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THE FORMATION OF SINGULARITIES IN THE HARMONIC MAP
HEAT FLOW WITH BOUNDARY CONDITIONS

Chi-Cheung Poon

Abstract. Let M be a compact manifold with boundary and N be compact
manifold without boundary. Let u(z,t) be a smooth solution of the harmonic
heat equation from M to NV with Dirichlet or Neumann condition. Suppose that
M is strictly convex, we will prove a monotonicity formula for . Moreover,
if T is the blow-up time for u, and sup ,, | Du|?*(z,t) < C/(T —t), we prove
that a subsequence of the rescaled solutions converges to a homothetically
shrinking soliton.

1. INTRODUCTION

Let M and N be compact manifolds and let u(z, t) be a smooth solution of the
harmonic heat equation

(1.1) ur = Apru+ Iy (w) (Du, Du) in M x(0,T).

Suppose that T is the blow-up time for u, i.e.,

sup |Du|(z,t) — 00 as t—T.
M

Let 2 be a singularity point. We define
(1.2) ux(z,t) =u (expg[),O e, T + )\215) )
When M is a compact manifold without boundary and has dimension n, in [2],
Grayson and Hamilton proved that if the singularity forms rapidly, i.e.,
C

(1.3) Sub |Dul?(z, t) < T3

there is a sequence \; such that on each compact set in R” x (—o0, 0), the rescaled
maps {uy,} converges uniformly to a non-constant map @ : R* x (—o00,0) — N
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and @ satisfies the harmonic map heat flow on R"™, and is dilation-invariant, i.e.,
for any A > 0, we have

(1.4 a(z,t) = a(Ax, \%t).

We call a solution of the harmonic heat equation (1.1) satisfying the dilation-invariant
condition (1.4) a homothetic soliton.

To prove their results, Grayson and Hamilton made use of a monotonicity for-
mula from [4]: Let u(z,t) : M x (0,T) — N be a smooth solution to the harmonic
map heat flow, and

/ |Dul?*(z,t) do < Ey for 0<t<T.
M
If we define
Z(t) = (T—t)/ |Dul?k dz,
M

where & is the backward heat kernel on A/, then, there are constants B > 0 and
C > 0such that forany 0 <t < T,
2

d Du - Dk
yr (e29°Z) < —2e29°(T — 1) /M Aut+ ———| kdr+ 40 Fye*??,
where

o(t) = (T — 1) (g +log (B/(T —1)"?)).
This involves a nontrivial estimates on the matrix of second derivatives of the heat

kernel on a compact manifold M: there are constants B and C' depending only on
M such that,

DikDjk 1 Bk
D;D;k A + thgzj + Ck <1 + log <tm/2>> gij >0

See [3].
Here, we would like to consider the case where M has non-empty boundary and
the solution w(z, t) satisfies the Dirichlet boundary condition

(1.5) u(z,t) = h(zx) on OM x (0,T)
or the Neumann boundary condition

ou
(1.6) e 0 on OM x (0,7).

Let 2o and = be points in M. We denote r(z¢; z) to be the distance between
xo and z. We define

E(zo:t) = (T — 1) /M \Dul(z, )G (0, T: 2, 1) da,
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o= (i) o (25

When M = R", the function G(y, s; x, t) is the backward heat kernel. When oM
is strictly convex and wu(z,t) is a smooth solution of the harmonic heat equation
and satisfies the Dirichlet boundary condition (1.5), we will prove a monotonicity
formula: there is a constant A > 0, such that

where

% (exp (247 — 2) () + AIT — 1)1

Du - Dr*\?
S—Qexp(Q\T—t‘1/2> ‘T—t\/]\/[<ut+ﬁ> G dx.

(1.7)

Using this formula, we obtain the similar results as in [2]. Let u , be the function
defined in (1.2). Suppose that (1.3) holds and (z¢,T) is an interior singularity
point, then there is a sequence \; such that on each compact set in R™ x (—o0, 0),
{uy,} in converges uniformly to a non-constant map @ : R* x (—o00,0) — N
and u satisfies the harmonic map heat flow on R™, and is dilation-invariant. Let
R"? = {x € R" : z,, > 0}. If (xo,T) is a boundary singularity point, we show that
there is a sequence \; such that on each compact set in R} x (—o00,0), {uy,} in
converges uniformly to a non-constant map @ : R} x (—oo,0) — N. Also, the limit
function « satisfies the harmonic map heat flow on R} x (—o0, 0), and is dilation-
invariant, and is a constant on the hyperplane {(z,t) € R" x (—o0,0) : z,, = 0}.

