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A DETERMINISTIC APPROACH FOR SOLVING THE HULL AND
WHITE INTEREST RATE MODEL

Homing Chen and Cheng-Feng Hu*

Abstract. This work considers the resolution of the Hull and White interest
rate model. A deterministic process is adopted to model the random behavior
of interest rate variation as a deterministic perturbation. It shows that the
interest rate function and the yield function of the Hull and White interest
rate model can be obtained by solving a nonlinear semi-infinite programming
problem. A relaxed cutting plane algorithm is then proposed for the resulting
optimization problem. The features of the proposed method are tested using a
set of real data and compared with some commonly used spline fitting methods.

1. INTRODUCTION

The interest rate model plays a central role in the theory of modern economics
and finance. In the past studies interest rate models described by stochastic process
are widely used. It is usually assumed that the interest rates are sufficient statistics
for the stochastic movement of current term structure. An enormous amount of work
has been directed towards modeling and estimation of the short term interest rate
dynamics. Some single-factor models [3, 5, 26] have been proposed and widely used
in practice because of their tractability and their ability to fit reasonably well the dy-
namics of the short term interest rates. Econometric estimation of these models has
also been intensively studied in the literature [3, 6, 20]. Generally, the problem of
estimation occurring in nondeterministic systems has been investigated by mean of
many stochastic models, beginning with the papers of Wiener[27] and Kalman[14].
Earlier in the 1970s, nonstochastic observation models under uncertainty appeared
in [4, 17, 18]. A new approach for optimization of linear dynamical systems un-
der uncertainty was presented in [9] based on the earlier fundamental papers of
Gabasov, Kirillova and colleagues[7, 8, 16]. Recently, Kortanek and Medvedev[15]
considered the development and application of a new class of models of this type
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for the term structure of interest rates. A deterministic process was introduced to
model the random behavior of interest rate variation as a deterministic perturbation
which was later investigated by [23], and [24]. Sarychev et al. [22] included a set
of original papers based on the mathematics of control systems and applications to
finance. Inspired and motivated by the recent research, this work considers the Hull
and White interest rate model, which can be described by the following stochastic
differential equation.

(1.1) dr(t) = α(µ(t)− r(t))dt + σdB(t),

where

(1.2) µ(t) =
1
α

∂

∂t
f(0, t) + f(0, t) +

σ2

2α2
(1− e−2αt),

f(0, t) is the forward interest rate, r(t) is the instance interest rate, B(t) denotes
the Brownian motion, σ is the instantaneous standard deviation of the interest rate
and the coefficient α, satisfyies

0 < α ≤ α ≤ α

with the pre-assigned bounds α, and α.
To solve the Hull and White interest rate model (1.1), the concept of the deter-

ministic perturbations is adopted to deal with the random behavior of interest rate
variations. It is shown that the interest rate function and the yield function of the
Hull and White interest rate model (1.1) can be obtained by solving a nonlinear
semi-infinite programming problem. A relaxed cutting plane algorithm is proposed
for solving the resulting optimization problem. In each iteration, we solve a finite
optimization problem and add one or some more constraints. The proposed algo-
rithm chooses a point at which the infinite constrains are violated to a degree rather
than the violation being maximized. The organization of the rest of this paper is
as follows. Section 2 provides some basic definitions to formulate the Brownian
motion in the Hull and White interest rate model in terms of the deterministic per-
turbation. It shows that the Hull and White interest rate model can be solved via
a nonlinear semi-infinite programming problem. Solution algorithms are developed
in Section 3 for solving the resulting semi-infinite programming problem. The nu-
merical results and comparison to some commonly used spline fitting methods are
reported in Section 4. The paper is concluded in Section 5.

2. THE HULL AND WHITE INTEREST RATE MODEL WITH IMPULSE PERTURBATION

As mentioned in the previous section, in this paper a deterministic process is
adopted to model the uncertainty in the interest rate behavior. It is assumed that the
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uncertainty is deterministic, which is depending on the time t. For convenience we
denote the nonstochastic uncertainty as an integral function w(t), and w(t), w(t)
are assumed to be the pre-assigned upper and lower bounds of w(t), respectively,
i.e.,

(2.1) w(t) ≤ w(t) ≤ w(t).

In this case, the Hull and White interest rate model can be formulated as the fol-
lowing differential equation with uncertainty.

