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DERIVATIONS ON MATRIX ALGEBRAS WITH APPLICATIONS TO
HARMONIC ANALYSIS

H. Samea

Abstract. In this paper, the derivations between ideals of the Banach alge-
bra &..(I) are characterized. Necessary and sufficient conditions for weak
amenability of Banach algebras ¢,(I), 1 < p < oo, are found. Also, some
applications to compact groups and hypergroups are given.

1. INTRODUCTION

The Banach algebras &,(I), where p € [1,00] U {0}, were introduced and
extensively studied in Section 28 of [5]. For a compact group G with dual G, the
Banach algebras Q‘Ep(@), where p € [1,00] U {0}, and multipliers on these Banach
algebras were introduced and extensively studied in [5]. The present paper continues
of the study of these algebras, and investigate multipliers and derivations on ideals
of €., (1) with applications to compact groups and hypergroups.

The organization of this paper is as follows. The preliminaries and notations are
given in section 1. Section 2 is devoted to derivations between ideals of €., (I). In
this paper, the set of all M € &(I) such that M A, AM € B (Ae ), and M; =0
(i € 1,d; = 1) is denoted by M; (2, B). It is shown that if 2 and B are ideals of
Eoo(l), and &pp(I) C A, and moreover there exist norms ||.|jo on 2, and ||.||ss on
B such that with these norms 2( and 8 are Banach algebras, then B is a Banach
2(-bimodule with the product of &(I) giving the two module multiplications. It is
shown that if D is a derivation from 2( into 2B, then D is continuous. Furthermore, if
at least one of the spaces M (2, B) and B is a dual Banach €&, (/)-bimodule, then
there exists M € M (2, B) such that D(A) = AM — MA (A € 2). In section
3, the Banach space M (2, B), where 2( and B are any of Banach spaces &,(I)
(1 <p < 0), is formulated. Indeed, Theorem 35.4 of [5] is generalized from ideals
of QEOO(@), where G is a compact group with dual G, to ideals of € (). In section
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4 a number of results on derivations between Banach algebras of &,(1) (1 < p < c0)
are stated and proved, and applied in investigating the weakly amenability of Banach
algebras &,(I) (1 < p < 00). It is proved that H!(€. (1), €,(I)) = 0 for each
1 < p < oco. Also it is shown that for 1 < p, q 5 oo, H(&,(I), €,(I)) =0 if and
only if the set {i € I : d; = 1} is finite. Moreover it is proved that for 1 < p 5 oo,
H(€,(I), €xo(I)) = 0 if and only if sup{a; : i € I, d; Z 1} < oc. Applications
of these results enables one to prove that for each 1 < p < oo, €,(I) is is weakly
amenable if and only if the set {i € I : d; 2 1} is finite. Also &;(I) is weakly
amenable if and only if sup{a; : i € I, d; 2 1} < oo. However it is well-known
that &, (I) is weakly amenable. In section 5 some applications of the previous
sections in compact groups and hypergroups are given. Among other results, it is
proved that if G is a compact group, then the convolution Banach algebra A(G)
is weakly amenable if and only if sup__z dr < oo, where G is the dual of G and

for each 7 € G, d,, = dim 7. Also, a necessary and sufficient condition for weak
amenability of the convolution Banach algebra A(K), for a compact hypergroup K,
is proved.

2. PRELIMINARIES

Let H be an n-dimensional Hilbert space and suppose that 3(H) be the space
of all linear operators on H. Clearly B(H) can be identified with M, (C) (the space
of all n x n-matrices on C) as vector spaces. For A € M,,(C), let A* € M,,(C)
by (A*);; = Aj; (1 <4,7 < n), and let |A| denote the unique positive-definite
square root of AA*. A is called unitary if A*A = AA* = I, where [ is the n x n-
identity matrix. For E € B(H), let (A1, ..., A,) be the sequence of eigenvalues of
operator |E|, written in any order. Define ||E||,. = maxi<i<, |\, and [|E|,, =

(O \)\i\l’)% (1 < p < o0). For more details see Definition D.37 and Theorem
D.40 of [5].

Let 7 be an arbitrary index set. For each i € I, let H; be a finite dimensional
Hilbert space of dimension d;, and let a; be a real number > 1. These notations will
remain in place throughout the paper. The *-algebra [[,.; B(H;) will denoted by
&(I); scalar multiplication, addition, multiplication, and the adjoint of an element
are defined coordinate-wise. Let £ = (E;) be an element of &(I). Define || E||, :=

1

(PCicraill Eill%,)? (1< p < o00), and |[Elo = supje; || Eillp.. FOr 1 <p < oo,
€,(I) is defined as the set of all £ € &(I) for which || E||, < oo, and &y([) is
defined as the set of all E € &(I) such that {i € I : || E;||,. > €} is finite for all
e> 0. Thesetof all E € &(I) such that {i € I : ||E}||,., # 0} is finite is denoted
by &uo(I). By Theorems 28.25, 28.27, and 28.32(v) of [5], both (&,(I), ||.|l,)
(1 <p<o0),and (Ey(I),]|.]|s) are Banach algebras.

For a Banach algebra A, an A-bimodule will always refer to a Banach A-
bimodule X, that is a Banach space which is algebraically an A-bimodule, and for
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which there is a constant C'4 x > 0 such that
la.z[x, |lz.allx < Caxllalalzlx (o€ A xeX).
A linear map D : A — X is called an X -derivation, if
D(ab) = D(a).b+ a.D(b) (a,be A).