It is interesting to know whether boundary singularities exist. This is equivalent
to ask whether there is non-constant solution to the harmonic map heat flow on
R™ x (—00, 0), and is dilation-invariant and is a constant on the hyperplane {(z, t) €
R™ x (—o0,0) : #, = 0}. In fact, there are harmonic maps from B3(1) = {z €
R? : |z| < 1} to S? = {z € R3 : |z| = 1} which is smooth in B and have
singularities on the boundary, [6].

Letw: M x[0,7) — N be a regular solution of (1.1) with Neumann boundary
condition (1.6). Suppose that M is a compact manifold with convex boundary. We
prove that similar results are true. Let £(x¢;t) be the energy function defined in
the above, we show that there is a constant B > 0 such that

% <exp <2\T - t\1/2> £(t)+ BIT - t\1/2>

Du - Dr2\?
S—Qexp(Q\T—t‘1/2> ‘T—t\/]\/[<ut+ﬁ> G dx.

Using this monotonicity formula, it is not difficult to see that the small-energy-
regularity theory also works and the rescaled solution converges to a homothetically
shrinking solition solution.
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In a forthcoming paper, we will use similar method to treat the equation
up = Au + uP

defined on a compact manifold with convex boundary.

2. MonoToNIcITY FORMULA

Let M be a compact manifold with C> boundary and IV be a compact manifold.
Let u(z,t) be a smooth solution of the harmonic heat equation

(2.1) ur = Apru+ Iy (w) (Du, Du) in M x(0,T).

The term T’y (u)(Du, Du) is perpendicular to the tangent plane at u(x) and for
some constant C' > 0, depending only on N,

D (u)(Du, Du)| < C|Dul?,
We assume that u(z, t) satisfies the Dirichlet boundary condition
(2.2) u(z,t) = h(z) on OM x (0,T)

where h is a function in C?%(M, N). Let = and x be in M. We denote r(zq; x)
to be the distance between zqg and x on M. We say dM is strictly convex, if there
is a constant v > 0 so that for any zq € M,

(2.3) Dr?.v>~r?2 >0 on OM,

where v is the unit outward normal on O M.

Suppose that  is a strictly convex domain in R™ with smooth boundary. There
exists R > 0 such that for any = € 0, there is y € R", Q is contained in
B(y,R) ={z: |z —y| < R} and 0B(y, R) N 92 = {z}. In that case, if v(x) is
the unit outward normal at x, then we have v(z) = (z — y)/|x — y|. Also, for any
zo € €, we have r(z, xg) = | — xo| and Dr?(x, z0) = 2(z — x0). Thus,

w—wo) (x—y) 2z -y’ 2w —y) (z-y)
[z —yl [z —yl
Since |z — y| = R and |z — y| < R, we have

Dr?(z, zq) - v(z) = 2(

ey 2@ —y) (@ —y) +lwe -y (e o)

Dr? -
r (TII,.’L'Q) I/(III) ‘x_y‘ R

Hence, (2.3) is true with v = 1/R.
For any zy € M, we also define the function

G0, T, ) = (ﬁ)m o <%> |
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Suppose that

max | Dul(z,t) — oo as t—T.
zeM

For any xg € M, let

E(anit) = (T=1) [ 1DuP(e.0G w0, Ti.1) do.
M
Theorem 2.1. Suppose that 9M is strictly convex. Let u(x,t) be a smooth
solution of the harmonic heat equation with Dirichlet boundary condition, and
(2.4) / |Dul*(z,t) de < Eq  for te (0,T).
M

Then, there is A > 0, depending only on M, N, h, T and E,, so that, for all
te(0,7),

% (exp (217 — 1177 £ oz 1) + AT — 1172)

Du- Dr?\?
< —2exp <2‘T — t‘1/2> ‘T — t‘ /M (ut + m) G(w‘o, T;x,t) de.

(2.5)

We will need the following propositions. The first one concerns the hessian of
the distance function, the second one concerns an integral on the boundary.

Proposition 2.2. Let 2o € M and r(z) = dist(z, ). There is a constant C
depending on M so that
|Ar? —2n| < Cr?
and
|D*(r*)(X, X) — 2|1 X|?| < Cr?|X ],
where D?(f) denotes the hessian of a function f and X is any tangent vector on
T, M.