(2.2) dr(t) = α(µ(t) − r(t))dt + σw(t)dt.

To simplify the calculation process, we reduce the forward interest rate to the fol-
lowing form [2].

(2.3) f̃(0, t)
�
= f̃i = c + d exp(bt), ∀t ∈ ℵi, i = 1, 2, · · · , N.

where b, c, d ∈ R.

Moreover, to specify the perturbation function w(t), here we introduce some no-
tations and definitions. Assume that there are M observed yields, say R̄i, with time
to maturity T corresponding to the i−th day of observation, i = 1, 2, · · · , M. Let
ℵ̃ �

= {t0, t1, · · · , tM+T }, where ti−1 < ti, and ℵi
�
= [ti−1, ti), i = 1, 2, · · · , M +T .

For convenient, we denote M + T = N.

Definition 2.1. The Observed Treasury Yield.
The observed Treasury yield is defined as follows.

R̄(t | T )
�
= R̄i, ∀t ∈ ℵi, i = 1, 2, · · · , M.

Definition 2.2. The Yield Function.
The yield function is defined as the mean value of interest rate of integral, i.e.,

(2.4) y(t | T )
�
=

1
T

∫ t+T

t

r(τ)dτ, ∀t ∈ ℵi, i = 1, 2, · · · , M.

Definition 2.3. The Function of Estimation Error.
The function of estimation error is defined as the difference of the yield function
and the observed Treasury yield, i.e.,

ξ(t)
�
= y(t | T )−R(t | T ), ∀t ∈ ℵi, i = 1, 2, · · · , M.(2.5)

Definition 2.4. The Impulse Perturbation.
Let w(t)

�
= wi(t), ∀t ∈ ℵi, i = 1, 2, · · · , N. The impulse perturbation is the class

of piecewise constant functions, which is locally constant in connected regions and
can be defined as follows:
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wi(t) = wi, ∀t ∈ ℵi, i = 1, 2, · · · , N,(2.6)

where wi ∈ R is a constant and

wi ≤ wi ≤ wi, i = 1, 2, · · · , N,

with wi and wi, i = 1, 2, · · · , N, are pre-assigned bounds for the perturbations.

Definition 2.5. The Forward Mean Function.
The forward mean function is defined as the mean value of forward rate of integral,
i.e.,

(2.7)

F (c, b, d, t | T )
�
=

1
T

∫ t+T

t
f̃ (0, τ)dτ,

= c +
d

bT (exp(b(t + T ))− exp(bt))

b, c, d,∈R, ∀t ∈ ℵi, i = 1, 2, · · · , M.

The solution of the Hull and White interest rate model (2.2) with the impulse
perturbation function defined in (2.6) has the form described in Theorem 2.1.

Theorem 2.1. The instance interest rate function of the Hull and White interest
rate model (2.2) is given by

(2.8)
r(t) = f̃(0, t)+

σ2

2α2

(
1 +2e−2αt−2e−αt

)
+

i−1∑
j=1

σwj
e−αt

α
(eαtj − eαtj−1)

+
wiσ

α
(1− e−α(t−ti−1)), ∀t ∈ ℵi, i = 1, 2, . . . , N.

Proof. The proof is given in the appendix A.
It is well known that the yield function is one of the most important financial

indicators in the theory of modern economics and finance. Substituting (2.8) into
(2.4) yields the following result.

Theorem 2.2. The yield function has the form

(2.9)

y(t|T )

= F (c, b, d, t | T )+
σ2

2α2

(
1− e−2α(t+T )−e−2αt

2T α
+

2e−α(t+T ) − 2e−αt

T α

)

+
i−1∑
k=1

(
eα(tk−t) + eα(tk−1−t−T )

T α2
− eα(tk−t−T ) + eα(tk−1−t)

T α2

)
σwk

+(
ti − t

T α
+

eα(ti−1−t−T ) − eα(ti−t−T ) − eα(ti−1−t) + 1
T α2

)σwi

+
i+T −1∑
k=i+1

(
tk − tk−1

T α
+

eα(tk−1−t−T ) − eα(tk−t−T )

T α2
)σwk
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+(
t + T − ti+T −1

T α
+

eα(ti+T −1−t−T ) − 1
T α2

)σwi+T , t ∈ ℵi, i = 1, 2, ..., M.

