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A NOTE ON CIRCULAR COLORINGS OF EDGE-WEIGHTED
DIGRAPHS

Wu-Hsiung Lin1 and Hong-Gwa Yeh2

Abstract. An edge-weighted digraph (�G, �) is a strict digraph �G together with
a function � assigning a real weight �uv to each arc uv. (�G, �) is symmetric
if uv is an arc implies that so is vu. A circular r-coloring of (�G, �) is a
function ϕ assigning each vertex of �G a point on a circle of perimeter r such
that, for each arc uv of �G, the length of the arc from ϕ(u) to ϕ(v) in the
clockwise direction is at least �uv . The circular chromatic number χc(�G, �)
of (�G, �) is the infimum of real numbers r such that ( �G, �) has a circular
r-coloring. Suppose that (�G, �) is an edge-weighted symmetric digraph with
positive weights on the arcs. Let T be a {0, 1}-function on the arcs of �G

with the property that T (uv) + T (vu) = 1 for each arc uv in �G. In this note
we show that if

∑
uv∈E(�C) �uv/

∑
uv∈E(�C) T (uv) ≤ r for each dicycle �C of

�G satisfying 0 < (
∑

uv∈E(�C) �uv) mod r < max{�xy + �yx : xy ∈ E(�G)},
then ( �G, �) has a circular r-coloring. Our result generalizes the work of Zhu,
J. Comb. Theory, Ser. B, 86 (2002), 109-113, and also strengthens the work
of Mohar, J. Graph Theory, 43 (2003), 107-116.

1. INTRODUCTION

A graph G is called k-colorable if V (G) can be colored by at most k colors
so that adjacent vertices are colored by different colors. The chromatic number of
G, denoted by χ(G), is the smallest k such that G is k-colorable. In 1962, Minty
[5] proved his celebrated theorem that G is k-colorable if and only if G has an
orientation ω such that, for any cycle C of G and any traversal of C (each cycle has
two different directions for traversal), at least |C|/k edges of C whose direction in
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ω coincide with the direction of the traversal. Let us denote by |C+
ω | the number

of edges of C whose direction in ω coincide with the direction of the traversal. We
denote by M(G) the set of all cycles of G (including cycles of length 2 which are
the same edge taken twice). With these notations, Minty’s result can be restated as
follows:

Theorem 1. (Minty’s Theorem [5]). G is k-colorable if and only if G has an
orientation ω such that

max
C∈M(G)

|C|
|C+

ω |
≤ k.

Here and hereafter, for a set S ⊆ M(G), maxC∈S means that the maximum is
over all cycle C in S and over the two traversals of C.

Let D(G) (resp. A(G)) denote the set of all (resp. acyclic) orientations of G.
From Minty’s theorem it follows immediately that, for a graph G,

(1) χ(G) =
⌈

min
ω∈D(G)

max
C∈M(G)

|C|
|C+

ω |

⌉
.

We remark that equation (1) remains true, if D(G) is replaced by A(G).
In 1992, Tuza [7] showed that the statement of Theorem 1 remains true when

M(G) is replaced by T (G, k), where T (G, k) denotes the set of all cycles C of
length |C| ≡ 1 (mod k) in G. We state Tuza’s result in the following theorem
which improves ‘if’ part of Theorem 1.

Theorem 2. (Tuza’s Theorem [7]). Suppose k is an integer ≥ 2. Then G is
k-colorable if and only if G has an orientation ω such that

max
C∈T (G,k)

|C|
|C+

ω |
≤ k.

In 1988, as a natural refinement of the chromatic number χ(G), Vince [8]
introduced the star chromatic number of a graph G and denoted it by χ∗(G). Later,
Zhu [12] called it circular chromatic number and denoted it by χc(G). Let k
and d be positive integers such that k ≥ 2d. A (k, d)-coloring of a graph G

is a mapping f : V (G) → {0, 1, . . . , k − 1} such that for any edge xy of G,
d ≤ |f(x) − f(y)| ≤ k − d. If G has a (k, d)-coloring, then we say that G is
(k, d)-colorable. The circular chromatic number χc(G) of a graph G is defined as

χc(G) = inf{k/d : G is (k, d)-colorable}.
It was shown in [8] that the infimum in the definition of χ c(G) is always attained,
and hence the infimum can be replaced by minimum.