Proposition 2.3. There is a constant C' > 0, depending on the geometries of
OM and M only, so that, for any z¢ € M,

oM - ‘t‘1/2'
Proof.  Since OM is C*“ and compact, there is R > 0 such that for any
a € M, and dist(a, OM) < R, there is a € OM such that dist(a, 0M )=dist(a, @).
Moreover, we may choose R small enough, such that for each @ € 9M, the set
B(a,R) = {x € M : dist(x,a) < R}

can be represented by a chart (¢, ..., ¢,,) so that B(a, R) N M is identified with a
region €,
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QC{peR":|¢| <2R, ¢n > o(P1y.-y Pr—1}s
for some C%° function ¢, ¢(0) = 0. The boundary region M N B(a, R) is
identified with the graph ¢,, = ¢(¢1, ..., ¢,,) and the point a is identified with the
point 0 € R™. Since OM is a compact set, if R is chosen small enough, there is a
constant § > 0, depending only on M, such that if z,z € B(a, R) N M, and ¢, ¢
be corresponding points in §2, we have

- 1
ddistys(z, ) < distrn (¢, @) < gdistM(x,a_v).

Furthermore, if we choose R and ¢ small enough, for z,z € OM N B(a, R), we
also have - 1
ddistoas(z, ) < distrn (¢, ¢) < gdistaM(x,fv).

Now, let zg € M and dist(xg, 0M) = d < R/2. We can find %o € OM and
a chart (¢4, ..., ¢,) described in the above. After a rotation, we may assume that
the point z is identified with the origin in the chart and the point x is identified
with the point (0, ..., 0,d). For any € 9M N B(Zy, R), which is identified with a
point ¢ € 02, we have
% dist}; (2, 20) > @1 + .+ by + (S0 — ) = G1+ o+ Gy

> odist?; (x, To) > ddist3,(x, Zo).

We let 7(x) = dist3,,(z, Zo) for x € M. Then,

G(z,t) <

22
exp <5 r4t(x)> when x € OM N B(Zg, R), t<O0,

and
Gla,t) < — B\ hen e oM - B(io.R), t<0
—_— —_— n T — X .
xz, = ‘t‘n/2 €xp 4t whe 0 I
Thus, when dist(z¢,0M) < R/2, we have

G do :/ G do —|—/ G do
oM OMNB(io,R) M —B(%0,R)

Cy 1 R
(26) SW + W exp <4_t> VOl(aM)
Cs
S

If dist(zg, OM) > R/2, then

2.7) Gdo— — / exp () dr< 1 exp (B2 ) voromn)
. g = ——— X —_— —— X — V .
M ‘t‘n/2 OM P 4¢ - ‘t‘n/Q P 16t
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From (2.6) and (2.7), there is a constant Cy > 0 so that

2.8 G do < —2_.
(2.8) L, G 4o < i

We note that the constant C; depends on the geometries of 9M and M only. =

Proof of Theorem 2.1. After a translation in time, we may assume the u(z, t)

is defined on (—T',0). Let zo € M. We will write r(z) = r(z0; x) = dist(xo, z),

and

&) = E(at) = Il | |Dul(e)Ga.1) do.
M

Gla,t) = (fm)m exp (’"24(;)) ,

forx € M and t € (—T,0). By straightforward computations, we have
£'(t)
. / \Dul2(z, )Gz, ) dz + |1 / (2Du- Du,G + |Dul’Gy) do
M M

