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ABSENCE OF POSITIVE ROOTS OF SEXTIC POLYNOMIALS

Shao Yuan Huang and Sui Sun Cheng*

Abstract. Given a general monic sextic polynomial with six real coefficients,

necessary and sufficient conditions are found such that the polynomial does not

have any positive roots. This ‘nonlinear eigenvalue problem’ is a relatively

difficult one since we have 6 real parameters. Fortunately, we succeed in
applying the Cheng-Lin envelope method in [1] together with several new ideas

and techniques to express our criteria in terms of roots of quartic polynomials

and explicit parametric curves and therefore our problem is completely solved.

Several specific examples are also included to illustrate various applications

including the seeking of periodic solutions of the logistic equation studied in

chaos theory.

1. INTRODUCTION

It is well known that the real quadratic polynomial

λ2 + αλ+ β, λ ∈ R,

has no real roots if, and only if, the discriminant α2 − 4β is less than 0. This
condition is the same as requiring (α, β) to lie in the region strictly above the
parabola y = x2/4. Similar conditions have been obtained for the real cubic,
quartic and quintic polynomials (see [1]). In this paper, we intend to consider the

much more difficult general real sextic polynomial

(1) Q(λ|a, b, c, d, α, β) = λ6 + aλ5 + bλ4 + cλ3 + dλ2 + αλ+ β,

and to find the exact geometric region containing the parameters a, b, c, d, α, β such
that Q does not have any positive roots. We remark that although a corresponding

discriminant theory is available for arbitrary polynomials, an examination of the

discriminants of the cubic and the quartic polynomials will reveal extremely difficult
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manipulations of multivariate symmetric polynomials or determinants of Sylvester’s

matrices. Hence our investigations are meaningful and may lead to new results in

algebraic number theory and others.

The sextic polynomial was studied in great detail by Felix Klein and Robert

Fricke in the 19th century and is directly related to the algebraic aspect of Hilbert’s

13th Problem. There are now several approaches towards the solutions of sextic

equations (see e.g. [2-5, 7, 8] and the references therein).

Sextic polynomials also appear in recent studies of chaos, anisotropic elastic

materials, and others. For instance, in [6], the authors look for 3-periodic solutions
of the logistic equation

xn+1 = µxn(1− xn), n = 0, 1, 2, ...,

under the initial condition x0 = λ. If we let gµ(x) = µx(1− x), then it suffices to
solve the octic equation

gµ (gµ (gµ(λ))) − λ = 0.

In case µ = −1, we may consider the equivalent sextic equation (see Example 1 in
the last section)

g(g(g(λ)))− λ

λ(λ− 2)
= 0.

While in [9], the analysis of two-dimensional deformation of linear anisotropic

elastic materials is reduced to the computation of certain eigenvalues that are the

roots of a sextic algebraic equation whose coefficients depend only on the elastic

constants.

In this paper, we are not directly involved in the location of the roots of sextic

equations. Instead we are treating the sextic equation as one containing 6 real
parameters. In such a context, our problem stated above is similar to the ‘eigenvalue

problem’ in matrix theory, and therefore it is natural to call the set containing

the required parameters the ‘characteristic region’ such that all roots fall outside

the positive axis. More generally, given a function G(λ) = G(λ|a1, a2, ..., an)
depending on n real parameters, the subset of all (a1, ..., an) ∈ Rn such that none

of the roots of the corresponding function G are positive is called the C\(0,+∞)-
characteristic region of G.

The problem posed above is a relatively difficult one since we have 6 real
parameters. Fortunately, an envelope method for handling the existence of real

roots of functions involving finitely many real parameters is developed recently by

Cheng and Lin. This method is used several times successfully (see e.g. [10]) and

formalized recently in a book [1]. We will apply this method together with several

new ideas and techniques to tackle our problem. Necessary as well as sufficient

conditions are obtained. These conditions are expressed in terms of roots of quartic
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polynomials and explicit parametric curves, and therefore our problem is completely

solved.

For a sample corollary of our main results, we show that the sextic polynomial

λ6 + αλ+ β, λ ∈ R,

has no positive roots if, and only if, α ≥ 0 and β ≥ 0, or, α < 0 and β > 5(α6 )6/5.
Some of the materials in this paper are, although elementary, quite technical.

It is therefore advisable to first look at the other examples in the last section for

further motivation.

2. PREPARATORY RESULTS

To facilitate discussions, we first recall a few basic concepts and tools explained

in [1]. Let R, R+ and C be respectively the set of real, positive real and complex

numbers and let the function Θ0 be the null function, that is Θ0(x) = 0 for x ∈ R.
Given an interval I in R, the chi-function χI : I → R is defined by

χI(x) = 1, x ∈ I.

The restriction of a real function f defined over an interval J , which is not disjoint

from I , will be written as fχI , so that fχI is now defined on I ∩ J and

(fχI)(x) = f(x), x ∈ I ∩ J.

Let S be a plane curve and L be a plane straight line. Let d(A,B) denote the
distance of two points A and B, and let d(A,L) be the distance between the point
A and the straight line L. Assume S and L have a common point P . According to
the theory of contact (due to Langrange), the straight line L is called the tangent of

the curve S at the point P if

(2) lim
A→P,A∈S

d(A,L)
d(A, P )

= 0.

In case S is described by a pair of parametric functions, we have the following
relatively easy result (see also [11]).

Lemma 1. Let the plane curve S be described by the parametric functions

x(t) and y(t) on an interval I. Given t0 ∈ I such that x(t) 6= x(t0) for all
t ∈ I\{t0}. For any m ∈ R, let the straight line Lm be defined by Lm(x) =
m(x− x(t0)) + y(t0) for x ∈ R. Suppose the limit

M := lim
t→t0

y(t) − y(t0)
x(t) − x(t0)

exists. Then the straight line LM (x) is the unique tangent of the curve S at

(x(t0), y(t0)).
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We remark that the above definition is compatible with the concept of ‘tangent

lines’ associated with the graph of a real smooth function y = f(x) of a real variable.
Indeed, let S be the curve which is also described by the graph of a smooth function

f passing through P = (x0, y0). By Lemma 1, it is easy to see that (2) holds if,
and only if, the straight line L is the tangent of the graph of the function f.

A point in the plane is said to be a dual point of order m of the plane curve S,
where m is a nonnegative integer, if there exist exactly m mutually distinct tangents

of S that also pass through it. The set of all dual points of order m of S in the
plane is called the dual set of order m of S. We remark that m = 0 is allowed. In
this case, there are no tangents of S that pass through the point in consideration.

Let {Cλ : λ ∈ I} , where I is a real interval, be a family of plane curves. With
each Cλ, suppose we can associate just one point Pλ in each Cλ such that the
totality of these points form a curve S. Then S is called an envelope of the family

{Cλ|λ ∈ I} if the curves Cλ and S share a common tangent line at the common
point Pλ. Suppose we have a family of curves in the x, y-plane implicitly defined
by

F (x, y, λ) = 0, λ ∈ I,
where I is an interval of R. Then it is well known that the envelope S is described
by a pair of parametric functions (ψ(λ), φ(λ)) that satisfy

{
F (ψ(λ), φ(λ), λ) = 0,

F ′
λ(ψ(λ), φ(λ), λ) = 0,

for λ ∈ I, provided some “good conditions” are satisfied. In particular, let f, g, h :
I → R. Then for each fixed λ ∈ I, the equation

(3) Lλ : f(λ)x+ g(λ)y = h(λ), (f(λ), g(λ)) 6= 0,

defines a straight line Lλ in the x, y-plane, and we have a collection {Lλ : λ ∈ I}
of straight lines. For such a collection, we have the following result.

Theorem 1. (See [1, Theorems 2.3 and 2.5]). Let f, g, h be real differentiable
functions defined on the interval I such that f(λ)g′(λ) − f ′(λ)g(λ) 6= 0 and
g(λ) 6= 0 for λ ∈ I. Let Φ be the family of straight lines of the form (3). Let the

curve S be defined by the functions x = ψ(λ), y = φ(λ):

(4) ψ(λ) =
g′(λ)h(λ)− g(λ)h′(λ)
f(λ)g′(λ)− f ′(λ)g(λ)

, φ(λ) =
f(λ)h′(λ)− f ′(λ)h(λ)
f(λ)g′(λ)− f ′(λ)g(λ)

, λ ∈ I.

Suppose ψ and φ are smooth functions over I and one of the following cases
holds: (i) ψ′(λ) 6= 0 for λ ∈ I ; (ii) ψ′(λ) 6= 0 for I\{d} where d ∈ I and
limλ→d− φ

′(λ)/ψ′(λ) as well as limλ→d+ φ
′(λ)/ψ′(λ) exist and are equal. Then

S is the envelope of the family Φ.
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Theorem 2. (See [1, Theorem 2.6]). Let Λ be an interval in R, and f, g, h be
real differentiable functions defined on Λ such that f(λ)g′(λ)− f ′(λ)g(λ) 6= 0 for
λ ∈ Λ. Let Φ be the family of straight lines of the form (3), where λ ∈ Λ, and let
the curve S be the envelope of the family Φ. Then the point (α, β) in the plane is
a dual point of order m of S, if, and only if, the function f(λ)α+ g(λ)β − h(λ),
as a function of λ, has exactly m mutually distinct roots in Λ.

The above result states roughly that the roots of the function F (λ|α, β) =
f(λ)α+ g(λ)β − h(λ) in the interval Λ ‘match’ the tangents connecting the point
(α, β) to the envelope of the family {Lλ|λ ∈ Λ} of straight lines, where Lλ is the
straight line defined by F (λ|x, y) for x, y ∈ R. Therefore we only need to count
the number of such tangents for different pairs of (α, β), that is, to classify dual
points of envelopes.

Plane curves can take on complicated forms. Fortunately, for some plane curves,

their dual points can be described precisely. Indeed, a complete list of distribution

maps of dual points of strictly convex and smooth (i.e. continuously differentiable)

graphs of real functions of one variable defined on real intervals can be found in [1,

Theorems 3.3-3.20.]. Based on such distribution maps, a partial list of distributions

of dual points of piecewise convex-concave and smooth graphs is also available (see

[1, Appendix A]). In this paper, we will need some of these distribution maps (see

Lemmas 3, 4 and 5 below) and will build some new ones (see Lemmas 6 and 7

below) for use in later discussions.

In deriving the complete list of distribution maps in [1], strictly convex and

smooth functions are classified by their monotonicity and behaviors near the bound-

ary points of their domains. Some of these classifications are standard. A less

familiar one is recalled here as follows. Let g be a function defined on an interval I
with c = inf I and d = sup I. Note that c or d may be infinite, or may be outside the
interval I, and that g(c+), g(d−), g′(c+) or g′(d−) may not exist. For λ ∈ (c, d),
let

(5) Lg|λ(x) = g′(λ)(x− λ) + g(λ), x ∈ R.

In case d is finite and g(d−), g′(d−) exist, we let

(6) Lg|d(x) = g′(d−)(x− d) + g(d−), x ∈ R,

and in case c is finite and g(c+), g′(c+) exist, we let

(7) Lg|c(x) = g′(c+)(x− c) + g(c+), x ∈ R.