For every x € X, ad, is defined by ad,(a) = a.x — z.a (a € A). It is easily seen
that ad,, is a derivation. Derivations of this form are called inner derivations. The
set of all derivations from A into X is denoted by Z!(A, X), and the set of all inner
X -derivations is denoted by B!(A, X). Clearly, Z'(A, X) is a linear subspace of
the space of all linear operators of A into X and B!(A, X) is a linear subspace
of Z'(A, X). The difference space of Z'(A, X) modulo B'(A, X) is denote by
H'(A, X). The set of all continuous derivations from A into X is denoted by
Z1(A, X), and the set of all (continuous) X -derivations is denoted by B'(4, X).
Clearly, Z'(A, X) is a linear subspace of the space of all bounded linear operators
of A into X and B'(A, X) is a linear subspace of Z1(4, X). Let H!(A, X) be the
difference space of Z!(A, X)) modulo B'(A, X).
The Banach space A* with the dual module multiplications defined by

(f.a)(0) = f(ab), (a.f)(b) = f(ba) (a,b€ A, fe AY),

is a Banach A-bimodule called the dual Banach A-bimodule A*. A Banach algebra
A is called weakly amenable if H!(A, A*) = 0.

For a locally compact group G and a function f : G — C, f is defined by
f(z) = f(z™1) (z € G). Let A(G) (or with the notation £(G) defined in 35.16 of
[5]) consist of all functions h in Cy(G) that can be written in at least one way as
S0 1 fa*Gn, Where f,, g, € L2(G), and 0% | || full2llgnll2 < oo. For h € A(G),

define
17/ 4(G) = inf {Z I fallallgnllz : =" fu * Qn} :
n=1 n=1

With this norm A(G) is a Banach space. For more details see 35.16 of [5]. In the
case where G'is a compact group, A(G) with convolution and the norm ||. || 4 is
a Banach algebra (see 34.35 of [5]).

Throughout this paper K is a compact hypergroup as defined by Jewett ([6]). By
Theorem 1.3.28 of [1], K admits a left Haar measure. Throughout the present paper
the normalized Haar measure wgx on the compact hypergroup K (i.e. wx (K) =1)is
used. If 7 € K, (where K is the set of equivalence classes of continuous irreducible
representations of K, c.f. [1], 11.3 of [6], and [10]), then by Theorem 2.2 of [10],
m is finite dimensional. Furthermore by the proof of Theorem 2.2 of [10], there
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exists a constant ¢, such that for each £ € H, with ||€]| =1

[ lir(a)e, )F dunc(o) =

Let k, = c;'. By Theorem 2.6 of [10], k, > d,. Moreover if K is a group
then k = d,. For each 7 € K, let H, be the representation space of = and
dr = dim H,. The algebras ¢(K) and Qip(f() for p € [1,00] U {0}, are defined
as above with each a, = k.. Let u € M(K). The Fourier transform of ,u at
7 € K is denoted by 7i(w) and defined as the operator fi(7) = [,-7(Z) ) on
H,. Define € QE(IA() by fir = pi(m) € B(Hx) (for more detalls see Theorem
3.2 of [10]). If f € LY(K), and Y __5 kr I1f(x )Mo, < oo, then f is said to have
an absolutely convergent Fourier series. The set of all functions with absolutely
convergent Fourier series is denoted by A(K) and called the Fourier space of K.
For f € A(K), define || fllax) = Hf”l. By Proposition 4.2 of [10], A(K) with the
convolution product is a Banach algebra and isometrically isomorphic with 031(1?).
Note that the two definitions of A(G) and A(K) agree when K = G.

3. DERIVATIONS BETWEEN IDEALS OF € (])

Throughout the paper for A € B(H;), define A’ as an element of &(I) given

by
; A forj=i
(A)j: .

0 otherwise.

We denote the identity d; x d;-matrix (i.e. the identity operator in B(H;)) by I.

Proposition 3.1. Let 2 be a subalgebra of &(I) such that €y,(7) C 2, and B
be a subspace of &(I). Suppose that (2, ||.|| o) is @ Banach algebra and (B, ||| )
is a Banach space. Then each linear mapping © : 2 — 95 that satisfies

O(AIH) =0(A)I! (Acdiel),
is continuous.

Proof.  Let (A,) be a sequence in 2 such that ||A,|lq — 0 and ||©(A,) —
Blls — 0, where B € %B. Leti € I. Since B(H;) is finite dimensional, so
by Lemma 1.20 of [8] the linear mapping ©; : B(H;) — B : A; — O(A}) is
continuous. On the other hand since 2l is a Banach algebra, so for each i € 1

1AL o < [1An ol Z{[ler — 0.

Therefore for each 1 € I
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BIl = lim O(A,)I} = lim O(A,I})

n—:aoo n—:a~oQo

= lim ©;((4,):) = ©; <nh_f)noo‘4”[ii>

n—-auoo
= 0,(0)=0.
Hence B = 0. By the Closed Graph Theorem © is continuous. ]

Corollary 3.2. Let 2 be a subalgebra of &(I) such that &y (/) C 21, and B
be a subspace of &(I). Suppose that (2, ||.|| o) is @ Banach algebra and (B, ||| )
is a Banach 2(-bimodule. Then Z1(2(,B) = Z (A, B). That is each derivation D
from 2 into B is continuous.

Proof.  Leti € I. By Proposition 1.8.2 of [3], D(I}) = 0. Hence for each
D(AL) = D(A)I; + AD(I}) = D(A)I;.
So by Proposition 3.1, D is continuous. ]

Example 3.3. Let I be an infinite set. Fix iy € I, and suppose that {i,, : n € N}
be an infinite countable subset of distinct elements of I \ {io}. Moreover suppose
that for each n € N, dim(H;, ) > 2. Define

A = {A € Ey(I): 4, € (Cgfg for n € N, and A; = 0 for all other i’s},

with the norm || Al|o = || Al (A € 2). Then 2 is a Banach subalgebra of &..(I).
Clearly {S{g : n € N} is a linearly independent subspace of the vector space 2.
Let B be a basis for 2 such that {€/3 : n € N} C . Let D : 2 — A be
the linear mapping given by D(Ei) = ngﬁ, where n € N, and D(E) = 0, where
E e B\{E3:neN}. Let A, B € . Then AB = 0, and so D(AB) = 0. Clearly
D(A)B = AD(B) = 0 for each A, B € 2. Hence D is a derivation from 2 into
2. Clearly D is not continuous (indeed, for eachn € N, || D|| > HD(&{Q)

So the condition &g (1) C 2, can not be omitted in Proposition 3.2.