Proof. The proof is given in the appendix B.
To shorten the mathematical formulas in (2.9), the following notations are in-

troduced. Let

(2.10)

ak(α, t|T )

=




(
eα(tk−t)+eα(tk−1−t−T )

T α2
− eα(tk−t−T )+eα(tk−1−t)

T α2

)
σ, if k<i,

(
ti − t

T α
+

eα(ti−1−t−T )+1
T α2

− eα(ti−t−T )+eα(ti−1−t)

T α2

)
σ, if k=i,

(
tk − tk−1

T α
+

eα(tk−1−t−T ) − eα(tk−t−T )

T α2

)
σ, if i<k<i + T ,

(
t + T − ti+T −1

T α
+

eα(ti+T −1−t−T ) − 1
T α2

)
σ, if k=i+T .

we have

(2.11)

y(t|T ) = F (c, b, d, t | T ) +
σ2

2α2
(1− e−2α(t+T ) − e−2αt

2T α

+
2e−α(t+T ) − 2e−αt

T α
) +

i+T∑
k=1

ak(α, t|T )wk,

t ∈ ℵi, i = 1, 2, · · · , M.

This work considers to find the impulse perturbation w(t) that minimizes the max-
imum absolute value of the function of estimation errors defined in (2.5). It leads
to the following optimization problem.

Problem 1.

min ε

s.t. R̄(t | T ) � y(t|T ) + ε, ∀t ∈ ℵi, i = 1, 2, . . . , M,

R̄(t | T ) � y(t|T )− ε, ∀t ∈ ℵi, i = 1, 2, . . . , M,

α ≤ α ≤ α, wi ≤ wi ≤ wi, i = 1, 2, . . . , N.

Substituting (2.11) into the Problem 1 leads to the following nonlinear program-
ming problem.
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Problem 2.

min ε

s.t. Ri � F (c, b, d, t | T )

+
σ2

2α2

(
1− e−2α(t+T )

2T α
− e−2αt

2T α
+

2e−α(t+T ) − 2e−αt

T α

)

+
i+T∑
j=1

aj(α, t|T )wj + ε,

Ri � F (c, b, d, t | T )

+
σ2

2α2

(
1− e−2α(t+T ) − e−2αt

2T α
+

2e−α(t+T ) − 2e−αt

T α

)

+
i+T∑
j=1

aj(α, t|T )wj − ε, ∀ t ∈ ℵi, i = 1, 2, . . . , M,

α ≤ α ≤ α, wi ≤ wi ≤ wi, i = 1, 2, . . . , N.

It should be noticed that the Problem 2 is a semi-infinite programming problem with
finite variables, b, c, d, α, σ, ε, wi, i = 1, 2, · · · , N, and infinite many constraints.

3. AN ALGORITHM

There are many semi-infinite programming algorithms [11, 12, 13] available for
solving the Problem 2. The difficulty lies in how to effectively deal with the infinite
number of constrains. Based on a recent review [13], the “cutting plane approach”
is an effective one for such application. Following the basic concept of the cutting
plane approach, we can easily design an iterative algorithm which adds one or some
more constraint at a time for consideration until an optimal solution is identified.
To be more specific, at the k − th iteration, given subsets N k

i = {τ i
1, τ

i
2, · · · , τ i

pk
i
}

and ℵk
i = {ui

1, u
i
2, · · · , ui

qk
i
} of ℵi, where pk

i , q
k
i ≥ 1, i = 1, 2, · · · , M, we consider

the following finite optimization problem.

Program SDk

(3.1)

min φ(b, c, d, α, σ,w, ε) = ε

s.t. Ri � F (c, b, d, τ i
s | T )

+
σ2

2α2
(1− e−2α(τ i

s+T )

2T α
− e−2α(τ i

s)

2T α
+

2e−α(τ i
s+T )−2e−α(τ i

s)

T α
)

+
i+T∑
j=1

aj(α, τ i
s|T )wj + ε, s = 1, 2, · · · , pk

i , i = 1, 2, · · · , M,
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Ri � F (c, b, d, ui
l | T )

+
σ2

2α2
(1− e−2α(ui

l+T ) − e−2α(ui
l)

2T α
+

2e−α(ui
l+T ) − 2e−α(ui

l)

T α
)

+
i+T∑
j=1

aj(α, ui
l|T )wj − ε, l = 1, 2, · · · , qk

i , i = 1, . . . , M,

α ≤ α ≤ α, wi ≤ wi ≤ wi, i = 1, 2, . . . , N.