When d is finite, we say g ∼ Hd− if limλ→d− Lg|λ(α) = −∞ for any α < d;
and similarly when c is finite, g ∼ Hc+ if limλ→c+ Lg|λ(α) = −∞ for any α > c.
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In case d is infinite, we say g ∼ H+∞ if limλ→+∞ Lg|λ(α) = −∞ for any α ∈ R;
and similarly, when c is infinite, we say g ∼ H−∞ if limλ→−∞ Lg|λ(α) = −∞ for

any α ∈ R.

There is a convenient criteria for the determination of functions with the above

stated properties.

Lemma 2. ([1, Lemmas 3.1 and 3.5]). Let g : (c, d) → R is a smooth and

strictly convex function. (i) Assume d < +∞. If g′(d−) = +∞, then g ∼ Hd− . (ii)
Assume d = +∞. If g′(+∞) = +∞, or, g′(+∞) = 0 and g(+∞) = −∞, then

g ∼ H+∞.

The description of the distribution of dual points of a plane curve can be cum-

bersome. For this reason, it is convenient to introduce several notations. We say that

a point (a, b) in the plane is strictly above (above, strictly below, below) the graph
of a function g if a belongs to the domain of g and g(a) < b (respectively g(a) ≤ b,
g(a) > b and g(a) ≥ b). The notation is (a, b) ∈ ∨(g) (respectively (a, b) ∈ ∨(g),
(a, b) ∈ ∧(g) and (a, b) ∈ ∧(g)). Suppose we now have two real functions g1 and g2
defined on real subsets I1 and I2 respectively. We say that (a, b) ∈ ∨(g1)⊕∨(g2) if
a ∈ I1∩I2 and b > g1(a) and b > g2(a), or, a ∈ I1\I2 and b > g1(a), or, a ∈ I2\I1
and b > g2(a). The notations (a, b) ∈ ∨(g1) ⊕ ∨(g2), (a, b) ∈ ∨(g1) ⊕ ∧(g2), etc.
are similarly defined. If we now have n real functions g1, ..., gn defined on in-
tervals I1, ..., In respectively, we write (a, b) ∈ ∨(g1) ⊕ ∨(g2) ⊕ · · · ⊕ ∨(gn) if
a ∈ I1 ∪ I2 ∪ · · · ∪ In, and if

a∈Ii1 ∪Ii2∪· · ·∪Iim ⇒b>gi1(a), b>gi2(a), ..., b>gim(a), i1, ..., im ∈ {1, ..., n}.

The notations (a, b)∈∨(g1)⊕∨(g2)⊕ · · · ⊕ ∨(gn), etc. are similarly defined.
Equipped with the functions Lg|λ defined by (5)-(7) and the ordering of points

and graphs in the plane, we may now state the following distribution results for

dual points.

Lemma 3. ([1, Theorem 3.20], see Figure 1). Let g : R → R be a strictly

convex and smooth function such that g ∼ H−∞ and g ∼ H+∞. Then (α, β) is a
dual point of order 0, 1 or 2 of g if, and only if, respectively β > g(α), β = g(α)
or β < g(α).

Lemma 4. ([1, Theorem 3.3], see Figure 2). Let g : (c, d) → R be a strictly

convex and smooth function such that g(a+), g(d−), g′(a+) and g′(d−) exist.
Then (α, β) in the plane is a dual point of order 0 of g if, and only if, (α, β) ∈
∨(g)⊕ ∨(Lg|c)⊕ ∨(Lg|d) or (α, β) ∈ ∧(Lg|c)⊕ ∧(Lg|d).

Lemma 5. ([1, Theorem 3.11], see Figure 3). Let g : (c,+∞) → R be a strictly
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Fig. 1. Fig. 2. Fig. 3.

convex and smooth function such that g(c+) and g′(c+) exist, and g ∼ H+∞. Then

the following statements hold:

(1) Dual set of order 0 of g is ∨(g)⊕ ∨(Lg|c).

(2) Dual set of order 1 of g is the union of ∧(Lg|cχ(−∞,c])⊕∧(Lg|cχ(c,+∞)) and
{(a, b) ∈ R2 : a > c and g(a) = b}.

(3) Dual set of order 2 of g is ∧(g)⊕ ∨(Lg|cχ(c,+∞)).

(4) Dual set of order greater than 2 of g is empty.

As explained in [1, Appendix A], dual sets of order 0 of plane curves that are
made up of several pieces of convex and concave functions can be obtained by

intersections. In particular, the following result is easily deduced from Theorems

3.4 and A.3 in [1].

Lemma 6. (See Figure 4). Let a, b, c ∈ R, g1 ∈ C1(a,+∞), g2 ∈ C1[a, b)
and g3 ∈ C1[c, b]. Suppose the following hold:

(i) g1 is strictly convex on (a,+∞) such that g1 ∼ H+∞;
(ii) g2 is strictly concave on [a, b);

(iii) g3 is strictly convex on [c, b];

(iv) g(v)
1 (a+) = g

(v)
2 (a+) and g(v)

2 (b−) = g
(v)
3 (b−) for v = 0, 1.

Then the intersection of dual set of order 0 of g1, g2 and g3 is ∨(g1) ⊕ ∨(g3) ⊕
∨(Lg3|c).

The following result is deduced from Lemma 4 and Theorem 3.3 in [1].

Lemma 7. (See Figure 5). Let a, b, c, d ∈ R, g1 ∈ C1(a,+∞), g2 ∈ C1[a, b),
g3 ∈ C1[c, b], and g4 ∈ C1(c, d). Suppose the following hold:

(i) g1 is strictly convex on (a,+∞) such that g1 ∼ H+∞;
(ii) g2 is strictly concave on [a, b);
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(iii) g3 is strictly convex on [c, b];
(iv) g4 is strictly concave on [c, d) such that g4(d−) and g′4(d

−) exist;

(v) g(v)
1 (a+)=!g(v)

2 (a+), g(v)
2 (b−)=g(v)

3 (b−) and g(v)
3 (c+)=g(v)

4 (c+) for v=0, 1.

Then the intersection of dual set of order 0 of g1, g2, g3 and g4 is ∨(g1)⊕∨(g3)⊕
∨(Lg4|d) (see Figure 5).

Fig. 4. Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorems 3.4 and

A.3]) to yield (c).

Fig. 5. Intersection of the dual sets of order 0 in (a) and (b) (see [1, Lemma 4 and

Theorem 3.3]) to yield (c).

Given a pair of parametric functions x = ψ(λ) and y = ϕ(λ) defined on an
interval I. We may sometimes be able to solve for λ from x = ψ(λ) and then
substitute it into ϕ(λ) to yield a function y = f(x). The following simple result can
be used to make sure that smooth graphs can be obtained from parametric curves

in this manner.

Lemma 8. (See [1, Theorem 2.1]). Let G be the curve described by a pair

of smooth functions ψ(λ) and φ(λ) on an interval I such that ψ′(λ) > 0 (or
ψ′(λ) < 0) for t ∈ I except at perhaps one point r. Suppose q is a continuous
function defined on I such that φ′(λ)/ψ′(λ) = q(λ) for λ ∈ I\{r}. Then G is also
the graph of a smooth function y = S(x) defined on ψ(I).
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For the sake of convenience, we will use the same notation to indicate a real

function of a real variable and its graph. Therefore, in the above result, we may

stay the conclusion in the form “Then the curve G is the graph of a smooth function

y = G(x) defined over ψ(I).”

3. POSITIVE ROOTS OF QUARTIC POLYNOMIALS

Before we can actually discuss theC\(0,+∞)-characteristic region of the poly-
nomial Q defined in (1), we need to first handle the positive roots of quartic poly-

nomials of the form

(8) P (λ|c, d) = 5λ4 + cλ+ d, c, d ∈ R, λ > 0

and

(9) T (λ|a, b, c, d) = λ4 +
2a
3
λ3 +

2b
5
λ2 +

c

5
λ+

d

15
, a, b, c, d ∈ R, λ > 0.

We first consider the positive roots of P. To this end, we break (cf. [1, Section

5.3.1]) the xy-plane into four mutually disjoint parts Γ0, Γ′
1, Γ′′

1 and Γ2 (see Figure

6)

Fig. 6.

where

(10)

Γ0 =

{
(x, y) ∈ R2 : x ≥ 0 and y ≥ 0} ∪

{
(x, y) ∈ R2 : x < 0

and y >
3
8

(
2
3

)1/3

x4/3

}
,

(11) Γ′
1 =

{
(x, y) ∈ R2 : x < 0 and y =

3
8

(
2
3

)1/3

x4/3

}
,

(12) Γ′′
1 = {(x, y) ∈ R2 : x < 0 and y ≤ 0} ∪ {(x, y) ∈ R2 : x ≥ 0 and y < 0},

and

(13) Γ2 =

{
(x, y) ∈ R2 : x < 0 and 0 < y <

3
8

(
2
3

)1/3

x4/3

}
.
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Lemma 9. Assume c, d ∈ R. Let P (λ|c, d) be defined by (8). The following
results hold:

(i) if (c, d) ∈ Γ0, then P (λ|c, d) has no positive roots and P (λ|c, d) > 0 for
λ > 0;

(ii) if (c, d) ∈ Γ2, then P (λ|c, d) has exactly two positive roots ς1 and ς2 such
that ς1 < ς2, P (λ|c, d) > 0 for λ ∈ R+\[ς1, ς2] and P (λ|c, d) < 0 for
λ ∈ (ς1, ς2);

(iii) if (c, d) ∈ Γ′
1∪Γ′′

1, then P (λ|c, d) has exactly one positive root ς; furthermore,
if (c, d) ∈ Γ′

1, then P (λ|c, d)> 0 for λ ∈ R+\{ς}; while if (c, d) ∈ Γ′′
1, then

P (λ|c, d)< 0 for λ ∈ (0, ς) and P (λ|c, d)> 0 for λ ∈ (ς,+∞).

Proof. First note that P (0+|c, d) = d and P (+∞|c, d) = +∞. Furthermore,
P ′(λ|c, d) = 20λ3 + c and

(14) P ′′(λ|c, d) = 60λ2 > 0

for λ > 0. Therefore P is a strictly convex function over (0,+∞) and has a local
minimum at λ = (−c/20)1/3 > 0 when, and only when, c < 0. To gain further
information related to P, we consider the family {Lλ| λ > 0} of straight lines
defined by Lλ : λx+y = −5λ4. Lλ is of the form (3) and f

′(λ)g(λ)−f(λ)g′(λ) =
−1 6= 0 and g(λ) = 1. By calculating the parametric functions ψ and φ in (4), and
then renaming ψ(λ) and φ(λ) as c(λ) and d(λ) respectively, we see that

c(λ) = −4λ and d(λ) = λ4 for λ > 0.

Since c′(λ) 6= 0 for λ > 0, by Theorem 1, the curve W described by the parametric

functions c(λ) and d(λ) is the envelope of the family {Lλ| λ > 0}. Solving λ from
c(λ) = −4λ and substituting λ into d(λ), we see that the curve W is the graph of

the function

y = W (x) =
3
8

(
2
3

)1/3

x4/3, x < 0.

