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∆-STATISTICAL BOUNDEDNESS FOR SEQUENCES OF FUZZY
NUMBERS

H. Altinok and M. Mursaleen

Abstract. In this article we introduce the notion of ∆-statistical boundedness
for fuzzy real numbers and examine its some properties. We also give some

relations related to this concept and construct some interesting examples.

1. INTRODUCTION

The concepts of fuzzy sets and fuzzy set operations were first introduced by

Zadeh [29] and subsequently several authors have discussed various aspects of the

theory and applications of fuzzy sets such as fuzzy topological spaces, similarity

relations and fuzzy orderings, fuzzy measures of fuzzy events, fuzzy mathemati-

cal programming. Matloka [21] introduced bounded and convergent sequences of

fuzzy numbers, studied some of their properties and showed that every convergent

sequence of fuzzy numbers is bounded. In addition, sequences of fuzzy numbers

have been discussed in [2, 5, 7, 9, 11, 13, 19, 23, 24] and many others.

There are many applications of the sequences and difference sequences of num-

bers (real, complex and fuzzy numbers). For example sequences of numbers have

unexpected and practical uses in many areas of science and engineering, including

acoustics. They find application in measuring concert hall acoustics, radar echoes

from planets, the travel times of deep-ocean sound waves for monitoring ocean

temperature, and improving synthetic speech and the sounds associated with com-

puter music. Furthermore, it is shown by Kawamura et al. [17] that the earthquake

ground motions have very simple conditioned fuzzy set rules with non-fuzzy parame-

ters of the first and second order differences∆Xi and ∆2Xi defined by membership

functions µ’s. Therefore the difference sequences of fuzzy numbers are used, for

example in the prediction of earthquake waves. For more detail see [17].
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The notion of statistical convergence was introduced by Fast [14] and Schoen-

berg [27], independently. Over the years and under different names statistical con-

vergence has been discussed in the theory of fourier analysis, ergodic theory and

number theory. Later on it was further investigated from the sequence space point

of view and linked with summability theory by Fridy [15], Fridy and Orhan [16],

Salát [25] and many others. In recent years, generalizations of statistical conver-

gence have appeared in the study of strong integral summability and the structure

of ideals of bounded continuous functions on locally compact spaces. Moreover,

statistical convergence is closely related to the concept of convergence in probability.

The main purpose of this paper is to study ∆−statistical boundedness of fuzzy
numbers so as to fill up the existing gap in the literature.

2. DEFINITIONS AND PRELIMINARIES

For easy understanding of the material incorporated in this article, we reproduce

some known definitions and notions of fuzzy numbers in this section.

The idea of statistical convergence depends on the density of subsets of the set

N of natural numbers. The density of a subset E of N is defined by

δ(E) = lim
n→∞

1
n

n∑

k=1

χE(k) provided the limit exists,

where χE is the characteristic function of E. It is clear that any finite subset of N
has zero natural density and δ (Ec) = 1− δ (E).

A sequence (xk) is said to be statistically convergent to L if for every ε > 0 ,
δ ({k ∈ N : |xk − L| ≥ ε}) = 0. In this case we write S − limxk = L.

Fuzzy sets are considered with respect to a nonempty base set X of elements of

interest. The essential idea is that each element x ∈ X is assigned a membership

grade u(x) taking values in [0, 1], with u(x) = 0 corresponding to nonmembership,
0 < u(x) < 1 to partial membership, and u(x) = 1 to full membership. According
to Zadeh [29] a fuzzy subset of X is a nonempty subset {(x, u(x)) : x ∈ X} of
X × [0, 1] for some function u : X −→ [0, 1]. The function u itself is often used
for the fuzzy set.