= n).

Definition 3.4. Let 2 and B be subsets of &(I). An element E in &(I)
is said to be a left (right, respectively) (2, B)-multiplier if FA € B (AE €
B, respectively) for all A € . The set of all left (right, respectively) (2, 9B)-
multipliers will be denoted by M (2L, B) (RM(2, B), respectively). The set of all
E € M(,8) N RM(2,B) such that E; = 0 whenever d; = 1, will be denoted
by Ml(Ql, B).

Lemma 3.5. Let 20 and B be ideals of €,,(I). Then 9B is an algebraic 2-
bimodule with the product of &(I) giving the two module multiplications. Also
My (2,B) is a €, (I)-bimodule.
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Proof.  Clearly % is an algebraic 2(-bimodule, and M (2, 9B) is a subspace
of €(I). Let L € M;(A,B) and E € €, (I). Since B is an ideal of & (1),
so if A € 2, then (FL)A = E(LA) € B. Hence EL € M;(2,B). Similarly
since A is an ideal of €., (I), so LE € M;(2,B). Therefore M; (2, B) is a
¢oo(I)-bimodule. |

Proposition 3.6. Let 2f and B be ideals of €, (I), and Eyo(I) C A. Then
B is an algebraic 2-bimodule with the product of &(I) giving the two module
multiplications. Moreover, if D is a derivation from 2l into 9B, then there exists a
derivation D from €. (I) into M (2, B) such that D(A) = D(A) (A € ).

Proof. Suppose D is a derivation from 2l into ®8. By Corollary 3.2 D is con-
tinuous. By Lemma 3.5, M; (%, B) is a € (I)-bimodule.
Define D : € (1) — M; (2, B) by

(ﬁ(E))i — (D(ETY)), (Eee(I)iel),

D is a well-defined continuous derivation. To see this, let E € Eoo(I). Since
Epo(I) C 2, so EI! € A for each i € I. Hence D(EI}) is well-defined. Let
A e, and i e I be such that d; 2 1. Since EA € 2, so

(f)(E)A)A — (D(EIL)A), = (D(EL/A) — EI.D(A)),

(2

= (D(EA)I] - EI{D(A)), = (D(EA) — ED(A));.

Also if i € I, and d; = 1, then AI} = A;I}, and EI! = E;I}, where A;, E; € C.
Hence

(D(EA) — ED(A))I! = D(EA)I! — E(D(A)I}) = D(EAI}) — ED(AI)

= EiA;D(I}) - EA;D(I}) = 0,
and
(D(E)A)I} = D(BE)(Ail}) = Ai(D(E)I}) = AiD(EI}) = AiE;D(I}) = 0.
The above equations show that D(E)A = D(EA)—ED(A). But, B is an ideal of
€ (), and so D(E)A = D(EA) — ED(A) € B. Therefore D(E) € M(2,B).
Similarly one can prove that AD(E) = D(AE) — D(A)E € B, and so D(E) €

RM (2, B). Hence by definition of M;(2,B), D(E) € M;(2,B).
Now, if E, F € €, (I), and i € I, then

(B(eR), = (D(EPL), = (D (ERFI),

= (D(EL)FI{ + EI;D(FI})), = (D(EL)), F; + E; (D(FI}))
- (ﬁ(E)F+ EI)(F)) .

i

(2
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Hence D is a derivation. It is clear that if A € 2, then D(A) = D(A). |

Proposition 3.7. Let 2 and B be ideals of &, (I), and Eyy(I) C 2. Suppose
that there exist a norm ||.||g on 2, and a norm ||.||» on B such that with these
norms 2 and B are Banach & (I)-bimodules. Then M (2, B) is a Banach
€0 (I)-bimodule with the product of &(I) giving the two module multiplications,
and with the norm

[Lllas = sup  (||[LA|s+ [|ALls) (L € M1 (2,B)).
A, || Allg=1

Proof.  Firstly, it is proved that ||.|| o % is a well defined norm on M (A, B).
It is easy to see that B x 9B is a Banach space under the norm

1(b1, b2)[[sx8 = [[balls + [[b2lls8 (b1, b2) € B x B).

For M € M;(2,B), define M : A — B x B by M(A) = (MA, AM) (A € ).
By definition HJ\//.TH = ||[M|las. But, by Proposition 3.1, the mappings A —
MA, AM : A — B are continuous, and so | M ||g 95 < oo. Let | M|lo s = 0. Then
| M| < || M|lassl|I}]|o = O (note that &o(1) C 2A). It follows that M I} = 0
for each ¢ € I, and so M = 0. Therefore ||.|jo s iS @ norm on M (2, B).

Suppose that (M, )nen is @ Cauchy sequence in M (2L, B). By completeness
of B(2, B x B) (the set of all continuous linear maps from 2 into B x B), there
exists © € B(2, B x B) such that lim,, J\//[; =0. Letm,m: B xB — B be
the natural projections 7y : (b1, be) — by, w2 : (b1, b2) — by. Define M € &(I) by
MTI! = m(0(I}))I}. Then for A € 2

(MA)I! = MIAI! = m (O(I1)) Al = lim m (A’@(Ig)) ALl
= lim (M,I)AI{ = lim (M,A)I!

