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A NOTE ON CIRCULAR COLORINGS OF EDGE-WEIGHTED
DIGRAPHS

Wu-Hsiung Lin' and Hong-Gwa Yeh?

Abstract. An edge-weighted digraph (G, ¢) is a strict digraph G together with
a function ¢ assigning a real weight ¢,,,, to each arc uv. (@, £) is symmetric
if wv is an arc implies that so is vu. A circular r-coloring of (G, ¢) is a
function ¢ assigning each vertex of G a point on a circle of perimeter r such
that, for each arc uv of G, the length of the arc from (u) to ¢(v) in the
clockwise direction is at least ¢,,. The circular chromatic number xc(é,f)
of (G, 0) is the infimum of real numbers r such that (G, /) has a circular
r-coloring. Suppose that (@, ) is an edge-weighted symmetric digraph with
positive weights on the arcs. Let 7' be a {0, 1}-function on the arcs of G
with the property that T'(uv) + T'(vu) = 1 for each arc uv in G. In this note
we show that if 3°  pa) Cuv/ 3 e m(@) T'(uv) < r for each dicycle C of
G satisfying 0 < (Cwver (@) bw) mod 1 < max{lyy + by, : 2y € E(G)},
then (G, ¢) has a circular r-coloring. Our result generalizes the work of Zhu,

J. Comb. Theory, Ser. B, 86 (2002), 109-113, and also strengthens the work
of Mohar, J. Graph Theory, 43 (2003), 107-116.

1. INTRODUCTION

A graph G is called k-colorable if V(G) can be colored by at most & colors
so that adjacent vertices are colored by different colors. The chromatic number of
G, denoted by x(G), is the smallest k& such that G is k-colorable. In 1962, Minty
[5] proved his celebrated theorem that GG is k-colorable if and only if G has an
orientation w such that, for any cycle C of G and any traversal of C (each cycle has
two different directions for traversal), at least |C|/k edges of C' whose direction in
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w coincide with the direction of the traversal. Let us denote by |C.| the number
of edges of C' whose direction in w coincide with the direction of the traversal. We
denote by M (G) the set of all cycles of G (including cycles of length 2 which are
the same edge taken twice). With these notations, Minty’s result can be restated as
follows:

Theorem 1. (Minty’s Theorem [5]). G is k-colorable if and only if G has an
orientation w such that 1ol
max

ceM(@) |CY| —

Here and hereafter, for a set S C M(G), maxces means that the maximum is
over all cycle C' in S and over the two traversals of C.

Let D(G) (resp. A(G)) denote the set of all (resp. acyclic) orientations of G.
From Minty’s theorem it follows immediately that, for a graph G,

. Cl
() X(@) = Lénpl(nc) cén/\?rfc) \Cj\-‘ '
We remark that equation (1) remains true, if D(G) is replaced by A(G).

In 1992, Tuza [7] showed that the statement of Theorem 1 remains true when
M(QG) is replaced by 7 (G, k), where 7 (G, k) denotes the set of all cycles C' of
length |C] = 1 (mod k) in G. We state Tuza’s result in the following theorem
which improves ‘if’ part of Theorem 1.

Theorem 2. (Tuza’s Theorem [7]). Suppose k is an integer > 2. Then G is
k-colorable if and only if G has an orientation w such that

Cl

max .
CceT(G.k) |CH| ~

In 1988, as a natural refinement of the chromatic number x(G), Vince [8]
introduced the star chromatic number of a graph G and denoted it by x*(G). Later,
Zhu [12] called it circular chromatic number and denoted it by x.(G). Let k
and d be positive integers such that £ > 2d. A (k,d)-coloring of a graph G
is a mapping f : V(G) — {0,1,...,k — 1} such that for any edge zy of G,
d < |f(x)— f(y)| < k—d. If G has a (k,d)-coloring, then we say that G is
(k, d)-colorable. The circular chromatic number y.(G) of a graph G is defined as

Xc(G) = inf{k/d : G is (k, d)-colorable}.
It was shown in [8] that the infimum in the definition of y .(G) is always attained,
and hence the infimum can be replaced by minimum.
The circular chromatic number and its variations have received considerable
attention in the past decade (see [9, 12, 14] and references therein). Vince [8]
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showed that, for any graph G, x(G) — 1 < x.(G) < x(G). Furthermore, Goddyn,
Tarsi and Zhang [3] proved the following generalization of equation (1) for circular
chromatic number:

. €]
2 (G) = '
@) Xe(G) = min max, G|

Equation (2) can be restated as follows:

