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SEMI-RIEMANNIAN GEOMETRY WITH NONHOLONOMIC
CONSTRAINTS

Anna Korolko and Irina Markina

Abstract. In the present article the geometry of semi-Riemannian manifolds
with nonholonomic constraints is studied. These manifolds can be considered
as analogues to the sub-Riemannian manifolds, where the positive definite
metric is substituted by a nondegenerate metric. We study properties of the
exponential map, the Christoffel symbols and other differential operators are
introduced. We study solutions of the Hamiltonian system and their projections
into the underlying manifold. The explicit formulae were found for a specific
example of a semi-Riemannian manifold with nonholonomic constraints.

1. INTRODUCTION

Sub-Riemannian manifolds and the geometry introduced by bracket generating
distributions of smoothly varying m-dimensional planes are widely studied interest-
ing subject, which has applications in control theory, quantum physics, C-R geom-
etry, the theory of principal bundles, and other areas. The main difference between
the sub-Riemannian manifold and Riemannian one is the presence of a smooth sub-
bundle of the tangent bundle, generating the entire tangent bundle by means of the
commutators of vector fields. The subbundle, which is often called horizontal, is
equipped with a positively definite metric that leads to the triple: manifold, hor-
izontal subbundle, and Riemannian metric on the horizontal subbundle, which is
called a sub-Riemannian manifold. The foundation of the sub-Riemannian geome-
try can be found in [13-15, 18]. The following question can be asked. What kind
of geometrical features will have the mentioned triplet if we change the positive
definite metric on the subbundle to an indefinite nondegenerate metric? We use the
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term semi-Riemannian to emphasis that the considered metric is nondegenerate in
contrast to the positive definite metric, which is referred as Riemannian. As it is
known to the authors the present work is the first attempt to study systematically the
geometry of semi-Riemannian manifolds with nonholonomic constraints, which we
will call the sub-semi-Riemannian manifolds or shortly ssr-manifolds. In the present
paper we study the exponential map and solutions to the Hamiltonian system that
has no established terminology in the literature and can be called geodesics or ex-
tremals, see for instance [13, 18]. The ssr-manifolds have their own peculiarity that
distinguishes them from the sub-Riemannian and semi-Riemannian manifolds. The
simplest example of a semi-Riemannian manifold with nonholonomic constraints is
the Heisenberg group equipped with the Lorentzian metric and it has been consid-
ered in [6, 7, 11]. It was shown in [11] that in contrast with the Heisenberg group
with positive definite metric the Lorentzian type of the Heisenberg group possesses
the uniqueness of extremals both of timelike or spacelike type. The structure of the
article is the following. Section 2 is devoted to main definitions. The collection of
technical lemmas concerning Christoffel symbols is proved in Section 3. In Sec-
tion 4 the extremals and the exponential map are introduced and the extendability
of extremals and Gauss lemma are shown. Some properties of the length are also
studied. Section 5 is devoted to the differential properties of the exponential map. It
is shown that the exponential map possesses an analogue of “local diffeomorphism”
property, although it is not a diffeomorphism at the origin. The final Section 6
shows an example of ssr-manifold, where the explicit formulae of extremals are
found.

2. MAIN DEFINITIONS

Let M be a connected n-dimensional, C∞-manifold, where n ≥ 3. Let Tx and
T ∗

x denote the tangent and cotangent spaces at a point x ∈M , and 〈Y, ξ〉 the pairing
between them, Y ∈ Tx, ξ ∈ T ∗

x . The tangent and cotangent bundles are denoted by
T and T ∗ respectively. Fix an integer m, such that 1 < m < n. Let S be a fixed
subbundle of the tangent bundle T , S =

⋃
x∈M

Sx, Sx be a fiber over x, of the rank

m. A subbundle S will be called bracket generating or complete nonholonomic,
if the vector fields which are sections of S, together with all brackets span Tx at
each x ∈ M . In this case any two points in M can be connected by a piecewise
smooth curve γ(s) such that the tangent vector γ̇(s) belongs to Sγ(s) at each point
γ(s) where the tangent vector exists. The bracket generating subbundle S is called
the horizontal bundle or horizontal distribution, and a curve γ(s) satisfying γ̇(s) ∈
Sγ(s) is called the horizontal curve. A result of Chow [4], see also [17], guarantees
the connectivity of M by horizontal curves. The necessary and sufficient condition
on connectivity by curves tangent to a given distribution of a smooth manifold can
be found in [19]. We notice that the connectivity of a manifold by horizontal curves
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tangent to a given distribution depends only on properties of the distribution and
not on any metric defined on it or on the tangent bundle. If Y ∈ S, let S + [Y, S]
denote the subbundle of T spanned by S and all the vector fields [Y,X ], where X
varies over sections S. A fiber at a point x ∈M is written as Sx +[Y (x), Sx] ∈ Tx

with Y (x) ∈ Sx. Similarly we define bracket(k, Y ) inductively by bracket(2, Y ) =
S + [Y, S] and bracket(k, Y ) = S + [bracket(k − 1, Y ), S]. More generally we
set bracket(2, S) = S + [S, S] and bracket(k, S) = S + [bracket(k − 1, S), S]. A
restriction of a bundle to x ∈M is denoted by writing the subscript x, for example:
bracket(k, Y (x)) = Sx +[bracket(k−1, Y (x)), Sx] ∈ Tx. We will say that a vector
field Y ∈ S is a k-step generator if bracket(k, Y (x)) = Tx for all x ∈M . Similarly,
S will be said to be k-step bracket generating distribution if bracket(k, Sx) = Tx

for every x. From now on we work with a distribution S possessing the bracket
generating property.

By analogy with the sub-Riemannian metric we give the following definition.

Definition 2.1. Let M be a smooth manifold, S be a bracket generating subbun-
dle of the tangent bundle T . A sub-semi-Riemannian metric Q on S is a smoothly
varying in x nondegenerate quadratic form Qx on Sx. We abbreviate the long and
tedious name of sub-semi-Riemannian metric by the term ssr-metric. We call the
pair (S,Q) the sub-semi-Riemannian (ss-Riemannian) structure on M .

We remind that the index ν of a metric is the maximal dimension of the space
Vx ⊂ Sx, where the form Qx is negative definite. If ν = 1 then we call the
ssr-metric the sub-Lorentzian metric following the tradition in semi-Riemannian
geometry. The ssr-metric with the index ν = 0 is just a sub-Riemannian metric.
Given Qx, we may define a linear mapping gx : T ∗

x → Tx as follows: for given
ξ ∈ T ∗

x , the linear mapping W → 〈W, ξ〉, W ∈ Sx can be represented uniquely as
W → Qx(W,X) for some X ∈ Sx, then X is chosen to be gxξ. The map gx is
called a cometric and is completely defined by the two following relations:

(i) image of T∗
x under gx is Sx,

(ii) gx and Qx are related by the identity

(2.1) Qx(W, gxξ) = 〈W, ξ〉 for all W ∈ Sx.

Let S⊥
x denote the kernel of gx, and S⊥ ⊆ T ∗ be the subbundle with fibers S⊥

x .
Then gx : T ∗

x/S
⊥
x → Sx is bijection.

Lemma 2.1. If Qx is symmetric, nondegenerate and has index ν, then g x is
symmetric, degenetareted on S⊥ ⊆ T ∗ and has index ν on T ∗

x/S
⊥
x .

Proof. We understand the action of the cometric g on T ∗×T ∗ → R (omitting
x) as following: g(ξ, ψ) = 〈gξ, ψ〉 for any two covectors ξ and ψ from T∗.
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Thus by definition of the cometric g we have g(ψ, ξ) = 〈gψ, ξ〉 = Q(gψ, gξ),
which equals to Q(gξ, gψ) = 〈gξ, ψ〉 = g(ξ, ψ) by the symmetry of the ssr-metric
Q.

Now, having the nondegeneracy of Q, we prove the nondegeneracy of g on
T ∗/S⊥, that is if g(ξ, ψ) = 0 for any ψ ∈ T∗/S⊥ then ξ ≡ 0. First of all, we
notice that the pairing 〈Y, ξ〉, y ∈ S, ξ ∈ T ∗/S⊥, is not degenerated by (2.1). Then,
taking arbitrary ψ ∈ T ∗/S⊥ and setting Y = gψ, we obtain

g(ψ, ξ) = 〈Y, ξ〉 = 0 for any Y ∈ S.

This implies the necessary result by the nondegeneracy of the pairing. The rela-
tion (2.1) shows that the index of Qx and gx coincides for any x ∈M where gx is
non degenerated.

Conversely, given a symmetric linear operator gx : T ∗
x → Tx with image Sx,

there is a unique nondegenerate quadratic form Qx satisfying (2.1). We write gjk
x ,

j, k = 1, . . .n for the symmetric matrix defining the cometric gx to emphasis that it
is a tensor of covariant type and operates with covectors. The matrix gjkx is never
invertible.

A differential manifold M with a chosen subbundle S of the tangent bundle
and with a given nondegenerate ssr-metric Q on S will be called the sub-semi-
Riemannian manifold or shortly ssr-manifold. If the index ν of Q is 1, then we
call the triplet (M,S,Q) a sub-Lorentzian manifold and in the case of ν = 0 we
get the sub-Riemannian manifold widely studied in [9, 13, 15, 18] and numerous
references therein.

We present a couple of examples of ssr-manifolds.