It is easy to see that W is strictly decreasing, strictly convex and smooth function

such that W ′(0−) = 0. Since W ′(−∞) = −∞, W ∼ H−∞ by Lemma 2. Thus,

by Lemma 5, Γ0 is the dual set of order 0 of W , Γ′
1 ∪ Γ′′

1 is the dual set of order 1
of W and Γ2 is the dual set of order 2 of W.

Assume (c, d) ∈ Γ0. Then by Theorem 2, P (λ|c, d) has no positive roots. Since
d ≥ 0, we see that P (λ|c, d)> 0 for λ > 0.

Assume (c, d) ∈ Γ2. By Theorem 2, P (λ|c, d) has exactly two positive roots ς1
and ς2 such that ς1 < ς2. Since d > 0, and since P is strictly convex on (0,∞), we
see further that P (λ|c, d) has exactly one local minimum at some point in (ς1, ς2),
and P (λ|c, d)> 0 for λ ∈ R+\[ς1, ς2] as well as P (λ|c, d)< 0 for λ ∈ (ς1, ς2).
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Assume (c, d) ∈ Γ′
1∪Γ′′

1 . By theorem 2, then P (λ|c, d) has exactly one positive
root ς. If (c, d) ∈ Γ′

1, then d > 0. Since P (λ|c, d) is strictly convex on (0,∞) and
since P (+∞|c, d) = +∞, ς must be the local minimal point and P (λ|c, d) > 0 for
λ ∈ R+\{ς}. If (c, d) ∈ Γ′′

1 , then d ≤ 0. When d < 0, since P is strictly convex

on (0,∞) and since P (+∞|c, d) = +∞), it is easy to see that P (λ|c, d) < 0 for
λ ∈ (0, ς) and P (λ|c, d) > 0 for λ ∈ (ς,+∞). When d = 0, since P is strictly

convex on (0,∞) and since P has exactly one positive root ς, P (λ|c, d) < 0 for
λ ∈ (0, ς) and P (λ|c, d) > 0 for λ ∈ (ς,+∞). The proof is complete.

We now turn to the polynomial T (λ|a, b, c, d). We will treat (c, d) as a fixed
pair of points and consider the positive roots of T (λ|a, b, c, d) for different (a, b).
To this end, we first show that T (λ|a, b, c, d), when (c, d) is fixed, has exactly m
distinct positive roots if, and only if, (a, b) is a dual point of order m of the plane

curve S described by the pair of parametric functions (ψ(λ), ϕ(λ)) defined by

(15) ψ(λ) = −3λ+
3c

10λ2
+

d

5λ3
and ϕ(λ) =

5
2
λ2 − c

λ
− d

2λ2
for λ > 0.

Before doing so, let us observe that ψ and ϕ are smooth for λ > 0, that

(16) lim
λ→+∞

(ψ(λ), ϕ(λ)) = (−∞,+∞),

and that

(17) ψ′(λ) =
−3
5λ4

P (λ|c, d), ϕ′(λ) =
1
λ3
P (λ|c, d),

where P (λ|c, d) is the polynomial defined by (8), which, in view of Lemma 9, can
have at most two distinct positive roots. Therefore, for each λ > 0 which is not a
root of P (λ|c, d), we have

(18)
ϕ′(λ)
ψ′(λ)

= −5
3
λ and

d
dλ

ϕ′(λ)
ψ′(λ)

ψ′(λ)
=

25λ4

9
1

P (λ|c, d).

Lemma 10. Let c, d be fixed real numbers. Let T (λ|a, b, c, d) be defined by (9)
and let S be the plane curve defined by (15). For any given α ∈ R, let y = ~(λ|α)
be the function1 defined by

(19) ~(λ|α) = −5
3
λ(α− ψ(λ)) + ϕ(λ) for λ > 0.

The following results hold:

(i) (a, b) is a dual point of order m of S if, and only if, ~(λ|a) = b has exactly
m distinct positive solutions;

This function is called the sweeping function in [1, p.24].
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(ii) T (λ|a, b, c, d) has exactly m distinct positive roots if, and only if, ~(λ|a) = b

has exactly m distinct positive solutions;

(iii) λ is a positive root and an extremal point of T (λ|a, b, c, d) if, and only if, λ
is a positive solution of (ψ(λ), ϕ(λ)) = (a, b) and

(20)
(
ψ(λ− δ) − ψ(λ)

) (
ψ(λ+ δ)− ψ(λ)

)
< 0

for all sufficiently small positive number δ.

Proof. Since P (λ|c, d) can have at most two positive roots by Lemma 9, we
see from (17) that for each λ0 > 0, ψ(λ) 6= ψ(λ0) for all λ ∈ R+\{λ0} which is
also sufficiently close to λ0. Since

lim
λ→λ0

ϕ(λ)− ϕ(λ0)
ψ(λ)− ψ(λ0)

= lim
λ→λ0

ϕ′(λ)
ψ′(λ)

= −5
3
λ0,

by Lemma 1, the straight line

Lλ0(x) =
−5
3
λ0(x− ψ(λ0)) + ϕ(λ0), x ∈ R,

is the tangent line of S at the point (ψ(λ0), ϕ(λ0)). So by (19),

~(λ|a) = Lλ(a) for any a ∈ R.

In other words, ~(λ|a) can be interpreted as the y-coordinate of the point of inter-
section of the vertical straight line x = a with the tangent line of S at the point

(ψ(λ), ϕ(λ)). Therefore, if there is a tangent line of S at (ψ(λ), ϕ(λ)) that passes
through the point (a, b), then ~(λ|a) = b. Conversely, if ~(λ|a) = b for some λ > 0,
then there is a tangent line of the graph of S at (ψ(λ), ϕ(λ)) that passes through
the points (a, b). The proof of the statement (i) is complete.

Next, by substituting ψ(λ) and ϕ(λ) into (19), we may easily obtain

(21) ~(λ|a) = b− 5
2λ2

T (λ|a, b, c, d).

Clearly, if λ is a positive root of T (λ|a, b, c, d), then λ is a positive solution of
~(λ|a) = b. The converse is also true. The proof of statement (ii) is complete.

To prove statement (iii), we may assume without loss of generality that λ is
a positive root as well as a local minimal point of T (λ|a, b, c, d). We first assert
that λ is a maximal point of ~(λ|a). Indeed, since T (λ ± δ|a, b, c, d) ≥ 0 for all
sufficiently small positive number δ, by (21), ~(λ|a) = b and

~(λ± δ|a) = b− 5
2λ2

T (λ± δ|a, b, c, d)≤ b = ~(λ|a)



Absence of Positive Roots of Sextic Polynomials 2621

for all sufficiently small positive number δ. So λ is a local maximal point of ~(λ|a).
But since from (19), we have

(22) ~′
λ(λ|a) = −5

3
(a− ψ(λ)) +

5
3
λψ′(λ) + ϕ′(λ) =

−5
3

(a− ψ(λ)),

we see further from 0 = ~′
λ(λ|a) that ψ(λ) = a. In addition, by (19) and (21), we

see that ϕ(λ) = b.
Next we need to show that (20) holds for all sufficiently small positive δ. To

this end, since λ is the positive root which is a local minimal point of the polynomial

T (λ|a, b, c, d),we see that there is a natural number n such that T (i)
λ (λ|a, b, c, d) = 0

and T
(2n+1)
λ (λ|a, b, c, d) 6= 0 for i = 0, 1, ..., 2n. By (21),

(23) ~′
λ(λ|a) = − 5

2λ3
G(λ|a, b, c, d),

where

G(λ|a, b, c, d) = λT ′
λ(λ|a, b, c, d)− 2T (λ|a, b, c, d).

Since

G
(j)
λ (λ|a, b, c, d) = λT

(j+1)

λ (λ|a, b, c, d)+ (j − 2)T
(j)

λ (λ|a, b, c, d) for j ≥ 0,

we see that G
(i)
λ (λ|a, b, c, d) = 0 and G(2n)

λ (λ|a, b, c, d) 6= 0 for i = 0, 1, ..., 2n−
1. Thus, λ is the positive root of G(λ|a, b, c, d) with odd multiplicities. Since
G(λ|a, b, c, d) is also a polynomial in λ, G(λ+ δ|a, b, c, d)G(λ− δ|a, b, c, d) < 0
for all sufficiently small positive number δ. From (23), we may conclude that

~′
λ(λ+ δ|a)~′

λ(λ− δ|a) < 0 for all sufficiently small positive number δ. By (22),
the condition (20) holds for all sufficiently small positive δ.

Conversely, assume λ is a positive solution of (ψ(λ), ϕ(λ)) = (a, b) and the
condition (20) holds for any sufficiently small positive δ. By (19) and (21), it is
easy to see that λ is a positive root of T (λ|a, b, c, d).We are going to prove that λ
is an extremal point of T (λ|a, b, c, d). Without loss of generality we may assume
ψ(λ− δ) − ψ(λ) > 0 and ψ(λ+ δ) − ψ(λ) < 0 for all sufficiently small positive
number δ. By (22), ~(λ|a) is strictly increasing for λ < λ and λ is sufficiently close
to λ, and ~(λ|a) is strictly decreasing for λ > λ and λ is sufficiently close to λ.
Thus, we see that λ is a local maximal point of ~(λ|a). Then

~(λ|a) = b ≥ ~(λ± δ|a),

and hence

T (λ± δ|a, b, c, d) =
2λ2

5
(b− ~(λ± δ|a)) ≥ 0 = T (λ|a, b, c, d)
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for all sufficiently small positive number δ. In other words, λ is a local minimal

point of T. The proof of statement (iii) is complete.

The statements (i) and (ii) in the above result asserts that T has exactly m
distinct positive roots if, and only if, (a, b) is a dual point of order m of the curve

S. The next thing we need to do is to investigate the distribution of dual points of S.

To this end, for each fixed pair (c, d), let Ωm(c, d) be the set of all dual points
of order m of S.

As seen before, the behavior of S defined by (15) depends on the properties of
P (λ|c, d), which, as seen in Lemma 4, in turn depends on the location of (c, d).
Therefore, we need to consider different but exhaustive cases:

(i) (c, d) ∈ (Γ′
1 ∪ Γ0)\{(0, 0)},

(ii) (c, d) = (0, 0),
(iii) (c, d) ∈ Γ′′

1 , and

(iv) (c, d) ∈ Γ2.

Suppose (c, d) ∈ (Γ′
1∪Γ0)\{(0, 0)}. First, we assume that (c, d) ∈ Γ0\{(0, 0)}.