Let C(Rn) denote the family of all nonempty, compact, convex subsets of Rn.
If α, β ∈ R and A, B ∈ C(Rn), then

(A + B) = αA + αB, (αβ)A = α(βA), 1A = A

and if α, β ≥ 0, then (α + β)A = αA + βA. The distance between A and B is

defined by the Haussdorff metric

δ∞(A, B) = max{sup
a∈A

inf
b∈B

‖ a − b ‖, sup
b∈B

inf
a∈A

‖ a − b ‖},
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where ‖ . ‖ denotes the usual Euclidean norm in Rn. It is well known that

(C(Rn), δ∞) is a complete metric space.
Denote

L(R) = {u : R −→ [0, 1] | u satisfies (i)− (iv) below},

where

(i) u is normal, that is, there exists an x0 ∈ R such that u(x0) = 1;

(ii) u is fuzzy convex, that is, for x, y ∈ R and 0 ≤ λ ≤ 1, u(λx + (1− λ)y) ≥
min[u(x), u(y)];

(iii) u is upper semicontinuous;

(iv) the closure of {x ∈ R : u(x) > 0}, denoted by [u]0, is compact.

If u ∈ L(R), then u is called a fuzzy number, and L(R) is said to be a fuzzy
number space.

For 0 < α ≤ 1, the α-level set [u]α is defined by

[u]α = {x ∈ R : u(x) ≥ α}.

Then from (i)− (iv), it follows that the α-level sets [u]α ∈ C(R).
Some arithmetic operations for α−level sets are defined as follows:
Let u, v ∈ L(Rn), k ∈ R and the α−level sets be [u]a = [uα

1 , uα
2 ] , [v]a =

[vα
1 , vα

2 ] , α ∈ [0, 1] . Then we have

[u + v]a = [uα
1 + vα

1 , uα
2 + vα

2 ]

[u − v]a = [uα
1 − vα

2 , uα
2 − vα

1 ]

[ku]α =

{
[kuα

1 , kuα
2 ] , if k ≥ 0

[kuα
2 , kuα

1 ] , otherwise
.

The set of all real numbers can be embedded in L(R). For a ∈ R, ā ∈ L(R) is
defined by

ā (x) =

{
1, for x = a

0, for x 6= a
.

Let D denote the set of all closed and bounded intervals u = [a1, a2] on R. For
u, v ∈ D, we define

d (u, v) = max {|a1 − b1| , |a2 − b2|}

where u = [a1, a2] and v = [b1, b2] . Here (D, d) is a complete metric space. It
follows that the α−level sets [u]α ∈ D for α ∈ [0, 1] .
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Now, define a map d̄ : L (R) × L (R) → R by

d̄ (u, v) = sup
α∈[0,1]

max {|aα
1 − bα

1 | , |aα
2 − bα

2 |} .

Then d̄ defines a metric on L(R).
For any α ∈ [0, 1] , the order relation on L(R) is defined by

u ≤ v if and only if aα
1 ≤ bα

1 and aα
2 ≤ bα

2 .

Let u and v be two fuzzy numbers. Then u and v are said to be incomparable if
neither u ≤ v nor v ≤ u. In this case, we will use the notation u 6∼ v [12], [20].

A sequence X = (Xk) of fuzzy numbers is a function X from the set N
of all positive integers into L(R). Thus, a sequence of fuzzy numbers X is a

correspondence from the set of positive integers to a set of fuzzy numbers, i.e., to

each positive integer k there corresponds a fuzzy number X(k). It is more common
to write Xk rather than X(k) and to denote the sequence by (Xk) rather than X .
The fuzzy number Xk is called the k-th term of the sequence.

Let X = (Xk) be a sequence of fuzzy numbers. A sequence X = (Xk) of
fuzzy numbers is said to be bounded if the set {Xk : k ∈ N} of fuzzy numbers is
bounded. i.e. if a sequence (Xk) is bounded, then there are two fuzzy numbers u, v

such that u ≤ Xk ≤ v. A sequence X = (Xk) is convergent to the fuzzy number
X0, written as lim

k
Xk = X0, if for every ε > 0 there exists a positive integer

k0 such that d (Xk, X0) < ε for k > k0. Let `∞ (F ) and c (F ) denote the set of
all bounded sequences and all convergent sequences of fuzzy numbers, respectively

[21].

The difference spaces `∞ (∆), c (∆) and c0 (∆), consisting of all real valued
sequences x = (xk) such that ∆x = (xk − xk+1) in the sequence spaces `∞, c and
c0, were defined by Kzmaz [18].