Example 1. Let us consider the following example of sub-Lorentzian manifold
that we call the Heisenberg group with sub-Lorentzian metric. This example was
considered first in [6, 7] and was also studied in [11]. We remind that the Heisenberg
group H1 is the space R3 furnished with the non-commutative law of multiplication

(x, y, z)(x′, y′, z′) =
(
x+ x′, y + y′, z + z′ +

1
2
(yx′ − xy′)

)
.

This gives the R3 the structure of a non-abelian Lie group. The two-dimensional
horizontal bundle S is given as a span of left invariant vector fields

X =
∂

∂x
+

1
2
y
∂

∂z
, Y =

∂

∂y
− 1

2
x
∂

∂z
,

that can be found as the left action of the Lie group. There is only one nonvanishing
commutator [X, Y ] = Z = ∂

∂z . We suppose that the Lorentzian metric Q is defined
on S by setting

Q(X,X) = −1, Q(Y, Y ) = 1, Q(X, Y ) = 0.
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Thus the triple (R3, S, Q) is called the Heisenberg group with the Lorentzian metric,
and to differ it from the classical case H1 we use the notation H1

L. We say the
classical case bearing in mind the manifold (R3, S, d) with a positively definite
metric d on S.

The quadratic nondegenerate symmetric form Q, written in the left invariant
basis X, Y of S, is

Q = {Qab} =
(
−1 0
0 1

)
.

Take the basis of Lie algebra associated with the Heisenberg group, considered as the
Lie group, (X, Y, Z) ∈ T . The dual basis of T ∗ consists of the forms dx, dy, ω =
dz− 1

2 (xdy−ydx). We wish to find the cometric g = gjk. Let g dx = a1X+a2Y .
Making use of (2.1) for W replaced by X and Y , we deduce that g dx = −X . In
the same way we get g dy = Y . Thus, the equality g(ζ, ξ) = Q(gζ, gξ) calculated
for the basic forms implies the values g = gjk for j, k = 1, 2. The rest of the
terms vanish because of g(dx, ω) = 〈g dx, ω〉 = 0, g(dy, ω) = 〈g dy, ω〉 = 0, and
gω = 0. Finally we get in the basis dx, dy, w

gjk =


−1 0 0

0 1 0
0 0 0


 .

Example 2. Consider the example of ssr-manifold related to the notion of
Heisenberg-type groups based on quaternions [2, 5, 10]. The manifold M is R7.
The vector fields

X1 =
∂

∂x1
+

1
2

(
+x2

∂

∂z1
− x4

∂

∂z2
− x3

∂

∂z3

)
,

X2 =
∂

∂x2
+

1
2

(
−x1

∂

∂z1
− x3

∂

∂z2
+ x4

∂

∂z3

)
,

X3 =
∂

∂x3
+

1
2

(
+x4

∂

∂z1
+ x2

∂

∂z2
+ x1

∂

∂z3

)
,

X4 =
∂

∂x4
+

1
2

(
−x3

∂

∂z1
+ x1

∂

∂z2
− x2

∂

∂z3

)
,

form the basis of four-dimensional horizontal distribution S. These vector fields
come from the infinitesimal action of the noncommutative group law multiplication

L(x,z)(x
′, z′) = (x, z) ◦ (x′, z′) =

(
x+ x′, z + z′ +

1
2
Im(x̄ ∗ x′)

)
for (x, z) and (x′, z′) from R4 × R3. Here Im(x̄ ∗ x′) is the imaginary part of the
product x̄ ∗ x′ of the conjugate quaternion x̄ to x by another quaternion x′. See the
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details in Section . The distribution S is bracket generating due to the commutation
relations

[X1, X2] = −Z1, [X1, X3] = Z3, [X1, X4] = Z2,

[X2, X3] = Z2, [X2, X4] = −Z3, [X3, X4] = −Z1,

where Zβ = ∂
∂zβ

, β = 1, 2, 3 form a basis of the complement to S in the tangent
bundle.

We define the ssr-metric Q on S by the matrix

Qαβ =



−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


 .

The ssr-metric Q has index 2. The corresponding cometric gjk is obtained like in
the Example 1, has index 2, and assumes the following form

gjk =




−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



.

The triple (M,S,Q) is a ssr-manifold. More details about the manifold of the
Example 2 the reader can find in Section .

The example of Heisenberg-type group based on quaternions with the nonde-
generate metric which has index 1, i. e. sub-Lorentzian, is considered in [11, 12].

We refer to [3] for an example of sub-Lorentzian manifold based on the Lie
group different from the nilpotent group.

3. CHRISTOFFEL SYMBOLS

Recall that S⊥
x denotes the kernel of g(x) and S⊥ ⊆ T ∗, S⊥ = ∪x∈MS

⊥
x . The

space S⊥
x is the annihilator of Sx in T ∗

x . From now on, we use the summation
convention of the differential geometry.

Lemma 3.1. We have 〈v, Y 〉 = 0 for all Y ∈ S if and only if g jkvk = 0,
j = 1, . . . , n.
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Proof. Let 〈v, Y 〉 = 0 for any Y ∈ S. Pick up an arbitrary Y ∈ S, then there
exists a form ω such that Y = gω. Moreover, we can assume that ω ∈ T∗/S⊥.
Indeed, if ω = ω1 + v1, where ω1 ∈ T ∗/S⊥ and v1 ∈ S⊥, then for any X ∈ S we
get

Q(X, gω) = Q(X, gω1) +Q(X, gv1) = Q(X, gω1) + 〈v1, X〉 = Q(X, gω1).

Thus

0 = 〈v, Y 〉 = 〈v, gω〉 = Q(gω, gv) for all Y = gω ∈ S ⇒ gv = 0.

Here we used the symmetry and the nondegeneracy of Q.
Conversely, having gv = 0 we derive 0 = 〈v, gω〉 for any ω ∈ T∗/S⊥. Thus,

〈v, Y 〉 = 0 for any Y = gω.

Lemma 3.2. (a) If v is a section of the annihilator S ⊥, then

gjk ∂vk

∂xp
= −∂g

jk

∂xp
vk.

(b) If x(t) is a curve in M and v(t) is such that v(t) is a section of S ⊥ over x(t),
then

gjk(x)v̇k = −∂g
jk(x)
∂xp

ẋpvk

for all t (here the dot denotes the t-derivative).
(c) If v and w are sections of S⊥, then

∂gjk

∂xp
vkwj = 0.

Proof. To prove (a) one applies
∂

∂xp
to the identity gjk(x)vk(x) = 0 which

defines the null-bundle.
To prove (b) we take the derivative

d

dt
of the identity gjk(x(t))vk(t) = 0.

Finally, to prove (c) first we apply (a) to obtain

gjk ∂vk

∂xp
= −∂g

jk

∂xp
vk.

Then we multiply both sides by w ∈ S⊥ and, making use of the symmetry of g, we
get

∂gjk

∂xp
vkwj = −gjk ∂vk

∂xp
wj = −gkjwj

∂vk

∂xp
= 0

because of gkjwj = 0.
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The following question can arise: how the information about the bracket gen-
erating properties reflects in the properties of g? If X, Y ∈ S, then [X, Y ] is an
element of T/S. If X ∈ Sx then there exists ξ ∈ T ∗

x with X = gxξ, and similarly
Y = gxη. The covectors ξ and η are not defined uniquely, as it was shown in the
proof of Lemma 3.1. Thus they should be regarded as elements of T∗

x/S
⊥
x . The

annihilator S⊥ contains all the necessary information concerning the commutators
through the pairing 〈[X, Y ], v〉, when v varies over S⊥. Let us consider the trilinear
form 〈[gξ, gη], v〉 on (T∗

x/S
⊥
x ) × (T ∗

x/S
⊥
x ) × S⊥

x .

Lemma 3.3. In local coordinates

(3.1) 〈[gξ, gη], v〉=
(
gjp∂g

rq

∂xj
− gjq ∂g

rp

∂xj

)
ξpηqvr

for v varying over S⊥
x for any x.

Proof. Let ξ and η denote any sections of T ∗. Then Xr = grpξp and
Y r = grqηq are sections of S, and

[X, Y ]r = X j ∂

∂xj
Y r − Y j ∂

∂xj
Xr

= gjpξp
∂grq

∂xj
ηq − gjqηq

∂grp

∂xj
ξp + gjpξpg

rq ∂ηq

∂xj
− gjqηqg

rp ∂ξp
∂xj

.

Taking the inner product with v ∈ S⊥, we find that the last two terms are annihilated

since grq ∂ηq

∂xj
vr = gqrvr

∂ηq

∂xj
= 0 and grp ∂ξp

∂xj
vr = gprvr

∂ξp
∂xj

= 0. Thus we
obtain (3.1).

We want to define the analogue of the Christoffel symbols but with the raised in-
dexes and see the relation between them and the trilinear form defined in Lemma 3.3.
We write

(3.2) Γkpq =
1
2

(
gkj ∂g

pq

∂xj
− gpj ∂g

kq

∂xj
− gqj ∂g

kp

∂xj

)
.

For sections ξ ∈ T ∗ and v ∈ S⊥ define Γ(ξ, v) ∈ T by Γk(ξ, v) = Γkpqξpvq. In
classical case of differential geometry the Christoffel symbols are used to express the
covariant derivative in local coordinates. Unlike to the classical covariant derivative,
which associates for two vector fields another vector field, the operator Γ, as we
will see from the following lemma, associates a vector field for a pair of covector
fields and, moreover, the resulting vector field is horizontal.