= tim_m (Ma(A4)) I = w1 (O(A) I

But

M = m(©()) L} =m (Ma(1) 1
= m (M}, I!My,) Il = mo (M I}, I'M,) I}

1771 1771

= mo (Ma(I)) I} = ma(OUID) T,

and so by a similar method it can be proved that (AM)I} = w5 (©(A)) I{. It follows
that © = M, and M € M; (2, B). Therefore M; (2, B) is a Banach space.
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Let L € M(2,B) and E € ¢, (I). Since B is an ideal of €, (I), so if
A € 2, then (EL)A = E(LA) € 8. Similarly since 2 is an ideal of &, (1),
so A(EL) = (AE)L € %B. Clearly if d; = 1, then (LE); = 0. Therefore
LE € My(,8). Similarly EL € M; (2, 9B). Now,

IELllas = sup ([(EL)Alls + [|A(EL)]|s)

[Allg=1
< sup ||[E(LA)|s+ sup |[(AE)L|%
[[A]|=1 [Alla=1
< CeonalEllec sup [|[LA[s+ [[Lllas sup [[AE|x

Afla=1 Alla=1

< Cepn,llEllc sup [[LAll + Ce(n) all Lol Bl

|Alla=1
< max (CC%OO(I) 2 Ce (), ) | E|oo | Ll 21,
Similarly

ILE|lo, < max (Ce,, (1),20 Cer(n),8) 1Bl L2 8-
Hence M (2L, B) is a Banach & (7)-bimodule. |

Lemma 3.8. Let I be a finite set, and X be a Banach & (I)-bimodule. If
D : &, (I) — X is a derivation, then there exists z € X such that |z| x < || D],
and

D(A)=Ax—z2.A (A& (])).

Proof.  Clearly €. (I) can be identified with /> — @, ; My, (C). Let G
be the set of all elements £ of (> — @, .; My, (C) such that (E;),;, € {-1,0,1}
(i € 1,1 <k, <d;) and each column and each row of E; (i € I) contains exactly
one non-zero term. By a similar method as the proof of Proposition 1.9.20, it is
proved that m > pec E®E~! whenever (E71); = E;! (i € ), is a diagonal
for £>° — @, Mg, (C), and so if

ard ZED

then D = ad, (see the proof of Theorem 1.9.21((b):>(a)) of [3], or the proof of
Theorem 2.2.4((ii)=>(i)) of [9]). Clearly for each E € G, || E|p.. = [|[E"|p.. = 1.
Hence

lzllx =

card Z E.D(E card Z |E-D(ET)lx

Z 1Ellgoo I DINE o = IDII-

card
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Theorem 3.9. Let 2 be a subspace of &(I), and there exists a norm ||.|| o such
that with this norm 2 is a dual Banach & . (7)-bimodule. Then Z1(&,(1),A) =
ZY (€& (I),2) = 0. 1. e. each derivation D from &, (I) into 2 is continuous and
inner.

Proof.  Let D be a derivation from ¢, (I) into 2. By Corollary 3.2, D is
continuous. For each finite subset I of I, let

L) ={EeCx(l): B;=0(i ¢ F)},

and define Dy : €L (I) — A by Dp(A) = D(A) (A € €L (I)). By Lemma 3.8,
there exists Er € 2 such that | Er|o < ||Dr|| < ||D|, and D(A) = AEp — ErA
(A € el (I)). Since 2 is a dual Banach space, by Banach-Alaoglue’s Theorem
there exist E' € 2, and a subnet (Er, ), of (Er)r such that weak*-lim,, Fr, = E.
Let 2, be a predual of 2 (i.e. 2f =2A). Foreach A € € (I), i€ I, and z € A,

(x,(AE — EA)I}) = (x.AI! — AIl .z, E)

= lim (2. AIl — AIl.xz, Eg,)
a,i€Fy

— lim (z,(AIl.Ep, — Ep,.AL}))

a,i€Fy
— lim (2, D(AL) = {2, D(A)L).
[e IS I
Hence D(A) = AE — EA, and so D is inner. |

The following is the main theorem of this paper.

Theorem 3.10. Let 2 and B be ideals of &.,(I), and Ey(I) C A. Suppose
that there exist norms ||.||o on 2, and ||.|[» on B such that with these norms 2
and B are Banach algebras. Suppose one of the following statements are valid:

(i) M;(2,*B) is a dual Banach & (I)-bimodule,
(if) B is a dual Banach €& ., (I)-bimodule.

If D is a derivation from 2[ into B, then D is continuous and there exists M &
M (2, B) such that D(A) = AM — MA (Ae).

Proof. By Proposition 3.6, there exists a derivation D from ¢ (1) into
M (2,B) such that D(A) = D(A) (A e ).

Suppose (i) is valid. By Theorem 3.9, D is inner. Hence there exists M €
M (2,B) such that D(A) = AM — MA (A eQ).

Now, suppose that (ii) is valid. By the proof of Theorem 3.9, for each finite
subset F' of I, there exists My € M (2, B) such that D(A) = AMp — MpA
(A € &L (I)). Let M be a cluster point of (M) in the weak*-operator topology
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(note that since %5 is a dual Banach space, so the weak*-operator topology is well-
defined, see also Remark 3.4 of [4]). Then by a method as the proof of the Theorem
39, D(A) =AM — MA (A€ &,(I)). Hence D(A) = AM — MA (Ac). =

From the above theorem, one can obtain the following result.

Proposition 3.11. Let 2 and B be ideals of €, (1), and &o(I) C A. Suppose
that there exist norms ||.||o on 2, and ||.|[» on B such that with these norms 2
and B are Banach algebras. Then 95 is a Banach 2(-bimodule with the product of
&(I) giving the two module multiplications. Moreover if at least one of the spaces
M;(2,%8) and B is a dual Banach &, (I)-bimodule, then

Z1 (A, B) = 21U, B) = {Dp : E € My (U, B},
where Dp(A) = AE — EA (Ae ).
The following elementary result is needed.

Lemma 3.12. Let 2l be a subalgebra of &(I) suchthat € (1) C A. If E € &(I)
is such that for each A € 2, AE = E A, then there exists a set {\;: 1 € [} £ C
such that for each i € I, E; = \; 1.

Proof. Leti e I. For each d; x d;-matrix A,
AE; = (A'E), = (EA"), = EiA,
and hence by Corollary 27.10 of [5], there exists \; € C such that E; = \;I;. =

Notation. Throughout the paper the set of all £ € &(I) such that E; = \;I;
(teI), foraset {\;:ie€ I} <C,isdenoted by C(€&(1)).