Let w(F ) be the set of all sequences of fuzzy numbers. The operator ∆ :
w(F ) → w(F ) is defined by

(
∆0X

)
k

= Xk, (∆X)k = ∆Xk = Xk − Xk+1, for all k ∈ N.

Definition 2.1. Let X = (Xk) be a sequence of fuzzy numbers. Then the
sequence X = (Xk) is said to be ∆−bounded if the set {∆Xk : k ∈ N} of fuzzy
numbers is bounded, and ∆− convergent to the fuzzy number X0 , written as

lim
k

∆Xk = X0 , if for every ε > 0 there exists a positive integer k0 such that

d̄ (∆Xk, X0) < ε for all k > k0. By `∞ (∆, F ) and c (∆, F ) denote the sets of
all ∆− bounded sequences and all ∆− convergent sequences of fuzzy numbers,

respectively, see ([9, 10, 26]).
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If X = (Xk) is a sequence that satisfies a property P for all k except a set of

natural density zero, then we say that Xk satisfies P for almost all k and we write
by a.a.k.

Definition 2.2. Let X = (Xk) be a sequence of fuzzy numbers. Then the
sequence X = (Xk) of fuzzy numbers is said to be ∆−statistically convergent to
fuzzy number X0 if for every ε > 0,

lim
n→∞

1
n

∣∣{k ≤ n : d̄ (∆Xk, X0) ≥ ε
}∣∣ = 0.

In this case we write Xk → X0 (SF (∆)) or SF (∆)− limXk = X0. The set of all

statistically convergent sequences of fuzzy numbers is denoted by SF (∆) , (see [9,
10].

Theorem 2.3. [22]. If X = (Xk) is a sequence of fuzzy numbers for which
there is a convergent sequence Y = (Yk) such that ∆Xk = Yk for a.a.k, then X
is ∆−statistically convergent.

3. MAIN RESULTS

The statistical boundedness for sequences of fuzzy numbers has been defined

by Aytar and Pehlivan [7]. In this study, we will define ∆−statistical boundedness
for sequences of fuzzy numbers and give some relations and theorems.

Definition 3.1. Let X = (Xk) be a sequence of fuzzy numbers. The sequence
X = (Xk) is said to be ∆−statistically bounded above if there exists a fuzzy
number u such that

δ ({k ∈ N : ∆Xk > u} ∪ {k ∈ N : ∆Xk 6∼ u}) = 0.

Similarly, X = (Xk) is said to be ∆−statistically bounded below if there exists a
fuzzy number v such that

δ ({k ∈ N : ∆Xk < v} ∪ {k ∈ N : ∆Xk 6∼ v}) = 0.

If a sequence X = (Xk) of fuzzy numbers is both ∆−statistically bounded above
and ∆−statistically bounded below, then it is called ∆−statistically bounded.

It is also stated this definition as follows: A sequence X = (Xk) of fuzzy
numbers is called ∆−statistically bounded if there exists a real number T such that

d̄ (∆Xk, 0̄) < T for a.a.k.

Since the set L (R) is partially ordered set, it must be considered the in-
comparable elements in L (R) . Therefore we have added the elements of the set

{k ∈ N : ∆Xk 6∼ u} to the set {k ∈ N : ∆Xk > u} .
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We can easily see that if a sequenceX = (Xk) of fuzzy numbers is∆−bounded,
it is also ∆−statistically bounded. Generally, the converse of this claim is not true.
This case can be seen in the following example.

Example 3.2. Let X = (Xk) be a sequence of fuzzy numbers as follows:

Xk (x) =





x − k, x ∈ [k, k + 1]
−x + k + 2, x ∈ (k + 1, k + 2]

0, otherwise





if k = 3n

(n = 0, 1, 2, ...)

u1, if k 6= 3n and k is odd
u2, if k 6= 3n and k is even

where

u1 (x) =





x + 3, x ∈ [−3,−2]
−x − 1, x ∈ (−2,−1]

0, otherwise

and

u2 (x) =





x − 6, x ∈ [6, 7]
−x + 8, x ∈ (7, 8]

0, otherwise

.