The circular chromatic number and its variations have received considerable
attention in the past decade (see [9, 12, 14] and references therein). Vince [8]
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showed that, for any graph G, χ(G) − 1 < χc(G) ≤ χ(G). Furthermore, Goddyn,
Tarsi and Zhang [3] proved the following generalization of equation (1) for circular
chromatic number:

(2) χc(G) = min
ω∈D(G)

max
C∈M(G)

|C|
|C+

ω |
.

Equation (2) can be restated as follows:

Theorem 3. (Goddyn, Tarsi and Zhang’s Theorem [3]). G is (k, d)-colorable
if and only if G has an orientation ω such that

max
C∈M(G)

|C|
|C+

ω |
≤ k

d
.

Clearly, Theorem 1 is the special case d = 1 of Theorem 3. Now, a natural
question arises: Is there an analogue of Tuza’s Theorem for the (k, d)-coloring.
This question was answered in the affirmative by Zhu, who in [13] showed that
the statement of Theorem 3 remains true if M(G) is replaced by Z(G, k, d), where
Z(G, k, d) consists of cycles C of G such that 1 ≤ d|C| mod k ≤ 2d−1. We state
Zhu’s result in the following theorem. Notice that Theorem 4 improves ‘if’ part of
Theorem 3 and generalizes Theorem 2.

Theorem 4. (Zhu’s Theorem [13]). G is (k, d)-colorable if and only if G has
an orientation ω such that

max
C∈Z(G,k,d)

|C|
|C+

ω |
≤ k

d
.

The theory of circular coloring of graphs has become an important branch of
chromatic graph theory with many interesting results and applications (see [9, 10,
11, 12, 14] and references therein). Many variants and generalizations of the circular
chromatic number were introduced by different authors. One of the most natural
and important generalizations is to edge-weighted digraphs, which is introduced and
studied by Mohar [6] in 2003.

An edge-weighted digraph ( �G, �) is a strict digraph �G together with a function
� assigning a real weight to each directed edge. For simplicity of notation, the
directed edge (u, v) of �G is written as uv and is called an arc, the weight of the
arc uv in ( �G, �) is written as �uv .

For a positive real r, let Sr denote a circle with perimeter r centered at the
origin of R2. In the obvious way, we can identify the circle Sr with the interval
[0, r). For x, y ∈ Sr, let dr(x, y) denote the length of the arc on Sr from x to
y in the clockwise direction if x �= y, and let dr(x, y) = 0 if x = y. A circular
r-coloring of an edge-weighted digraph ( �G, �) is a function ϕ : V ( �G) → Sr such
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that dr(ϕ(u), ϕ(v)) ≥ �uv for each arc uv in �G. The circular chromatic number
χc( �G, �) of an edge-weighted digraph (�G, �), recently introduced by Mohar [6], is
defined as

χc( �G, �) = inf{r : ( �G, �) has a circular r-coloring}.
It was shown in [6] that the notion of χc( �G, �) generalizes several well-known op-
timization problems, such as the circular chromatic number [8, 12], the weighted
circular colorings [1], the linear arboricity of a graph and the metric traveling sales-
man problem.

A digraph �G (resp. an edge-weighted digraph (�G, �)) is said to be symmetric if
uv is an arc implies that so is vu. To each arc uv in �G we may assign a number Tuv

of tokens. The nonnegative integer function T is called an initial marking of �G. An
initial marking T of �G is said to be good if for each arc uv of �G, Tuv + Tvu = 1.
Denote by D(�G) the set of all good initial markings of �G. An edge-weighted digraph
( �G, �) equipped with an initial marking T is denoted by ( �G, �, T ) and is called a
timed marked graph. The token count (resp. weight) of a dicycle �C in ( �G, �, T ) is
defined as the value

∑
uv∈E(�C)

Tuv (resp.
∑

uv∈E(�C)
�uv) and is denoted by | �C|T

(resp. | �C|�), where E(�C) is the set of all arcs in �C . For a dipath �P in ( �G, �, T ),
the two values | �P |T and | �P |� are defined in the same way. Denote by M(�G) the
set of all dicycles in �G.