Lemma 3.4. Γ(ξ, v) is a well-defined vector field; that is it is independent
of the choice of coordinates. Moreover, Γ(ξ, v) is a horizontal vector field and
Γ(ξ + w, v) = Γ(ξ, v) for w ∈ S⊥, so that Γ: (T ∗/S⊥) × S⊥ → S.
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Proof. Let us prove that Γk(ξ, v) transforms as a tangent vector at each x:
Γ̃k(y) = Γd(x)∂yk

∂xd , where y = ψ(x) and ψ is a local diffeomorphism determining
a new coordinate system. By g̃, ξ̃ and ṽ denote the expressions for g, ξ and v in
the new coordinates. We have

(3.3) ξk =
∂ψj(x)
∂xk

ξ̃j, vk =
∂ψj(x)
∂xk

ṽj, g̃kj(y) = gpq(x)
∂ψk(x)
∂xp

∂ψj(x)
∂xq

.

In the new coordinates

g̃jp∂g̃
kq

∂yj
=

(
gab ∂y

j

∂xa

∂yp

∂xb

)
∂

∂xl

(
gcd∂y

k

∂xc

∂yq

∂xd

)
∂xl

∂yj
,

hence

(3.4)
g̃jp∂g̃

kq

∂yj
ξ̃pṽq =

[
gab ∂y

j

∂xa

∂yp

∂xb

∂gcd

∂xl

∂yk

∂xc

∂yq

∂xd

∂xl

∂yj

+gab ∂y
j

∂xa

∂yp

∂xb

∂xl

∂yj
gcd

(
∂2yk

∂xl∂xc

∂yq

∂xd
+
∂yk

∂xc

∂2yq

∂xl∂xd

)]
ξ̃pṽq.

The first term of (3.4) equals to

∂yk

∂xc

(
gab ∂y

j

∂xa

∂gcd

∂xl

∂xl

∂yj

)
ξbvd =

(
∂yk

∂xc

)(
gab∂g

cd

∂xa

)
ξbvd.

Changing indexes b to p, d to q, and a to j we recognize the tangent bundle

transformation of gjp∂g
kq

∂xj
ξpvq . The middle term vanishes since

(3.5) gcd ∂y
q

∂xd
ṽq = gcdvd = 0

and the last term gives

(3.6) glbξbg
cd∂y

k

∂xc

∂2yq

∂xd∂xl
ṽq.

The middle term in Γkpqξpvq transforms as follows

g̃jq ∂g̃
kp

∂yj
ξ̃pṽq =

(
∂yk

∂xc

)(
gab∂g

cd

∂xa

)
ξdvb =

(
∂yk

∂xc

)(
gjq ∂g

cp

∂xj

)
ξpvq.

The other terms vanish by the same reason as in (3.5). The third term in Γkpqξpvq

in the new coordinates takes the form

(3.7) −g̃jk ∂g̃
pq

∂yj
ξ̃pṽq = −∂y

k

∂xc

(
gjc∂g

pq

∂xj

)
ξpvq − glb∂y

k

∂xb
gcdξc

∂2yq

∂xd∂xl
ṽq.
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We see that the last term from (3.7) is canceled with (3.6) (after the change of
indexes). Taking together the rest of terms, we get the desired transformation law

Γ̃kpq ξ̃pṽq =
∂yk

∂xc
Γcpqξpvq.

To show that Γ(ξ, v) ∈ S we take a covector ω ∈ S⊥
x and calculate

〈Γ(ξ, v), ω〉 = Γkpqξpvqωk.

Using (3.2) and Lemma 3.2, we argue for each term of Γk(ξpvq) as it follows

gjp∂g
kq

∂xj
ξpvqωk = −gjpξpg

kq ∂vq

∂xj
ωk = −gjpξpg

qkωk
∂vq

∂xj
= 0

and get 〈Γ(ξ, v), ω〉 = 0, that implies Γ(ξ, v) ∈ S.
The property Γ(ξ + ω, v) = Γ(ξ, v) for ω ∈ S⊥

x follows from

(3.8) Γk(ξ, v) =
1
2

(
gjpξpg

kq ∂vq

∂xj
+ gjk ∂g

pq

∂xj
ξpvq

)
and Lemma 3.2.

Analogously to sub-Riemannian situation [18] we have

Theorem 3.1. A vector field X ∈ S is a 2-step bracket generator if and only
if Γ(ξ, ·) : S⊥ → S is injective, where X = gξ. In particular, S satisfies the 2-step
bracket generating hypothesis if and only if Γ(ξ, ·) : S ⊥ → S is injective for every
nonzero form ξ ∈ T ∗/S⊥.

Proof. In the proof we exploit the properties of different linear mappings which
we defined up to now. We have

(3.9) 〈[gξ, gη], v〉= 2Γ(ξ, v)η

by (3.1) and (3.8). In order to show that the vector field X is a 2 step bracket
generator we must show that the vector fields [X, Y ] mod S fill out all T/S (at
each x) as Y varies over S. In other words, the mapping

(3.10) [X, ·] mod S : S → T/S is surjective at each x.

Since at any x the space T ∗/S⊥ is canonically isomorphic to the dual to S, state-
ment (3.10) is equivalent to

(3.11) [gξ, g(·)] : T ∗/S⊥ → T/S is surjective at each x, where X = gξ.
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We notice that at any x the space S⊥ is canonically isomorphic to the dual to T/S.
Thus (3.11) is equivalent to

(3.12) Γ(ξ, ·) : S⊥ → S is injective at each x.

We discussed earlier the relation between classical notion of covariant derivative
and the Christoffel symbols. The closest notion to the notion of covariant derivative
is symmetrized covariant derivative in sub-Riemannian geometry, that was defined
in [18]. It is natural to define the same concept on ssr-manifolds.

Definition 3.5. The symmetrized covariant derivative 
sym of a vector field Y
is defined by

(3.13) (
symY )kq = gkj ∂Y
q

∂xj
+ gqj ∂Y

k

∂xj
− Y j ∂g

kq

∂xj
.

Thus (
sym)x : Tx → Tx × Tx.

Lemma 3.6. 
sym is a well-defined differential operator from tensors of type
(1, 0) to symmetric tensors of type (2, 0). Furthermore, if Y is a vector field from
S, that is Y = gξ, then (
symY )kqvq = 2Γk(ξ, v) for any v ∈ S⊥.

Proof. The symmetry follows from the symmetry of the cometric g. Let us
show that 
symY , Y ∈ T , transforms as a tensor field of rank (2, 0). We check
how the first term of (3.13) transforms with the following change of coordinates:

Ỹ k =
∂yk

∂xj
Y j, g̃kj = gpq ∂y

k

∂xp

∂yj

∂xq
.

g̃kj ∂Ỹ
q

∂yj
= gαβ ∂y

k

∂xα

∂yj

∂xβ

∂

∂xl

(
∂yq

∂xa
Y a

)
∂xl

∂yj

= gαβ ∂y
k

∂xα

∂yj

∂xβ

∂xl

∂yj

∂2yq

∂xl∂xa
Y a + gαβ ∂y

k

∂xα

∂yj

∂xβ

∂xl

∂yj

∂Y a

∂xl

∂yq

∂xa

= gαl ∂y
k

∂xα

∂2yq

∂xl∂xa
Y a + gαl ∂y

k

∂xα

∂Y a

∂xl

∂yq

∂xa
.

Analogously, the second term

g̃qj ∂Ỹ
k

∂yj
= gαl ∂y

q

∂xα

∂2yk

∂xl∂xa
Y a + gαl ∂y

q

∂xα

∂Y a

∂xl

∂yk

∂xa
.

And the third term

Ỹ j ∂g̃
kq

∂yj
=

∂yj

∂xα
Y α ∂

∂xl

(
gab∂y

k

∂xa

∂yq

∂xb

)
∂xl

∂yj

=
∂yj

∂xα
Y α ∂g

ab

∂xl

∂yk

∂xa

∂yq

∂xb

∂xl

∂yj

+
∂yj

∂xα
Y αgab ∂2yk

∂xl∂xa

∂yq

∂xb

∂xl

∂yj
+
∂yj

∂xα
Y αgab∂y

k

∂xa

∂2yq

∂xl∂xb

∂xl

∂yj
.
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After summation and necessary renaming of indexes we have

(
symỸ )kq =
∂yk

∂xi

∂yq

∂xj
(
symY )ji.

Let us show the second statement of the theorem. We assume Y = gξ ∈ S and
v ∈ S⊥. Then from (3.9) follows that

(
symgξ)kqvq =
(
gkj ∂g

pq

∂xj
ξp + gkjgpq ∂ξp

∂xj

)
vq

+
(
gqj ∂g

pk

∂xj
ξp + gqjgpk ∂ξp

∂xj

)
vq − gjpξp

∂gkq

∂xj
vq

= gjpξpg
kq ∂vq

∂xj
+ gkj ∂g

pq

∂xj
ξpvq = 2Γk(ξ, v)

by (3.8) and gv = 0.

4. HAMILTONIAN SYSTEM, EXPONENTIAL MAP AND LENGTHS OF CURVES

The distribution Sx at each point x of ssr-manifold M has the structure of
Rm equipped with a nondegenerate metric Qx of index ν. The presence of the
nondegenerate metric yields the following trichotomy.

Definition 4.1. A horizontal tangent vector w ∈ Sx is
spacelike if Qx(w, w) > 0 or w = 0,
null if Qx(w, w) = 0 and w �= 0,
timelike if Qx(w, w) < 0,
nonspacelike if it is either timelike or null.