Theorem 3. (Goddyn, Tarsi and Zhang’s Theorem [3]). G is (k, d)-colorable
if and only if G has an orientation w such that

max ‘C‘
CEM(G) \Cﬂ

&IW

Clearly, Theorem 1 is the special case d = 1 of Theorem 3. Now, a natural
question arises: Is there an analogue of Tuza’s Theorem for the (k, d)-coloring.
This question was answered in the affirmative by Zhu, who in [13] showed that
the statement of Theorem 3 remains true if M(G) is replaced by Z(G, k, d), where
Z(G, k, d) consists of cycles C of G such that 1 < d|C| mod k < 2d —1. We state
Zhu’s result in the following theorem. Notice that Theorem 4 improves ‘if” part of
Theorem 3 and generalizes Theorem 2.

Theorem 4. (Zhu’s Theorem [13]). G is (k, d)-colorable if and only if G has
an orientation w such that
ICl _k
max <
CeZ(Gkd) |CF|

The theory of circular coloring of graphs has become an important branch of
chromatic graph theory with many interesting results and applications (see [9, 10,
11, 12, 14] and references therein). Many variants and generalizations of the circular
chromatic number were introduced by different authors. One of the most natural
and important generalizations is to edge-weighted digraphs, which is introduced and
studied by Mohar [6] in 2003.

An edge-weighted digraph (G, ¢) is a strict digraph G together with a function
£ assigning a real weight to each directed edge. For simplicity of notation, the
directed edge (u,v) of G is written as uv and is called an arc, the weight of the
arc uv in (G, £) is written as £,,.

For a positive real r, let S™ denote a circle with perimeter r centered at the
origin of R2. In the obvious way, we can identify the circle S with the interval
[0,7). For z,y € S", let d,(x,y) denote the length of the arc on S™ from x to

y in the clockwise direction if x # y, and let d,(z,y) = 0 if x = y. A circular
r- colormg of an edge-weighted digraph (G ¢) is a function ¢ : V(G) — S” such
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that d,.(¢(u), p(v)) > £y, for each arc uv in G. The circular chromatic number
XC(G ¢) of an edge-weighted digraph (G ¢), recently introduced by Mohar [6], is
defined as . .
Xc(G, 0) = inf{r : (G,¢) has a circular r-coloring}.

It was shown in [6] that the notion of y.(G, ¢) generalizes several well-known op-
timization problems, such as the circular chromatic number [8, 12], the weighted
circular colorings [1], the linear arboricity of a graph and the metric traveling sales-
man problem.

A digraph G (resp. an edge-weighted digraph (G, ¢)) is said to be symmetric if
uv is an arc implies that so is vu. To each arc v in G we may assign a number T},
of tokens. The nonnegative integer function 7" is called an initial marking of G. An
initial marking T' of G is said to be good if for each arc uv of G, Ty + Ty = 1.
Denote by D(G) the set of all good initial markings of G. An edge-weighted digraph
(@, ¢) equipped with an initial marking 7" is denoted by (@, ¢,T) and is called a
timed marked graph. The token count (resp. weight) of a dicycle Cin (@, 0,T)is
defined as the value _ B () T (resp. ZuveE(C {4 and is denoted by |C|r

(resp. |C|s), where E(C) is the set of all arcs in C. For a dipath P in (G, L4, T),
the two values | P|; and | P, are defined in the same way. Denote by M(G) the
set of all dicycles in G.

In 2003, Mohar [6, Theorem 5.2] proved the following generalization of equation
(2) for edge-weighted symmetric digraph Xc(@, ¢) having positive weights on the
arcs:

3) Xc(é, /)= min max e
7eD(G) GeM(G) |Clp

Mohar [6, the last paragraph of Section 5] pointed out that equation (3) also
holds for edge-weighted symmetric digraphs (@, ¢) having the property that £,,, > 0
and £y, + £y, # 0 for each arc uv in G.

For an edge-weighted symmetric digraph (@, ¢), denote by L(@, ¢) the maximum
value of £, + £, over all arcs uv in G. Equation (3) can be restated in Theorem
5, which generalizes Theorem 3.

Theorem 5. (Mohar’s Theorem [6]). Let (@, ¢) be an edge-weighted symmetric
digraph with positive weights on the arcs. Suppose that r is a real number with
r > L(G,0). Then (G, ¢) has a circular r-coloring if and only if G has a good
initial marking 7" such that

€l
max
Gem(@) |Clr

<r.

A certain natural question presents itself at this point: In Theorem 5, can M(@)
be replaced by a subset of it? The purpose of this paper is to answer this question in
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the affirmative. For an edge-weighted digraph (G, ¢) and a real number » > L(G, ¢),
denote by ¢4(G, ¢, r) the set of all dicycles €' in G with 0 < |C|, mod r < L(G, ¢).
In Theorem 6, whose proof appears in Section , we show that the statement of
Theorem 5 remains true if M (G) is replaced by U(G, ¢, ).

