TAIWANESE JOURNAL OF MATHEMATICS

Vol. 15, No. 5, pp. 2159-2167, October 2011

This paper is available online at http://tjm.math.ntu.edu.tw/index.php/TJM

A NOTE ON CIRCULAR COLORINGS OF EDGE-WEIGHTED DIGRAPHS

Wu-Hsiung Lin¹ and Hong-Gwa Yeh²

Abstract. An edge-weighted digraph (\vec{G},ℓ) is a strict digraph \vec{G} together with a function ℓ assigning a real weight ℓ_{uv} to each arc uv. (\vec{G},ℓ) is symmetric if uv is an arc implies that so is vu. A circular r-coloring of (\vec{G},ℓ) is a function φ assigning each vertex of \vec{G} a point on a circle of perimeter r such that, for each arc uv of \vec{G} , the length of the arc from $\varphi(u)$ to $\varphi(v)$ in the clockwise direction is at least ℓ_{uv} . The circular chromatic number $\chi_c(\vec{G},\ell)$ of (\vec{G},ℓ) is the infimum of real numbers r such that (\vec{G},ℓ) has a circular r-coloring. Suppose that (\vec{G},ℓ) is an edge-weighted symmetric digraph with positive weights on the arcs. Let T be a $\{0,1\}$ -function on the arcs of \vec{G} with the property that T(uv) + T(vu) = 1 for each arc uv in \vec{G} . In this note we show that if $\sum_{uv \in E(\vec{C})} \ell_{uv} / \sum_{uv \in E(\vec{C})} T(uv) \leq r$ for each dicycle \vec{C} of \vec{G} satisfying $0 < (\sum_{uv \in E(\vec{C})} \ell_{uv}) \mod r < \max\{\ell_{xy} + \ell_{yx} : xy \in E(\vec{G})\}$, then (\vec{G},ℓ) has a circular r-coloring. Our result generalizes the work of Zhu, J. Comb. Theory, Ser. B, 86 (2002), 109-113, and also strengthens the work of Mohar, J. Graph Theory, 43 (2003), 107-116.

1. Introduction

A graph G is called k-colorable if V(G) can be colored by at most k colors so that adjacent vertices are colored by different colors. The *chromatic number* of G, denoted by $\chi(G)$, is the smallest k such that G is k-colorable. In 1962, Minty [5] proved his celebrated theorem that G is k-colorable if and only if G has an orientation ω such that, for any cycle C of G and any traversal of G (each cycle has two different directions for traversal), at least |G|/k edges of G whose direction in

Received January 20, 2010, accepted May 20, 2010.

Communicated by Hung-Lin Fu.

2010 Mathematics Subject Classification: 05C15.

Key words and phrases: Circular chromatic number, Digraph.

¹Partially supported by the National Science Council under grant NSC95-2115-M-002-013-MY3.

²Partially supported by the National Science Council under grant NSC97-2628-M-008-018-MY3.

 ω coincide with the direction of the traversal. Let us denote by $|C_{\omega}^+|$ the number of edges of C whose direction in ω coincide with the direction of the traversal. We denote by $\mathcal{M}(G)$ the set of all cycles of G (including cycles of length 2 which are the same edge taken twice). With these notations, Minty's result can be restated as follows:

Theorem 1. (Minty's Theorem [5]). G is k-colorable if and only if G has an orientation ω such that

 $\max_{C \in \mathcal{M}(G)} \frac{|C|}{|C_{\omega}^+|} \le k.$

Here and hereafter, for a set $S \subseteq \mathcal{M}(G)$, $\max_{C \in S}$ means that the maximum is over all cycle C in S and over the two traversals of C.

Let $\mathcal{D}(G)$ (resp. $\mathcal{A}(G)$) denote the set of all (resp. acyclic) orientations of G. From Minty's theorem it follows immediately that, for a graph G,

(1)
$$\chi(G) = \left[\min_{\omega \in \mathcal{D}(G)} \max_{C \in \mathcal{M}(G)} \frac{|C|}{|C_{\omega}^{+}|} \right].$$

We remark that equation (1) remains true, if $\mathcal{D}(G)$ is replaced by $\mathcal{A}(G)$.

