1)}, where r is defined by
1
r = 1

q − 1
p , with the convention 1

∞ = 0.

5. DERIVATIONS BETWEEN THE BANACH ALGEBRAS Ep(I) (1 ≤ p ≤ ∞)

By Theorem 28.32 of [5], the Banach algebra Ep(I) ia an ideal of E∞(I). In
this chapter H1(Ep(I), Eq(I)) for 1 ≤ p, q ≤ ∞ is calculated.



Derivations on Matrix Algebras 2681

The following lemma is frequently used in the rest of paper.

Lemma 5.1. If the set I1 = {i ∈ I : di � 1} is infinite, then for p, q ∈ [1,∞],

{E ∈ Ep(I) : Ei = 0 (i /∈ I1)} ⊆ Eq(I) + C(E(I)),

if and only if p ≤ q. In particular E p(I) ⊆ Eq(I)+C(E(I)), if and only if p ≤ q.

Proof. If p ≤ q, then by Theorem 28.32(iv) of [5], Ep(I) ⊆ Eq(I) ⊆
Eq(I) + C(E(I)).

Let p > q. Since the set I1 = {i ∈ I : di � 1} is infinite, so there exists a
countable infinite subset {in : n ∈ N} of distinct elements of I1. Define Ain =

a
− 1

p

in
n− 1

q E in
11 for each n, and Ai = 0 for all other i’s. Since p

q > 1, so

‖A‖p =

(∑
i∈I

ai‖Ai‖p
ϕp

) 1
p

=

(∑
n∈N

ain‖Ain‖p
ϕp

) 1
p

=

(∑
n∈N

n
−p

q

) 1
p

< ∞,

and hence A ∈ {E ∈ Ep(I) : Ei = 0 (i /∈ I1)}. One can prove that A /∈
Eq(I)+C(E(I)). Suppose to the contrary that A ∈ Eq(I)+C(E(I)). So there exist
A′ ∈ Eq(I) and a set {λi : i ∈ I} ⊆ C such that for each i ∈ I , Ai = A′

i + λiIi.
Since the eigenvalues of |Ain − λinIin | are |λin | with multiplicity din − 1, and∣∣∣∣a− 1

p

in
n
− 1

q − λin

∣∣∣∣ with multiplicity 1, so

‖A′
in‖ϕq ≥ ‖A′

in‖ϕ∞ = ‖Ain − λinIin‖ϕ∞

= max
(
|λin| ,

∣∣∣∣a− 1
p

in
n
− 1

q − λin

∣∣∣∣) ≥ 1
2
a
− 1

p

in
n
− 1

q .

It follows that

‖A′‖q =

(∑
i∈I

ai‖A′
i‖q

ϕq

) 1
q

≥
(∑

n∈N

ain‖A′
in‖q

ϕq

) 1
q

≥ 1
2

(∑
n∈N

a
(1− q

p
)

in
n−1

) 1
q

≥ 1
2

(∑
n∈N

n−1

) 1
q

= ∞.

This contradiction shows that {E∈Ep(I) : Ei=0 (i /∈ I1)}�Eq(I) + C(E(I)).

Notation: Throughout the rest of the paper for 1 < p < ∞, let p′ denote the
exponent conjugate to p, that is 1

p + 1
p′ = 1, for p = 1, let p′ = 0 (not ∞), and for

p = ∞, let p′ = 1.
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Proposition 5.2. Let 1 ≤ p � ∞. Then the dual Banach Ep(I)-bimodule
Ep(I)∗ can be identified with the Banach Ep(I)-bimodule Ep′(I) with the product
of E(I) giving the two module multiplications.

Proof. By Theorem 28.31 of [5], the mapping T : Ep′(I) → Ep(I)∗ given by

〈B, T (A)〉 =
∑
i∈I

aitr(BiAi) (A ∈ Ep′(I), B ∈ Ep(I)),

is an isometric Banach space isomorphism. Let A, B ∈ Ep(I) and X ∈ Ep′(I).
For each B ∈ Ep′(I),

〈B, T (X).A〉 = 〈AB, T (X)〉 =
∑
i∈I

aitr((AB)iXi)

=
∑
i∈I

aitr(Xi(AB)i)) =
∑
i∈I

aitr((XA)iBi)

= 〈B, T (XA)〉.
So T (X).A = T (XA). Similarly A.T (X) = T (AX).