Then, for α ∈ (0, 1] , α−level sets of Xk and ∆Xk are respectively

[Xk]
α =





[k + α, k + 2 − α] , if k = 3n

[−3 + α,−1 − α] , if k 6= 3n and k is odd
[6 + α, 8− α] , if k 6= 3n and k is even

and

[∆Xk]
α =





[k − 8 + 2α, k − 4 − 2α] , if k = 3n

[−k + 3 + 2α,−k + 7 − 2α] , if k + 1 = 3n

[−11 + 2α,−7 − 2α] , if k 6= 3n, k + 1 6= 3n and k is odd
[7 + 2α, 11− 2α] , if k 6= 3n, k + 1 6= 3n and k is even

.

By helping the arithmetic operations, we get the sequence ∆Xk as follows:

∆Xk (x)=





1
2 (x − k+8) , x ∈ [k − 8, k − 6]

−1
2 (x − k+6)+1, x ∈ (k − 6, k − 4]

0, otherwise



, if k = 3n

1
2 (x+k − 3) , x ∈ [−k+3,−k+5]

−1
2 (x+k − 5)+1, x ∈ (−k+5,−k+7]

0, otherwise



, if k+1 = 3n

v, if k 6= 3n and k is odd

u, if k 6= 3n and k is even
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where

u (x) =





1
2 (x − 7) , x ∈ [7, 9]

−1
2 (x − 11) , x ∈ (9, 11]

0, otherwise

and

v (x) =





1
2 (x+11) , x ∈ [−11,−9]
−1

2 (x + 7) , x ∈ (−9,−7]
0, otherwise

.

Hence the sequence (Xk) is ∆−statistically bounded since

δ ({k ∈ N : ∆Xk > u} ∪ {k ∈ N : ∆Xk 6∼ u}) = δ ({27, 81, 243, ...}∪ {∅}) = 0

and

δ ({k ∈ N : ∆Xk < v} ∪ {k ∈ N : ∆Xk 6∼ v}) = δ ({26, 80, 242, ...}∪ {∅}) = 0

However, the sequence (Xk) is not ∆−bounded. (See Fig. 1).

Fig. 1. A sequence (Xk) of fuzzy numbers which is ∆−statistically bounded, but not
∆−bounded.

Theorem 3.3. If a sequence X = (Xk) of fuzzy numbers is ∆−statistically
convergent, then it is ∆−statistically bounded.

Proof. Let X = (Xk) be a sequence of fuzzy numbers and be ∆−statistically
convergent to the fuzzy number X0, i.e. SF (∆)− limXk = X0.

Then, we can write for every ε > 0, d̄ (∆Xk, X0) < ε, a.a.k. Since X0 is a

fuzzy number, then there exists a number T ∈ R such that d̄ (X0, 0̄) < T. Thus, for

a.a.k

d̄ (∆Xk, 0̄) ≤ d̄ (∆Xk, X0) + d̄ (X0, 0̄) < ε + T.

Hence, it follows that the sequence (Xk) is ∆−statistically bounded.
In general, the converse of Theorem 3.3 is not true as shown in the following

example.
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Example 3.4. We define the sequence X = (Xk) which is ∆−statistically
bounded as in Example 3.2. Then for every ε > 0 and α ∈ (0, 1], we get

δ
({

k ∈ N : d̄ (∆Xα
k , uα

1 ) ≥ ε
})

=
1
2

δ
({

k ∈ N : d̄ (∆Xα
k , uα

2 ) ≥ ε
})

=
1
2
,

where uα
1 = [7 + 2α, 11− 2α] and uα

2 = [−11 + 2α,−7 − 2α] .
Thus, the sequence X = (Xk) is not ∆−statistically convergent.

Theorem 3.5. If a sequence X = (Xk) of fuzzy numbers is ∆−statistically
Cauchy, then there is a convergent sequence Y = (Yk) such that ∆Xk = Yk for

a.a.k.

Proof. Assume that (Xk) is a ∆−statistically Cauchy so that the closed ball
B = B̄

(
∆XN(1), 1

)
contains∆Xk for a.a.k for some positive numberN (1) . Also

apply hypothesis to choose M so that B′ = B̄
(
∆XM , 1

2

)
contains ∆Xk for a.a.k.