In 1992, Tuza [7] showed that the statement of Theorem 1 remains true when $\mathcal{M}(G)$ is replaced by $\mathcal{T}(G,k)$, where $\mathcal{T}(G,k)$ denotes the set of all cycles C of length $|C| \equiv 1 \pmod k$ in G. We state Tuza's result in the following theorem which improves 'if' part of Theorem 1.

Theorem 2. (Tuza's Theorem [7]). Suppose k is an integer ≥ 2 . Then G is k-colorable if and only if G has an orientation ω such that

$$\max_{C \in \mathcal{T}(G,k)} \frac{|C|}{|C_{\omega}^+|} \le k.$$

In 1988, as a natural refinement of the chromatic number $\chi(G)$, Vince [8] introduced the star chromatic number of a graph G and denoted it by $\chi^*(G)$. Later, Zhu [12] called it circular chromatic number and denoted it by $\chi_c(G)$. Let k and d be positive integers such that $k \geq 2d$. A (k,d)-coloring of a graph G is a mapping $f: V(G) \to \{0,1,\ldots,k-1\}$ such that for any edge xy of G, $d \leq |f(x)-f(y)| \leq k-d$. If G has a (k,d)-coloring, then we say that G is (k,d)-colorable. The circular chromatic number $\chi_c(G)$ of a graph G is defined as

$$\chi_c(G) = \inf\{k/d : G \text{ is } (k,d)\text{-colorable}\}.$$

It was shown in [8] that the infimum in the definition of $\chi_c(G)$ is always attained, and hence the infimum can be replaced by minimum.

The circular chromatic number and its variations have received considerable attention in the past decade (see [9, 12, 14] and references therein). Vince [8]

showed that, for any graph G, $\chi(G) - 1 < \chi_c(G) \le \chi(G)$. Furthermore, Goddyn, Tarsi and Zhang [3] proved the following generalization of equation (1) for circular chromatic number:

(2)
$$\chi_c(G) = \min_{\omega \in \mathcal{D}(G)} \max_{C \in \mathcal{M}(G)} \frac{|C|}{|C_{\omega}^+|}.$$

Equation (2) can be restated as follows:

Theorem 3. (Goddyn, Tarsi and Zhang's Theorem [3]). G is (k, d)-colorable if and only if G has an orientation ω such that

$$\max_{C \in \mathcal{M}(G)} \frac{|C|}{|C_{\omega}^+|} \le \frac{k}{d}.$$

Clearly, Theorem 1 is the special case d=1 of Theorem 3. Now, a natural question arises: Is there an analogue of Tuza's Theorem for the (k,d)-coloring. This question was answered in the affirmative by Zhu, who in [13] showed that the statement of Theorem 3 remains true if $\mathcal{M}(G)$ is replaced by $\mathcal{Z}(G,k,d)$, where $\mathcal{Z}(G,k,d)$ consists of cycles C of G such that $1 \leq d|C| \mod k \leq 2d-1$. We state Zhu's result in the following theorem. Notice that Theorem 4 improves 'if' part of Theorem 3 and generalizes Theorem 2.

Theorem 4. (Zhu's Theorem [13]). G is (k, d)-colorable if and only if G has an orientation ω such that

$$\max_{C \in \mathcal{Z}(G,k,d)} \frac{|C|}{|C_{\omega}^+|} \le \frac{k}{d}.$$

The theory of circular coloring of graphs has become an important branch of chromatic graph theory with many interesting results and applications (see [9, 10, 11, 12, 14] and references therein). Many variants and generalizations of the circular chromatic number were introduced by different authors. One of the most natural and important generalizations is to edge-weighted digraphs, which is introduced and studied by Mohar [6] in 2003.

An edge-weighted digraph (\vec{G}, ℓ) is a strict digraph \vec{G} together with a function ℓ assigning a real weight to each directed edge. For simplicity of notation, the directed edge (u, v) of \vec{G} is written as uv and is called an arc, the weight of the arc uv in (\vec{G}, ℓ) is written as ℓ_{uv} .