The set of all null vectors in Sx is called null-cone at x ∈M . The category into
which a given tangent vector falls is called its causal character. The terminology is
adapted from the relativity theory, and particularly in the Lorentz case, null-vectors
are called lightlike. For the nice and complete presentation of the semi-Riemannian
geometry see [16].

The covectors ξ(x) ∈ T∗
x/S

⊥
x receive the same causal structure according to the

values of 〈gxξ(x), ξ(x)〉. The covectors v ∈ S⊥(x) we shall call annihilators to
distinguish them from the null-covectors.

Definition 4.2. A horizontal tangent vector field X ∈ S is spacelike, null or
timelike if at each point x ∈ M the vector X(x) is spacelike, null or timelike
respectively.

Definition 4.3. A section ξ ∈ T ∗/S⊥ is spacelike, null or timelike if at each
point x ∈M the covector ξ(x) is spacelike, null or timelike respectively.
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As we mentioned from the beginning, we work with the special class of admis-
sible curves that are tangent to the distribution S and that we call horizontal curves.
We borrow this name from the sub-Riemannian geometry. We say that a horizon-
tal curve c(s) is spacelike, null or timelike if the tangent vector ċ(s) is spacelike,
null or timelike respectively at each point of c(s) where it exists. We can give the
definition of the spacelike, null or timelike curve using the causal structure of the
cotangent space T ∗ according to the sign of 〈gc(s)ξ(s), ξ(s)〉 = Qc(s)(ċ(s), ċ(s)),
where ċ(s) = gc(s)ξ(s). We call a horizontal curve the causal if the tangent vector
ċ(s) (the covector ξ(s)) is nonspacelike

In the sub-Lorentzian case we also introduce (as in the classical Lorentz mani-
folds) the time orientation.

Definition 4.4. A time orientation on (M,S,Q) is a continuous horizontal time-
like section T os S.

If M admits a time orientation T , then T divides all nonspacelike horizontal vec-
tors into two disjoint classes, called future directed and past directed. Namely, non-
spacelikew ∈ Sx is said to be future (respectively past) directed ifQx(T (x), w) < 0
(respectively Qx(T (x), w) > 0). We assume that any considered in the article sub-
Lorentzian manifold (M,S,Q) will be time oriented.

Since g : T ∗/S⊥ → S is injective the time orientation can be brought to T ∗/S⊥.

Definition 4.5. The globally defined section τ ∈ T ∗ such that T = gτ is time
orientation on T ∗/S⊥.

The covectors from S⊥ we can consider as null-covectors.
The notion of arc length of a curve segment in Euclidean space generalizes in a

natural way to ssr-manifolds. Since the term “arc length” can be misleading since,
for example, a null-curve has length zero. Therefore, we use the name “natural
parameter” in stead of “arc length”.

Definition 4.6. Let c : [a, b] → M be a piecewise smooth curve segment in a
ssr-manifold (M,S,Q). The natural parameter of c(s) is

L(c) =
∫ b

a

|Q(ċ(s), ċ(s))|1/2 ds.

As in the classical case it can be shown that
• the natural parameter is not changing under the monotone reparameterization

and
• if c(s) is a curve segment with |ċ(s)| = |Q(ċ(s), ċ(s))|1/2 > 0, there is

a strictly increasing reparameterization function h such that γ = c(h) has
|γ̇| = 1.
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In the latter cases γ is said to have unit speed or natural reparameterization.
Now we define the extremal using the Hamilton function. Given the cometric

gx : T ∗
x → Sx we form the Hamiltonian function

(4.1) H(x, ξ) =
1
2
〈gx(ξ), ξ〉

on T ∗
x . To emphasize the dependence of the cometric on x we write g(x) instead

of gx when it is necessary. If we have the orthonormal basic X1, . . . , Xν, . . . , Xm

of S we can write the Hamiltonian function in the form

(4.2) H(x, ξ) = −1
2

ν∑
j=1

〈Xj(x), ξ〉2 +
1
2

m∑
j=ν+1

〈Xj(x), ξ〉2,

where ν is the index of gx. Consider the Hamiltonian equations

ẋ(s) = ∇ξH(x, ξ), ξ̇(s) = −∇xH(x, ξ)

that explicitly can be expressed as

(4.3)
ẋk(s) = gkj(x(s))ξj(s), k = 1, . . . , n,

ξ̇k(s) = −1
2
∂gpq(x(s))

∂xk
ξp(s)ξq(s).

An absolutely continuous curve Γ(s) on M satisfying (4.3) is called a characteristic
of H . In this paper we will consider only the bicharacteristics Γ(s) such that
H(Γ(s)) = H(x(s), ξ(s)) �= 0 that are called in literature the normal biextremals.
The detailed discussion of the structures of normal and abnormal geodesics see, for
instance, [13, 14, 1]. Since we work only with normal biextremals we will drop
the word “normal” for shortness. If H ∈ C1(T ∗) then an extremal, of H is a
curve x(s) which is a projection on manifold of some biextremal Γ(s) of H . The
bicharacteristics of a Hamiltonian H ∈ Ck(T ∗) are curves of class Ck along which
H is constant. In this case it means that an extremal has a parametrization by the
natural parameter. The next result is the consequence of this.

Proposition 4.7. If γ : [a, b] →M is a normal extremal, then eitherQγ(s)(γ̇(s),
γ̇(s)) < 0 or Qγ(s)(γ̇(s), γ̇(s)) = 0 or Qγ(s)(γ̇(s), γ̇(s)) > 0 for all s ∈ [a, b].
Moreover, if γ is nonspacelike in the sub-Lorentzian manifold, then it does not
change its orientation.

Proof. We have

1
2
Qγ(s)(γ̇(s), γ̇(s)) =

1
2
〈ξ(s), gγ(s)ξ(s)〉 = H(γ(s), ξ(s))
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which is constant along γ . The orientation preserving property of a smooth curve
is obvious.

It is possible to reformulate Proposition 4.7 in terms of cometric g.

Proposition 4.8. If γ : [a, b] → M is a normal extremal, then either 〈ξ(s), g γ(s)

ξ(s)〉 < 0 or 〈ξ(s), gγ(s)ξ(s)〉 = 0 or 〈ξ(s), gγ(s)ξ(s)〉 > 0 for all s ∈ [a, b].

Let us define the energy for the curve c : [a, b] →M by

(4.4) E(c) =
∫ b

a
|Q(ċ(s), ċ(s))| ds.

In semi-Riemannian geometry extremals γ(s) are defined as curves which have
parallel tangent vector field (γ̇) or, equivalently, which have the acceleration zero:
γ̈(s) = 0. It is true that semi-Riemannian extremals lift to solutions of (4.3) on the
cotangent bundle. Thus the definition of extremals like Hamilton extremals is correct
generalization. For the sub-Riemannian and sub-Lorentzian cases see [8, 15, 18].
Also, if we formulate the variational problem of minimizing energy E(c) over all
smooth horizontal curves joining points p and q in M then the associated Euler
equation is (4.3). Notice also that if we differentiate the first equation and substitute
the second we obtain

(4.5) ẍk(s) + Γk(ξ, ξ) = 0

which is the analogue of the equation of the extremals in semi-Riemannian geometry.
Notice, that we can not solve (4.5) for ξ in terms of x in any way. Thus (4.5) can
not be reduced to the equation in x alone. Neither (4.5) together with ẋ = gξ is
equivalent to (4.3).

Given p ∈ M , u ∈ T ∗
p , and the coordinate system with the origin at p, the

existence and uniqueness theorem for ordinary differential equations guarantees that
the solution exists and is unique on an interval around zero provided the initial
conditions x(0) = p, ξ(0) = u. As on sub-Riemannian manifolds the solution
to (4.3) can be continued as long as x(s) remains in M .

Lemma 4.9. Let x(s) be a normal extremal for 0 ≤ s < a and suppose x(s)
remains inside a compact subset of M . Then x(s) can be extended beyond s = a.

Proof. Over the compact setK ⊂M choose an orthonormal basis v(1)(x), . . . ,
v(n−k)(x) of S⊥

x and complete to an orthonormal basis of T∗
x by adding u(1)(x), . . . ,

u(k)(x). By definition all sections are smoothly varying on the compact set and
hence bounded. Then the section ξ(s) along the extremal x(s) can be written as

(4.6) ξ(s) =
m∑

j=1

aj(s)u(j)(x(s)) +
n−m∑
l=1

bl(s)v(l)(x(s)),
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where m is the rank of S. Consider (4.3) as a system of equations for x(s), aj(s),
and bl(s). The functions xk(s) are uniformly bounded on K. Let us show that the
functions aj(s) and bl(s) are also bounded. We have

H(x(s), ξ(s)) =
1
2

m∑
j=1

〈gu(j), u(k)〉aj(s)ak(s)

by (4.6). Since extremals do not change the causal character and the Hamilton is
constant along them, the value of the matrix g

(
u(j)(x(s)), u(k)(x(s))

)
is bounded

from zero on K. It follows that aj(s) are uniformly bounded along extremals. Let
us show that bl(s) are bounded. We write ξk(s) as

(4.7) ξk(s) =
m∑

j=1

aj(s)u
(j)
k (x(s)) +

n−m∑
l=1

bl(s)v
(l)
k (x(s)),

where u(j)
k and v(l)

k are coordinates of u(j) and v(l) in the local chart coordinates.
We substitute (4.7) in the second equation of (4.3) and take into account the first one

also. Notice, that the terms involving gv and
∂gpq

∂xk
v

(l)
p v

(m)
q vanish by Lemma 3.2

c) since v ∈ S⊥. Finally, we get
m∑

j=1

ȧju
(j)
k +

n−m∑
j=1

ḃjv
(j)
k +

m∑
j=1

∑
l=1

aj
∂u

(j)
k

∂xr
grpalu

(l)
p +

n−m∑
j=1

m∑
l=1

bj
∂v

(j)
k

∂xr
grpalu

(l)
p

= −1
2
∂gpq

∂xk

( m∑
j=1

aju
(j)
p

m∑
l=1

alu
(l)
q +

m∑
j=1

aju
(j)
p

n−m∑
l=1

blv
(l)
q +

n−m∑
j=1

bjv
(j)
p

m∑
l=1

alu
(l)
q

)
.