Let F k be the feasible region of Program SDk. Suppose that (bk, ck, dk, αk,
σk, wk, εk) is an optimal solution of SDk. We define the “constraint violation
functions” as follows.

(3.2)

gk+1
i (τ)

�
=Ri−F (bk, ck, dk, τ |T )− (σk)2

2(αk)2
(1− 2e−α(τ i

s+T )−2e−α(τ i
s)

T α

+
2e−αk(τ+T ) − 2e−αk(τ )

T αk
)−

i+T∑
j=1

aj(αk, τ |T )wk
j − εk,

τ ∈ ℵi, i = 1, 2, · · · , M,

and

(3.3)

vk+1
i (u)

�
= F (bk, ck, dk, τ | T )+

(σk)2

2(αk)2
(1− e−2(αk)(u+T )−e−2αk(u)

2T αk

+
2e−αk(u+T ) − 2e−αk(u)

T αk
) +

i+T∑
j=1

aj(αk, u|T )wk
j − εk −Ri,

u ∈ ℵi, i = 1, · · · , M.

Since Ri, aj are continuous over the compact set ℵi, the function gk+1
i (τ)

achieves its maximum over ℵi, i = 1, 2, · · · , M. A similar argument holds for
the function vk+1

i (u), i = 1, 2, · · · , M. Let τ i
pk

i +1
and ui

qk
i +1

be such maximizers,

i = 1, 2, · · · , M, and consider the values of gk+1
i (τ i

pk
i +1

) and vk+1
i (ui

qk
i +1

), i =

1, 2, · · · , M. If the values are less than or equal to zero, then (bk, ck, dk, αk, σk, wk,
εk) becomes a feasible solution of the Problem 2, and hence (bk, ck, dk, αk, σk, wk,
εk) is optimal for the Problem 2 (because the feasible region F k of Program SDk

is no smaller than the feasible region of the Problem 2). Otherwise, we know that
at least τ i

pk
i +1

/∈ Nk
i or ui

qk
i +1

/∈ ℵk
i , i = 1, 2, · · · , M. This background provides a

foundation for us to outline a cutting plane algorithm for solving the Problem 2.

CPSD Algorithm:
Initialization

Set k = pk
i = qk

i = 1, i = 1, 2, · · · , M ; Choose any τi
1, u

i
1 ∈ ℵi, i = 1, 2, · · · , M ;

Set N 1
i = {τ i

1} and ℵ1
i = {ui

1}, i = 1, 2, · · · , M.
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Step 1. Solve SDk and obtain an optimal solution (bk, ck, dk, αk, σk, wk, εk).

Step 2. Find a maximizer τi
pk

i +1
of gk+1

i (τ) over ℵi and a maximizer ui
qk
i +1

of

vk+1
i (u) over ℵi, i = 1, 2, · · · , M.

Step 3. If gk+1
i (τ i

pk
i +1

) ≤ 0 and vk+1
i (ui

qk
i +1

) ≤ 0, i = 1, 2, · · · , M, then stop
with (bk, ck, dk, αk, σk, wk, εk) being an optimal solution of the Problem 2.
Otherwise, go to step 4.

Step 4. If gk+1
i (τ i

pk
i +1

) > 0, then set N k+1
i ← Nk

i

⋃
{τ i

pk
i +1
}, pk+1

i ← pk
i + 1.

Otherwise, set N k+1
i ← Nk

i , pk+1
i ← pk

i , i = 1, 2, · · · , M.

Step 5. If vk+1
i (ui

qk
i +1

) > 0, then set ℵk+1
i ← ℵk

i

⋃
{ui

qk
i +1
}, qk+1

i ← qk
i + 1.

Otherwise, set ℵk+1
i ← ℵk

i , q
k+1
i ← qk

i , i = 1, 2, · · · , M.

Step 6. Set k ← k + 1 go to Step 1.