Proposition 3.13. Let 2 and B be ideals of €, (1), and &o(I) C A. Suppose
that there exist a norm ||.|[o on 2, and ||.||ss on B such that with these norms 2
and B are Banach algebras. Then 95 is a Banach 2(-bimodule with the product of
&(I) giving the two module multiplications. Moreover if at least one of the spaces
M (2,%8) and B is a dual Banach &, (I)-bimodule, then

M (U, B) + C(&(D))
B+ C(€(])) ’

HY(2A,B) = H' (2, B) =
where = denoted vector isomorphism.
Proof. Define

O : My (U, B) +C(¢(I)) — ZY(A,B); E— D,
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where Dg(A) = AE — EA (A € 2). By Proposition 3.11 © is onto. By Lemma
3.12 ker © = C(€(I). Therefore

Mi(,B) + C(e(]))
c(e(l))

= Z'(A,B),
through the mapping
©:E+C(¢(I)— O(E)=Dg (E € My(2,B)+ C(E))).

It is easy to show that

&) (%W) = {Dg: E € B} = B'(,B).
Fence ZYA,B) _ My, B) + C(€(D))
) ~ Vi<, +
D) = Fraem) = srced)
By Proposition 3.2 H! (A, B) = H'(A, B). m

Corollary 3.14. Let 2 and B be ideals of €, (I), and Eyo(I) C 2. Suppose
that there exist a norm ||.|[o on 2, and ||.||ss on B such that with these norms 2
and B are Banach algebras. Moreover if at least one of the spaces M (2, B)
and 9B is a dual Banach &, (I)-bimodule. Then H!(A, %) = 0 if and only if
M (A,B) CB + C(E(1)).

4. GENERAL ResuLTs ABOUT THE BANACH ALGEBRAS &,(]) (1 < p < o)

Foreachi € I,and 1 < m,n < d;, let £, be the elementary d; x d;-matrix
such that for 1 < k,1 < d;,

; 1 ifk=m,l=n
(gmn)kl - { 0 otherwise.

The following lemma is indeed a generalization of Theorem D.54 of [5].

Lemma 4.1. Let H be a finite-dimensional Hilbert space and A € B(H),
and 1 < p < oo. Then there exists B € B(H) with ||B||,, = 1 such that
|Alloee = ||AB]| ... Moreover

IAllgs. = sup {||AB|l,,. : B € B(H) and ||B|,, = 1} .
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Proof. By Theorem D.30 of [5], there exists a unitary operator Uy € B(H)
such that AUy = |A|. Let (A\,...,\,) be the sequence of eigenvalues of the
operator | A|, written in any order. By Spectral Theorem (see for example Theorem
6.4.4 of [7], or Corollary 5.4 of section of section Il of [2]) there exists a unitary
matrix U € B(H) such that U7'A|U = Y% N Let Ny = [|A]jp. If
B = UgU&y,, then by Theorem D.41 of [5], ||Blly, = ||€iiolle, = 1. On one
hand since U is a unitary matrix, so is U~!. Therefore by Theorem D.41 of [5]

IABllpne = 1A (UoUEiio)l 4, = N1AIU gl . = [[(TUTHAI) Eigi |
= l <Z Aﬂn‘) Eigig
i=1

Hence ||All,, < sup{|ABl|l,, :||B|ly, = 1}. On the other hand if || B|,, = 1,
then by Theorems D.51 and D.52 of [5],

Poo

= H)‘iogioingooo = Xip = HAHsOoo'

Poo

[ABllow < [ Allgoc 1Bllowe < [[Allonc [ Blloy = 1Al o -

Therefore [[A]lo,, = sup{[|AB|lx.. : | Bllg, =1} u

The following theorem is a generalization of parts IV and V of Theorem 35.4
of [5].

Proposition 4.2. Let 1 < p < ¢ < co. Then M(&,(I),&,(I)) = € (1), if
and only if sup;;a; < oo.

Proof.  Since p < ¢, so by Theorem 28.32(iii),(iv) of [5], € (I)€&,(I) C
E,(I) C €,(I). Hence € (1) C M(E,(1), Ey(1)).

Suppose sup,c; a; < oo. We modify the proof of part IV Theorem 35.4 of [5],
using Lemma 4.1. Let E € &(I)\ €, (I). For each n € N, there exists 4,, € I with
| Ei, |l oo > n® and such that 4,, # i, for n # m. By applying Lemma 4.1, there
exists B;, € B(H;,) such that || B;,[l,, = 1 and || E;, B;, |lee. = | Ei, o > 1.
Define A;, as n~2B;, for each n and A; = 0 for all other i’s. Since

1 1 1
= (Lo, ) = (Sons) < (mpa)? (To) <o

el neN = neN

S =

so A € €,(I). Since for each n € N, ||E;, A;, |l > 1, SO EA & E(I).
Hence EA ¢ €,(I),and so E ¢ M(€&,(I), €,(I)). Therefore M(€,(I), E,(I)) =
Eoo(I).
1 1
Suppose sup;c;a; = oo. Define E € &(I) by E; = o “I; forall i € I.
Clearly E ¢ €, (I). For A € €,(I), by the same method of the proof of part V
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of Theorem 35.4 of [5], one can prove that | EA|l« < ||[EA|, < ||All, < oo, and
hence E € M(€E,(I), €4(I)). SO Eoo(I) & M(E,(I), Ey(1)). u

Proposition 4.3. If 1 < p < oo, then M(&,(I), €,(1)) = € (1).

Proof. By 28.32(iii),(iv) of [5], € (I) C M(E,(I),Ex(I)). Let E €
E(I)\ €x(I). As in the proof of Theorem 4.2, for each n € N, there exists i, € [
such that || E;,|,.. > n and such that i,, # i, for n # m. Also there exists
B;, € B(H;,) such that ||B;,|l,, = 1 and ||E;,B;,||o., > n. Define A;, as

(aian)_%Bin for each n, and A; = 0 for all other i’s. By the same method of
the proof of part Il of Theorem 35.4 of [5], one can prove that A € &,(I) and
EA ¢ €,(1I). Therefore M(€,(I),&,(I)) = € (I). ]

in

(I),€,(I)) = &,.(I), where r is

Proposition 4.4. For 1 < ¢ < p < oo, M(&,
=0.

defined by + = ¢ — -, with the convention 5

Proof. By the same method of the proof of parts VI and V11 of Theorem 35.4
of [5], M(€,(1), &y (1)) = &,.(I). [

Theorem 45. Let 1 <p <g<oo,and I; = {i € I : d; 2 1}. Then the
following assertions are equivalent:
(i) sup;eg, a; < oo.
(i) Ma(€p(I), €g(1)) ={E € €x(I): E; =0 (i ¢ I)}.
(iif) My(€,(I), €4(1)) € €so(I) + C(E(D)).