where

Du - D?u - Dr?
:_/ ‘Du\2(x,t)G($7t) dw—i—?\t\/ <Du.Dut+M> G dx
y " 4t

Dr?.v
4t

+m/ IDul(Gr + AG) dx+2m/ | Dul? G do
M oM

Du - Dr?
:—/ |\ Dul(z, )Gz, 1) dx+2m/ Du-D <ut—|— u) G dz

Du-D?*r2-D
—2\15\/ Du- D77 Du dx+m/ \DulX(G; + AG) da
M 4t M

Dr?.
+2m/ DuP2 Y 6 gy
oM 4t

Du - Dr? Du - Dr?
oo (30 PP (1 PP g
i v 4t ¢ 4t

Du-D?*r%.D

—/ |\ Dul(z, )Gz, 1) dx—Q\t\/ Du D77 Dup g,
M M 4t

o Dr?.v

4t

G do

+m/ IDu2(Gy + AG) dx+2m/ | Dul
M oM

ou Du - Dr?
2 — _— .
+ \t\/aM 8y<ut+ pP )Gda

By equation (2.1), since the term I'y (u)(Du, Du) is orthogonal to T, N, we
have
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E'(t)
Du-Dr?\? 9
= — 2|t u+ ————— | Gdz+ |t |Dul*(Gy + AG) dx
M 4t M
(2.9) Du-D?r2.D
—/ |\ Dul(z, )Gz, 1) dx—Q\t\/ Du- D77 Du g,
M M 41
Dr?.v ou Du - Dr?
2 Dul? 2 — ———— ) G do.
Lol /aM\ W= o O <ut—|— ¥ ) -
Since u; = 0 on 9M, from (2.9), we have
£'(t)
Du - Dr?\? 9
= — 2|t u+——— | Gdx+ |t |Dul*(Gy + AG) dx
M 4t M
—/ |\ Dul(z, )G (x, 1) dx—Q\t\/ Du D™ Duc g,
M M 41
Dr?.v Ou Du - Dr?
2 Du)? 2|t ——— (G do.
+m/@M\u\ G o2l [ -
On OM, we may write
Du = ? + Dru and Dr? = Dr? . v+ Dpr.
1%
Then, 9 9 /9
u u u
—(Du-Dr*) =— ( —(Dr?- Dru- Dpr? ) .
aV(Du r9) 5 <8y( r“-v)+ Dru Tr)
When t € (—T,0), this gives
Dr?.v Ou Du - Dr?
2 Du)? 2|t ——Gd
m/@M\ WP G gy | TS -

1
_ 1/ ‘DTU‘2(DT2 . I/)G do — —/ —au (DTu . DTTZ) G do
2 Jom 2 Jom v

— /aM (%)2 (Dr? -v)G do

Also, by (2.3), we have

Dr?.v Ou Du - Dr?
Dul? 2 —

ot /aM Dup G drsaly [ SR

2

1 0
S—/ <@> (Dr2-u)GdJ—|——/ -

am \Ov 2 Jomr

ou\? 9 ou
< — — — | D Drr|G d
N 7/8M <8V> ' Gda+/<9M '81/" rulr|Drr|G do

Gdo

|Drul|Drr?|G do

14
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ou\? 9 ‘811,
< - — | r°G do+ / —
7/<9M<8V> 7 Jour |00

1
<— |Drul?| Drr?G do

4y Jom

Thus, one can see that there is a constant C, depending only on h and ~ and
the geometries of OM and M, so that

2

1
G da—i——/ |Drul?| Drr?G do
4y Jom

Dr? . Ou Du - Dr?
Q\t\/ P2 Y aae o [ PP G g,
(2 11) OM 4¢ OM 81/ 4¢
' Drh)?
cwax(Drh)” [ o [ G e

4y oM oM
By Proposition 2.3, we obtain
du Du - Dr? < Cs

Dr?.v
21t Dul? G do + 2|t ——Gd — .
H/QM‘ ul =4 o + 2l oy v 4t 7= e

Then, equation (2.10) becomes
g'(t)
Du- Dr?\> 9
o1z <2 /M <ut + T) G dv+ 1] /M \DulX(Gy + AG) da
Du-D?*r? - Du Cs
- /M \Dul(z, )G (. 1) d — 2 /M PG e
On the other hand, it is easy to compute that

n  Ar
G+ AG = <_2_t+4—t>G

By Proposition 2.2, we have
2

(2.13) |Gt + AG| < 06‘ "
and
Dul|?>  DjuD;jr®D;
(2.14) | Dyl = ;Jtr ha <C7m\Du\2

Let ¢ be fixed and T' = {z € M : r%(x) < [t|'/?}. Then,

/\Du\(xt)H( 1) dx

/\Du\ xt Gla, 1) dx—i—/ \Du\2(x,t)7"—
M-T |t]

1 -1
< D Dul?L
\t\lﬂ/ |\ Dul(z, )Gz, 1) dx—i—/ Dyl \t\ e (4\t\1/2) dx

G(z,t) dx
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1 2 -1 2
SW/M |\ DulX(z, )Gz, t) dz + Ci exp (W) /M \Dul? da.