When the Problem 2 has at least one feasible solution, it can be shown without
much difficulty that the CPSD algorithm either terminates in a finite number of iter-
ations with an optimal solution or generates a sequence of points {(bk, ck, dk, αk, σk,
wk, εk), k = 1, 2, · · ·}, which converges to an optimal solution (b∗, c∗, d∗, α∗, σ∗, w∗,
ε∗), under some appropriate assumptions. However, for the above cutting plane al-
gorithm, one major computation bottleneck lies in Step 2 of finding maximizers.
Ideas of relaxing the requirement of finding global maximizers for different settings
can be referred to [10] and [25]. But the required computation work could still be
a bottleneck. Here we propose a simple and yet very effective relaxation scheme
which chooses points at which the infinite constrains are violated to a degree rather
than at which the violation are maximized. The proposed algorithm is stated as
follows.

Relaxed CPSD Algorithm:
Let δ > 0 be a prescribed small number.
Initialization Set k = pk

i = qk
i = 1, i = 1, 2, · · · , M ; Choose any τi

1, u
i
1 ∈ ℵi, i =

1, 2, · · · , M ; Set N 1
i = {τ i

1} and ℵ1
i = {ui

1}, i = 1, 2, · · · , M.

Step 1. Solve SDk and obtain an optimal solution (bk, ck, dk, αk, σk, wk, εk). De-
fine gk+1

i (τ) and vk+1
i (u), i = 1, 2, · · · , M, according to (3.2) and (3.3)

,respectively.

Step 2. Find any τi
pk

i +1
∈ ℵi such that gk+1

i (τ i
pk

i +1
) > δ, and ui

qk
i +1
∈ ℵi such that

vk+1
i (ui

qk
i +1

) > δ, i = 1, 2, · · · , M.

Step 3. If such τi
pk

i +1
and ui

qk
i +1

do not exist, then output (bk, ck, dk, αk, σk, wk, εk)
as a solution. Otherwise, go to step 4.
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Step 4. If such τi
pk

i +1
exists, then set N k+1

i ← Nk
i

⋃
{τ i

pk
i +1
}, pk+1

i ← pk
i + 1.

Otherwise, set N k+1
i ← Nk

i , pk+1
i ← pk

i , i = 1, 2, · · · , M.

Step 5. If such ui
qk
i +1

exists, then set ℵk+1
i ← ℵk

i

⋃
{ui

qk
i +1
}, qk+1

i ← qk
i + 1.

Otherwise, set ℵk+1
i ← ℵk

i , q
k+1
i ← qk

i , i = 1, 2, · · · , M.

Step 6. Set k ← k + 1; go to step 1.

Note that in Step 2, since no maximizer is required, the computational work can
be greatly reduced. Also note that when δ is chosen to be sufficiently small, if
the relaxed algorithm terminates in a finite number of iterations at Step 3, then an
optimal solution is indeed obtained, assuming that the original the Problem 2 is
feasible.

4. NUMERICAL RESULTS

In this section, the features of the proposed method are tested using a set of real
data and compared with the smoothing spline method [1], the cubic smoothing
spline method [21], and the maximum smoothing spline method [19]. The numer-
ical examples and results of the Hull and White interest rate model with impulse
perturbations are presented in this section. The observed 3-MONTH TREASURY
BILL RATE data of the St. Louis Federal Reserve Bank from 2006-11-17 to 2009-
7-17 (140 weeks) is employed for analysis. The initial guesses and bounds of the
parameters of the Hull and White interest rate model are listed in Table 1.

Table 1: The initial guesses and bounds of the parameters of the Hull and White
interest rate model

0 initial guess lower bound upper bound
α Shown in Tables 2 & 3 0 ∞
σ Shown in Tables 2 & 3 0 ∞
b 0.1 −∞ ∞
c 0 −∞ ∞
d 0 −∞ ∞

w(t) 0 −∞ ∞
ε 0 0 ∞

In our implementation, the initial values are obtained by solving the Problem 2 for
any arbitrary initial guesses as listed in Table 1. The numerical analysis results for
different initial values of α, and σ are shown in Tables 2 and 3, respectively. In
Tables 2 and 3, b∗, c∗, d∗,σ∗, α∗, ε∗ denote the optimal solutions of the Problem 2,
and Tol is the stopping tolerance value for solving the Problem 2. Table 4 compares
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Table 2: The numerical analysis results for different α with σ = 0.75