It is clear that B1 = B ∩ B′ contains ∆Xk for and a.a.k.

Therefore B1 is a closed set of diameter less than or equal to 1 that contains
∆Xk for a.a.k.

Now we proceed by choosing N (2) so that B
′′

= B̄
(
∆XN(2),

1
4

)
contains

∆Xk for a.a.k, and by the preceeding argument B2 = B1 ∩ B′′ contains ∆Xk for

a.a.k and B2 has diameter less than or equal to
1
2 .

Continuing this process we construct a sequence {Bm}∞m=1 of closed balls such

that for each m, Bm ⊃ Bm+1, the diameter of Bm is not greater than 1
2m−1 and

∆Xk ∈ Bm for a.a.k.
By the nest of closed set theorem in a complete metric space we have ∩∞

m=1Bm 6=
∅ and contains exactly one element. So there is a fuzzy number L which is

L ∈ ∩∞
m=1Bm. Using the fact that ∆Xk ∈ Bm for a.a.k, we choose an increasing

positive integer sequence {Hm}∞m=1 such that

(1) lim
n

1
n
|{k ≤ n : ∆Xk /∈ Bm}| <

1
m
if n > Hm.

Now we construct a subsequence (Zk) of (∆Xk) consisting of terms of ∆Xk

such that if Hm < k ≤ Hm+1 and ∆Xk /∈ Bm then ∆Xk is a term of Zk.
Next define the sequence (Yk) by

Yk (x) =
{

L, if ∆Xk is a term of Zk

Xk, otherwise
.

Then lim
k→∞

Yk = L for if ε > 1
m > 0 and k > Hm then either ∆Xk is a term

of (Zk) , which means Yk = L or Yk = ∆Xk ∈ Bm and d̄ (Yk , L) ≤ diameter of

Bm ≤ 1
2m−1 .
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We also assert that ∆Xk = Yk for a.a.k. To verify this we observe that if

Hm < n ≤ Hm+1 then

{k ≤ n : Yk 6= ∆Xk} ⊆ {k ≤ n : ∆Xk /∈ Bm}

so by (1)

1
n
|{k ≤ n : Yk 6= ∆Xk}|

≤ 1
n
|{k ≤ n : ∆Xk /∈ Bm}| <

1
m

.

Hence, the limit as n → ∞, is 0 and ∆Xk = Yk for a.a.k. This completes the

proof of the theorem.

Theorem 3.6. If the fuzzy number sequence X = (Xk) is ∆−statistically
Cauchy, then it is ∆−statistically bounded.

Proof. Let X = (Xk) be ∆−statistically Cauchy sequence. Therefore by
Theorem 2.3 and Theorem 3.5, it is ∆−statistically convergent. On the other hands,
from Theorem 3.3 we conclude that X = (Xk) is ∆−statistically bounded.

Theorem 3.7. If X = (Xk) is a ∆− statistically bounded sequence, then we

can write∆X = Y +Z, where Y = (Yk) is bounded and Z = (Zk) is a statistically
null sequence.

Proof. Assume that X = (Xk) is a ∆−statistically bounded sequence. For
T > 0 sufficiently large, narural density of the setM =

{
k ∈ N : d̄ (∆Xk, 0̄) ≥ T

}

is zero. Now, we define the sequences (Xk) and (Yk) such that

Yk =
{

∆Xk, for k ∈ M ′

0̄, otherwise

and

Zk =
{

∆Xk, for k ∈ M
0̄, otherwise

,

where M ′ is complement set of M. It is easy to see that Y = (Yk) is bounded
from the definition of ∆−statistically boundedness. However, Zk is statistically

null sequence. Hence for all k ∈ N, it is clear that (∆Xk) = (Yk) + (Zk) .
We give an example to demonstrate this theorem as follows:

Example 3.8. Consider the sequence of fuzzy numbers X = (Xk) as follows:
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Xk (x) =





x − k, x ∈ [k, k + 1]
−x + k + 2, x ∈ (k + 1, k + 2]

0, otherwise





for k = 5n

(n = 0, 1, 2, ...)
k

k+1x − k−1
k+1 , x ∈

[
k−1
k , 2

]