Thus, by (2.4), we have

7'2

/ \Dul2(z, ) G(m,t)dxg%/ \Dul2(z, )Gz, ) da
M |t] Y2 S

—1
+ CQ exp <W) .
Combining (2.12), (2.13), (2.14) and (2.15), we have

Du- Dr?\?
5’@)3-2@\/ <ut+u> G dx
M

4t
Cio
‘t‘l/Q :

(2.15)

+ ‘t‘l/QS(t) +

The constant C7g depends only on M, N, h and Ey only. It follows that, for
te(-T,0),

% (exp (211) £1)

Du- Dr?\? C
S—Qexp(?\t\1/2> m/ <ut+“47tr) Gd“\t\%'
M

By choosing a constant A > 0 large enough, one sees that, for ¢t € (—T',0),

9 (exp (20012) £00) + A7)

Du- Dr?\?
<~ 2exp <2\t\1/2> m/ <ut+“47tr) G da.
M

This completes the proof. ]
3. PARTIAL REGULARITY RESULTS

Let u : M x [-4R3,0] — N be a regular solution of (2.1) with Dirichlet
boundary condition (2.2). Let xo € M be fixed. Let

r(xz) = dista(x, zo),
P(R)(xo) = {(z,t): 2 € M, 7(z) < R, t € (—R?,0)},
T(R)(xo) = {(x,t) : x € M, r(z) < R, t € (—4R?, —R?)}.
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Lemma 3.1. Let u : M x [-1,0] — N be a regular solution of (2.1) with
Dirichlet boundary condition (2.2). Suppose that for some A > 0,

(3.1) |Duf*(z,t) <A on P(2R).
Then, if 2o € M and R > 0 and R is less than the injectivity radius on M, then

HUHCQ‘W’HQ/?(P(R/&) < C(A+ ||h]|g2+a (0M)).

Proof.  We first assume that dist(xo,0M) > R/4. We note that in equation

(2.1), we have
T n (w)(Du, Du)| < C|Dul?.

By interior regularity theory, ([5], Chap. 1V, Theorem 9.1), for any ¢ > 1,
lellyz o2y < CA:

where for any Q C R* x R, and ¢ > 1,

1/q
gy = ([ [ Gt 1020l 1wl + ) o )
Q

We choose ¢ > (n + 2)/(1 — «). Then, by the Sobolev inequality, Lemma 3.3,
Chapter 11, [5], Du € C*%/2(P(R/4)) and

HDUHC%Q/?(P(RM)) < CHUHWQQJ(P(R/Q)) < CA.
It follows from the parabolic Schauder’s estimates that
HuHC%a’l‘*‘a/Q(P(R/&) < CA.

Suppose that o € OM. For any ¢ > 1, by the boundary regularity theory, we
have

HuHqu(p(zR)) <C (A + HhHCQ(aM)) .
We choose ¢ > (n + 2)/(1 — «). Then, by the Sobolev inequality, Lemma 3.3,
Chapter Il, [5], Du € C**/2(P(R)) and
[1Dull gaarzpryy < Cllullyzt (peory < C(A+[[h]c2(9M)).
It follows from the parabolic Schauder’s estimates that
HuHCQ‘*'%H-a/Q(P(R/2)) < C(A+ ||hf|g2+a (0M)).

If zp € M and dist(xg,0M) < R/4, we can choose z; € dM such that
P(R/8)(x9) C P(R/2))(x1). Then we obtain Lemma 3.1. |
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Corollary 3.2. Let u : M x [0,T) — N be a regular solution of (2.1) with
Dirichlet boundary condition (2.2). Suppose that for some C'; > 0, we have

C
2 1
sup |Dul“(x,t) < .
J?EM‘ ‘ ( ) 1 t

Then there is a constant C5 > 0 so that
Cy
T—t

sup (\DQu\(x,t) + \ut\(x,t)) <
xeM

As in the previous section, for any xq € M, we let r(x) =dist(z, () and

Gla,t) = (ﬁ)m exp (’"24(;)) .