Proof.  (i)=-(ii): On one hand by Theorem 4.2 M(€&,(11), €,(11)) = €x(I1).
On the other hand, since p < ¢, by Theorem 28.32(iii),(iv) of [5],

&,(11)€ao(I1) U Ewc(1)€,(1) C &,(I) C &(I1).

Therefore M(&,(11), €4(11)) N RM(E,(11),E4(11)) = €x(I1). By regarding
Mi(€,(I), €,(I)) as a subspace of &(I;), it follows that M (€&,(I),E,(1)) =
{EFeeC(I): E;=0(i¢ )}

(it)=-(iii) is obvious.

11

(iii)=(i): Suppose that sup,-;, a; = co. Define E € &(I) by E; = a] &}y
1
q

1
forall i € I, and E; = O for all i ¢ I;. Note that || Es||,, =a; . For A e &,(I),
use (D.51.1) and (D.52.iii) of [5] and the same method of the proof of part V of
Theorem 35.4 of [5] to write
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|EA] 0o
3 1
1 q\ ¢ 1 N
< |EA|q= <Z <az~qHEiAiHSOq> > < <Z <aquEZ‘Az‘Hs&q> >
el el
< 1
L P\ p »
< (Z (a1 4, ) : <Zaz~HAZ~ng>
el el
1
p
= <Z "’i”Ai”Zp> = || Allp < o0
el

Therefore E € M(€&,(I), €,(I)). Similarly one can prove that £ € RM(&,(I),
€,(I)). Hence E € M (€,(I), €, (I)). Itcan be provedthat £ ¢ &,(1)+C(€E(1)).
Suppose to the contrary that E € &,(I) + C(&(I)). Then there exists E’ € &,(I)
and a set {\; : ¢« € I} C C such that for each i € I, E; = E] + X\;I;. Since
sup;eq, a; = oo, there exists a subset {i,, : n € N} of I; such that i, # i,
for m # n and lim, a;, = co. The eigenvalues of |E;, — \; I;, | are |\;,| with

1_1
a? =\,

in

multiplicity d;, — 1 and with multiplicity 1. Therefore

13-4
= max | |\, ]|, > sa; 7,

1_1
a? T —\

(7% in

\V)

and hence

1 1 1 1

a1 () »a

A = —(lima,, = 00.
2\ n

in

1
I1Elg > | E"lloc > sup HEZ{HH%O > §Supa
eN N

_n ne

This contradiction shows that E ¢ &,(I)+C(€(I)). Therefore M1 (&,(I), €,(I)) €
Eoo(I) + C(E(I)). D

By Propositions 4.3 and 4.4, the following results are obtained.

Proposition 4.6. Let 1 < p < oo, and Iy = {i € I : d; 2 1}. Then
Mi(&y(1), €y(1)) = {E € Exo(I) : E; =0 (i ¢ 1)}

Proposition 4.7. Let 1 < g <p < oo, and I} = {i € [ : d; £ 1}. Then
Mi(€,(1),€,(I)) = {E € &.(I) : E; =0 (i ¢ I)}, where r is defined by
1_ % — %, with the convention L = 0.

r

5. DEerIVATIONS BETWEEN THE BANACH ALGEBRAS &,(1) (1 < p < 00)

By Theorem 28.32 of [5], the Banach algebra &,(I) ia an ideal of &.,(I). In
this chapter H! (&,(I), €,(1)) for 1 < p,q < oo is calculated.
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The following lemma is frequently used in the rest of paper.

Lemma 5.1. If the set I; = {i € I : d; = 1} is infinite, then for p, ¢ € [1, <],
{EeC(): Ei=0(i¢ L)} < &)+ C(EI)),

if and only if p < ¢. In particular &€,(I) C &,(I)+C(€&(I)), ifand only if p < gq.

Proof. If p < ¢, then by Theorem 28.32(iv) of [5], &,(I) C €&,(I) C
¢,(I)+ C(e(1)).

Let p > ¢. Since the set I; = {i € I : d; 2 1} is infinite, so there exists a
countable infinite subset {i,, : n € N} of distinct elements of 7. Define A; =

1

a; 'n qS{l for each n, and A; = 0 for all other i’s. Since £ > 1, so

1 1
17 p P
1Al = (ZazHA I ) (Zaz‘nHAz‘nHZP> :<Zn ) < o0,
i€l neN neN

and hence A € {FE € ¢,(I) : E; = 0 (i ¢ I;)}. One can prove that A ¢
€,(I)+C(€&(I)). Suppose to the contrary that A € &,(I)+C(€&(I)). So there exist
Al e €,(I)and a set {\; : i € I} C C such that for each i € I, A; = A, + \; 1.
Since the eigenvalues of |A4;, — \;, I;,| are |\;,| with multiplicity d;, — 1, and

1

a, PnT — )\in‘ with multiplicity 1, so

in

= max <‘)\Zn‘ ,

] HSOoo
1 1 1
) > Qaann_E.

_1 1
P — ).
a; 'n 1 A,

It follows that

q
1A4lq = <Zai!!x4’i!!$q> > <Z az‘nHAénHZ,q>

el neN
1

3zt () -

This contradiction shows that {E€&,(I) : ;=0 (i ¢ )} £ &,(I) + C(€(1)). m

-
Q=

thPA

Notation: Throughout the rest of the paper for 1 < p < oo, let p’ denote the
exponent conjugate to p, that is = + / =1, for p=1, let ' = 0 (not =), and for
p= o0, letp =1.
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Proposition 5.2. Let 1 < p £ oco. Then the dual Banach &,(I)-bimodule
€,(I)* can be identified with the Banach & ,(I)-bimodule &, (I) with the product
of &(I) giving the two module multiplications.