Proposition 5.3. Let 1 ≤ p � ∞ and D : Ep(I) → Ep(I) be a derivation.
Then D is continuous, and there is an element L ∈ E∞(I) such that

D(A) = AL − LA (A ∈ Ep(I)).

Moreover H1(Ep(I), Ep(I)) = 0 if and only if the set {i ∈ I : d i � 1} is finite.

Proof. By Proposition 4.6, M1(Ep(I), Ep(I)) = {E ∈ E∞(I) : Ei = 0 (i ∈
I, di = 1)}. So by Theorem 3.10 and Proposition 5.2, D is continuous, and there
exists L ∈ M1(Ep(I), Ep(I)) ⊆ E∞(I) such that D(A) = AL−LA (A ∈ Ep(I)).

If I1 = {i ∈ I : di � 1} is finite, then

M1(Ep(I), Ep(I)) = {E ∈ E∞(I) : Ei = 0 (i /∈ I1)} ⊆ E00(I) ⊆ Ep(I),

and so by Corollary 3.14, H1(Ep(I), Ep(I)) = 0.
Let I1 be infinite. By Lemma 5.1, {E ∈ E∞(I) : Ei = 0 (i /∈ I1)} �

Ep(I) + C(E(I)), and hence by Corollary 3.14 H1(Ep(I), Ep(I)) 	= 0.

Proposition 5.4. Let 1 ≤ p ≤ q � ∞ and suppose that D : Ep(I) → Eq(I) is a
derivation. Then D is continuous, and there is an element L ∈ M 1(Ep(I), Eq(I))
such that

D(A) = AL − LA (A ∈ Ep(I)).

Moreover each derivation from Ep(I) into Eq(I) is inner if and only if the set
{i ∈ I : di � 1} is finite.
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Proof. Note that M1(Ep(I), Eq(I)) ⊆ E(I). Hence by Theorem 3.10 and
Proposition 5.2, D is continuous, and there exists L ∈ M1(Ep(I), Eq(I)) such that
D(A) = AL − LA (A ∈ Ep(I)).

If {i ∈ I : di � 1} is finite, then M1(Ep(I), Eq(I)) ⊆ E00(I) ⊆ Eq(I), and so
by Corollary 3.14 H1(Ep(I), Eq(I)) = 0.

Let I1 = {i ∈ I : di � 1} be infinite. Since p ≤ q, so {E ∈ E∞(I) : Ei =
0 (i /∈ I1)} ⊆ M1(Ep(I), Eq(I)). Hence by Lemma 5.1, {E∈E∞(I) : Ei =0 (i /∈
I1)} � Eq(I)+C(E(I)) and hence by Corollary 3.14, H1(Ep(I), Eq(I)) 	= 0.

By Proposition 4.7, and a method similar to the proof of Proposition 5.3, one
can prove the following result.

Proposition 5.5. Let 1 ≤ q < p � ∞ and D : Ep(I) → Eq(I) be a derivation.
Then D is continuous and there is an element L ∈ E r(I), where 1

r = 1
q − 1

p , such
that

D(A) = AL − LA (A ∈ Ep(I)).

Moreover H1(Ep(I), Eq(I)) = 0 if and only if the set {i ∈ I : d i � 1} is finite.

Proof. The proof is similar to the proof of Proposition 5.3. Also note that
since p 	= ∞, so r > q. Hence by Lemma 5.1, if I1 = {i ∈ I : di � 1} is infinite,
then {E ∈ Er(I) : Ei = 0 (i /∈ I1)} � Eq(I) + C(E(I)).

By using a method similar to the proof of Proposition 5.3, one can obtained the
following result as a consequence of Theorems 3.10 and 4.5, and Corollary 3.14.

Theorem 5.6. Let 1 ≤ p < q ≤ ∞. Then Z1(Ep(I), Eq(I)) = {DL : L ∈
E∞(I)}, where DL(A) = AL − LA (A ∈ Ep(I)), if and only if supi∈I1 ai < ∞,
where I1 = {i ∈ I : di � 1}.

Corollary 5.7. Let 1 ≤ p < ∞. Then H1(Ep(I), E∞(I)) = 0 if and only if
supi∈I1 ai < ∞, where I1 = {i ∈ I : di � 1}.