Then from (15), (ψ(0+), ϕ(0+)) = (+∞,−∞). By Lemma 9, P (λ|c, d) > 0 for
λ > 0. Hence ψ(λ), in view of (17), is strictly decreasing on (0,∞) (see Figure
7(a)). Solving λ from ψ(λ) = x and then substituting it into ϕ(λ), we may then
see from Lemma 8 that S is also the graph of a smooth function y = S(x) over
R (see Figure 7(b)). By the chain rule and other previously obtained information

related to ψ and ϕ, we may then see that S is strictly decreasing and strictly convex
on R, that S(+∞) = −∞ and that S ′(−∞) = −∞ as well as S ′(+∞) = 0.
The latter two properties imply, by Lemma 2, that S ∼ H+∞ and S ∼ H−∞.
Second, if (c, d) ∈ Γ′

1, then by Lemma 9, P (λ|c, d) has exactly one positive root
ς but P (λ|c, d) > 0 for λ ∈ R+\{ς}. Hence ψ is strictly decreasing on (0,∞).
Furthermore, in view of (18), we may then infer from Lemma 8 that S is again

the graph of a smooth function over R. By similar arguments in the previous case,
we may also see that S is a strictly convex function over R such that S ∼ H+∞
and S ∼ H−∞. We may now invoke Lemma 3 to conclude that (see Figure 7(b)) if
(c, d) ∈ (Γ′

1 ∪ Γ0)\{(0, 0)}, then

Ω0(c, d) = {(a, b) ∈ R2 : b > S(a)},

Ω1(c, d) = {(a, b) ∈ R2 : b = S(a)},
Ω2(c, d) = {(a, b) ∈ R2 : b < S(a)}.

Note that since Ω0(c, d),Ω1(c, d) and Ω2(c, d) together form a partition of the
a, b-plane, all other dual sets of S are empty. Furthermore, since ψ(λ) is strictly
decreasing on R, we see that for each λ > 0,

(24) (ψ(λ− δ) − ψ(λ)) (ψ(λ+ δ) − ψ(λ))< 0
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Fig. 7.

holds for any sufficiently small positive number δ. By Lemma 10(iii), we may then

state the additional conclusion:

(P1) Suppose (c, d) ∈ (Γ′
1 ∪ Γ0)\{(0, 0)}. Then T (λ|a, b, c, d) has a (unique)

positive root which is also an extremal point if, and only if, (a, b) lies in
Ω1(c, d)

Next, suppose (c, d) = (0, 0). Then by (15), (ψ(0+), ϕ(0+)) = (0, 0). By
Lemma 9, P (λ|c, d)> 0 for λ > 0. Hence, by (17), ψ(λ) is strictly decreasing on
R+ (see Figure 8(a)). By (15)-(18), we may then see that the curve S is also the
graph (see Figure 8(b)) of a function y = S(x) which is strictly decreasing, strictly
convex and smooth over ( −∞, 0) such that S ′(0−) = 0 and S ∼ H−∞. We may
now invoke Lemma 5 to conclude that (see Figure 8(b))

Ω0(0, 0) = {(a, b) ∈ R2 : (a, b) ∈ ∨(S) ⊕ ∨(Θ0)},

Ω1(0, 0) = Ωs
1(0, 0)∪ Ωsc

1 (0, 0),

Ω2(0, 0) = {(a, b) ∈ R2 : (a, b) ∈ ∧(S)⊕ ∨(Θ0χ(−∞,0))},

where

Ωs
1(0, 0) = {(a, b) ∈ R2 : b = S(a)}

and

Ωsc
1 (0, 0) = {(a, b) ∈ R2 : a < 0 and b ≤ 0} ∪ {(a, b) ∈ R2 : a ≥ 0 and b < 0}.

Note that since Ω0(0, 0),Ω1(0, 0) and Ω2(0, 0) together form a partition of the
a, b-plane, all other dual sets of S are empty. Furthermore, since ψ(λ) is strictly
decreasing on R, we see that (24) holds for any sufficiently small positive number
δ. By Lemma 10(iii), we may then state the additional conclusion:

Next suppose (c, d) ∈ Γ′′
1 . Then from (15), (ψ(0+), ϕ(0+)) = (−∞,+∞). By

Lemma 9, P (λ|c, d) has exactly one positive root ς. Furthermore, P (λ|c, d)< 0
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Fig. 8.

Fig. 9.

(P2) Suppose (c, d) = (0, 0). Then T (λ|a, b, c, d) has a positive root which is also
a local extremal point if, and only if, (a, b) lies in Ωs

1(0, 0).

for λ ∈ (0, ς) and P (λ|c, d) > 0 for λ ∈ (ς,+∞). Hence by (17), ψ(λ) is strictly
increasing on (0, ς) and strictly decreasing on (ς,+∞) and ψ(ς) is the global
maximum of ψ over (0,∞). By means of these information together with (17)-
(18), we may easily check that the curve S is composed of two pieces S1 and S2

(see Figure 9(b)), the first piece S1 corresponds to the case where λ ∈ (0, ς ] and
the second S2 corresponds to the case where λ ∈ (ς,+∞). Furthermore, S1 is

the graph of a function y = S1(x) which is strictly decreasing, strictly concave,
and smooth over (−∞, ψ(ς)] such that −S1 ∼ H−∞; and S2 is the graph of a

function y = S2(x) which is strictly decreasing, strictly convex, and smooth over
(−∞, ψ(ς)) such that S2 ∼ H−∞.

As in the previous case, we may now invoke distribution maps for dual points

of plane curves to make conclusions about the dual sets of S. Unfortunately, such
maps are not available and we need to seek alternate means. To this end, recall the

sweeping function ~(λ|α) defined by (19) for any α ∈ R. By Lemma 10, we may
solve the equation ~(λ|a) = b for each pair (a, b) in order to determine whether
(a, b) is a dual point of order m. Let us therefore look into this mater. First, by
(21),
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~(λ|a) = b− 5
2λ2

(
λ4 +

2a
3
λ3 +

2b
5
λ2 +

c

5
λ+

d

15

)
, λ > 0.

Hence ~(0+|a) = +∞ and ~(+∞|a) = −∞.
Pick a pair (a, b) in the plane such that a < ψ(ς). By means of the properties

of ψ(λ) mentioned above, the equation ψ(λ) = a has exactly two positive solutions

λmin ∈ (0, ς) and λmax ∈ (ς,+∞) (see Figure 10(a)) so that

a < ψ(λ) for λ ∈ (λmin, λmax) and ψ(λ)< a for λ ∈ R+\[λmin, λmax].

Fig. 10.

By (22), we see that ~(λ|a) is strictly decreasing on R+\[λmin, λmax] and ~(λ|a)
is strictly increasing on (λmin, λmax). So λmin is a local minimal point of ~ and
λmax is a local maximal point of ~. Furthermore,

~(λmin|a) = ϕ(λmin) = S1(ψ(λmin)) = S1(a)

and
~(λmax|a) = ϕ(λmax) = S2(ψ(λmax)) = S2(a).

If b = b1 > S2(a) (see Figure 10(b)), then ~(λ|a) = b1 has exactly one positive

solution. Therefore (a, b1) is a dual point of order 1 of S. If b = b2 = S2(a), then
~(λ|a) = b1 has exactly two positive solutions. Therefore (a, b2) is a dual point of
order 2. For similar reasons, (a, b3), where b3 ∈ (S1(a), S2(a)), is a dual point of
order 3; (a, b4), where b4 = S1(a), is a dual point of order 2; and (a, b5), where
b5 < S1(a), is a dual point of order 1 of S. See Figure 10(c).

Pick another point (a, b) in the plane such that a ≥ ψ(ς). By (22), we see that
~(λ|a) is strictly decreasing on R+ (see Figures 11(a) and 11(d)). For the same

reason we have just explained, the equation ~(λ|a) = b has exactly one positive

solution. Hence (a, b) is a dual point of order 1 of S (see Figures 11(c) and 11(f)).
We may now conclude that (see Figure 12) if (c, d) ∈ Γ′′

1, then

Ω1(c, d) =
(
∧(S1χ(−∞,ψ(ς))) ⊕ ∨(S2)

)
∪ {(a, b) ∈ R2 : a ≥ ψ(ς)},

Ω2(c, d) = {(a, b) ∈ R2 : a < ψ(ς)

and b = S1(a)} ∪ {(a, b) ∈ R2 : a < ψ(ς) and b = S2(a)},
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and

Ω3(c, d) = {(a, b) ∈ R2 : S1(a) < b < S2(a)}.

Fig. 11.

Fig. 12.

By means of the monotonic properties of ψ(λ), the condition (24) is satisfied
for all positive λ except λ = ς, we may make several additional conclusions:

(P3) Suppose (c, d) ∈ Γ′′
1. Then T (λ|a, b, c, d) has a positive root which is also an

extremal point if, and only if, (a, b) ∈ Ω2(c, d). Furthermore, when a < ψ(ς)
and b = S1(a), the smallest positive root of T (λ|a, b, c, d) is a local extremal
point and the largest positive root of T (λ|a, b, c, d) is not; and when a < ψ(ς)
and b = S2(a), the largest positive root of T (λ|a, b, c, d) is a local extremal
point and the smallest positive root of T (λ|a, b, c, d) is not.

Indeed, when a < ψ(ς) and b = S1(a), then (a, b) ∈ Ω2(c, d) so that T (λ|a, b,
c, d) has exactly two positive roots r1 and r2 with r1 < r2. Furthermore, (a, b) =
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(ψ(r1), ϕ(r1)) and (a, b) 6= (ψ(r2), ϕ(r2)). Thus, r1 is a local extremal point and
r2 is not by Lemma 10(iii). The other assertion is similarly proved.

Finally suppose (c, d) ∈ Γ2. Then by (15), (ψ(0+), ϕ(0+)) = (+∞,−∞). By
Lemma 9, P (λ|c, d) has exactly two positive roots ς1 and ς2 such that P (λ|c, d)> 0
for λ ∈ R+\[ς1, ς2] and P (λ|c, d) < 0 for λ ∈ (ς1, ς2). By (17), ψ(λ) is strictly
decreasing on R+\[ς1, ς2] and strictly increasing on (ς1, ς2). See Figure 13(a).

Fig. 13.

By means of these information, we may easily see that the curve S defined
by (15) is composed of three pieces S1, S2 and S3 (see Figure 13(b)). The first

piece S1 corresponds to the case where λ ∈ (0, ς1]; the second S2 corresponding

to the case where λ ∈ (ς1, ς2); and the third S3 corresponding to the case where

λ ∈ [ς2,+∞). By the elementary properties of the functions ψ(λ) and ϕ(λ), it is
easy to see that S1 is the graph of a function y = S1(x) which is strictly decreasing,
strictly convex, and smooth over [ψ(ς1),+∞) such that S1 ∼ H+∞; S2 is the graph

of a function y = S2(x) which is strictly decreasing, strictly concave, and smooth
over (ψ(ς1), ψ(ς2)); and S3 is the graph of a function y = S3(x) which is strictly
decreasing, strictly convex, and smooth over (−∞, ψ(ς2)] such that S3 ∼ H−∞.

By the properties of S1, S2 and S3 just described, it is not difficult to see that there

is exactly one point (µ, ν) of intersection of S1 and S3, such that

(25) S1(x) < S3(x) for x ∈ (ψ(ς1), µ)

and

(26) S1(x) > S3(x) for x ∈ (µ, ψ(ς1)).

To find the dual sets of S, we again make use of the sweeping function ~(λ|α)
defined by (19) for any α ∈ R. We first note, in view of (21), that ~(0+|a) =
~(+∞|a) = −∞.