Proof. By Theorem 28.31 of [5], the mapping T": &,/(I) — &,(I)* given by
= a;tr(BiA;) (A€ €y(l),Be ¢,)),
el
is an isometric Banach space isomorphism. Let A, B € €,(I) and X € &, ().
For each B € €, (1),

(B,T(X).A) = (AB,T(X)) =Y _aitr((AB);
el
= aitr(X;(AB);)) = > _a;tr((X A);B;)
el iel
= (B, T(XA)).
So T(X).A=T(XA). Similarly A.T(X)=T(AX). .

Proposition 5.3. Let 1 < p 5 oo and D : €,(I) — €&,(I) be a derivation.
Then D is continuous, and there is an element L € &, (I) such that

D(A)=AL—-LA (Ae&,)).
Moreover H!(&,(I), €,(I)) = 0 if and only if the set {i € I : d; = 1} is finite.
Proof. By Proposition 4.6, M;(&,(I),&,(I)) ={E € €(I): E; =0 (i €
I,d; =1)}. So by Theorem 3.10 and Proposition 5.2, D is continuous, and there

exists L € My (€,(1), €,(I)) C € (I) such that D(A) = AL — LA (A € €,(1)).
If I, = {iel:d; =1} is finite, then

M (€,(I1),E,(I)) ={E € E(I): E; =0 (i ¢ )} C Eo(I) C &,(I),
and so by Corollary 3.14, H(€,(I), €,(I)) = 0.

Let [; be infinite. By Lemma 5.1, {E € €.(I) : E; =0 (i ¢ L)} €
&,(I)+ C(€(I)), and hence by Corollary 3.14 H'(&,(I), €,(1)) # 0. n
Proposition 5.4. Let 1 < p < ¢ 5 oo and suppose that D : €,(I) — &,(I)isa

derivation. Then D is continuous, and there is an element L € M {(€&,(I), €,(I))
such that
D(A)= AL — LA (A€ ¢€,()).

Moreover each derivation from &,(I) into &,(I) is inner if and only if the set
{ieI:d; 2 1} is finite.
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Proof. Note that M (€&,(I),&,(I)) € &(I). Hence by Theorem 3.10 and
Proposition 5.2, D is continuous, and there exists L € M (&,(I), &,(I)) such that
D(A) = AL — LA (A€ €,(1)).

If {i € I:d; 2 1} is finite, then M (&,(1), €,(I)) C €yo(I) € &,(I), and so
by Corollary 3.14 H!'(&, ( ), €,(I)) = 0.

Let I; = {iel :d; = 1} be infinite. Since p < ¢, so {E € € (I) : E; =
0(i¢[1)}§/\/11( (1), QE(I)) Hence by Lemma 5.1, {E€€&(I): E;= ( ¢
L)} € €,(I)+C(€&(I)) and hence by Corollary 3.14, H!(&,(I), &,(I))

By Proposition 4.7, and a method similar to the proof of Proposition 5.3, one
can prove the following result.

Proposition 55. Let 1 <g<p sooand D : &,(I) — &,(I) be a derivation,
Then D is continuous and there is an element L € €,.(I), where ; = ¢ — ., such
that

1

q
D(A)=AL - LA (A€ ¢,(])).

Moreover H!(&,(I), €,(I)) = 0 if and only if the set {i € I : d; Z 1} is finite.

Proof.  The proof is similar to the proof of Proposition 5.3. Also note that
since p # oo, S0 r > ¢. Hence by Lemma 5.1, if I, = {i € I : d; 2 1} is infinite,
then {E € &.(I): E;=0 (i ¢ [1)} € €(I)+ C(E)). [ |

By using a method similar to the proof of Proposition 5.3, one can obtained the
following result as a consequence of Theorems 3.10 and 4.5, and Corollary 3.14.

Theorem 5.6. Let 1 < p < ¢ < oco. Then ZY(&,(I),€,(I)) = {Dy : L €
€(I)}, where Dr(A) = AL — LA (A € €,(I)), if and only if sup;c;, a; < oo,
where I} = {i e I : d; 2 1}.

Corollary 5.7. Let 1 < p < oo. Then H!(&,(I), €x(I)) = 0 if and only if
SUp;ey, a; < oo, Where Iy = {i €I :d; 2 1}.

Theorem 3.9 yields the following result.

Proposition 5.8. For each 1<p<oo, and each n€N, H! (& (1), &,(1))=0.

A combination of Lemma 5.2, and Propositions 5.4 and 5.5 yields the following
result.

Theorem 5.9. For 1 < p < oo, &,(I) is weakly amenable if and only if the set
{i € I:d; = 1} is finite.

Lemma 5.2 and Theorem 5.6 yields the following two corollaries.
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Corollary 5.10. The Banach algebra &, (7) is weakly amenable if and only if
SUp;ey, a; < oo, Where Iy = {i €I :d; 2 1}.

Remark 5.11. By Theorem 28.26 of [5], € ([) is a C*-algebra. But by
Theorem 4.2.4 of [9], each C*-algebra is weakly amenable. Therefore & (1) is
weakly amenable.

6. APrpLICATIONS TO ComPACT GROUPS AND HYPERGROUPS

Let G be a compact group with dual G (the set of all equivalence classes of
irreducible representations of ). Let H be the representation space of «, for each
7 € G. The algebras &(G) and Qip(@) for p € [1,00] U {0}, are defined as in
the preliminaries with each a,. equal to the dimension d,. of = € G (c.f Definition
28.34 of [5]). ~

Corollary 5.7 yields the following result. Note that by definition of &,(G)
(p € [1,00]U{0}), ar = dr (7w € G).

Theorem 6.1. If G is a compact group, then each derivation from Qip(@)
into ¢.,(G) is continuous. Moreover Hl(eip(@),cioo(@)) = 0 if and only if

sup_ g dr < 00.