Case 1 2 3 4 5
α 0.01 0.05 0.1 0.5 0.75
σ 0.75 0.75 0.75 0.75 0.75
b∗ 0.763019 0.755906 0.674160 0.774988 0.728731
c∗ 0.025725 0.025412 0.018815 0.023034 0.019984
d∗ 0.027378 0.027691 0.033969 0.029745 0.032451
α∗ 0.034349 0.036236 0.012892 -0.006085 0.005129
σ∗ -0.097582 -0.097569 -0.098571 -0.098782 -0.099933
ε∗ 0.828525 0.828557 0.827316 0.826682 0.825190
Tol 10−7 10−7 10−7 10−7 10−7

Table 3: The numerical analysis results for different σ with α = 0.3

Case 1 2 3 4 5
α 0.3 0.3 0.3 0.3 0.3
σ 0.01 0.1 0.25 0.5 0.75
b∗ 0.238864 0.226407 0.220583 0.226314 0.237644
c∗ -0.066543 -0.058622 -0.061317 -0.057974 -0.050042
d∗ 0.118422 0.111296 0.113988 0.110650 0.102765
α∗ 0.006016 0.069467 0.072010 0.072917 0.083773
σ∗ -0.098581 -0.098299 -0.098312 -0.098336 -0.098342
ε∗ 0.827870 0.827818 0.827804 0.827783 0.827739
Tol 10−7 10−7 10−7 10−7 10−7

Table 4: The yield curve variance for different methods

The yield curve variance
Original data 3.5536e-004
Smoothing Spline 3.5066e-004
Cubic Smoothing Spline 3.5130e-004
Maximum Smoothing Spline Method 3.6418e-004
Deterministic Approach(σ = 0.5, α = 1) 3.1656e-004

the yield curve variance for the smoothing spline method, the cubic smoothing spline
method, the maximum smoothing spline method, and our approach. The result
illustrates that our approach generates the yield function with smaller oscillation.
Moreover, Figure 1(a) ∼(f) show the estimates of the yield curves for different initial
values of α and σ. It should be noted that for a fixed value of α, the yield function
with minimal fitting errors can be obtained when σ is chosen to be sufficiently
large. Moreover, for a fixed value of σ, when α is selected to be large enough,
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highly smooth interest rate and yield functions are conducted.

Fig. 1. Yield curves for different values of α and σ.

5. CONCLUSION

The Hull and White interest rate model with impulse perturbation is studied. The
concept of deterministic perturbation is adopted to deal with the random behavior
of interest rate variation. It shows that the interest rate function and the yield
function of the Hull and White interest rate model can be obtained by solving a
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nonlinear semi-infinite programming problem. A relaxed cutting plane algorithm
is then proposed for solving the resulting optimization problem. In each iteration,
we solve a finite optimization problem and add one or some more constraint. The
proposed algorithm chooses a point at which the infinite constrains are violated
to a degree rather than at which the violation is maximized. Compared to some
commonly used spline fitting methods, our approach essentially generates the yield
functions with minimal fitting errors and small oscillations.

APPENDIX A. DERIVATION OF THE INSTANCE INTEREST RATE FUNCTION

Proof of Theorem 1. Multiply both sides with the integrating factor eαt for (2.2)
we have

(A1)

eαt dr(t)
dt

+ αeαtr(t) = αeαtµ(t) + σeαtw(t)

∫ t

t0

d(eατ r(τ )) =
∫ t

t0

αeατµ(τ ) + σeατw(τ )dτ

eατ r(τ )|tt0 =
∫ t

t0

αeατµ(τ )dτ +
∫ t

t0

σeατw(τ )dτeαtr(t)

eαtr(t)− eαt0r(t0)

=
∫ t

t0

αeατ

(
1
α

∂

∂τ
f(0, τ ) + f(0, τ ) +

σ2

2α2
(1− e−2ατ)

)
dτ

+
∫ t

t0

σeατw(τ )dτ

=
∫ t

t0

d (eατf(0, τ )) +
σ2

2α

∫ t

t0

(
eατ − e−ατ

)
dτ +

∫ t

t0

σeατw(τ )dτ

= eαtf(0, t) − eαt0 f̄(0, t0) +
σ2

2α2

(
eαt + e−αt − eαt0 − e−αt0

)

+
∫ t

t0

σeατw(τ )dτ

r(t) = eα(t0−t)r(t0) + f(0, t) − eα(t0−t)r(t0)

+
σ2

2α2

(
1 + e−2αt − eα(t0−t) − e−α(t0+t)

)
+
∫ t

t0

σeα(τ−t)w(τ )dτ

r(t) = f(0, t) +
σ2

2α2

(
1 + e−2αt − eα(t0−t) − e−α(t0+t)

)
+σ

∫ t1

t0

eα(τ−t)w1(τ )dτ + σ

∫ t2

t1

eα(τ−t)w2(τ )dτ + . . .