Pick an arbitrary point (a, b) in the plane such that ψ(ς1) < a < ψ(ς2). Then
by the monotonic properties of ψ(λ) mentioned above, the equation ψ(λ) = a

has exactly three positive solutions λ1, λ2 and λ3 in (0, ς1), (ς1, ς2) and (ς2,+∞)
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respectively. Furthermore, a < ψ(λ) for λ ∈ (0, λ1) ∪ (λ2, λ3) and ψ(λ) < a for

λ ∈ (λ1, λ2)∪(λ3,+∞). By (22), ~(λ|a) is strictly decreasing on (0, λ1)∪(λ2, λ3)
and is strictly increasing on (λ1, λ2) ∪ (λ3,+∞). So λ1 and λ3 are local maximal

points of ~, λ2 is a local minimal point of ~ and ~(λi|a) = Si(a) for i = 1, 2, 3.
See Figure 14.

Fig. 14.

If a ∈ (ψ(ς1), µ), we see that S1(a) < S3(a) by (25) (see Figure 14(a)).
Therefore, if b > S3(a), then ~(λ|a) = b has no positive solutions; if b = S3(a),
then ~(λ|a) = b has exactly one positive solution; if S1(a) < b < S3(a) or
b < S2(a), then ~(λ|a) = b has exactly two positive solutions; if b = S1(a) or
b = S2(a), then ~(λ|a) = b has exactly three positive solutions; and if S2(a) <
b < S1(a), then ~(λ|a) = b has exactly four positive solutions. See Figure 15.

A similar situation, by symmetry considerations, can be established for the case

where a ∈ (µ, ψ(ς2)) (see Figure 14(c)). As for the case where a = µ, we have
S1(a) = S3(a) (see Figure 14(b)). Therefore, if b > S1(a), ~(λ|a) = b has no
positive solutions; if b = S1(a) or b < S2(a), then ~(λ|a) = b has exactly two

positive solutions; if b = S2(a), then ~(λ|a) = b has exactly three positive solutions;
and if S2(a) < b < S1(a), then ~(λ|a) = b has exactly four positive solutions.

Fig. 15.

Pick another arbitrary point (a, b) such that a ≥ ψ(ς2). Then by the monotonic
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properties of ψ(λ) mentioned above, the equation ψ(λ) = a has a positive solutions

λ5 < ς1. We have a ≤ ψ(λ) for λ ∈ (0, λ5) and ψ(λ) < a for λ ∈ (λ5,+∞). By
(21), ~(λ|a) is strictly increasing on (0, λ5) and is strictly decreasing on (λ5,+∞).
So λ5 is a local extremal point of ~ and ~(λ5|a) = S1(a). See Figure 16(b). If b =
b1 > S1(a), the equation ~(λ|a) = b has no positive solutions; if b = b2 = S1(a),
~(λ|a) = b has exactly one positive solution; and if b = b3 < S1(a), ~(λ|a) = b
has exactly two positive solutions. See Figure 17.

Fig. 16.

Fig. 17.

Finally if we pick an arbitrary point (a, b) such that a ≤ ψ(ς1). Then by sym-
metry considerations (see Figure 16(a)), we see that if b > S1(a) or b = S1(a)
or b < S1(a), then ~(λ|a) = b has no positive solutions, or exactly one positive
solution or exactly two positive solutions respectively.

According to our previous discussions, we may now classify all the points in

the a, b-plane and conclude that (see Figure 18) if (c, d) ∈ Γ2, then

Ω0(c, d) = ∨(S1) ⊕ ∨(S3),

Ω1(c, d) = {(a, b) ∈ R2 : a < µ

and b = S3(a)} ∪ {(a, b) ∈ R2 : a > µ and b = S1(a)},
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Fig. 18.

Ω3(c, d) = {(a, b) ∈ R2 : ψ(ς1) < a < µ

and b = S1(a)} ∪ {(a, b) ∈ R2 : b = S2(a)}

∪{(a, b) ∈ R2 : µ < a < ψ(ς2) and b = S3(a)}

Ω4(c, d) = ∧(S1χ(ψ(ς1),µ,]) ⊕ ∧(S3χ[µ,ψ(ς2))) ⊕ ∨(S2),

and

Ω2(c, d) = R2\{Ω0(c, d)∪ Ω1(c, d)∪ Ω3(c, d)∪ Ω4(c, d)}.

Note that the set

Ωp
2(c, d) = {(a, b) ∈ R2 : b = S1(a) and b = S3(a)}

is just the point set {(µ, ν)} which is a part of Ω2(c, d).
By means of the monotonic properties of ψ(λ), the condition (20) holds for

every positive λ except the points ς1 and ς2. Therefore we may make the following
additional conclusion:

(P4) Suppose (c, d) ∈ Γ2. Then T (λ|a, b, c, d) has a positive root which is also a
local extremal point if, and only if, (a, b) ∈ Ω1(c, d) ∪ Ωp

2(c, d)∪ Ω3(c, d).
Furthermore, if (a, b) ∈ Ωp

2(c, d), then both positive roots r1 and r2 of T are
local extremal points; and if (a, b) ∈ Ω3(c, d), then letting r1, r2 and r3 be
the three (distinct) positive roots of T such that r1 < r2 < r3, we see that
when b = Si(a) for some i ∈ {1, 2, 3}, the root ri is a local extremal point
of T and the other two are not.

Indeed, if (a, b) ∈ Ωp
2(c, d), then T (λ|a, b, c, d) has exactly two positive roots r1

and r2 such that r1 < r2 and (a, b) = (ψ(ri), ϕ(ri)), i = 1, 2. By Lemma 10(iii),
r1 and r2 are local extremal points. If (a, b) ∈ Ω3(c, d), when b = S1(a), then
(a, b) = (ψ(r1), ϕ(r1)) and (a, b) 6= (ψ(rj), ϕ(rj)) for j = 2, 3. Thus, r1 is a local
extremal point, and r2 and r3 are not by Lemma 10(iii). The cases when b = S2(a)
and when b = S3(a) are similarly proved.
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We may infer from the previous discussions some of the usual properties of the

quartic polynomial T (such as the maximum number of positive roots) as well as
some new ones. In particular, the following result will be needed in the derivation

of our main results about our sextic polynomial Q.

Theorem 3. Given a fixed pair (c, d). Let T (λ|a, b, c, d) be defined by (9). Let
Γ0, Γ′

1, Γ′′
1 and Γ2 be defined by (10), (11), (12) and (13), respectively.

(1) Suppose one of the following holds:

(a) (a, b) ∈ Ω0(c, d) where (c, d) ∈ Γ′
1 ∪ Γ0 ∪ Γ2;

(b) (a, b) ∈ Ω1(c, d) where (c, d) ∈ Γ′
1 ∪ Γ0 ∪ Γ2\{(0, 0)};

(c) (a, b) ∈ Ωs
1(0, 0);

(d) (a, b) ∈ Ωp
2(c, d) where (c, d) ∈ Γ2.

Then T (λ|a, b, c, d)≥ 0 for all λ > 0.

(2) Suppose one of the following holds:

(a) (a, b) ∈ Ω1(c, d) where (c, d) ∈ Γ′′
1;

(b) (a, b) ∈ Ωsc
1 (0, 0);

(c) (a, b) ∈ Ω2(c, d) where (c, d) ∈ Γ′′
1 .

Then there is a positive roots r of T (λ|a, b, c, d) such that T (λ|a, b, c, d) ≤ 0
on (0, r) and T (λ|a, b, c, d)≥ 0 on [r,+∞).

(3) Suppose one of the following holds:

(a) (a, b) ∈ Ω2(c, d) where (c, d) ∈ Γ′
1 ∪ Γ0;

(b) (a, b) ∈ Ω2(c, d)\Ωp
2(c, d) where (c, d) ∈ Γ2;

(c) (a, b) ∈ Ω3(c, d) where (c, d) ∈ Γ2.

Then there are two positive roots r1 and r2 of T (λ|a, b, c, d)with r1 < r2 such

that T (λ|a, b, c, d)≥ 0 on R+\(r1, r2) and T (λ|a, b, c, d) ≤ 0 on (r2, r3).

(4) Suppose (a, b) ∈ Ω3(c, d) where (c, d) ∈ Γ′′
1 . Then there are exactly three

positive roots r1 ,r2 and r3 of T (λ|a, b, c, d) such that T (λ|a, b, c, d)> 0 on
(r1, r2) ∪ (r3,+∞) and T (λ|a, b, c, d)< 0 on (0, r1) ∪ (r2, r3).

(5) Suppose (a, b) ∈ Ω4(c, d) where (c, d) ∈ Γ2. Then there are exactly four
positive roots r1, r2, r3 and r4 of T (λ|a, b, c, d) such that T (λ|a, b, c, d)> 0
on (0, r1)∪ (r2, r3)∪ (r4,+∞) and T (λ|a, b, c, d)<0 on (r1, r2) ∪ (r3, r4).

Proof. First note that T (+∞|a, b, c, d) = +∞, and T (0+|a, b, c, d) = d/15.
In case (1)-(a), (a, b) is a dual point of order 0 and hence T (λ|a, b, c, d) does

not have any positive roots. Since d ≥ 0, we see further that T (λ|a, b, c, d) > 0
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on R+. In cases (1)-(b) and (1)-(c), (a, b) is a dual point of order 1 and hence
T (λ|a, b, c, d) has a unique positive root r and r is a local extremal point by (P1),
(P2) and (P4). Since d ≥ 0, we see further that T (λ|a, b, c, d)≥ 0 on R+. In case

(1)-(d), (a, b) is a dual point of order 2 and hence T (λ|a, b, c, d) has exactly two
positive roots r1 and r2, and they are local extremal points by (P4). Since d > 0, we
see further that T (λ|a, b, c, d)≥ 0 on R+. The proof of statement (1) is complete.

In cases (2)-(a) and (2)-(b), T (λ|a, b, c, d) has a unique positive root r and r is
not an extremal point by (P1), (P2), (P3) and (P4). Since d ≤ 0, we see further that
T (λ|a, b, c, d) < 0 on (0, r) and T (λ|a, b, c, d) > 0 on (r,+∞). In case (2)-(c),
we have d ≤ 0 and T (λ|a, b, c, d) has exactly two positive roots r1 and r2 with
r1 < r2. By (P4) and (P5), either r1 or r2 is a local extremal point but not both.
Assume r1 is a local extremal point. Then T (λ|a, b, c, d)< 0 on (0, r2)\{r1} and
T (λ|a, b, c, d)> 0 on (r2,+∞). Take r = r2. So T (λ|a, b, c, d) ≤ 0 on (0, r) and
T (λ|a, b, c, d) ≥ 0 on [r,+∞). In a similar manner, we may prove the case where
r2 is a local extremal point. The proof of statement (2) is complete.

In cases (3)-(a) and (3)-(b), we have d ≥ 0 and T (λ|a, b, c, d) has exactly two
positive roots r1 and r2 and neither are extremal points by (P1), (P2), (P3) and
(P4). So T (λ|a, b, c, d) ≥ 0 on R+\(r1, r2) and T (λ|a, b, c, d)< 0 on (r1, r2). In
case (3)-(c), we have d > 0 and T (λ|a, b, c, d) has exactly three positive roots λ1,
λ2 and λ3 with λ1 < λ2 < λ3. By (P4), exactly one of λ1, λ2 and λ3 is a local

extremal point. Assume λ1 is a local extremal point. Then T (λ|a, b, c, d) > 0 on
{(0, λ2)\{λ1}} ∪ (λ3,+∞) and T (λ|a, b, c, d)< 0 on (λ2, λ3). Take r1 = λ2 and

r2 = λ3. So T (λ|a, b, c, d) ≥ 0 on R+\(r1, r2) and T (λ|a, b, c, d)≤ 0 on (r1, r2).
The other two cases are similarly proved. The proof of statement (3) is complete.