In [1], Y. Chen proved that

Lemma 3.3. Suppose that M is a compact manifold with non-empty boundary.
There is a constant e; > 0 depending only on M, N and h only, such that for
any regular solution u : M x [-4R2,0] — N of (2.1) with Dirichlet boundary
condition (2.2) and

/ |Dul?(z,t) dv < Eg < 0o,  for te€[-4R%,0),
M
the following is true: If for some R € (0, R) there holds

/ |Dul*G dx dt < e,
T(R)

then there are constants 6 > 0, dependingon M, N, h, Eg, and R only, and C > 0
depending on M, N and h only, so that

sup |Du|?* < C(6R)™2.
P(5R)

From Chen’s result, we have

Theorem 3.4. Suppose that M is a compact manifold with strictly convex
boundary. There are constants es > 0 and 5 > 0, depending only on M, N and
h only, such that for any regular solution u : M x [-T,0) — N of (2.1) with
Dirichlet boundary condition (2.2) and

/ \Dul(2,t) de < Fo < 00, for t € [~T,0),
M
the following is true: If

(32) ol / | Dul(z, t6) Gz, to) dz < 3
M
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for some ¢y € (—03,0), then there are constants § > 0, depending on M, N, E,,
and ¢ only, and C > 0 depending on M, N only, so that

sup |Dul?* < ITRE
N O%ltol

Proof. Letty = —4R2. If x lies in the interior of M and dist(zo, M) > R,
using the monotonicity formula (2.5), we may follow the arguments in [2] to prove
the Theorem.

Suppose that dist(zg, 9M) < R. By the monotonicity formula (2.5), if (3.2)
holds, there is C; > 0 so that

—R?
/ |Du|*G dx dt < / / |Dul*G d dt
T(R) —4R? Jr(z)<R

1 [ )
< — t Du|*G dx dt
~ 4R? /_4R2 | ‘/M [Dud !
S 0162.

If & is chosen small enough, by Lemma 3.3, Theorem 3.4 follows. ]

Let S be a subset in M. We denote the k-dimensional Hausdorff measure of S
by Hx(S). As in [2], using Theorem 3.4, we can prove that

Theorem 3.5. Suppose that M is a compact manifold with strictly convex
boundary. Let u : M x [0,7) — N be a regular solution of (2.1) with Dirichlet
boundary condition (2.2) and

/ | Du?(z,t) drx < Ey < oo, for te€]0,7).
M

Let n be the dimension of M. Then, there exists a closed set .S with finite n — 2
dimensional measure such that u(x,t) converges smoothly to a limit u(z,T) as
t — T on compact sets in M — S. Moreover, there exists a constant C' > 0
depending only on M, N, h and Eg such that if U is any relatively open set
containing .S, then
Hs(S) < Clim inf / \Dul(z, 1) da.
U

t—T
4. CONVERGENCE TO THE HOMOTHETICALLY SHRINKING SOLITION

Let M be a compact manifold with non-empty C%, strictly convex boundary.
Let w : M x [0,T) — N be a regular solution of (2.1) with Dirichlet boundary
condition (2.2). We assume that there is a constant C'; > 0 so that

C
4.1) sup \Du\Q(x,t) <
xeM T —

~
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We denote
B(R) ={x € M : dist(z,z9) < R}

and
P(R) = {(z,t) € M x (0,T) : dist(z,z0) < R, t € (T — R*T)}.
Let (zo,7T) be an interior singularity, i.e., xo € M and there are sequences
x, € M and t,, € (0,T), such that z,, — 2o and T}, — T as n — oo, and
lim |Dul(zp, t,) = co.
n—oo
We let
ux(z,t) = u (exp,, Az, T + A).
Using almost the same arguments as in [2], we can show that there is a sequence

Ai such that on each compact set in R™ x (—o0,0), {uy,} in C* converges to a

non-constant map
@:R" x (=00,0) = N

and w satisfies the harmonic map heat flow, and is dilation-invariant, i.e., for any

A > 0, we have
a(z,t) = a(Ax, \%t).

Now we examine the boundary singularities in greater detail by blowing them

up. Letw: M x [0,T7) — N be a regular solution of (2.1) with Dirichlet boundary
condition (2.2). Let 2o € OM and for \ > 0, let

ux(z,t) = u (exp,, Az, T + A%t).