Theorem 3.9 yields the following result.

Proposition 5.8. For each 1≤p≤∞, and each n∈N, H1(E∞(I), Ep(I))=0.

A combination of Lemma 5.2, and Propositions 5.4 and 5.5 yields the following
result.

Theorem 5.9. For 1 < p < ∞, Ep(I) is weakly amenable if and only if the set
{i ∈ I : di � 1} is finite.

Lemma 5.2 and Theorem 5.6 yields the following two corollaries.
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Corollary 5.10. The Banach algebra E1(I) is weakly amenable if and only if
supi∈I1 ai < ∞, where I1 = {i ∈ I : di � 1}.

Remark 5.11. By Theorem 28.26 of [5], E∞(I) is a C∗-algebra. But by
Theorem 4.2.4 of [9], each C ∗-algebra is weakly amenable. Therefore E∞(I) is
weakly amenable.

6. APPLICATIONS TO COMPACT GROUPS AND HYPERGROUPS

Let G be a compact group with dual Ĝ (the set of all equivalence classes of
irreducible representations of G). Let Hπ be the representation space of π, for each
π ∈ Ĝ. The algebras E(Ĝ) and Ep(Ĝ) for p ∈ [1,∞] ∪ {0}, are defined as in
the preliminaries with each aπ equal to the dimension dπ of π ∈ Ĝ (c.f Definition
28.34 of [5]).

Corollary 5.7 yields the following result. Note that by definition of Ep(Ĝ)
(p ∈ [1,∞] ∪ {0}), aπ = dπ (π ∈ Ĝ).

Theorem 6.1. If G is a compact group, then each derivation from E p(Ĝ)
into E∞(Ĝ) is continuous. Moreover H1(Ep(Ĝ), E∞(Ĝ)) = 0 if and only if
sup

π∈Ĝ
dπ < ∞.

By Theorem 34.35 of [5], the convolution Banach algebra A(G) is isometrically
algebra isomorphic with E1(Ĝ). Hence the convolution Banach algebra A(G) is
weakly amenable if and only if E1(Ĝ) is weakly amenable. Therefore as a conse-
quence of Corollary 5.10, the following theorem is obtained.

Theorem 6.2. If G is a compact group, then the convolution Banach algebra
A(G) is weakly amenable if and only if supπ∈Ĝ dπ < ∞.

Proposition 6.3. If G is an infinite non-abelian compact group, then the set
{π ∈ Ĝ : dim π � 1} is infinite.

Proof. Suppose that the set {π ∈ Ĝ : dim π � 1} is finite. Hence by
Theorem 5.3, each derivation from E2(Ĝ) into itself is inner. Now, by Peter-
Weyl theorem [5], the convolution Banach algebra L2(G) is isometrically algebra
isomorphic with E2(Ĝ). So by Proposition 5.3, H1(L2(G), L2(G)) = 0. If G is
infinite and non-abelian, then there exist x, y ∈ G such that xy 	= yx. The mapping
Dx : L2(G) → L2(G) defined by

Dx(f) = δx ∗ f − f ∗ δx (f ∈ L2(G)),

is a non-inner derivation. To see this, let Dx = adg for some g ∈ L2(G). Then for
each f ∈ L2(G), f ∗(δx−g) = (δx−g)∗f . Since L2(G) is dense in L1(G), so for
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each f ∈ L1(G), f ∗ (δx − g) = (δx − g) ∗ f . Let (eα) be a bounded approximate
identity for L1(G). With the weak*-topology on M(G)

δxy − δyx = weak∗ − lim
α

(δx ∗ (eα ∗ δy) − (eα ∗ δy) ∗ δx)

= weak∗ − lim
α

Dx(eα ∗ δy) = weak∗ − lim
α

adg(eα ∗ δy)

= g ∗ δy − δy ∗ g ∈ L2(G) ⊆ L1(G).

Since G is compact and infinite, it is not discrete and hence δxy − δyx /∈ L1(G).
This contradiction proves that G must be abelian or finite.

A combination of Theorem 5.3, Theorem 5.9, and Proposition 6.3 yields the
following result.

Corollary 6.4. Let G be a compact group. Then

(a) For 1≤p<∞, H1(Ep(Ĝ), Ep(Ĝ) = 0, if and only if G is finite or abelian.