In case (4), we have d ≤ 0 and T (λ|a, b, c, d) has exactly three positive roots
r1, r2 and r3, and none are not extremal points by (P3). So T (λ|a, b, c, d) > 0
on (r1, r2) ∪ (r3,+∞) and T (λ|a, b, c, d) < 0 on (0, r1) ∪ (r2, r3). The proof of
statement (4) is complete.

In case (5), we have d > 0 and T (λ|a, b, c, d) has exactly four positive roots
r1, r2, r3 and r4, and none are extremal points by (P4). So T (λ|a, b, c, d) > 0 on
(0, r1)∪ (r2, r3)∪ (r4,+∞) and T (λ|a, b, c, d)< 0 on (r1, r2)∪ (r3, r4). The proof
of (5) is complete.

We remark that in the above result, all possible cases of the pairs (c, d) and (a, b)
have been discussed. Indeed, either (c, d) ∈ Γ0 ∪ Γ′

1\{(0, 0)}, or, (c, d) = (0, 0),
or, (c, d) ∈ Γ′′

1 , or (c, d) ∈ Γ2.
For (c, d) ∈ Γ0 ∪ Γ′

1\{(0, 0)}, the sets Ω0(c, d), Ω1(c, d) and Ω2(c, d) are
considered in 3(1)(a), 3(1)(b) and 3(3)(a) respectively.

For (c, d) = (0, 0), the sets Ω0(0, 0), Ωs
1(0, 0), Ωsc

1 (0, 0) and Ω2(0, 0) are con-
sidered in 3(1)(a), 3(1)(c), 3(2)(b) and 3(3)(a) respectively.

For (c, d) ∈ Γ′′
1 , the sets Ω1(c, d), Ω2(c, d) and Ω3(c, d) are considered in
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3(2)(a), 3(2)(c), and 3(4) respectively.

For (c, d) ∈ Γ2, the setsΩ0(c, d),Ω1(c, d),Ω2(c, d)\Ωp
2(c, d),Ω

p
2(c, d),Ω3(c, d),

and Ω4(c, d) are considered in 3(1)(a), 3(1)(b), 3(3)(b), 3(1)(d), 3(3)(c), and 3(5)
respectively.

4. CHARACTERISTIC REGIONS OF SEXTIC POLYNOMIALS

Consider the function Q(λ|a, b, c, d, x, y) defined by (1). For each λ > 0, let
Lλ be the straight line in the plane defined by

(27) Lλ : λx+ y = −(λ6 + aλ5 + bλ4 + cλ3 + dλ2).

Note that Lλ defined by (27) is of the form (3) and f
′(λ)g(λ)−f(λ)g′(λ) = 1 6= 0.

From (4), we let G be the curve defined by the parametric functions

(28)
x(λ) = −(6λ5 + 5aλ4 + 4bλ3 + 3cλ2 + 2dλ)

and y(λ) = 5λ6 + 4aλ5 + 3bλ4 + 2cλ3 + dλ2

for λ > 0. Then

(29) x′(λ) = −30T (λ), y′(λ) = 30λT (λ),

where T (λ) = T (λ|a, b, c, d) is given by (9). LetΣ = {λ > 0 : T (λ|a, b, c, d) = 0}.
According to our previous discussions about T , the positive roots of T are finite in
number and isolated, hence Σ is a finite set. Furthermore, x′(λ) = 0 if, and only
if, λ ∈ Σ. We see that

(30)
y′(λ)
x′(λ)

= −λ < 0 for λ ∈ R+\Σ

and

(31) lim
λ→d−

y′(λ)
x′(λ)

= lim
λ→d+

y′(λ)
x′(λ)

= −d < 0 for d ∈ Σ.

By Theorem 1, G is the envelope of the family {Lλ : λ > 0} where Lλ is defined
by (27). We have

lim
λ→0+

(x(λ), y(λ)) = (0, 0), lim
λ→+∞

(x(λ), y(λ)) = (−∞,+∞),

and

(32)

d

dλ

(
y′(λ)
x′(λ)

)

x′(λ)
=

1
30T (λ)

for λ ∈ R+\Σ.
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In the following results, we will find the exact region containing the coefficients

a, b, c, d, α, β of Q such that it has no positive roots. To this end, we first consider
(c, d) in different combinations of Γ0,Γ′

1,Γ
′′
2 and Γ2 which are defined by (10), (11),

(12) and (13) respectively. Then given a fixed pair (c, d) in such a combination, we
consider (a, b) in different Ωi(c, d), i = 0, 1, 2, 3, 4,where Ωi(c, d) is the dual set of
order of i of the curve S described by the parametric functions in (16). Finally, for
these fixed parameters a, b, c, d, we only need to find the C\(0,+∞)-characteristic
region of (1) containing (α, β). In view of Theorem 2, the desired region is nothing
but the dual set of order 0 of the envelope G described by (28).

Theorem 4. (See Figure 19). Assume a, b, c, d, α, β ∈ R. Let the parametric
curve G be defined by (28). Suppose the hypothesis of Theorem 3(1) holds. Then
(α, β) is a point of the C\(0,+∞)-characteristic region of (1) if, and only if,
(α, β) ∈ ∨(G) ⊕ ∨(Θ0).

Fig. 19.

Proof. By Theorem 3(1), T (λ|a, b, c, d) ≥ 0 for λ > 0. Since Σ is finite and

x′(λ) < 0 for λ ∈ R+\Σ by (29), G is the graph of a smooth function y = G(x)
over (−∞, 0) by Lemma 8. By (30)-(32) and Lemma 2, we may then see that
G is strictly decreasing, strictly convex and G ∼ H−∞. Then LG|0 = Θ0 by

G(0−) = G′(0−) = 0. By Lemma 5, the dual set of order 0 of G is ∨(G)⊕∨(Θ0).
The proof is complete.

Theorem 5. (See Figure 20). Assume a, b, c, d, α, β ∈ R. Let the parametric
curve G be defined by (28). Suppose the hypothesis of Theorem 3(2) holds. Then
(α, β) is a point of the C\(0,+∞)-characteristic region of (1) if, and only if,
(α, β) ∈ ∨(G2)⊕∨(Θ0), where G2 is the part of the parametric curve G restricted

to the interval [r,+∞) and r is a positive root of T (λ|a, b, c, d) which is not an
extremal point.

Proof. By Theorem 3(2), there is a positive root r of T (λ|a, b, c, d) such that
T (λ|a, b, c, d) ≤ 0 on (0, r) and T (λ|a, b, c, d) ≥ 0 on [r,+∞). Since Σ is finite,

T (r+δ|a, b, c, d)T(r−δ|a, b, c, d)< 0 for all sufficiently small positive δ and hence
r cannot be a local extremal point of T (λ|a, b, c, d). The curve G is composed of
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two pieces G1 and G2 restricted to the interval (0, r) and to the interval [r,+∞),
respectively. By (29), x′(λ) > 0 on (0, r)\Σ and x′(λ) < 0 on [r,+∞)\Σ. Then
the curve G1 is the graph of the smooth function y = G1(x) over (0, x(r)) and
the curve G2 is the graph of the smooth function y = G2(x) over (−∞, x(r)] by
Lemma 8. By (30)-(32) and Lemma 2, we may see that G1 is strictly decreasing

and strictly concave such that G′
1(0

+) = 0 and LG1 |0 = Θ0; and G2 is strictly

decreasing and strictly convex such that G2 ∼ H−∞. Furthermore

G
(v)
1 (x(r)−) = G

(v)
2 (x(r)−), v = 0, 1.

By Theorem A.3 in [1], the intersection of the dual sets of order 0 of G1 and G2 is

∨(G2)⊕∨(Θ0). So the dual set of order 0 of G is also ∨(G2)⊕∨(Θ0). The proof
is complete.

Fig. 20.

Theorem 6. (See Figure 21). Assume a, b, c, d, α, β ∈ R. Let the parametric
curve G be defined by (28). Suppose the hypothesis Theorem 3(3) holds. Then

(α, β) is a point of the C\(0,+∞)-characteristic region of (1) if, and only if,
(α, β) ∈ ∨(G1)⊕∨(G3)⊕∨(Θ0), where G1 is the part of the parametric curve G

restricted to the interval (0, r1] and G3 is the part of the parametric curve G re-

stricted to the interval [r2,+∞), and r1 < r2 are the positive roots of T (λ|a, b, c, d)
which are not extremal points.

Fig. 21.
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Proof. By Theorem 3(3), there are two positive roots r1 and r2 of T (λ|a, b, c, d)
with r1 < r2 such that T (λ|a, b, c, d) ≥ 0 on R+\(r1, r2) and T (λ|a, b, c, d) ≤
0 on (r1, r2). Since Σ is finite, r1 and r2 are not local extremal points. The

curve G is composed of three pieces G1, G2 and G3 restricted respectively to

(0, r1], (r1, r2) and [r2,+∞). By (29), x′(λ) > 0 on (r1, r2)\Σ and x′(λ) < 0 on
(0, r1]\Σ∪ [r2,+∞)\Σ. By (28)-(32), Lemma 2 and Lemma 8, the curve G1 is the

graph of the function y = G1(x) which is a strictly decreasing, strictly convex, and
smooth function over [x(r1), 0) such that G′

1(0
−) = 0 and LG1 |0 = Θ0; the curve

G2 is the graph of the function y = G2(x) which is a strictly decreasing, strictly
concave, and smooth function over (x(r1), x(r2)); and the curve G3 is the graph of

the function y = G3(x) which is a strictly decreasing, strictly convex, and smooth
function over (−∞, x(r2)] such that G3 ∼ H−∞. Furthermore,

G
(v)
1 (x(r1)+) = G

(v)
2 (x(r1)+) and G(v)

2 (x(r2)−) = G
(v)
3 (x(r2)−), v = 0, 1.

By Theorem A.13 in [1] (which describes essentially the same distribution maps in

Figure 21 and hence need not be repeated here), the intersection of the dual sets of

order 0 of G1, G2 and G3 is ∨(G1) ⊕ ∨(G3) ⊕ ∨(Θ0). So the dual set of order 0
of G is also ∨(G1) ⊕ ∨(G3)⊕ ∨(Θ0). The proof is complete.

Theorem 7. (See Figure 22). Assume a, b, c, d, α, β ∈ R and (a, b) ∈ Ω3(c, d)
where (c, d) ∈ Γ′′

1. Let the parametric curve G be defined by (28). Then (α, β)
is a point of the C\(0,+∞)-characteristic region of (1) if, and only if, (α, β) ∈
∨(G2)⊕∨(G4)⊕∨(Θ0), where G2 is the part of the parametric curve G restricted
to the interval [r1, r2] and G4 is the part of the parametric curve G restricted to

the interval [r3,+∞), and r1, r2 and r3 are the positive roots of T (λ|a, b, c, d).

Fig. 22.