Let R > 0 be a number less than the injectivity radius on M. Using a local chart,
we can identify the set {x € M : dist(z, z9) < R} with

Q={zeR":|z| <R, z, > P(x1, ..., Tn_1},

where ¢(2') is a C%« function, ¢(0) = 0, D¢(0) = 0. When 0 < X < 1, uy(x,t)
is defined on the set Q) x (=7'/A,0), where

O ={(x,t) : |z| < R/N, Axp, > d(Ax1, .oy Ap1) }

For each \ > 0, we have

C
(4.2) |Duy2(z,t) = N?|Dul*(Az, T + M\*t) < ﬁ
By Corollary 3.2,
Cy
lux(@, )| g2taitarz (@, x(—r/A0)) < T

Hence, there is a subsequence {u., } such that on each compact set in R” x (—o0, 0),
{uy,} converges in C2+1+2/2 to a map
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where R} = {z € R" : x,, > 0}, and u satisfies the harmonic map heat flow.
Since the function A in (2.2) is C%?, we have @(x) = h(xg) whenever z,, = 0. We
claim that the function w satisfies the dilation-invariant condition:

4.3) for any A > 0, a(z,t) = a(\z, A%).

In fact, from the monotonicity formula Theorem 2.1, we have

T Du - Dr2\?
4.4 / T—t/ <u—|—7) G dx dt < C < o0,
44 T—1( ) v\ A(t-T)

Gl ) = (ﬁ)m o (W) |

Then, for any ¢ > 0, we can find § > 0 such that

T Du- Dr?\?
T—t/ <u —|—7> Gdr dt <e
A4< )\t 3o

Let R > 0 be a number less than the injectivity radius on M. From (4.4), for any

where

A >0, 0 N
Duy - D
[l (+7) G du dt < e
—5/N2 B(R/)) 4t
where ) )
(1) = 1\" dist} (exp,, (Az), zo)
MEE=AaR) P AN '

When A — 0, we have

0 Di-z\? -
/ 1t (at+ “ x) G dr dt <e,
- ot

—00

~ 1 \"/? x|?
G“”:QWO m%%J

is the backward heat heat kernel on R™. Since e can be any positive number, we

have 0 Dii 2
/ 1t| (at+ “At'x) G dz dt = 0.

where

It shows that

and (4.3) holds.
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By (4.2), when A — 0, we have

(45) |Daf(x, 1) < %

By the small energy regularity, Theorem 3.4, if 2y € OM and (z,T) is a singular
point, then, there is 5 > 0 such that for all T — 8 < t < T, we have

71 / \Dul(2, )G (x, £) da > €.
M
Let p > 0 be large enough so that

/ G(z,t) de < —-.
dist(z,x0)>pv/T—t

Then, forall T — 8 <t < T, we have

|T — | | Du|?(z,t)G(z, t) dz > €/2.
dist(z,x0)<pvV/T—t

Since uy, converges to % on compact sets in R’} x (—o0,0), it is not difficult to
see that the same will hold for @: for ¢ < 0,

f / \DaP(z, £)Gla, 1) dz > €/2.
{zeR? x| <py/It]}

This implies that @ is not a constant function.

5. HarmonNICc HEAT MaPs wiTH NEUMANN BouNDARY CONDITION

We say OM is convex, if for any a € M,
(5.1) Dr-v>0 on OM

where r(x) = dist(a, z) and v is the unit outward normal on M.
Suppose that 9M is convex. Letu(z,t) : M x (0,7) — N be a smooth solution
of the harmonic heat equation with Neumann boundary condition. Suppose that

max |Du|(z,t) — oo as t—T.
xeM
As before, for any zy € M, let
E(woit) = (T —1) / \Dul2(z, )G, Ts 2, 1) da,
M

G(xo, T;m,t) = (ﬁ)m exp (%) '

where
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Theorem 5.1. Suppose that 9M is convex. Let u(z,t): M x (0,7) — N be a
smooth solution of the harmonic heat equation with Neumann boundary condition,

ou
(52) % = 0 on aM X (O,T)
and
/ |Dul|?(z,t) do < Fy for te(0,7).
M

Then there is a constant B > 0, depending only on M, N, T and E only, so that,
forall ¢t € (0,7),

9 (exp (207~ 42) £(aoit) + BIT - ')

(5.3) dt
' Du- Dr?\?
S - 26Xp <2‘T — t‘1/2> ‘T - t‘ /]\4 <ut + ﬁ) G((L‘Q, T; x, t) dx.
Proof. After a translation in time, we may assume that « is defined on

M x [-T,0). As in section 2, we will write r(z) = r(zo; x) = dist(xg, x), and

E(t) = E(wo; 1) = |t /M Dul?(z, )G (1) da,

Gla,t) = (ﬁ)m exp (’"24(;)) ,

forx € M and t € (—T,0). By (5.1) and (5.2), equation (2.10) becomes

where

E'(t)
<—2\ﬂ/ +M Qde—i—\t\/ \Dul(Gy + AG) da
(54) — " Ut m s .
Du-D?*r2.D
_/ |Dul(, )G (a, 1) dx_gm/ Du-D**Du,
M M 4t