For a positive real r, let S^r denote a circle with perimeter r centered at the origin of \mathbb{R}^2 . In the obvious way, we can identify the circle S^r with the interval [0,r). For $x,y\in S^r$, let $d_r(x,y)$ denote the length of the arc on S^r from x to y in the clockwise direction if $x\neq y$, and let $d_r(x,y)=0$ if x=y. A circular r-coloring of an edge-weighted digraph (\vec{G},ℓ) is a function $\varphi:V(\vec{G})\to S^r$ such

that $d_r(\varphi(u), \varphi(v)) \ge \ell_{uv}$ for each arc uv in \vec{G} . The *circular chromatic number* $\chi_c(\vec{G}, \ell)$ of an edge-weighted digraph (\vec{G}, ℓ) , recently introduced by Mohar [6], is defined as

 $\chi_c(\vec{G}, \ell) = \inf\{r : (\vec{G}, \ell) \text{ has a circular } r\text{-coloring}\}.$

It was shown in [6] that the notion of $\chi_c(\vec{G},\ell)$ generalizes several well-known optimization problems, such as the circular chromatic number [8, 12], the weighted circular colorings [1], the linear arboricity of a graph and the metric traveling salesman problem.

A digraph \vec{G} (resp. an edge-weighted digraph (\vec{G},ℓ)) is said to be *symmetric* if uv is an arc implies that so is vu. To each arc uv in \vec{G} we may assign a number T_{uv} of tokens. The nonnegative integer function T is called an initial marking of \vec{G} . An initial marking T of \vec{G} is said to be good if for each arc uv of \vec{G} , $T_{uv} + T_{vu} = 1$. Denote by $\mathcal{D}(\vec{G})$ the set of all good initial markings of \vec{G} . An edge-weighted digraph (\vec{G},ℓ) equipped with an initial marking T is denoted by (\vec{G},ℓ,T) and is called a timed marked graph. The token count (resp. weight) of a dicycle \vec{C} in (\vec{G},ℓ,T) is defined as the value $\sum_{uv \in E(\vec{C})} T_{uv}$ (resp. $\sum_{uv \in E(\vec{C})} \ell_{uv}$) and is denoted by $|\vec{C}|_T$ (resp. $|\vec{C}|_\ell$), where $E(\vec{C})$ is the set of all arcs in \vec{C} . For a dipath \vec{P} in (\vec{G},ℓ,T) , the two values $|\vec{P}|_T$ and $|\vec{P}|_\ell$ are defined in the same way. Denote by $\mathcal{M}(\vec{G})$ the set of all dicycles in \vec{G} .

In 2003, Mohar [6, Theorem 5.2] proved the following generalization of equation (2) for edge-weighted symmetric digraph $\chi_c(\vec{G},\ell)$ having positive weights on the

(3)
$$\chi_c(\vec{G}, \ell) = \min_{T \in \mathcal{D}(\vec{G})} \max_{\vec{C} \in \mathcal{M}(\vec{G})} \frac{|\vec{C}|_{\ell}}{|\vec{C}|_T},$$

Mohar [6, the last paragraph of Section 5] pointed out that equation (3) also holds for edge-weighted symmetric digraphs (\vec{G},ℓ) having the property that $\ell_{uv} \geq 0$ and $\ell_{uv} + \ell_{vu} \neq 0$ for each arc uv in \vec{G} .

For an edge-weighted symmetric digraph (\vec{G}, ℓ) , denote by $L(\vec{G}, \ell)$ the maximum value of $\ell_{uv} + \ell_{vu}$ over all arcs uv in \vec{G} . Equation (3) can be restated in Theorem 5, which generalizes Theorem 3.

Theorem 5. (Mohar's Theorem [6]). Let (\vec{G}, ℓ) be an edge-weighted symmetric digraph with positive weights on the arcs. Suppose that r is a real number with $r \geq L(\vec{G}, \ell)$. Then (\vec{G}, ℓ) has a circular r-coloring if and only if \vec{G} has a good initial marking T such that

$$\max_{\vec{C} \in \mathcal{M}(\vec{G})} \frac{|\vec{C}|_{\ell}}{|\vec{C}|_{T}} \le r.$$

A certain natural question presents itself at this point: In Theorem 5, can $\mathcal{M}(\vec{G})$ be replaced by a subset of it? The purpose of this paper is to answer this question in

the affirmative. For an edge-weighted digraph (\vec{G},ℓ) and a real number $r \geq L(\vec{G},\ell)$, denote by $\mathcal{U}(\vec{G},\ell,r)$ the set of all dicycles \vec{C} in \vec{G} with $0 < |\vec{C}|_{\ell} \bmod r < L(\vec{G},\ell)$. In Theorem 6, whose proof appears in Section , we show that the statement of Theorem 5 remains true if $\mathcal{M}(\vec{G})$ is replaced by $\mathcal{U}(\vec{G},\ell,r)$.