If we dot both sides of equation with v
(1)
k , v

(2)
k , . . . , v

(n−m)
k , then we obtain the

linear system
ḃ = Ab+ C, b = (b1, . . . , bn−m),

where the matrix A and the vector function C linearly depend on bounded functions
aj , u(j), v(j) and hence A and C are bounded. The linear system of the first order
differential equations with bounded coefficients has bounded solution. We conclude
that bj are bounded for j = 1, . . . , n−m. Thus all the functions xk(s) and ξk(s)
are uniformly bounded, and the local existence theorem implies the solution of (4.3)
extends.

Now we can define the exponential map.

Definition 4.10. If p ∈ M , let Dp be the set of covectors w in T∗
p such that

the extremal xw(s) is defined at least on [0, 1] and x(0) = p, ξ(0) = w. The
exponential map of M at p is the function

expp : Dp →M, such that expp(w) = xw(1).
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The set Dp is the largest subset of T ∗
p on which expp can be defined. Fix

w ∈ T ∗
p and τ ∈ R. Then the extremal s → xw(sτ) is such that τξ(0) = τw.

Hence xτw(τ) = xw(sτ) for all τ and s where the both sides are well defined.
Particularly

expp(sw) = xsw(1) = xw(s).

As in the sub-Riemannian geometry the exponential map is always differentiable,
since the solution of the Hamiltonian system depends smoothly on the initial data.
But the exponential map is not a diffeomorphism at the origin. The reason is that
all the extremals emanating from p must have tangent vectors in Sp, but for any
annihilator v ∈ S⊥ we have

expp(v) = xv(1) = p, since ẋk = 0 by (4.3).

We prove the following analogue of Gauss lemma. In lemma we use the iden-
tification of a cotangent space T ∗

p at p with the tangent to T ∗
p space Tu(T ∗

p ) at
point u ∈ T ∗

p . The covector w ∈ T∗
p at point u ∈ T ∗

p is identified with the vector
w ∈ Tu(T ∗

p ). The radial vector r ∈ Tu(T ∗
p ) means that it is a scalar multiple of a

covector u ∈ T∗
p .

Lemma 4.11. Let u be a cotangent vector in T ∗
p such that u �= 0 and lies inside

Dp. Let r be a radial vector and w be any other covector at point u ∈ T ∗
p . Then

(i)
〈gpr, w〉 = Qexpp u

(
d(expp)uw, d(expp)ur

)
provided d(expp)uw ∈ Sexpp u

(ii)
〈gpr, w〉 = 〈d(expp)uw, ξ〉

where ξ is a cotangent lift of the extremal t �→ exp p(tu) at t = 1.

Proof. Let us prove (i). Since r is radial, we can assume r=u. Take the curve
v(s) = u+sw in T ∗

p . Let us suppose that the exponential mapping is defined in the
cylindrical neighborhood Dp × [0, 1]. Consider the parameterized surface x : A →
M , A = {(t, s) : 0 � t � 1,−ε < s < ε} given by x(t, s) := expp(t(u + sw)).
Note that

∂
(
t(u+ sw)

)
∂s

(1, 0) = w,
∂
(
t(u+ sw)

)
∂t

(1, 0) = u,

and the curves t �→ x(t, s) are extremals for any fixed s starting from the point
x(0, s) = p with the initial covectors u+ sw. Then

∂x

∂s
(1, 0) = d(expp)u

∂t(u+ sw)
∂s

(1, 0) = d(expp)uw,
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∂x

∂t
(1, 0) = d(expp)u

∂t(u+ sw)
∂t

(1, 0) = d(expp)uu.

Thus, we need to show 〈gpu, w〉 = Qexpp u

(∂x
∂s
,
∂x

∂t

)
(1, 0). Let ξ(t, s) be a cotan-

gent lift of the extremal t �→ expp(tv(s)), particularly ξ(1, s) = u + sw. Then

Qexpp u

(∂x
∂s
,
∂x

∂t

)
(1, 0) = 〈∂x

∂s
, ξ〉(1, 0) and our main aim becomes to show

(4.8) 〈gpu, w〉 = 〈∂x
∂s
, ξ〉(1, 0).

We denote f(t, s) = 〈∂x
∂s
, ξ〉(t, s) and calculate the derivative

∂f

∂t
(t, 0). We have

∂f

∂t
(t, s) =

∂ξk
∂t

(t, s)
∂xk

∂s
(t, s) + ξp(t, s)

∂2xp

∂s∂t
(t, s).

Replacing
∂ξk
∂t

(t, s) and
∂xp

∂t
(t, s) from the Hamilton-Jacobi equations (4.3) we

obtain

(4.9)

∂f

∂t
(t, s) = −1

2
∂gpq(x)(t, s)

∂xk
ξp(t, s)ξq(t, s)

∂xk

∂s
(t, s)

+ξp(t, s)
∂

∂s
(gpq(x(t, s))ξq(t, s))

=
∂

∂s

(1
2
〈g(x)ξ(t, s), ξ(t, s)〉

)
for any t and s.

Since the Hamilton 1
2〈g(x)ξ(t, s), ξ(t, s)〉 is constant along the extremal, then (4.9)

can be written as

∂f

∂t
(t, s) =

∂

∂s

(1
2
〈g(x)ξ(t, s), ξ(t, s)〉

)
=

∂

∂s

(1
2
〈gp(u+sw), (u+sw)〉

)
for any t.

Then

∂f

∂t
(t, 0) =

∂

∂s

(1
2
〈gp(u+ sw), (u+ sw)〉

)
(t, 0) = 〈gpu, w〉 for any t.

We have
f(0, 0) = 〈∂x

∂s
, ξ〉(0, 0) = 〈d(expp)utw, u〉(0, 0) = 0

that implies

f(t, 0) = t〈gpu, w〉 =⇒ f(1, 0) = 〈∂x
∂s
, ξ〉(1, 0) = 〈gpu, w〉.

We proved (4.8) and hence (i).
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To prove (ii) we argue in a similar way. Take the curve v(s) = u + sw in T∗
p

and parameterized surface x(t, s) = expp(t(u + sw)). Let ξ(1, s) be a cotangent

lift of the extremal t �→ expp(tv(s)) at t = 1. Since d(expp)uw =
∂x

∂s
(1, 0) the

statement (ii) is reduced to (4.8).

Let c(t) be a C1 piecewise curve in M for t ∈ (a, b), where (a, b) is an interval
in R. We remind that a curve c(t) is called horizontal if ċ(t) ∈ Sx for any t ∈ (a, b).
A section ξ(t) is called a cotangent lift of c(t) if ξ(t) ∈ T ∗

x(t) and gxξ = ẋ(t) for
every t where it is defined. The notion of the natural parameter or arc length (4.6)
for c(t) : (a, b) → M can be reformulated as follows

L(c) =

b∫
a

〈gc(t)ξ(t), ξ(t)〉1/2 dt.

Let us focus for the moment on the case of sub-Lorentzian manifold. At each
point p ∈ M the distribution Sp and the cotangent subbundle T ∗

p /S
⊥
p carry the

structure of the Lorentz vector space and thus inherit the typical features of the
Lorentz structure. Since the orthogonal complement w⊥ to any timelike vector w is
spacelike then the vector space Sp can be decomposed into the direct sum Rm⊕w.
The same regards the cotangent vector space T∗

p /S
⊥
p . We define the future timecone

in Sp by
C(T (p)) = {X(p) ∈ Sp : Qp(T (p), X(p))< 0},

where T is the time orientation on Sp.

Analogously the future timecone in T∗
p is

C(τ(p)) = {w ∈ T ∗
p : 〈gpw, τ(p)) < 0}, τ

where is the time orientation on T ∗
p /S

⊥
p .

There is a consequence that vectors (covectors) v, w are timelike if and only if
Q(v, w) < 0 (〈gv, w〉 < 0). In vector spaces with positively definite metric the
Schwarz inequality permits the definition of the angle θ between v and w as the
unique number 0 ≤ θ ≤ π. The analogues Lorentz result is as follows.

Proposition 4.12. Let v and w be timelike vectors in a Lorentz vector space
equipped with the scalar product 〈v, w〉. Then

(1) |〈v, w〉| ≥ |v||w|, where |v| = |〈v, v〉|1/2, |w| = |〈w, w〉|1/2. The equality is
possible if and only if v and w are collinear.

(2) There is a unique number ϑ > 0, called hyperbolic angle between v and w,
such that

〈v, w〉 = −|v||w| coshϑ.
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Consider a piecewise smooth timelike curve c(t). The timelike means not only
that every ċ(t) is timelike, but that at each break ti of c

Qc(ti)(ċ(t
−
i ), ċ(t+i )) < 0.