By (2.13) and (2.14), we have

Du - Dr2\?
5’@)3-2@\/ <ut+“47tr> G dx
M

7"2
1

(5.5)

+cgm/ \Dul(z, 1) =G, 1) da.
M

The rest of the proof is the same as the proof of Theorem 2.1. ]
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Lemma 5.2. Let u : M x [-1,0] — N be a regular solution of (2.1) with
Neumann boundary condition (5.1). Suppose that for some A > 0,

(5.6) |Du*(z,t) <A on P(2R).
Then,

[ullgzravare (a1 (~1/8,0) < CA.

Proof. Suppose that xp € OM. Let R > 0 be a number less than the
injectivity radius of M. By choosing a C>< chart, we may identify a set Q C {x €
M : dist(z, zg) < R} with the set

Di(R/2)={xz e R": || < R/2, z, > 0}.

If R is chosen small enough, the map (y1, v, ..., ¥,) is C>* and its inverse exists
and is C><. In D, (R/2), u is a solution of an equation of the form:

"9 . 0u
. = E U— ) +T'(Du, D
(5.7) Uy 2 o, (a xj) (Du, Du),

where a* and T are C* functions and T'(Du, Du) < C|Du|?, and
ou
oxy,

Let u(x,t) = u(—=x,t) when z,, < 0. Then, u(z,t) is a solution of (5.7) in
D(R/2) x (0,T), where D(R/2) = {z € R : |x| < R/2}. As in section 3, using
the regularity theory and Sobolev inequality, we obtain

=0 whenever z, =0.

HuH02+a71+a/2(B(a:0,R/8)><(—R/8,0)) < CA.

If xo lies in the interior of M, we argue as in Lemma 3.1. This proves the
Lemma. |

As in section 3, we have the small-energy-regularity result:

Theorem 5.3. Suppose that M is a compact manifold with convex boundary.
There are constants ¢, > 0 and 5 > 0, depending only on M, N and & only,
such that for any regular solution u : M x [-T,0) — N of (2.1) with Neumann
boundary condition (5.2) and

/ \Dul(2,t) de < Fo < 00, for t € [~T,0),
M

the following is true: If
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\to\/ |\ Dul(, 10) Gz, t0) da < 4
M

for some ¢y € (—03,0), then there are constants § > 0, depending on M, N, E,,
and ¢ only, and C > 0 depending on M, N only, so that

sup_ |Duf® <

-
P(5y/Tto) 0%t

From Theorem 5.3, we have

Theorem 5.4. Suppose that M is a compact manifold with strictly convex
boundary. Let w: M x [0,T) — N be a regular solution of (2.1) with Neumann
boundary condition (5.2) and

/ | Du?(z,t) drx < Ey < oo, for te€]0,7).
M

Let » be the dimension of M. Then, there exists a closed set .S with finite n — 2
dimensional measure such that u(x,t) converges smoothly to a limit u(z,T) as
t — T on compact sets in M — S. Moreover, there exists a constant C' > 0
depending only on M, N, h and Eg such that if U is any relatively open set
containing .S, then

Ho5(S) < C'limin / \Dul2(z, ) da.
t—T M

Now, suppose that
sup |Dul*(z,t) < L
bY; ~T—t
As in section 4, we let
up(z,t) = u (exp,, Az, T + A).

Using the almost the same arguments, we can show that if o € M is a singular
point, there is a sequence \; such that on each compact set in R™ x (—o0, 0), {uy, }
in C%“ converges to a non-constant map

@:R" x (—00,0) = N

and w satisfies the harmonic map heat flow, and is dilation-invariant, i.e., for any
A > 0, we have
a(z,t) = a(Ax, \%t).
If xg € OM is a singular point, there is a sequence \; such that on each compact
set in R x (—o0,0), {uy,} in C** converges to a non-constant map

u: R x (—00,0) = N
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where R = {z € R" : 2, > 0}, and u satisfies the harmonic map heat flow, and

9
—u(x, t)=0 whenever xz, =0,
oxy,

and is dilation-invariant, i.e., for any A > 0, we have

a(z,t) = a(Ax, \%t).
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