In 2003, Mohar [6, Theorem 5.2] proved the following generalization of equation
(2) for edge-weighted symmetric digraph χc( �G, �) having positive weights on the
arcs:

(3) χc( �G, �) = min
T∈D(�G)

max
�C∈M(�G)

| �C|�
| �C|T

,

Mohar [6, the last paragraph of Section 5] pointed out that equation (3) also
holds for edge-weighted symmetric digraphs (�G, �) having the property that �uv ≥ 0
and �uv + �vu �= 0 for each arc uv in �G.

For an edge-weighted symmetric digraph (�G, �), denote by L(�G, �) the maximum
value of �uv + �vu over all arcs uv in �G. Equation (3) can be restated in Theorem
5, which generalizes Theorem 3.

Theorem 5. (Mohar’s Theorem [6]). Let (�G, �) be an edge-weighted symmetric
digraph with positive weights on the arcs. Suppose that r is a real number with
r ≥ L( �G, �). Then ( �G, �) has a circular r-coloring if and only if �G has a good
initial marking T such that

max
�C∈M(�G)

| �C|�
| �C|T

≤ r.

A certain natural question presents itself at this point: In Theorem 5, can M( �G)
be replaced by a subset of it? The purpose of this paper is to answer this question in
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the affirmative. For an edge-weighted digraph (�G, �) and a real number r ≥ L( �G, �),
denote by U(�G, �, r) the set of all dicycles �C in �G with 0 < | �C|� mod r < L( �G, �).
In Theorem 6, whose proof appears in Section , we show that the statement of
Theorem 5 remains true if M( �G) is replaced by U(�G, �, r).

Theorem 6. Let (�G, �) be an edge-weighted symmetric digraph with positive
weights on the arcs. Suppose that r is a real number with r ≥ L( �G, �). Then ( �G, �)
has a circular r-coloring if and only if �G has a good initial marking T such that

max
�C∈U(�G,�,r)

| �C|�
| �C|T

≤ r.

Clearly, Theorem 6 improves ‘if’ part of Theorem 5. Moreover, Theorem 6
generalizes Theorem 4. To see this, we introduce an equivalent definition for circular
chromatic number of graphs. For a real number r ≥ 1, a circular r-coloring of
a graph G is a function f : V (G) → [0, r) such that for any edge xy of G,
1 ≤ |f(x) − f(y)| ≤ r − 1. It was known [12, 14] that

χc(G) = inf{r : G has a circular r-coloring}.
It can readily be seen that G is (k, d)-colorable if and only if G has a circular
k/d-coloring.

Given an undirected graph G, we can define a symmetric digraph, denoted by
�G, on the same vertex set such that uv is an edge of G if and only if uv is an
arc of �G. We say that such �G is the symmetric digraph derived from G. Denote
by (�G, 1) the edge-weighted digraph with 1uv = 1 for each arc uv of �G. Notice
that L( �G, 1) = 2, and there is a natural bijection between cycles C of G (including
cycles of length 2 which are the same edge taken twice) and dicycles �C of �G.
Clearly, 0 < |�C|1 mod k

d < L( �G, 1) if and only if 0 < d|C| mod k < 2d. For
each orientation ω of G, we can associate a good initial marking Tω of �G such that
Tω

uv = 1 for each arc uv of ω. Conversely, for each good initial marking T of the
symmetric digraph �G, we can associate an orientation ωT of G such that uv is an
arc of ωT if and only if Tuv = 1. From our discussion above, it can readily be seen
that Theorem 6 generalizes Theorem 4.