Here the first vector derives from c on the interval [ti−1, ti] before break, and the
second from the interval after break [ti, ti+1]. Thus ċ does not switch timecone at
a break. Similarly we require that a piecewise smooth causal curve does not switch
causal cones at a break.

Lemma 4.13. Let p be a point at Lorentz manifoldM . Suppose that γ : [0, b] ∈
T ∗

p is a piecewise smooth curve starting at the origin such that α = exp p ◦ γ is
timelike. Then γ remains in a single timecone of T ∗

p .

Proof. We consider two cases. The first one is related with the smooth curve
γ and the second case will be general. Thus, we assume that γ(t), and hence α(t)
are smooth in all the domain of definition. Since gp(γ̇(0), γ̇(0)) = 〈gpγ(0), γ(0)〉=
Qp(α̇(0), α̇(0)) < 0, then the curve γ(t) is in the same timecone for t ∈ (0, ε),
where ε is sufficiently small. We also conclude that γ̇(t) maintains in the same
timecone with t ∈ (0, ε) for sufficiently small ε > 0. Let us denote by rγ(t) the
radial tangent vector in Tγ(t)(T ∗

p ) corresponding to the timelike covector γ(t). The
vector rγ(t) is timelike and therefore, 〈gpγ̇(t), rγ(t)〉 is negative for t ∈ (0, ε). We
calculate

(4.10)
d

dt
〈gpγ(t), γ(t)〉 = 2〈gpγ̇(t), γ(t)〉

is negative for t ∈ (0, ε). Since α̇(t) = d(expp)γ(t)γ̇ and it is in Sexppγ(t) the last
expression in (4.10) is equal to 2Qexppγ(t)

(
α̇(t), d(expp)γ(t)rγ(t)

)
by Lemma 4.11.

We conclude that so long as γ remains in timecone the radial vector rγ and the
vector d(expp)γ(t)rγ(t) remains timelike. Thus Qexppγ(t)

(
α̇(t), d(expp)γ(t)rγ(t)

)
hence 〈gpγ̇(t), γ(t)〉 and hence d

dt〈gpγ(t), γ(t)〉 remains negative. But γ can leave
the timecone only by reaching null-cone or the origin. In any of these cases
〈gpγ(t), γ(t)〉= 0. Thus γ must remain in the same timecone.

Now suppose that γ and hence α is piecewise smooth. We know from the first
part of the proof that on its first smooth segment γ stays in the same timecone and
therefore in the first break

〈gα(t0)γ̇(t
−
1 ), rβ(t1)〉 < 0.

Hence by Lemma 4.11

Qexppγ(t1)

(
α̇(t−1 ), d(expp)γ(t1)rγ(t1)

)
< 0.

The additional condition on α at breaks keeps α̇(t+1 ) in the same timecone, namely
at r1 = d(expp)γ(t1)rγ(t1). So, again by Lemma 4.11 〈gα(t1)γ̇(t

+
1 ), rβ(t1)〉 < 0 and
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therefore it follows as above that d
dt〈gγ, γ〉 can not change signs at breaks. Hence

the argument for the smooth case remains valid.

Minor changes in this proof show that the lemma remains true if the words
timelike and timecone are replaced by causal and causal cone.

Lemma 4.14. Let U be a normal neighborhood of p in a Lorentz manifold. If
there exists a piecewise timelike curve α in U from p to q, then the segment σ of
the extremal from p to q is the unique longest timelike curve in U from p to q.

Proof. We understand the uniqueness as the uniqueness up to a mono-
tone reparametrization and can suppose that α is parameterized by arc length. If
α : [0, b] → U is a timelike curve in U from p = α(0) to q = α(b), then from the
lemma above the lifting w(t) : [0, b] → T ∗

p , α(t) = expp ◦w(t) remains in a sin-
gle timecone in T ∗

p . The section w(t) is the timelike vector for any t ∈ [0, 1]
and therefore define a unite timelike section u(t) = |〈gpw(t), w(t)〉|−1/2w(t).
Since 〈gpu(t), u̇(t)〉 = 0 the vector field u̇(t) is spacelike. Let us write r(t) =
|〈gpw(t), w(t)〉|1/2, then w(t) = r(t)u(t). We calculate

α̇(t) =
d

dt
exppw(t) = d(expp)w(t)ṙ(t)u(t) + d(expp)w(t)r(t)u̇(t).

Let us denote by ξ(t) the cotangent lift of the extremal γ : s �→ expp(su(t)) at
s = r(t). Since u(t) is timelike the same does ξ(t). Since α̇ is horizontal, then
d(expp)w(t)r(t)u̇(t) ∈ Sα(t). It means that there is spacelike section η(t) such that
d(expp)w(t)r(t)u̇(t) = gα(t)η(t) almost everywhere and orthogonal to the section ξ
by Lemma 4.11. Then the length of timelike vector α̇ is given by(

−Qα(t)(α̇, α̇)
)1/2

=
(
− 〈ṙ(t)ξ(t) + η, ṙ(t)gα(t)ξ(t) + gα(t)η(t)〉

)1/2

=
(
|ṙ(t)|2 − 〈gα(t)η(t), η(t)〉

)1/2
≤ |ṙ(t)|.

Therefore

L(α) =

b∫
0

|Qα(t)(α̇, α̇)|1/2 dt ≤
b∫

0

|ṙ(t)| dt = |r(b)| = L(σ).

The equality holds if and only if ṙ(t) is monotone and 〈gα(t)η(t), η(t)〉 = 0.
In this case the velocity of α satisfies the equation α̇(t) = ṙ(t)d(expp)w(t)u(t) =
ṙ(t)gα(t)ξ(α(t)). From the other hand the extremal γ(s) = expp(r(t)u(t0)), s =
r(t), satisfies the equation γ̇(s) = d(expp)r(t)u(t0)u(t0) = ṡgγ(s)ξ(γ(s)). Since
α(t) and γ(s) satisfy the same equation and have the same initial point, we conclude
that α is a reparameterization of the extremal γ .
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We have noticed that a general piecewise smooth horizontal curve does not have
a unique cotangent lift. If the curve is an extremal then there is a special cotangent
lift, the one that satisfies the Hamilton-Jacobi equation. In the case of the two step
bracket generating distributions it is possible to find a canonical cotangent lift. The
condition for this is formulated in the following lemma.

Lemma 4.15. Assume the strong bracket generating hypothesis. Let x(t) be
any Lipshitz horizontal curve. Then there exists such a cotangent lift (x(t), ξ(t))

that a cotangent vector ωj = ξ̇j +
1
2
∂gpq

∂xj
ξpξq is orthogonal to Γj(ξ, v(x)) for any

v ∈ S⊥
x at a. e. t so that pairing 〈ωj , Γj(ξ, v(x))〉 = 0. This cotangent lift does

not depend on the coordinate system and is called a canonical cotangent lift.

Proof. Let (x(t), η(t)) be any cotangent lift and let v(1), . . . , v(n−m) be a basis
of sections of null-space S⊥ over a neighborhood of the curve. Since ξ belongs in
general to T ∗

x/S
⊥
x × S⊥

x then we can write

ξ(t) = η(t) + v(t) = η(t) +
n−m∑
k=1

ak(t)v(k)(t).

Then

ξ̇j +
1
2
∂gpq(x)
∂xj

ξpξq = η̇j + v̇j +
1
2
∂gpq

∂xj
(ηp + vp)(ηq + vq)

= η̇j +
1
2
∂gpq

∂xj
ηpηq +

(
v̇j +

1
2
∂gpq

∂xj
ηpvq

)
.

Recall that for w ∈ S⊥
x

Γk(ξ, w) =
1
2

(
gjpgkqξp

∂wq

∂xj
+ gjk ∂g

pq

∂xj
wqξp

)
=

1
2
gjk

(
ẇj +

∂gpq

∂xj
ξpwq

)
.

Here we used that gpqξp
∂wj

∂xk
= ẋq

∂wj

∂xq
= ẇj . Notice that Γk(ξ, w) = Γk(η, w).

We had already shown that Γj(ξ, w) transforms as a tangent vector. Show now that

ξ̇j +
1
2
∂gpq(x)
∂xj

ξpξq transforms as a cotangent vector. Consider the transformation
laws

ξk =
∂yj

∂xk
ξ̃j and g̃pq = grs ∂y

p

∂xr

∂yq

∂xs
.

Then

˙̃
ξj +

1
2
∂g̃pq

∂yj
ξ̃pξ̃q = g̃pqξ̃p

∂ξ̃j
∂yq

+
1
2
∂g̃pq

∂yj
ξ̃pξ̃q

= grs∂y
p

∂xr

∂yq

∂xs

∂xl

∂yp
ξl

∂

∂xm

(
∂xk

∂yj
ξk

)
∂xm

∂yq
+

1
2
∂

∂xl

(
grs∂y

p

∂xr

∂yq

∂xs

)
∂xl

∂yj

∂xk

∂yp
ξk
∂xn

∂yq
ξn
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= grs∂y
p

∂xr

∂yq

∂xs

∂xl

∂yp

∂2xk

∂xm∂yj

∂xm

∂yq
ξlξk + grs ∂y

p

∂xr

∂yq

∂xs

∂xl

∂yp

∂xk

∂yj

∂ξk
∂xm

∂xm

∂yq
ξl

+
1
2
∂grs

∂xl

∂yp

∂xr

∂yq

∂xs

∂xl

∂yj

∂xk

∂yp

∂xn

∂yq
ξkξn

+
1
2
grs

(
∂2yp

∂xl∂xr

∂yq

∂xs
+
∂yp

∂xr

∂2yq

∂xl∂xs

)
∂xl

∂yj

∂xk

∂yp

∂xn

∂yq
ξkξn.