Theorem 6. Let (\vec{G}, ℓ) be an edge-weighted symmetric digraph with positive weights on the arcs. Suppose that r is a real number with $r \geq L(\vec{G}, \ell)$. Then (\vec{G}, ℓ) has a circular r-coloring if and only if \vec{G} has a good initial marking T such that

$$\max_{\vec{C} \in \mathcal{U}(\vec{G}, \ell, r)} \frac{|\vec{C}|_{\ell}}{|\vec{C}|_{T}} \le r.$$

Clearly, Theorem 6 improves 'if' part of Theorem 5. Moreover, Theorem 6 generalizes Theorem 4. To see this, we introduce an equivalent definition for circular chromatic number of graphs. For a real number $r \geq 1$, a circular r-coloring of a graph G is a function $f: V(G) \to [0,r)$ such that for any edge xy of G, $1 \leq |f(x) - f(y)| \leq r - 1$. It was known [12, 14] that

$$\chi_c(G) = \inf\{r : G \text{ has a circular } r\text{-coloring}\}.$$

It can readily be seen that G is (k,d)-colorable if and only if G has a circular k/d-coloring.

Given an undirected graph G, we can define a symmetric digraph, denoted by \vec{G} , on the same vertex set such that uv is an edge of G if and only if uv is an arc of \vec{G} . We say that such \vec{G} is the symmetric digraph derived from G. Denote by $(\vec{G}, \mathbf{1})$ the edge-weighted digraph with $\mathbf{1}_{uv} = 1$ for each arc uv of \vec{G} . Notice that $L(\vec{G}, \mathbf{1}) = 2$, and there is a natural bijection between cycles C of G (including cycles of length 2 which are the same edge taken twice) and dicycles \vec{C} of \vec{G} . Clearly, $0 < |\vec{C}|_{\mathbf{1}} \mod \frac{k}{d} < L(\vec{G}, \mathbf{1})$ if and only if $0 < d|C| \mod k < 2d$. For each orientation ω of G, we can associate a good initial marking T^{ω} of \vec{G} such that $T^{\omega}_{uv} = 1$ for each arc uv of ω . Conversely, for each good initial marking T of the symmetric digraph \vec{G} , we can associate an orientation ω^T of G such that uv is an arc of ω^T if and only if $T_{uv} = 1$. From our discussion above, it can readily be seen that Theorem 6 generalizes Theorem 4.

In 1996, Deuber and Zhu [1] introduced another natural generalization of circular chromatic number to vertex-weighted graphs. A vertex-weighted graph (G,λ) is a graph G with positive weight function λ on V(G). A circular r-coloring of (G,λ) is a function $\phi:V(G)\to S^r$ which assigns each vertex of G an open arc of S^r such that $\phi(x)\cap\phi(y)=\emptyset$ for any edge xy in G, and $\phi(v)$ has length at least $\lambda(v)$ for each vertex v of G. The circular chromatic number $\chi_c(G,\lambda)$ of a vertex-weighted graph (G,λ) is defined as

$$\chi_c(G,\lambda) = \inf\{r : (G,\lambda) \text{ has a circular } r\text{-coloring}\}.$$

It is clear that $\chi_c(G) = \chi_c(G, \mathbf{1})$, where $\mathbf{1}(v) = 1$ for each vertex v of G. From the results in [1], one can conclude that

(4)
$$\chi_c(G,\lambda) = \min_{\omega \in \mathcal{D}(G)} \max_{C \in \mathcal{M}(G)} \frac{\sum_{v \in V(C)} \lambda(v)}{|C_{\omega}^+|}.$$

Given a vertex-weighted graph (G,λ) , we construct an edge-weighted digraph (\vec{G},ℓ) such that \vec{G} is the symmetric digraph derived from G and $\ell(uv)=\lambda(v)$ for each arc uv of \vec{G} . From equations (3) and (4), we see that

$$\chi_c(\vec{G}, \ell) = \min_{T \in \mathcal{D}(\vec{G})} \max_{\vec{C} \in \mathcal{M}(\vec{G})} \frac{|\vec{C}|_{\ell}}{|\vec{C}|_T} = \min_{\omega \in \mathcal{D}(G)} \max_{C \in \mathcal{M}(G)} \frac{\sum_{v \in V(C)} \lambda(v)}{|C_{\omega}^+|} = \chi_c(G, \lambda).$$

Notice that our construction above of (\vec{G}, ℓ) paralleled to the one given by Mohar in [6, page 108]. Equations (3) and (4) also give the following nice observation whose proof is straightforward, and we omit it.