In 1996, Deuber and Zhu [1] introduced another natural generalization of circular
chromatic number to vertex-weighted graphs. A vertex-weighted graph (G, λ) is a
graph G with positive weight function λ on V (G). A circular r-coloring of (G, λ)
is a function φ : V (G) → Sr which assigns each vertex of G an open arc of Sr such
that φ(x) ∩ φ(y) = ∅ for any edge xy in G, and φ(v) has length at least λ(v) for
each vertex v of G. The circular chromatic number χc(G, λ) of a vertex-weighted
graph (G, λ) is defined as

χc(G, λ) = inf{r : (G, λ) has a circular r-coloring}.



2164 Wu-Hsiung Lin and Hong-Gwa Yeh

It is clear that χc(G) = χc(G, 1), where 1(v) = 1 for each vertex v of G. From
the results in [1], one can conclude that

(4) χc(G, λ) = min
ω∈D(G)

max
C∈M(G)

∑
v∈V (C) λ(v)

|C+
ω |

.

Given a vertex-weighted graph (G, λ), we construct an edge-weighted digraph
( �G, �) such that �G is the symmetric digraph derived from G and �(uv) = λ(v) for
each arc uv of �G. From equations (3) and (4), we see that

χc( �G, �) = min
T∈D(�G)

max
�C∈M(�G)

| �C|�
| �C|T

= min
ω∈D(G)

max
C∈M(G)

∑
v∈V (C) λ(v)

|C+
ω |

= χc(G, λ).

Notice that our construction above of (�G, �) paralleled to the one given by Mohar
in [6, page 108]. Equations (3) and (4) also give the following nice observation
whose proof is straightforward, and we omit it.

Observation 7. Let (G, λ) be a vertex-weighted graph with positive weights on
the vertices. Suppose that r is a real number with r ≥ L(G, λ). Then (G, λ) has
a circular r-coloring if and only if G has an orientation ω such that

max
C∈U(G,λ,r)

|C|λ
|C+

ω |
≤ r,

where |C|λ =
∑

v∈V (C) λ(v), L(G, λ) = max{λ(u) + λ(v) : uv ∈ E(G)} and
U(G, λ, r) = {C ∈ M(G) : 0 < |C|λ mod r < L(G, λ)}.

2. THE PROOF OF THEOREM 6

In this section, we prove the main result of this note. As you will see in the proof
below, our approach in fact gives a new proof of Theorem 5 (see [11] for another
new proof) which was originally proved by Mohar [6] using a linear programming
duality result of Hoffman [4] and Ghouila-Houri [2].

Proof of the ‘if’ part of Theorem 6. Suppose that ( �G, �) has a good initial
marking T such that

(5) max
�C∈U(�G,�,r)

| �C|�
| �C|T

≤ r.

Let G be the underlying graph of �G with a spanning tree T . For two vertices
x, y of G, clearly there is a unique (x, y)-path v1v2 . . . vk in T . The (x, y)-dipath
(v1, v2, . . . , vk) in �G generated in this way is called the dipath of �G from x to y in
T . Fix a vertex s in G. We define a function fT : V ( �G) → R as follows:
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• fT (s) = 0;
• If x is a vertex other than s then fT (x) =

∑
e (�e − r · Te), where the sum-

mation is taken over all arcs e in the dipath of �G from s to x in T .

The weight of T is defined to be
∑

v∈V (�G)
fT (v) and is denoted by f(T ). In the

following, let T be a spanning tree of G with the maximum weight.
Let ϕ be a function which assigns to each vertex v of �G a color fT (v) mod r in

[0, r). For an arbitrary arc xy of �G, we want to show that dr(ϕ(x), ϕ(y))≥ �xy and
dr(ϕ(y), ϕ(x))≥ �yx. In the following cases, we view T as a rooted tree with root
s. In this rooted tree, let x′ and y′ be the fathers of vertices x and y, respectively.

Case I. Suppose that x is not on the (s, y)-path of T and y is not on the (s, x)-
path of T . Let T ′ be the spanning tree of G obtained from T by deleting the edge
x′x and adding the edge xy. Then, by the maximality of T , we have f(T ′) ≤ f(T )
which gives fT ′(x) ≤ fT (x), and hence fT (y)+�yx−r ·Tyx ≤ fT (x) because y is
the father of x in T ′. By symmetry we also see that fT (x)+ �xy − r ·Txy ≤ fT (y).
Therefore

(6) �yx − r · Tyx ≤ fT (x) − fT (y) ≤ r · Txy − �xy.