By Theorem 34.35 of [5], the convolution Banach algebra A(G) is isometrically
algebra isomorphic with €;(G). Hence the convolution Banach algebra A(G) is

weakly amenable if and only if &;(G) is weakly amenable. Therefore as a conse-
quence of Corollary 5.10, the following theorem is obtained.

Theorem 6.2. If GG is a compact group, then the convolution Banach algebra
A(G) is weakly amenable if and only if sup & dr < oo

Proposition 6.3. If G is an infinite non-abelian compact group, then the set
{r € G :dim 7 = 1} is infinite.

Proof.  Suppose that the set {7 € G : dim = 1} is finite. Hence by
Theorem 5.3, each derivation from 032(@) into itself is inner. Now, by Peter-
Weyl theorem [5], the convolution Banach algebra L?(G) is isometrically algebra
isomorphic with €,(G). So by Proposition 5.3, H'(L2(G), LA(G)) = 0. If G is
infinite and non-abelian, then there exist z, y € G such that xy # yx. The mapping
D, : L*(G) — L?*(G) defined by

Da:(f) :5J:*f_f*5a: (fe L2(G))7

is a non-inner derivation. To see this, let D, = ad, for some g € L?(G). Then for
each f € L?(G), f* (6, —g) = (6, —g)* f. Since L?(G) is dense in L'(G), so for
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each f € LY(G), f * (0, — g) = (0 — g) = f. Let (e,) be a bounded approximate
identity for L'(G). With the weak*-topology on M (G)

Oy — Oye = Weak™ — lim(d, * (eq * 0y) — (€q * Oy) * 0g)
= weak™ — lim D (e, * 0,) = weak™ — limady(eq * 0y)
= g* 6, — 0y x g € L*(G) C LY(G).

Since G is compact and infinite, it is not discrete and hence §,, — 0, ¢ L(G).
This contradiction proves that G must be abelian or finite. ]

A combination of Theorem 5.3, Theorem 5.9, and Proposition 6.3 yields the
following result.

Corollary 6.4. Let G be a compact group. Then
(a) For 1<p< oo, Hl((’ip(@), (’Ep(@) = 0, if and only if G is finite or abelian.

~

(b) For 1 < p < oo, €,(G) is weakly amenable, if and only if G is finite or
abelian.

Proposition 6.5. Let G be a compact group and 1 < p < ¢ < oco. Then the
following statements are equivalent:

(i) ZHeE,(G), €,(G)) = {ady, : L € €(G)}.
(ii) sup_ & dr < 00

Furthermore Hl((’ip(@), (’Eq(@)) = 0 if and only if G is finite or abelian.

Proof. By Theorem 5.6, the statements (i) and (ii) are equivalent. The remainder
is a corollary of Proposition 5.4 and Proposition 6.3. ]

Example 6.6. Let G be a compact group. Then (A(G),*) is isometrically
algebra isometric with &;(G), and (L?(@), ) is isometrically algebra isometric
with €5(G).

(a) By Proposition 3.11, each derivation from the convolution Banach algebra
A(G) into the convolution Banach algebra L?(G) is continuous, i.e. Z!(A(G),
L*(G)) = Z1(A(G), L*(@)).

(b) If sup_ s dx < oo, then by Proposition 6.5 D € Z'(A(G), L*(@)) if and
only if thereisan T € VN(G) such that D(f) = f. T —T.f (f € A(G)).

(c) If foreach D € Z(A(G), L*(G)) thereisan T € VN (G) such that D(f) =
fT=T.f (f € A(G)), then sup__a dr < 00.

(d) HY(A(G), L*(@)) = 0 if and only if G is finite or abelian.
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The above results can be extended to compact hypergroups by the same way.
Note that if K is a compact hypergroup, then by Theorem 2.6 of [10], for each
e K, k; > d,. Hence SUD (e Rudr 21} kr < oo is equivalent to sup_ .z kr(dr —
1) < oc.

Proposition 6.7. If K is a compact hypergroup, then each derivation from
¢ (K) into €. (K) is continuous. Moreover 1 (&, (K), € (K)) = 0 if and only
if sup__ kn(dr — 1) < o0,

Theorem 6.8. If K is a compact hypergroup, then the convolution Banach
algebra A(K) is weakly amenable if and only if sup __a kr(dr — 1) < oo

Proposition 6.9. Let K be a compact hypergroup and 1 < p < ¢ < co. Then
the following statements are equivalent:

(i) 21(&y(K), €y(K)) = {ady, : L € € (K)}.
(i) sup . kr(dz — 1) < o0.

Proposition 6.10. Suppose K is an infinite non-abelian compact hypergroup
such that for each z, y € K, the set xxy is finite. Then theset {7 € K : dim7 2 1}
is infinite.

Proof. By using the same method as the proof of Proposition 6.3, the propo-

sition is proved. Note that since for each z,y € K, the set = *x y is finite, so
Szy — Oyz € L(K). If K is compact and infinite, then &, — 6, ¢ L'(K). n

Corollary 6.11. Suppose K is a compact hypergroup such that for each z,y €
K, the set x * y is finite. Then

(a) For 1<p<oo, H(&,(K), &,(K))=0, if and only if K is finite or abelian.

(b) For 1 < p < oo, (’Ep(f() is weakly amenable, if and only if K is finite or
abelian.

Corollary 6.12. Suppose that K is a compact hypergroup such that for each
z,y € K, the set zxy is finite. Let 1 < p < ¢ < co. Then H!(¢&, (K), Qiq(K)) =0
if and only if K is finite or abelian.

We close the paper with the following open problem.

Open problem: Let 2 and B be ideals of &, (I), and €y(I) C A. Suppose
that there exist norms ||.||¢ on &, and ||.||»s on 9B such that with these norms
2 and B are Banach algebras. Let D be a derivation from 2 into 95. Is there
M € M;(2,B) such that D(A) = AM — M A (A € ) (see Theorem 3.10 for a
special case)?
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