Theorem 6. Let (@, ¢) be an edge-weighted symmetric digraph with positive
weights on the arcs. Suppose that r is a real number with » > L( G, ¢). Then (G, ¢)
has a circular r-coloring if and only if G has a good initial marking 7" such that

_ max ‘(_{"g <r.
CeuGer) |C|r

Clearly, Theorem 6 improves ‘if’ part of Theorem 5. Moreover, Theorem 6
generalizes Theorem 4. To see this, we introduce an equivalent definition for circular
chromatic number of graphs. For a real number » > 1, a circular r-coloring of
a graph G is a function f : V(G) — [0,r) such that for any edge xy of G,
1<|f(z) — f(y)| <r—1. It was known [12, 14] that

Xc(G) = inf{r : G has a circular r-coloring}.

It can readily be seen that G is (k,d)-colorable if and only if G has a circular
k/d-coloring.

Given an undirected graph G, we can define a symmetric digraph, denoted by
G, on the same vertex set such that wv is an edge of G if and only if wv is an
arc of G. We say that such G is the symmetric digraph derived from G. Denote
by (@, 1) the edge-weighted digraph with 1, = 1 for each arc uv of G. Notice
that L(G, 1) = 2, and there is a natural bijection between cycles C' of & (including
cycles of length 2 which are the same edge taken twice) and dicycles C of G.
Clearly, 0 < |Cl; mod & < L(G,1) if and only if 0 < d|C| mod k < 2d. For
each orientation w of G, we can associate a good initial marking 7% of G such that
Tw =1 for each arc wv of w. Conversely, for each good initial marking 7" of the
symmetric digraph G, we can associate an orientation w” of G such that uv is an
arc of w”' if and only if 7}, = 1. From our discussion above, it can readily be seen
that Theorem 6 generalizes Theorem 4.

In 1996, Deuber and Zhu [1] introduced another natural generalization of circular
chromatic number to vertex-weighted graphs. A vertex-weighted graph (G, \) is a
graph G with positive weight function A on V(G). A circular r-coloring of (G, \)
is a function ¢ : V(G) — S” which assigns each vertex of G an open arc of S” such
that ¢(x) N ¢(y) = 0 for any edge zy in G, and ¢(v) has length at least \(v) for
each vertex v of G. The circular chromatic number x.(G, \) of a vertex-weighted
graph (G, A) is defined as

Xc(G, A) = inf{r : (G, A) has a circular r-coloring}.
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It is clear that x.(G) = x.(G, 1), where 1(v) = 1 for each vertex v of G. From
the results in [1], one can conclude that

2 vev(c) A©)
4 (G, \)= mi _—
) Xe(G, A) wénDl(nG) Cén/\?rfc) |CH|
. Given a vertef-weighted graph (G, \), we construct an edge-weighted digraph
(G, ¢) such that G is the symmetric digraph derived from G and £(uv) = A(v) for
each arc uwv of G. From equations (3) and (4), we see that
Cle

5 . . 2 vev(c) Av)
Xe(G,f) = min  max -—— = min max ——
TeD(G) GeM(@G) |Clyr  weD(G) CEM(G) |C |

= Xc(Gv )‘)

Notice that our construction above of (@, ¢) paralleled to the one given by Mohar
in [6, page 108]. Equations (3) and (4) also give the following nice observation
whose proof is straightforward, and we omit it.

Observation 7. Let (G, A) be a vertex-weighted graph with positive weights on
the vertices. Suppose that = is a real number with » > L(G, A). Then (G, ) has
a circular r-coloring if and only if G has an orientation w such that

|Clx
max <,
Ceu(GAr) |CF |

where [C|x = 3 cv ) Av), L(G,A) = max{A(u) + A(v) : wv € E(G)} and
UGN\ r)={Ce M(G):0<|C|ymodr < L(G,\)}.

2. THE PrROOF OF THEOREM 6

In this section, we prove the main result of this note. As you will see in the proof
below, our approach in fact gives a new proof of Theorem 5 (see [11] for another
new proof) which was originally proved by Mohar [6] using a linear programming
duality result of Hoffman [4] and Ghouila-Houri [2].