Observation 7. Let (G, λ) be a vertex-weighted graph with positive weights on the vertices. Suppose that r is a real number with $r \geq L(G, \lambda)$. Then (G, λ) has a circular r-coloring if and only if G has an orientation ω such that

$$\max_{C \in \mathcal{U}(G,\lambda,r)} \frac{|C|_{\lambda}}{|C_{\omega}^{+}|} \le r,$$

where $|C|_{\lambda} = \sum_{v \in V(C)} \lambda(v)$, $L(G, \lambda) = \max\{\lambda(u) + \lambda(v) : uv \in E(G)\}$ and $\mathcal{U}(G, \lambda, r) = \{C \in \mathcal{M}(G) : 0 < |C|_{\lambda} \mod r < L(G, \lambda)\}.$

2. The Proof of Theorem 6

In this section, we prove the main result of this note. As you will see in the proof below, our approach in fact gives a new proof of Theorem 5 (see [11] for another new proof) which was originally proved by Mohar [6] using a linear programming duality result of Hoffman [4] and Ghouila-Houri [2].

Proof of the 'if' part of Theorem 6. Suppose that (\vec{G},ℓ) has a good initial marking T such that

(5)
$$\max_{\vec{C} \in \mathcal{U}(\vec{G}, \ell, r)} \frac{|\vec{C}|_{\ell}}{|\vec{C}|_{T}} \le r.$$

Let G be the underlying graph of \vec{G} with a spanning tree \mathcal{T} . For two vertices x,y of G, clearly there is a unique (x,y)-path $v_1v_2\ldots v_k$ in \mathcal{T} . The (x,y)-dipath (v_1,v_2,\ldots,v_k) in \vec{G} generated in this way is called *the dipath of* \vec{G} *from* x *to* y *in* \mathcal{T} . Fix a vertex s in G. We define a function $f_{\mathcal{T}}:V(\vec{G})\to\mathcal{R}$ as follows:

- $f_{\mathcal{T}}(s) = 0$;
- If x is a vertex other than s then $f_{\mathcal{T}}(x) = \sum_{e} (\ell_e r \cdot T_e)$, where the summation is taken over all arcs e in the dipath of \vec{G} from s to x in \mathcal{T} .

The weight of \mathcal{T} is defined to be $\sum_{v \in V(\vec{G})} f_{\mathcal{T}}(v)$ and is denoted by $f(\mathcal{T})$. In the following, let \mathcal{T} be a spanning tree of G with the maximum weight.

Let φ be a function which assigns to each vertex v of \vec{G} a color $f_{\mathcal{T}}(v) \mod r$ in [0,r). For an arbitrary arc xy of \vec{G} , we want to show that $d_r(\varphi(x),\varphi(y)) \geq \ell_{xy}$ and $d_r(\varphi(y),\varphi(x)) \geq \ell_{yx}$. In the following cases, we view \mathcal{T} as a rooted tree with root s. In this rooted tree, let x' and y' be the fathers of vertices x and y, respectively.

Case I. Suppose that x is not on the (s,y)-path of $\mathcal T$ and y is not on the (s,x)-path of $\mathcal T$. Let $\mathcal T'$ be the spanning tree of G obtained from $\mathcal T$ by deleting the edge x'x and adding the edge xy. Then, by the maximality of $\mathcal T$, we have $f(\mathcal T') \leq f(\mathcal T)$ which gives $f_{\mathcal T'}(x) \leq f_{\mathcal T}(x)$, and hence $f_{\mathcal T}(y) + \ell_{yx} - r \cdot T_{yx} \leq f_{\mathcal T}(x)$ because y is the father of x in $\mathcal T'$. By symmetry we also see that $f_{\mathcal T}(x) + \ell_{xy} - r \cdot T_{xy} \leq f_{\mathcal T}(y)$. Therefore