+σ

∫ ti−1

ti−2

eα(τ−t)wi−1(τ )dτ + σ

∫ t

ti−1

eα(τ−t)wi(τ )dτ
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Substitute (2.3) into (A1), we have

(A2)

r(t) = f̃(0, t) +
σ2

2α2

(
1 + e−2αt − eα(t0−t) − e−α(t0+t)

)
+σ

i−1∑
j=1

wj

∫ tj

tj−1

eα(τ−t)dτ + σwi

∫ t

ti−1

eα(τ−t)dτ.

= f̃(0, t) +
σ2

2α2

(
1 + e−2αt − eα(t0−t) − e−α(t0+t)

)

+
i−1∑
j=1

σwj

α
(eα(tj−t) − eα(tj−1−t)) +

wiσ

α
(1− eα(ti−1−t)).

= f̃(0, t) +
σ2

2α2

(
1 + 2e−2αt − 2e−αt

)
+

i−1∑
j=1

σwj
e−αt

α
(eαtj − eαtj−1 )

+
wiσ

α
(1− e−α(t−ti−1)), ∀t ∈ ℵi, i = 1, 2, . . . , N.

APPENDIX B. DERIVATION OF THE YIELD FUNCTION

Proof of Theorem 2.

(B1)

y(t|T )

=
1
T

∫ t+T

t

r(τ )dτ

=
1
T

{∫ t+T

t

f̃(0, τ )dτ +
σ2

2α2

∫ t+T

t

(
1 + e−2ατ − 2e−ατ

)
dτ

+
∫ ti

t

( i−1∑
k=1

σwk
e−ατ

α
(eαtk − eαtk−1) + σwi

1− eα(ti−1−τ)

α

)
dτ

+
i+T −1∑
j=i+1

∫ tj

tj−1

( j−1∑
k=1

σwk
e−ατ

α
(eαtk − eαtk−1)+σwj

1−eα(tj−1−τ)

α

)
dτ

+
∫ t+T

ti+T −1

(
i+T −1∑

k=1

σwk
e−ατ

α
(eαtk − eαtk−1)+σwi+T

1− eα(ti+T−1−τ)

α

)
dτ

}

= F (c, b, d, t | T )+
1
T

{
σ2

2α2

(
T − e−2α(t+T ) − e−2αt

2α
+

2e−α(t+T )−2e−αt

α

)

+
i−1∑
k=1

(eαtk − eαtk−1)
α

σwk

∫ t+T

t

e−ατdτ + (
1
α

∫ ti

t

(1− eα(ti−1−τ))dτ

+
eαti − eαti−1

α

∫ t+T

ti

e−ατdτ )σwi +
i+T −1∑
k=i+1

(
1
α

∫ tk

tk−1

(1− eα(tk−1−τ))dτ
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+
eαtk − eαtk−1

α

∫ t+T

tk

e−ατdτ )σwk +
1
α

∫ t+T

ti+T−1

(1− eα(ti+T−1−τ))σwi+T dτ

}

= F (c, b, d, t | T ) +
σ2

2α2

(
1− e−2α(t+T ) − e−2αt

2T α
+

2e−α(t+T ) − 2e−αt

T α

)

+
i−1∑
k=1

(
eα(tk−t) + eα(tk−1−t−T )

T α2
− eα(tk−t−T ) + eα(tk−1−t)

T α2

)
σwk

+(
ti − t

T α
+

eα(ti−1−t−T ) + 1
T α2

− eα(ti−t−T ) + eα(ti−1−t)

T α2
)σwi

+
i+T −1∑
k=i+1

(
tk − tk−1

T α
+

eα(tk−1−t−T ) − eα(tk−t−T )

T α2
)σwk

+
( t+T − ti+T −1

T α
+

eα(ti+T−1−t−T ) − 1
T α2

)
σwi+T , t ∈ ℵi, i = 1, 2, ...,M.
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