Proof. By Theorem 3(4), T (λ|a, b, c, d) has exactly three positive roots r1, r2
and r3 with r1 < r2 < r3 such that T (λ|a, b, c, d)> 0 on (r1, r2) ∪ (r3,+∞) and
T (λ|a, b, c, d)< 0 on (0, r1)∪(r2, r3); Then the curve G is composed of four pieces
G1, G2, G3 and G4 restricted to the intervals (0, r1), [r1, r2], (r2, r3) and [r3,+∞)
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respectively. By (28)-(32) Lemma 2 and Lemma 8, the curve G1 is the graph of

the function y = G1(x) which is a strictly decreasing, strictly concave, and smooth
function over (0, x(r1)) such that G′

1(0
+) = 0 and LG1|0 = Θ0; the curve G2 is

the graph of the function y = G2(x) which is a strictly decreasing, strictly convex,
and smooth function over [x(r2), x(r1)]; the curve G3 is the graph of the function

y = G3(x) which is a strictly decreasing, strictly concave, and smooth function
over (x(r2), x(r3)); and the curve G4 is the graph of the function y = G4(x) which
is a strictly decreasing, strictly convex, and smooth function over (−∞, x(r3)] such
that G4 ∼ H−∞. Furthermore,

G
(v)
1 (x(r1)−) = G

(v)
2 (x(r1)−), G(v)

2 (x(r2)+) = G
(v)
3 (x(r2)+),

and

G
(v)
3 (x(r3)−) = G

(v)
4 (x(r3)−), v = 0, 1.

By Lemma 7, the intersection of the dual sets of order 0 of G1, G2, G3 and G4 is

then the desired characteristic region which, in view of the distribution map Figure

22, is also easy to see and is ∨(G2) ⊕ ∨(G4) ⊕ ∨(Θ0). So the dual set of order 0
of G is ∨(G2) ⊕ ∨(G4) ⊕ ∨(Θ0). The proof is complete.

Theorem 8. (See Figure 23). Assume a, b, c, d, α, β ∈ R and (a, b) ∈ Ω4(c, d)
where (c, d) ∈ Γ2. Let the parametric curve G be defined by (28). Then (α, β)
is a point of the C\(0,+∞)-characteristic region of (1) if, and only if, (α, β) ∈
∨(G1)⊕∨(G3)⊕∨(G5)⊕∨(Θ0), where G1 is the part of the parametric curve G

restricted to the interval (0, r1], G3 is the part of the parametric curve G restricted
to the interval [r2, r3], and G5 is the part of the parametric curve G restricted to

the interval [r4,+∞), and r1, r2, r3 and r4 are the positive roots of T (λ|a, b, c, d).

Fig. 23.

Proof. By Theorem 3(5), T (λ|a, b, c, d) has exactly four positive roots r1,
r2, r3 and r4 such that T (λ|a, b, c, d) > 0 on (0, r1) ∪ (r2, r3) ∪ (r4,+∞) and
T (λ|a, b, c, d) < 0 on (r1, r2) ∪ (r3, r4). Then the curve G is composed of five

pieces G1, G2, G3, G4 and G5 restricted to the intervals (0, r1), [r1, r2), [r2, r3],
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(r3, r4) and [r4,+∞), respectively. By (28)-(32), Lemma 2 and Lemma 8, then
the curve G1 is the graph of the function y = G1(x) which is a strictly decreasing,
strictly convex, and smooth function over (x(r1), 0) such that G′

1(0
−) = 0 and

LG1 |0 = Θ0; the curve G2 is the graph of the function y = G2(x) which is a
strictly decreasing, strictly concave, and smooth function over [x(r1), x(r2)); the
curve G3 is the graph of the function y = G3(x) which is a strictly decreasing,
strictly convex, and smooth function over [x(r3), x(r2)]; the curve G4 is the graph

of the function y = G4(x) which is a strictly decreasing, strictly concave, and
smooth function over (x(r3).x(r4)); and the curve G5 is the graph of the function

y = G5(x) which is a strictly decreasing, strictly convex, and smooth function over
(−∞, x(r4)] such that G4 ∼ H−∞. Furthermore,

G
(v)
1 (x(r1)+) = G

(v)
2 (x(r1)+), G(v)

2 (x(r2)−) = G
(v)
3 (x(r2)−),

G
(v)
3 (x(r3)+) = G

(v)
4 (x(r3)+) and G(v)

4 (x(r4)−) = G
(v)
5 (x(r4)−), v = 0, 1.

By Lemma 4, the dual set of order 0 of G1 is the union of ∨(G1)⊕∨(LG1|x(r1))⊕
∨(Θ0) and ∧(LG1 |x(r1)) ⊕ ∧(Θ0). By Lemma 7, the intersection of the dual sets
of order 0 of G2, G3, G4 and G5 is ∨(G3) ⊕ ∨(G5) ⊕ ∨(LG2|x(r1)). Hence, the
intersection of the dual sets of order 0 of G1, G2, G3, G4 and G5 is then the desired

characteristic region which, in view of the distribution map Figure 23, is also easy

to see and is equal to ∨(G1) ⊕ ∨(G3) ⊕ ∨(G5) ⊕ ∨(Θ0). So the dual set of order
0 of G is ∨(G1) ⊕ ∨(G3)⊕ ∨(G5) ⊕ ∨(Θ0). The proof is complete.

As may be noted, our main results depend in part on the roots of the quartic

polynomial T . However, the quartic is the highest order polynomial equation that
can be solved by radicals in the general case (i.e., one where the coefficients can

take any value). Indeed, there are now several commercial packages that can yield

symbolic roots of quartic polynomials. Hence our results, although they may depend

on the roots of quartic polynomials, are good enough to show absence of positive

roots of sextic polynomials. We will demonstrate our results in the following section.

5. EXAMPLES

We first consider the absence of 3-periodic solutions of a logistic equation men-
tioned in the Introduction.

Example 1. The logistic recurrence equation

(33) xn+1 = xn(xn − 1), n = 0, 1, 2, ...,

has no real periodic solutions with least period 3.
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Proof. Let g : R → R be defined by g(x) = x(x − 1), and let g[2] = g ◦ g,
g[3] = g ◦ g ◦ g, etc. Given x0 = λ ∈ R, the unique (real) solution {xn}∞n=0 of (33)

is determined by x1 = g(λ), x2 = g[2](λ), etc., which is 3-periodic if, and only if,
g(λ) 6= λ, g[2](λ) 6= λ and g[3](λ) = λ. Since g(λ) = λ if, and only if λ = 0 or 2;
and since

g[2](λ) = λ(λ− 1)(λ(λ− 1)− 1) = λ

if, and only if, λ = 0 or 2, we see that {xn} is a real 3-periodic solution of (33)
if, and only if λ is a real solution of g[3](λ) = λ which is different from 0 and
2. In other words, (33) does not have any real 3-periodic solutions if, and only if,
g[3](λ) = λ does not have any real solutions other than 0 or 2. Since we may easily
check that the number 0 and 2 are simple roots of g[3](x) − x, thus

g[3](x)− x = x(x− 1)Q(x),

where Q is a polynomial with no roots equal to 0 nor 2. Hence g[3](λ) = λ does

not have any real solutions other than 0 and 2 if, and only if Q(λ) does not have
any real roots.

We now only need to show that the sextic polynomial

Q(λ) :=
g(g(g(λ)))− λ

λ(λ− 2)

has no real roots. By direct verification, Q(λ) = λ6 − 2λ5 + 2λ3 −λ2 + 1. Clearly,
Q(0) 6= 0. Let Q1(λ) = Q(−λ) = λ6 + 2λ5 − 2λ3 −λ2 + 1. We see that Q(λ) has
no real roots if, and only if, Q(λ) and Q1(λ) have no positive roots.

First, we claim that Q(λ) has no positive roots. Take a = −2, b = 0, c = 2,
d = −1, α = 0 and β = 1 in (1). Let the curve S be defined by (15) and the curve
G be defined by (28) respectively. It is easy to see that (c, d) ∈ Γ′′

1 (see Figure

24(a)). So P (λ|2,−1) = 5λ4 + 2λ− 1 has the unique positive root ς by Lemma 9.
By previous discussions for the case (c, d) ∈ Γ′′

1 , the curve S is composed of two

pieces S1 and S2 (see Figure 24(b)), corresponding respectively to the case where

λ ∈ (0, ς ] and to the case where λ ∈ (ς,+∞). Furthermore, the curve S1 is the

graph of the strictly concave function y = S1(x) over (−∞, ψ(ς)] and the curve S2

is the graph of the strictly convex function y = S2(x) over (−∞, ψ(ς)). We may
see that 0.42 < ς < 0.84 since P (0.42|2,−1)P (0.84|2,−1) < 0. So the points
(ψ(0.42), ϕ(0.42)) and ψ(0.84), ϕ(0.84)) lie in the curve S1 and S2 respectively.

Now we consider two tangent lines LS1 |0.42 and LS2 |0.84 defined by

LS1 |0.42(x) = −0.7(x− ψ(0.42))+ ϕ(0.42)

and

LS2 |0.84(x) = −1.4(x− ψ(0.84))+ ϕ(0.84)
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for x ∈ R. Then LS1 |0.42(−2) < 0 < LS2 |0.84(−2) (see Figure 24(b)). Since S1

is strictly concave and S2 is strictly convex, we see that the curve S1 lies below

the line LS1 |0.42 and the curve S2 lies above the line LS2 |0.84. Then (−2, 0) ∈
∨(S1) ⊕ ∧(S2) (see Figure 24(b)). Thus, (a, b) ∈ Ω3(c, d) where (c, d) ∈ Γ′′

1 .
By Lemma 10, T (λ| − 2, 0, 2,−1) has exactly three positive roots r1, r2 and r3
such that r1 < r2 < r3. By (numerical) computation, r3 = 1 and r2 ≈ 0.6795.
Furthermore, x(r3) = y(r3) = 0 and y(r2) ≈ 0.1265. Let G2 be the part of

the parametric curve G restricted to the interval [r1, r2] and G4 the part of the

parametric curve G restricted to the interval [r3,+∞). Then G2 is the graph of

the function y = G2(x) which is strictly decreasing over [x(r2), x(r1)]. We have
1 > 0.1265 ≈ y(r2) = G2(x(r2)) and G2(x(r2)) ≥ G2(x) for x ∈ [x(r2), x(r1)].
So (0, 1) ∈ ∨(G2)⊕∨(Θ0) (see Figure 24(c)). Since G4 is the graph of the function

y = G4(x) which is strictly decreasing over (−∞, 0] such that G4(0) = 0, we see
that (0, 1) ∈ ∨(G2)⊕ ∨(G4)⊕ ∨(Θ0). By Theorem 7, Q(λ) has no positive roots.

Fig. 24.

Second, we claim that Q1(λ) has no positive roots. Take a = 2, b = 0, c = −2,
d = −1, α = 0, β = 1. Let the curve S be defined by (15) and the curve G be

defined by (28). It is easy to observe that (c, d) ∈ Γ′′
1 (see Figure 24(d)). In this

case

ψ(λ) = −3λ− 3
5λ2

− 1
5λ3

< 0 for λ > 0.