Proof of the ‘if’ part of Theorem 6. Suppose that (@, ¢) has a good initial
marking 7" such that

Q

(5) max [€e

— < r.
CeuGer) |C|r

Let G be the underlying graph of G with a spanning tree 7. For two vertices
x,y of G, clearly there is a unique (z, y)-path vivy...v, in 7. The (z,y)-dipath

(v1,v2,...,vE) IN G generated in this way is called the dipath of G from z to y in
7. Fix a vertex s in G. We define a function fr : V(G) — R as follows:
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° fT(S) =0;
e If z is a vertex other than s then fr(z) = >, (¢ — - T.), where the sum-
mation is taken over all arcs e in the dipath of G from s to z in 7.

The weight of 7 is defined to be Zvev(@) fr(v) and is denoted by f(7). In the
following, let 7" be a spanning tree of G' with the maximum weight.

Let ¢ be a function which assigns to each vertex v of G a color fr(v) mod rin
[0, 7). For an arbitrary arc xy of G, we want to show that dr(p(x), ¢(y)) > £yy and
dr(0(y), p(z)) > Ly In the following cases, we view 7 as a rooted tree with root
s. In this rooted tree, let 2/ and 3’ be the fathers of vertices = and y, respectively.

Case |. Suppose that = is not on the (s, y)-path of 7" and y is not on the (s, z)-
path of 7. Let 7’ be the spanning tree of G obtained from 7 by deleting the edge
«’z and adding the edge xy. Then, by the maximality of 7, we have f(77) < f(7)
which gives f7/(x) < fr(z), and hence fr(y)+{y, —r- Ty, < fr(z) because y is
the father of x in 7”. By symmetry we also see that fr(x) +{yy — 7 Toy < f7(y).
Therefore

(6) g?ﬂ’_r'Tym SfT(fI:)_fT(y) Sr'Tmy_gmy-

If T, = 1 then we have (,, < fr(z) — fr(y) < r —Llyy. T, =0
then we have ¢, < fr(y) — fr(z) < r — £y,. In either case, clearly we have
dr(0(z), 0(y)) = lay and dr(@(y), (@) = lys.

Case Il. Suppose that either the (s, y)-path of 7 contains = or the (s, z)-path
of 7 contains y. It suffices to consider the case that y is on the (s, z)-path of 7.
Let P be the dipath of G from y to z in 7 and C = P + xy be the dicycle of G
consisting of P and the arc zy. Using the same method as in the previous case, we
have

(7 bye =7 Tye < fr(2) = f1(y)-

Clearly we also have fr(z) — fr(y) = |Pl, — r|P|p. Denote by p the value
|P|, mod r. Let us consider the following two subcases.

Subcase 11(a). If p < £, Of p > r — Ly, since |C|y = | P|¢+ £y, then we have
0 < |Clymod r = (p+ Upy) mod 7 < Loy + Ly < L(G, 0). By inequality (5), we
have |C|y/|C| < r which is equivalent to | P| — 7| P|r < 7 - Tyy — £y, and hence
fr(z) — fr(y) <r-Tyy — £,y Putting this together with inequality (7), we arrive
at inequalities (6), and hence d,(¢(x), p(y)) > L4y and d,(o(y), @(x)) > Ly,.

Subcase 11(b). If 4, < p <1 —{yy, we still have d.(¢(z), ¢(v)) = (fr(y) —

fr(x)) modr =1 —p > Ly and d,(p(y), p(x)) = (fr(z) — fr(y)) mod r =
p =Ly
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This completes the proof of the “if’ part. ]

Proof of the “only if’ part of Theorem 6. Suppose that (G, ¢) has a circular
r-coloring ¢ : V(G) — [0,r). We will show that G has a good initial marking

T such that max e v |Cle/|Clr < r, which is a stronger result than what we

state in Theorem 6. Define a mapping 7' which assigns to each arc zy of G a value
from {0, 1} such that T'(xy) = 1 as p(z) > ¢(y), and T'(zy) = 0 as p(z) < ¢(y).
Clearly, 7" is a good initial marking of G such that |C|; > 0 for each dicycle C' in
G and () + Lyy < @(y) + r - Ty, for each arc zy in G.

Let C = (v1,va,..., 05 k1) € M(G) such that |C|¢/|Cl|r = MAXGe v

|Cl¢/|C |, where v, = vy and vjv;41 isanarc fori = 1,2, ... k. From the result
proved in the previous paragraph, we see that o(v;) + v, 0., < ©(Vig1) +7 Ty,
fori=1,2,..., k. Adding up both side of the k inequalities separately, we get

k k
‘C"f = Zeviviﬂ < @(’Uk—i—l) - @(’Ul) +r. ZTvivi+1 =T ‘C‘Tv
=1 i=1

and hence maxg g |Cl¢/IC|z < r, that completes the proof of the ‘only if’

part. n
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