The second and the third terms here are equal to grs∂x
k

∂yj

∂ξk
∂xs

ξr and
1
2
∂grs

∂xk

∂xk

∂yj
ξrξs

respectively, which gives in the whole the transformation of a covariant vector:

∂xk

∂yj

(
grsξr

∂ξk
∂xs

+
1
2
∂grs

∂xk
ξrξs

)
=
∂xk

∂yj

(
ξ̇k +

1
2
∂grs

∂xk
ξrξs

)
.

The rest of the terms give in sum

grs ∂2xk

∂xs∂yj
ξrξk +

1
2
grs ∂2yp

∂xl∂xs

∂xl

∂yj

∂xk

∂yp
ξkξr +

1
2
grs ∂2yp

∂xl∂xs

∂xl

∂yj

∂xk

∂yp
ξrξk

= grs ∂2xk

∂xs∂yj
ξrξk + grs ∂2yp

∂xl∂xs

∂xl

∂yj

∂xk

∂yp
ξrξk

= grsξrξk

(
∂2xk

∂xs∂yj
+

∂2yp

∂xl∂xs

∂xl

∂yj

∂xk

∂yp

)
= 0

since
∂

∂yj
δk
s = 0, where δk

s is a Kronecker symbol.

Now we see that the orthogonality condition is of the form[(
η̇j +

1
2
∂gpq

∂xj
ηpηq

)
+

(
v̇j +

1
2
∂gpq

∂xj
ηpvq

)]
· Γk(η, w) = 0.

As Γ(ξ, ·) is injective the converse matrix (Γk(η, w))−1 exists. Therefore the linear
system of n −m equations in n−m variables ak(t)

n−m∑
k=1

(ȧkv
(k)
j + akv̇

(k)
j ) +

∂gpq

∂xj
ηp

n−m∑
k=1

akv
(k)
q = (Γk(η, w))−1(η̇j +

1
2
∂gpq

∂xj
ηpηq)

is uniquely solvable.

5. DIFFERENTIAL OF THE EXPONENTIAL MAP

As it was mentioned, the exponential mapping expp is not a diffeomorphism at
the origin, but as in the case of sub-Riemannian geometry there is a hope that it
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is a local diffeomorphism at some points. The main result can be stated that the
exponential map expp(u) is a local diffeomorphism if u is neither a null vector no
an annihilator. We consider only the case of 2-step bracket generating distribution.
First, let us set out the Taylor expansion for k-th component of expp(u), where p
is fixed at the origin of the coordinates and u ∈ T ∗

pM :

(5.1) expp(u)
k =

N∑
r=1

1
r!
γkp1...pr

(r)
up1 . . . upr +O(|u|N+1),

where γkp1...pr

(r) is symmetric in indexes p1, . . .pr and will be computed later, |u| is
any Euclidean norm on T∗

pM . Notice that expp(tu) = x(t), where (x(t), ξ(t)) -
solution of the system (4.3) with x(0) = p, ξ(0) = u. Then at the origin

γ
kp1...pr

(r) up1 . . .upr =
(
d

dt

)r

xk(0).

We count for some value of t

(5.2)

(
d

dt

)r+1

xk(t) =
d

dt

(
γkp1...pr

(r) (x(t))ξp1(t) . . . ξpr(t)
)

=
∂γkp1...pr

(r)

∂xq
(x(t)) · ẋq(t) · ξp1(t) . . . ξpr(t)

+r · γkp1...pr

(r) · ∂ξpi

∂t
(t) · ξp1(t) . . . ξ̂pi(t) . . . ξpr(t),

where ξ̂pi(t) denotes the absence of ξpi(t). Now, using (4.3) and changing indexes,
we get(

d

dt

)r+1

xk(t) =
(∂γkp1...pr

(r)

∂xq
(x(t)) · gqpr+1(x(t))

−r
2
· γkp1...pr−1q

(r)
· ∂g

prpr+1

∂xq
(x(t))

)
· ξp1(t) . . . ξpr+1(t).

Therefore,

(5.3)

γ
kp1...pr+1

r+1 (x) = sym(p1, . . . , pr+1)

·
(
gqpr+1(x)

∂γ
kp1...pr

(r)

∂xq
(x)− r

2
γ

kp1...pr−1q
(r)

(x)
∂gprpr+1

∂xq
(x)

)
,

here sym(p1, . . . , pr+1) means that we symmetrize the indexes p1, . . . , pr+1. Setting
r = 0 in the previous formula we get

(5.4) γ
kp
(1) = gqp

∂γk
(0)

∂xq
= gkp,
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since γk
(0) = xk(0) and

∂xk

∂xq
equals to 1 if and only if k = q and zero otherwise.

Analogously, observe that for r = 1 in (5.3)

(5.5)
γkp1p2

(2) = sym(p1, p2) ·
(
gqp2

∂γkp1

(1)

∂xq
− 1

2
γkq

(1)

∂gp1p2

∂xq

)

= sym(p1, p2) ·
(
gqp2

∂gkp1

∂xq
− 1

2
gkq ∂g

p1p2

∂xq

)
= −Γkp1p2.

It is rather hard to calculate a general term, but it will be sufficient for us to
look into the view of γ(3).

Now (5.1) receives the following form

expp(u)
k = γ

kp1

(1) up1 +
N∑

r=2

1
r!
γ

kp1...pr

(r) up1 . . . upr + O(|u|N)

and differentiating it, we obtain

d expp(u)
k = γkp1

(1) +
N∑

r=2

1
(r− 1)!

γkp1...pr

(r) up2 . . . upr + O(|u|N)

= gkj(0) +
N∑

r=2

1
(r − 1)!

γkjp2...pr

(r)
up2 . . . upr +O(|u|N).

More precisely,

d expp(u)
kj = gkj(0) + γ

kjp2

(2) up2 +
1
2
γ

kjp2p3

(3) up2up3 + O(|u|3)

= gkj(0)− Γkjpup +
1
2
γkjpq

(3)
upuq + O(|u|3).

Since we assumed 2-step bracket generating hypothesis, choose coordinates near
p so that p is an origin and

gjk(0) =
(
εjI

jk 0
0 0

)
,

where Ijk is a m ×m unit matrix and εjI
jk is a m ×m matrix with ν negative

unities on the diagonal and m − ν positive unities, which can be also written as
follows: gjk(0) = εjδ

j
k , where δj

k is a Kronecker symbol and

εj =



−1, if 1 � j � ν,

1, if ν < j � m,

0, if m < j � n.
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Denote with a, b the indexes responsible for elements standing in rows or
columns with numbers 1, . . . , m, and α, β – for m + 1, . . . , n respectively. Then
d expp(u) is a n× n matrix of the following form

W kj =
(
Aab Baβ

Cαb Dαβ

)

with

(5.6)

Aab = εaI
ab + O(|u|),

Baβ = −Γaβpup +O(|u|2),
Cαb = −Γαbpup +O(|u|2),

Dαβ =
1
2
γαβpq

(3) upuq + O(|u|3).

Since γαβp
(2)

= 0 due to the special choice of gkj , there are no terms of order 2 in
Dαβ. The following proposition is an easy computation on determinant.

Lemma 5.1. detW (u) = det W̃ (u) + O(|u|2(n−m)+1), where W̃W (u) is ob-
tained from W by discarding the error terms containing O(|u| i), i = 1, 2, 3 and
det W̃ (u) is homogeneous of degree 2(n−m) in u.

To estimate the determinant of W̃ (u) we need some more calculations. From
(5.3) and (5.5) we get

γαβpq
(3)

(x) = sym(β, p, q) ·
(
gjq(x)

∂γαβp
(2)

∂xj
(x) − γαβj

(2)
(x)

∂gpq

∂xj
(x)

)

= sym(β, p, q) ·
(
−gjq(x)

∂Γαβp

∂xj
(x) + Γαβj(x)

∂gpq

∂xj
(x)

)

=
1
3

(
Γαβj(x)

∂gpq

∂xj
(x) + Γαpj(x)

∂gβq

∂xj
(x) + Γαqj ∂g

pβ

∂xj
(x)

−gjq(x)
∂Γαβp

∂xj
(x) − gjp(x)

∂Γαβq

∂xj
(x)− gjβ(x)

∂Γαpq

∂xj
(x)

)
.