− k
k+1x + 3k+1

k+1 , x ∈
(
2, 3k+1

k

]

0, otherwise





otherwise

Then, for α ∈ (0, 1] , α−level sets of (Xk) and (∆Xk) are respectively

[Xk]
α =

{
[k + α, k + 2− α] , if k = 5n[

k−1
k + α(k+1)

k , 3k+1
k − α(k+1)

k

]
, otherwise

and

[∆Xk]
α =





[
k2−2k+α(2k+3)−4

k+1 , k2+2k−α(2k+3)+2
k+1

]
, if k = 5n

[
−k2−2k+α(2k+1)−1

k ,
−k2+2k−α(2k+1)+1

k

]
, if k + 1 = 5n

[
−2k2−4k+α(2k2+4k+1)−1

k(k+1)
,

2k2+4k−α(2k2+4k+1)+1

k(k+1)

]
, otherwise

.

It is seen that the sequence (∆Xk) is statistically convergent to fuzzy number L,

where [L]α = [−2 + 2α, 2− 2α] . On the other hands, it is written that the set
[∆Xk]

α
is summation of [Yk]

α
and [Zk ]α , where

[Yk ]α =





0̄, if k = 5n

0̄, if k + 1 = 5n
[
−2k2−4k+α(2k2+4k+1)−1

k(k+1) ,
2k2+4k−α(2k2+4k+1)+1

k(k+1)

]
, otherwise

and

[Zk ]α =





[
k2−2k+α(2k+3)−4

k+1 ,
k2+2k−α(2k+3)+2

k+1

]
, if k = 5n

[
−k2−2k+α(2k+1)−1

k , −k2+2k−α(2k+1)+1
k

]
, if k + 1 = 5n

0̄, otherwise

.

Here, we get the sequence (Yk) is bounded and the sequence (Zk) is statistically
convergent to zero.

Lemma 3.9. A sequence X = (Xk) of fuzzy numbers is ∆−statistically
bounded iff there exists a subset K = (k1 < k2 < k3 < ...) ⊂ N such that δ (K) =
1 and (∆Xkn) is a bounded sequence.
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Proof. It is clear from definition of ∆−statistically bounded and from Theorem
3.7.

The following is an inclusion relation between statistically bounded and∆−statis-
tically bounded sequences .

Theorem 3.10. If a sequence X = (Xk) of fuzzy numbers is statistically
bounded, then it is ∆−statistically bounded.

Proof. It is easy to see that if a sequence of fuzzy numbers is statistically

bounded, it is also ∆−statistically bounded. But, the converse of this claim does
not hold in general as in following example.

Example 3.11. Define the sequence X = (Xk) as follows:

Xk (x) =





x + 3, x ∈ [−3,−2]
−x − 1, x ∈ (−2,−1]

0, otherwise





for k = 3n

(n = 0, 1, 2, ...)

x − 2k + 1, , x ∈ [2k − 1, 2k]
−x + 2k + 1, , x ∈ (2k, 2k + 1]

0, otherwise



 otherwise

For α ∈ (0, 1] , we get

[Xk]
α =

{
[−3 + α,−1 − α] , if k = 3n

[2k − 1 + α, 2k + 1 − α] , otherwise

and

[∆Xk]
α =





[−2k + 2α − 6,−2k − 2α − 2] , if k = 3n

[2k + 2α, 2k − 2α + 4] , if k + 1 = 3n

[2α − 4,−2α] , otherwise

.

Then, it follows that (∆Xk) is a statistically bounded sequence. On the other hands,
(Xk) is not statistically bounded.

4. CONCLUSION

The notion of statistical boundedness in sequence of fuzzy numbers was in-

troduced and studied by Aytar and Pehlivan [7]. Now, in this paper we study

∆−statistical boundedness of sequence of fuzzy numbers using a difference opera-
tor and examine relations between∆−statistical boundedness,∆−statistical conver-
gence and ∆−statistical cauchy convergence by helping some interesting examples.

Here, we would like to specify that, for m ∈ N, ∆m−statistical boundedness
for sequence of fuzzy numbers can be studied by researchers, which is an open

problem.
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