(6)
$$\ell_{yx} - r \cdot T_{yx} \le f_{\mathcal{T}}(x) - f_{\mathcal{T}}(y) \le r \cdot T_{xy} - \ell_{xy}.$$

If $T_{xy}=1$ then we have $\ell_{yx} \leq f_{\mathcal{T}}(x)-f_{\mathcal{T}}(y) \leq r-\ell_{xy}$. If $T_{xy}=0$ then we have $\ell_{xy} \leq f_{\mathcal{T}}(y)-f_{\mathcal{T}}(x) \leq r-\ell_{yx}$. In either case, clearly we have $d_r(\varphi(x),\varphi(y)) \geq \ell_{xy}$ and $d_r(\varphi(y),\varphi(x)) \geq \ell_{yx}$.

Case II. Suppose that either the (s,y)-path of $\mathcal T$ contains x or the (s,x)-path of $\mathcal T$ contains y. It suffices to consider the case that y is on the (s,x)-path of $\mathcal T$. Let $\vec P$ be the dipath of $\vec G$ from y to x in $\mathcal T$ and $\vec C = \vec P + xy$ be the dicycle of $\vec G$ consisting of $\vec P$ and the arc xy. Using the same method as in the previous case, we have

(7)
$$\ell_{yx} - r \cdot T_{yx} \le f_{\mathcal{T}}(x) - f_{\mathcal{T}}(y).$$

Clearly we also have $f_T(x) - f_T(y) = |\vec{P}|_{\ell} - r|\vec{P}|_T$. Denote by ρ the value $|\vec{P}|_{\ell} \mod r$. Let us consider the following two subcases.

Subcase II(a). If $\rho < \ell_{yx}$ or $\rho > r - \ell_{xy}$, since $|\vec{C}|_{\ell} = |\vec{P}|_{\ell} + \ell_{xy}$, then we have $0 < |\vec{C}|_{\ell} \mod r = (\rho + \ell_{xy}) \mod r < \ell_{xy} + \ell_{yx} \le L(\vec{G},\ell)$. By inequality (5), we have $|\vec{C}|_{\ell}/|\vec{C}|_T \le r$ which is equivalent to $|\vec{P}|_{\ell} - r|\vec{P}|_T \le r \cdot T_{xy} - \ell_{xy}$, and hence $f_{\mathcal{T}}(x) - f_{\mathcal{T}}(y) \le r \cdot T_{xy} - \ell_{xy}$. Putting this together with inequality (7), we arrive at inequalities (6), and hence $d_r(\varphi(x), \varphi(y)) \ge \ell_{xy}$ and $d_r(\varphi(y), \varphi(x)) \ge \ell_{yx}$.

Subcase II(b). If $\ell_{yx} \leq \rho \leq r - \ell_{xy}$, we still have $d_r(\varphi(x), \varphi(y)) = (f_{\mathcal{T}}(y) - f_{\mathcal{T}}(x)) \mod r = r - \rho \geq \ell_{xy}$ and $d_r(\varphi(y), \varphi(x)) = (f_{\mathcal{T}}(x) - f_{\mathcal{T}}(y)) \mod r = \rho \geq \ell_{yx}$.

This completes the proof of the 'if' part.

Proof of the 'only if' part of Theorem 6. Suppose that (\vec{G},ℓ) has a circular r-coloring $\varphi:V(\vec{G})\to [0,r)$. We will show that \vec{G} has a good initial marking T such that $\max_{\vec{C}\in\mathcal{M}(\vec{G})}|\vec{C}|_{\ell}/|\vec{C}|_T\leq r$, which is a stronger result than what we state in Theorem 6. Define a mapping T which assigns to each arc xy of \vec{G} a value from $\{0,1\}$ such that T(xy)=1 as $\varphi(x)>\varphi(y)$, and T(xy)=0 as $\varphi(x)<\varphi(y)$. Clearly, T is a good initial marking of \vec{G} such that $|\vec{C}|_T>0$ for each dicycle \vec{C} in \vec{G} and $\varphi(x)+\ell_{xy}\leq\varphi(y)+r\cdot T_{xy}$ for each arc xy in \vec{G} . Let $\hat{C}=(v_1,v_2,\ldots,v_k,v_{k+1})\in\mathcal{M}(\vec{G})$ such that $|\hat{C}|_{\ell}/|\hat{C}|_T=\max_{\vec{C}\in\mathcal{M}(\vec{G})}\mathcal{M}(\vec{G})$