If Txy = 1 then we have �yx ≤ fT (x) − fT (y) ≤ r − �xy. If Txy = 0
then we have �xy ≤ fT (y) − fT (x) ≤ r − �yx. In either case, clearly we have
dr(ϕ(x), ϕ(y))≥ �xy and dr(ϕ(y), ϕ(x))≥ �yx.

Case II. Suppose that either the (s, y)-path of T contains x or the (s, x)-path
of T contains y. It suffices to consider the case that y is on the (s, x)-path of T .
Let �P be the dipath of �G from y to x in T and �C = �P + xy be the dicycle of �G
consisting of �P and the arc xy. Using the same method as in the previous case, we
have

(7) �yx − r · Tyx ≤ fT (x)− fT (y).

Clearly we also have fT (x) − fT (y) = | �P |� − r| �P |T . Denote by ρ the value
| �P |� mod r. Let us consider the following two subcases.

Subcase II(a). If ρ < �yx or ρ > r−�xy, since | �C|� = | �P |� +�xy , then we have
0 < | �C|� mod r = (ρ + �xy) mod r < �xy + �yx ≤ L( �G, �). By inequality (5), we
have |�C|�/| �C|T ≤ r which is equivalent to | �P |� − r| �P |T ≤ r ·Txy − �xy , and hence
fT (x)− fT (y) ≤ r · Txy − �xy . Putting this together with inequality (7), we arrive
at inequalities (6), and hence dr(ϕ(x), ϕ(y)) ≥ �xy and dr(ϕ(y), ϕ(x))≥ �yx.

Subcase II(b). If �yx ≤ ρ ≤ r − �xy, we still have dr(ϕ(x), ϕ(y)) = (fT (y)−
fT (x)) mod r = r − ρ ≥ �xy and dr(ϕ(y), ϕ(x)) = (fT (x) − fT (y)) mod r =
ρ ≥ �yx.
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This completes the proof of the ‘if’ part.

Proof of the ‘only if’ part of Theorem 6. Suppose that ( �G, �) has a circular
r-coloring ϕ : V (�G) → [0, r). We will show that �G has a good initial marking
T such that max �C∈M(�G) | �C|�/| �C|T ≤ r, which is a stronger result than what we
state in Theorem 6. Define a mapping T which assigns to each arc xy of �G a value
from {0, 1} such that T (xy) = 1 as ϕ(x) > ϕ(y), and T (xy) = 0 as ϕ(x) < ϕ(y).
Clearly, T is a good initial marking of �G such that | �C|T > 0 for each dicycle �C in
�G and ϕ(x) + �xy ≤ ϕ(y) + r · Txy for each arc xy in �G.

Let Ĉ = (v1, v2, . . . , vk, vk+1) ∈ M( �G) such that |Ĉ|�/|Ĉ|T = max�C∈M(�G)

| �C|�/| �C|T , where vk+1 = v1 and vivi+1 is an arc for i = 1, 2, . . . , k. From the result
proved in the previous paragraph, we see that ϕ(vi)+�vivi+1 ≤ ϕ(vi+1)+r ·Tvivi+1

for i = 1, 2, . . . , k. Adding up both side of the k inequalities separately, we get

|Ĉ|� =
k∑

i=1

�vivi+1 ≤ ϕ(vk+1) − ϕ(v1) + r ·
k∑

i=1

Tvivi+1 = r · |Ĉ|T ,

and hence max �C∈M(�G)
| �C|�/| �C|T ≤ r, that completes the proof of the ‘only if’

part.

REFERENCES

1. W. Deuber and X. Zhu, Circular coloring of weighted graphs, J. Graph Theory, 23
(1996), 365-376.

2. A. Ghouila-Houri, Sur l’existence d’un flot ou d’une tension prenant ses valeurs dans
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