So the curve S lies in the left-half plane (see Figure 24(e)). Thus, (a, b) ∈ Ω1(c, d)
where (c, d) ∈ Γ′′

1. By Lemma 10, T (λ|2, 0,−2,−1) has a unique positive root r.
Let G2 be the part of the parametric curve G restricted to the interval [r,+∞).



Absence of Positive Roots of Sextic Polynomials 2641

Then G2 is the graph of the function y = G2(x) which is strictly decreasing and
strictly convex over (−∞, x(r)]. We have

T (0.76|2, 0,−2,−1) = (0.76)4 +
4
3
(0.76)3 − 2

5
(0.76)− 1

15
≈ 0. 54826,

(x(0.76), y(0.76)) = (0.1281, 0.6584),

and
(x(0.77), y(0.77)) = (−0.042, 0.7885).

Then 0.76 > r and the point (0, 1) lies strictly above the line L which passes

through the points (x(0.76), y(0.76)) and (x(0.77), y(0.77)). Since G2 is strictly

convex, G2(x) < L(x) for x ∈ (x(0.77), x(0.76)). So (0, 1) ∈ ∨(G2)⊕∨(Θ0) (see
Figure ??(f)). By Theorem 5, Q1(λ) has no positive roots. The proof is complete.

Example 2. Assume α, β ∈ R, a ≥ 0 and b ≥ 0. Let the curve G be defined
by

x(λ) = −6λ5 − 5aλ4 − 4bλ3 and y(λ) = 5λ6 + 4aλ5 + 3bλ4

for λ > 0. Then the sextic polynomial

Q(λ|a, b, α, β) = λ6 + aλ5 + bλ4 + αλ+ β, λ ∈ R,

has no positive roots if, and only if, α ≥ 0 and β ≥ 0, or, α < 0 and (α, β) lies
strictly above G. Furthermore, if a = b = 0, then Q(λ|0, 0, α, β) has no positive
roots if, and only if, α ≥ 0 and β ≥ 0, or, α < 0 and β > 5(α6 )6/5.

Proof. It is easy to observe that (a, b) ∈ Ω0(0, 0).By Theorem 4, Q(λ|a, b, α, β)
has no positive roots if, and only if, (α, β) ∈ ∨(G) ⊕ ∨(Θ0). If a = b = 0, then

y(λ) = 5
(
x(λ)

6

) 6
5

and x(λ) < 0 for λ > 0.

Thus, (α, β) ∈ ∨(G) ⊕ ∨(Θ0) if, and only if, α ≥ 0 and β ≥ 0, or α < 0 and
β > 5(α6 )6/5. The proof is complete.

Example 3. The real sextic polynomial

Q(λ|κ) = λ6 + κλ5 + κλ4 + κλ3 + κλ2 + κλ+ κ, λ ∈ R,

with one real parameter κ has no positive roots if, and only if, κ ≥ 0.

Proof. Suppose κ < 0. We have Q(0|κ) = κ < 0 and Q(+∞|κ) = +∞.
Then Q(λ|κ) has at least one positive root. Assume κ ≥ 0. If κ = 0. Clearly,
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Q(λ|0) = λ6 has no positive roots. If κ > 0, then it is easy to observe that
(κ, κ) ∈ Γ0 (See Figure 25(a)). Take

a = b = c = d = κ

in (1). Let the curve S be defined by (15) and the curve G by (28). We see that the
curve S is the graph of a strictly decreasing function y = S(x) over R. We observe
that when

0 = ϕ(λ) =
1

2λ2
(5λ4 − 2κλ− κ)

for some λ > 0, there follows

ψ(λ) =
−κ
10λ3

(
9λ+ 4

)
< 0.

Then the x-coordinate of the point of intersection of the x-axis with the curve S

is negative, and the y-coordinate of the point of intersection of the y-axis with the
curve S is negative (see Figure 25(b)). Then (κ, κ) ∈ ∨(S). Thus (κ, κ) ∈ Ω0(κ, κ)
where (κ, κ) ∈ Γ0. Since G is the graph of the smooth function y = G(x) which is
strictly decreasing and strictly convex over (−∞, 0), (κ, κ) ∈ ∨(G) ⊕ ∨(Θ0) (see
Figure 25(c)). By Theorem 4, Q(λ|κ) has no positive roots. The proof is complete.

Fig. 25.

Example 4. Let b, d, α, β ∈ R and β ≥ 0. Let Q(λ|b, d, α, β) = λ6 + bλ4 +
dλ2 + αλ+ β for λ ∈ R and

r =

√√√√−b+
√
b2 − 5

3d

5

(1) Suppose either (a) d > 0 and b ≥ −
√

5d/3; or (b) d = 0 and b ≥ 0. Then
Q(λ|b, d, α, β) has no positive roots if α ≥ 0.

(2) Suppose either (a) d ≥ 0 and b < −
√

5d/3; or (b) d < 0. ThenQ(λ|b, d, α, β)
has no positive roots if α ≥ max{0, (−1.6)r(br2 + d)).
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Proof. Let the curve S be described by parametric functions

ψ(λ) =
−1
5λ3

(15λ4 − d) and ϕ(λ) =
1

2λ2
(5λ4 − d)

for λ > 0, and the curve G by parametric functions

x(λ) = −2λ(3λ4 + 2bλ2 + d) and y(λ) = λ2(5λ4 + 3bλ2 + d)

for λ > 0. Observe that when d > 0, ψ(λ) has the unique positive root (d/15)1/4.
So ϕ((d/15)1/4) = −

√
5d/3 < 0 is the y-coordinate of the point of intersection of

the vertical line x = 0 with the curve S.
Assume d > 0. Then (0, d) ∈ Γ0 and the curve S is the graph of a strictly

decreasing function y = S(x) over R. If b = b1 ≥ −
√

5d/3, the point (0, b1) lies
above the curve S. Thus, (0, b1) ∈ Ω0(0, d)∪Ω1(0, d) where (0, d) ∈ Γ0 (see Figure

26(a)). By the properties of the curve G in this case, (α, β) ∈ ∨(G)⊕∨(Θ0) when
α ≥ 0 (see Figure 26(d)). By Theorem 4, Q(λ|b, d, α, β) has no positive roots when
α ≥ 0. So the proof under the assumption (1)(a) is completed. If b = b2 < −

√
5d/3.

we see that (0, b2) ∈ Ω2(0, d) where (0, d) ∈ Γ0 (see Figure 26(a)). By Lemma 10,

Fig. 26.
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T (λ|b, d) = λ4 + 2b/5λ2 + d/15 has exactly two positive roots r1 and r2 such
that r1 < r2. We may solve the positive roots of the quartic T (λ|b, d) and check
that r2 = r. By Theorem 6, Q(λ|b, d, α, β) has no positive roots if, and only if,
(α, β) ∈ ∨(G1)⊕∨(G3)⊕∨(Θ0), where G1 is the part of the parametric curve G
restricted to the interval (0, r1] and G3 is the part of the parametric curveG restricted

to the interval [r2,+∞). We see that x(r) = −8r(br2+d)/5. If α ≥ max{0, x(r)},
then (α, β) ∈ ∨(G1) ⊕ ∨(G3) ⊕ ∨(Θ0) (see Figures ??(e) and ??(f)). It follows
that Q(λ|b, d, α, β) has no positive roots. The proof under the assumption (2)(a) is
completed.

Assume d = 0. Then (0, d) = (0, 0) ∈ Γ0 and the curve S is the graph

of a strictly decreasing function y = S(x) over (−∞, 0). If b = b3 ≥ 0, then
(0, b3) ∈ Ω0(0, 0) (see Figure 26(b)). Similarly, by Theorem 4, Q(λ|b, 0, α, β) has
no positive roots when α ≥ 0 (see Figure 26(d)). The proof under the assumption
(1)(b) is completed. If b = b4 < 0, then (0, b4) ∈ Ωsc

1 (0, 0) (see Figure 26(b)). By
Lemma 10, T (λ|b, d) = λ4 + 2b/5λ2 + d/15 has the unique positive root r. So
x(r) = −8br3/5 > 0. By Theorem 5, Q(λ|b, 0, α, β) has no positive roots if, and
only if, (α, β) ∈ ∨(G2) ⊕ ∨(Θ0), where G2 is the part of the parametric curve G
restricted to the interval [r,+∞). If α ≥ x(r), then (α, β) ∈ ∨(G2) ⊕ ∨(Θ0) (see
Figure 26(g)). It follows that Q(λ|b, d, α, β) has no positive roots. The proof under
the assumption (2)(a) is completed.

Assume d < 0. Then (0, d) ∈ Γ′′
1 . In this case, ψ(λ) < 0 and ϕ(λ) > 0 for

λ ∈ R+. For any b = b5 ∈ R, (0, b5) ∈ Ω1(0, d) (see Figure 26(c)). By Theorem
5, Q(λ|b, d, α, β) has no positive roots if, and only if, (α, β) ∈ ∨(G2) ⊕ ∨(Θ0),
where G2 is the part of the parametric curve G restricted to the interval [r,+∞).
Similarly, if α ≥ x(r), Q(λ|b, d, α, β) has no positive roots (see Figure 26(g)). The
proof under the assumption (2)(b) is complete.

We remark that in example 4, we can also get more precise conditions for

α and β such that Q(λ|b, d, α, β) has no positive roots. But this conditions are
cumbersome to state and do not add to further understanding.

Example 5. Our principal objective is to consider the absence of positive

roots of the sextic polynomial Q(λ|a, b, c, d, α, β). We have also seen in Example
1 that by a simple symmetry transformation, the absence of real roots can also be

handled. However, we like to mention that the same technique used to derive our

main Theorems can also be used to handle the absence of real roots. We illustrate

this by considering the simple sextic polynomial

Q(λ|d, α, β) = λ6 + dλ2 + αλ+ β, λ ∈ R,

where the parameters d, α, β ∈ R and d > 0. We may show that it has no real
roots if, and only if,(α, β) lies strictly above the curve G, where G is defined by
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the parametric functions

x(λ) = −2λ(3λ4 + d) and y(λ) = λ2(5λ4 + d) for λ ∈ R.

Indeed, we consider the family {Lλ : λ ∈ R} where

Lλ : λx+ y = −λ6 − dλ2.

Since x′(λ) = −30λ4 − 2d < 0 and y′(λ) = 30λ5 + 2λd for λ ∈ R. We see that

y′(λ)
x′(λ)

= −λ < 0 and
d
λ
y′(λ)
x′(λ)

x′(λ)
=

1
30

(λ4 +
d

15
) > 0 for λ ∈ R.

By Theorem 1, G is the envelope of the family {Lλ : λ ∈ R}. We have

(x(−∞), y(−∞)) = (+∞,+∞) and (x(+∞), y(+∞)) = (−∞,+∞).

It is easy to see that the curve G is the graph of a smooth function y = G(x) which
is strictly convex such that G ∼ H+∞ and G ∼ H−∞ over R (see Figure 27). By

Lemma 3, (α, β) is a dual point of order 0 of G if, and only if (α, β) ∈ ∨(G). By
Theorem 2, Q(λ|d, α, β) has no real roots if, and only if (α, β) ∈ ∨(G), that is,
(α, β) lies strictly above the graph of G.

Fig. 27.
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