(b) For 1 < p < ∞, Ep(Ĝ) is weakly amenable, if and only if G is finite or
abelian.

Proposition 6.5. Let G be a compact group and 1 ≤ p < q < ∞. Then the
following statements are equivalent:

(i) Z1(Ep(Ĝ), Eq(Ĝ)) = {adL : L ∈ E∞(Ĝ)}.
(ii) supπ∈Ĝ dπ < ∞.

Furthermore H1(Ep(Ĝ), Eq(Ĝ)) = 0 if and only if G is finite or abelian.

Proof. By Theorem 5.6, the statements (i) and (ii) are equivalent. The remainder
is a corollary of Proposition 5.4 and Proposition 6.3.

Example 6.6. Let G be a compact group. Then (A(G), ∗) is isometrically
algebra isometric with E1(Ĝ), and (L2(G), ∗) is isometrically algebra isometric
with E2(Ĝ).

(a) By Proposition 3.11, each derivation from the convolution Banach algebra
A(G) into the convolution Banach algebra L2(G) is continuous, i.e. Z1(A(G),
L2(G)) = Z1(A(G), L2(G)).

(b) If supπ∈Ĝ dπ < ∞, then by Proposition 6.5 D ∈ Z1(A(G), L2(G)) if and
only if there is an T ∈ V N (G) such that D(f) = f.T − T.f (f ∈ A(G)).

(c) If for each D ∈ Z1(A(G), L2(G)) there is an T ∈ V N (G) such that D(f) =
f.T − T.f (f ∈ A(G)), then sup

π∈Ĝ
dπ < ∞.

(d) H1(A(G), L2(G)) = 0 if and only if G is finite or abelian.
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The above results can be extended to compact hypergroups by the same way.
Note that if K is a compact hypergroup, then by Theorem 2.6 of [10], for each
π ∈ K̂, kπ ≥ dπ. Hence sup{π∈K̂:dπ�1} kπ < ∞ is equivalent to sup

π∈K̂
kπ(dπ −

1) < ∞.

Proposition 6.7. If K is a compact hypergroup, then each derivation from
Ep(K̂) into E∞(K̂) is continuous. Moreover H1(Ep(K̂), E∞(K̂)) = 0 if and only
if sup

π∈K̂
kπ(dπ − 1) < ∞.

Theorem 6.8. If K is a compact hypergroup, then the convolution Banach
algebra A(K) is weakly amenable if and only if sup

π∈Ĝ
kπ(dπ − 1) < ∞.

Proposition 6.9. Let K be a compact hypergroup and 1 ≤ p < q < ∞. Then
the following statements are equivalent:

(i) Z1(Ep(K̂), Eq(K̂)) = {adL : L ∈ E∞(K̂)}.
(ii) supπ∈K̂ kπ(dπ − 1) < ∞.

Proposition 6.10. Suppose K is an infinite non-abelian compact hypergroup
such that for each x, y ∈ K, the set x∗y is finite. Then the set {π ∈ K̂ : dim π � 1}
is infinite.

Proof. By using the same method as the proof of Proposition 6.3, the propo-
sition is proved. Note that since for each x, y ∈ K , the set x ∗ y is finite, so
δxy − δyx ∈ �1(K). If K is compact and infinite, then δxy − δyx /∈ L1(K).

Corollary 6.11. Suppose K is a compact hypergroup such that for each x, y ∈
K, the set x ∗ y is finite. Then

(a) For 1≤p<∞,H1(Ep(K̂), Ep(K̂))=0, if and only if K is finite or abelian.
(b) For 1 < p < ∞, Ep(K̂) is weakly amenable, if and only if K is finite or

abelian.

Corollary 6.12. Suppose that K is a compact hypergroup such that for each
x, y ∈ K, the set x∗y is finite. Let 1 ≤ p < q < ∞. Then H1(Ep(K̂), Eq(K̂)) = 0
if and only if K is finite or abelian.

We close the paper with the following open problem.

Open problem: Let A and B be ideals of E∞(I), and E00(I) ⊆ A. Suppose
that there exist norms ‖.‖A on A, and ‖.‖B on B such that with these norms
A and B are Banach algebras. Let D be a derivation from A into B. Is there
M ∈ M1(A, B) such that D(A) = AM − MA (A ∈ A) (see Theorem 3.10 for a
special case)?
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