Let $\hat{C}=(v_1,v_2,\ldots,v_k,v_{k+1})\in\mathcal{M}(\vec{G})$ such that $|\hat{C}|_{\ell}/|\hat{C}|_T=\max_{\vec{C}\in\mathcal{M}(\vec{G})}|\vec{C}|_{\ell}/|\vec{C}|_T$, where $v_{k+1}=v_1$ and v_iv_{i+1} is an arc for $i=1,2,\ldots,k$. From the result proved in the previous paragraph, we see that $\varphi(v_i)+\ell_{v_iv_{i+1}}\leq \varphi(v_{i+1})+r\cdot T_{v_iv_{i+1}}$ for $i=1,2,\ldots,k$. Adding up both side of the k inequalities separately, we get

$$|\hat{C}|_{\ell} = \sum_{i=1}^{k} \ell_{v_i v_{i+1}} \le \varphi(v_{k+1}) - \varphi(v_1) + r \cdot \sum_{i=1}^{k} T_{v_i v_{i+1}} = r \cdot |\hat{C}|_T,$$

and hence $\max_{\vec{C} \in \mathcal{M}(\vec{G})} |\vec{C}|_{\ell} / |\vec{C}|_T \le r$, that completes the proof of the 'only if' part.

REFERENCES

- 1. W. Deuber and X. Zhu, Circular coloring of weighted graphs, *J. Graph Theory*, **23** (1996), 365-376.
- 2. A. Ghouila-Houri, Sur l'existence d'un flot ou d'une tension prenant ses valeurs dans un groupe abélien, *C. R. Acad Sciences*, **250** (1960), 3931-3932.
- 3. L. A. Goddyn, M. Tarsi and C. Q. Zhang, On (k, d)-colorings and fractional nowhere zero flows, *J. Graph Theory*, **28** (1998), 155-161.
- 4. A. J. Hoffman, Some recent applications of the theory of linear inequalities to extremal combinatorial analysis, in: *Combinatorial Analysis: Proc. of the Tenth Symp. in Appl. Math. of the AMS*, (R. Bellman and M. Hall Jr., eds.), Amer Math Soc, 1960, pp. 113-128.
- 5. G. J. Minty, A theorem on *n*-coloring the points of a linear graph, *Amer. Math. Monthly*, **69** (1962), 623-624.
- 6. B. Mohar, Circular colorings of edge-weighted graphs, *J. Graph Theory*, **43** (2003), 107-116.
- 7. Z. Tuza, Graph coloring in linear time, J. Comb. Theory, Ser. B, 55 (1992), 236-243.
- 8. A. Vince, Star chromatic number, J. Graph Theory, 12 (1988), 551-559.
- 9. Hong-Gwa Yeh and Xuding Zhu, Resource-sharing system scheduling and circular chromatic number, *Theoretical Computer Science*, **332** (2005), 447-460.

- 10. Hong-Gwa Yeh, A method to obtain lower bounds for circular chromatic number, *Taiwanese J. Math.*, **12** (2008), 997-1005.
- 11. Hong-Gwa Yeh, A connection between circular colorings and periodic schedules, *Discrete Math.*, **157** (2009), 1663-1668.
- 12. Xuding Zhu, Circular chromatic number: a survey, *Discrete Math.*, **229** (2001), 371-410
- 13. Xuding Zhu, Circular colouring and orientation of graphs, *J. Comb. Theory, Ser. B*, **86** (2002), 109-113.
- 14. Xuding Zhu, Recent developments in circular colouring of graphs, in: *Topics in Discrete Mathematics*, (M. Klazar, J. Kratochvil, J. Matousek, R. Thomas and P. Valtr, eds.), Springer, 2006, pp. 497-550.

Wu-Hsiung Lin Department of Mathematics National Taiwan University Taipei 100, Taiwan

Hong-Gwa Yeh Department of Mathematics National Central University Chungli, Taoyuan 320, Taiwan E-mail: hgyeh@math.ncu.edu.tw