Setting here x = 0, we get that the first and the last terms in the last sum are zero,
because gjk(0) = 0 for j, k > m. Hence, for p, q � m

(5.7) γαβab
(3) =

1
3

(
Γαaj ∂g

βb

∂xj
+ Γαbj ∂g

aβ

∂xj
− εb

∂Γαβa

∂xb
− εa

∂Γαβb

∂xa

)

and for p, q > m γαβpq
(3)

= 0 since gjk(0) = 0 for j, k > m. Let us calculate the
involved terms in (5.7).
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Γαaj
∣∣
x=0

=
1
2

(
gαk∂g

aj

∂xk
− gak∂g

αj

∂xk
− gjk∂g

αa

∂xk

)∣∣∣∣
x=0

= −1
2

(
εa
∂gαj

∂xa
+ εj

∂gαa

∂xj

)
,

Γαβa
∣∣∣
x=0

=
1
2

(
gαk∂g

βa

∂xk
− gβk∂g

αa

∂xk
− gak ∂g

αβ

∂xk

) ∣∣∣
x=0

= −1
2
εa
∂gαβ

∂xa
,

∂Γαβa

∂xb

∣∣∣
x=0

=
1
2

(∂gαk

∂xb

∂gβa

∂xk
− gαk ∂2gβa

∂xb∂xk
− ∂gβk

∂xb

∂gαa

∂xk

+gβk ∂
2gαa

∂xbxk
− ∂gak

∂xb

∂gαβ

∂xk
− gak ∂

2gαβ

∂xbxk

)∣∣∣
x=0

=
1
2

(
∂gαk

∂xb

∂gβa

∂xk
− ∂gβk

∂xb

∂gαa

∂xk
− εa

∂2gαβ

∂xa∂xb

)

owing to gαk = gβk = 0 and
∂gαβ

∂xk
= 0 by Lemma 3.2. Now we simplify the form

of
∂2gαβ

∂xa∂xb
. Take a null-section v(x), then

gjk ∂vk

∂xp
= −∂g

jk

∂xp
vk.

Thus, making use of Lemma 3.2 and differentiating both parts, we obtain

∂

∂xq

(
gjk ∂vk

∂xp

)
=
∂gjk

∂xq

∂vk

∂xp
+ gjk ∂2vk

∂xp∂xq
,

∂

∂xq

(
∂gjk

∂xp
vk

)
=

∂2gjk

∂xq∂xp
vk +

∂gjk

∂xp

∂vk

∂xq
.

From here

∂2gjk(x)
∂xq∂xp

vk(x) = −∂g
jk(x)
∂xp

∂vk(x)
∂xq

− ∂gjk(x)
∂xq

∂vk(x)
∂xp

− gjk(x)
∂2vk(x)
∂xp∂xq

.

Taking inner product with another null-section, we get

∂2gjk(x)
∂xq∂xp

vk(x)wj(x) = −∂g
jk(x)
∂xp

∂vk(x)
∂xq

wj(x) −
∂gjk(x)
∂xq

∂vk(x)
∂xp

wj(x)

since gjk(x)
∂2vk(x)
∂xp∂xq

wj(x) = 0 by virtue of Lemma 3.2.

Set x = 0 and, since glk(0)
∂vk

∂xr
(0) = εl

∂vl

∂xr
(0) = −εl

∂glk

∂xr
(0)vk, then

∂2gjk

∂xa∂xb
vkwj = −∂g

jk

∂xa

∂vk

∂xb
wj −

∂gjk

∂xb

∂vk

∂xa
wj

= εk
∂gjk

∂xa

∂gkm

∂xb
vmwj + εk

∂gjk

∂xb

∂gkm

∂xa
vmwj.
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Take vk(0) = δk
β , wj(0) = δj

α and get

∂2gαβ

∂xa∂xb
= εk

∂gαk

∂xa

∂gkβ

∂xb
+ εk

∂gαk

∂xb

∂gkβ

∂xa
.

Therefore,

∂Γαβa

∂xb
=

1
2

(
∂gαj

∂xb

∂gβa

∂xj
− ∂gβj

∂xb

∂gαa

∂xj
− εaεj

∂gαj

∂xa

∂gβj

∂xb
− εaεj

∂gαj

∂xb

∂gβj

∂xa

)
.

Substituting calculated terms in (5.7)

γαβab
(3) =

1
6

[
−

(
εa
∂gαj

∂xa
+ εj

∂gαa

∂xj

)
∂gβb

∂xj
−

(
εb
∂gαj

∂xb
+ εj

∂gαb

∂xj

)
∂gβa

∂xj

−εb
(
∂gαj

∂xb

∂gβa

∂xj
− ∂gβj

∂xb

∂gαa

∂xj
− εaεj

∂gαj

∂xa

∂gβj

∂xb
− εaεj

∂gαj

∂xb

∂gβj

∂xa

)

−εa
(
∂gαj

∂xa

∂gβb

∂xj
− ∂gβj

∂xa

∂gαb

∂xj
− εbεj

∂gαj

∂xb

∂gβj

∂xa
− εbεj

∂gαj

∂xa

∂gβj

∂xb

)]
.

To simplify this let us introduce the following notations

Eαβ = εb
∂gαβ

∂xb
ub, Fβ

a =
∂gβb

∂xa
ub.

Then

γαβab
(3)

uaub =
1
3

(
2εjEαjEβj − 2EαjFβ

j − εjF
α
j F

β
j + EβjFα

j

)

=
1
6

((
εjF

β
j −Eβj

)((
Fα

j − εjE
αj

)
− 3

(
εjE

αj + Fα
j

)))

=
2
3
εjB̃

jβ B̃jα + 2εjB̃jβ C̃αj.

Thus, we have the form of the matrix W̃ kj

W̃ kj =


εjIjb B̃aβ

C̃αb 1
3
εjB̃

jβ B̃jα + εjB̃
jβ C̃αj


 ,

therefore, (
Iab 0

−C̃αb εjI
jβ

)
W̃ kj =


εjIjb B̃aβ

0
1
3
B̃jβ B̃jα


 ,

from which we obtain
| det W̃ | = | det

1
3
B̃jβ B̃jα|.
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From here we have the homogeneity of detW̃ (u) of degree 2(n−m) in u, since the
matrix B is represented by the mapping Γ(u, ·) : S⊥ → S, where S⊥ is (n−m)-
dimensional.

Lemma 5.2. Let us assume 2-step bracket generating hypothesis for the ssr-
manifold M , and let u ∈ T ∗M . Then for every u with 〈gu, u〉 �= 0 there exists
δ > 0 such that

| det M̃(u)| � δ|〈gu, u〉|(n−m).

Proof. By Theorem 3.1 the mapping Γ(u, ·) : S⊥ → S is injective for every
nonzero u with 〈gu, u〉 �= 0. From the other hand, B̃jα is a matrix for −Γ(u, ·) by
(5.6) and, hence, the matrix for B̃jβ B̃jα is the matrix for Γ(u, ·)tr · Γ(u, ·), which
is invertible by injectivity of Γ(u, ·). Therefore, detW̃ (u) �= 0 if 〈gu, u〉 �= 0 and
the statement of the lemma holds due to a homogeneity argument.

Remark 5.2. Lemma 5.2 can be reformulated in the following way: detW̃ (u) �=
0 if and only if gu is a 2-step bracket generator.

Theorem 5.2. i) If gu is a 2-step bracket generator, then there exists δ > 0
such that expp(tu) is a local diffeomorphism for any 0 < t < δ.
ii) Assuming 2-step bracket generating hypothesis, there exists δ > 0 depending
continuously on p such that expp(u) is a local diffeomorphism for u near the origin,
provided 〈gu, u〉 �= 0.

Proof. The assertion i) follows from Lemma 5.2 and the Remark 5.2. By
Lemma 5.1

detW (u) � det W̃ (u)−C|u|2(n−m)+1

for small u. Thus, ii) holds for |u| � δ

(
|〈gu, u〉|
|u|2

)(n−m)

.

6. QUATERNION SSR-MANIFOLD

In the present chapter we find the parametric equations of extremals for a group
furnished with the sub-semi-Riemannian metric of the index 2 described earlier in
Example 2 at Section 2. The Hamiltonian function H(ξ, θ, x, z) has the following
form

(6.1)

H=
1
2
(−ξ21−ξ22+ξ23+ξ24)+

1
2
(x2x4θ1θ2+(x2x3+x1x4)θ1θ3−x1x3θ1θ2)

+
1
8
(θ21 − θ22 − θ23)(−x2

1 − x2
2 + x2

3 + x2
4)

+
1
2
θ1(−x2ξ1+x1ξ2+x4ξ3−x3ξ4)+

1
2
θ2(x4ξ1+x3ξ2+x2ξ3+x1ξ4)

+
1
2
θ3(x3ξ1 − x4ξ2 + x1ξ3 − x2ξ4).
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The corresponding Hamiltonian system is

(6.2)

ẋ1 =
∂H

∂ξ1
= −ξ1 − 1

2x2θ1 + 1
2x4θ2 + 1

2x3θ3,

ẋ2 =
∂H

∂ξ2
= −ξ2 + 1

2x1θ1 + 1
2x3θ2 − 1

2x4θ3,

ẋ3 =
∂H

∂ξ3
= ξ3 + 1

2x4θ1 + 1
2x2θ2 + 1

2x1θ3,

ẋ4 =
∂H

∂ξ4
= ξ4 − 1

2x3θ1 + 1
2x1θ2 − 1

2x2θ3,

ż1 =
∂H

∂θ1
= 1

2 ((x2x4 − x1x3)θ2 + (x2x3 + x1x4)θ3)

+1
4θ1(−x2

1 − x2
2 + x2

3 + x2
4)

+1
2 (−x2ξ1 + x1ξ2 + x4ξ3 − x3ξ4),

ż2 =
∂H

∂θ2
= 1

2 (x2x4 − x1x3)θ1 − 1
4θ2(−x

2
1 − x2

2 + x2
3 + x2

4)

+1
2 (x4ξ1 + x3ξ2 + x2ξ3 + x1ξ4),

ż3 =
∂H

∂θ3
= 1

2 (x2x3 + x1x4)θ1 − 1
4θ3(−x2

1 − x2
2 + x2

3 + x2
4)

+1
2 (x3ξ1 − x4ξ2 + x1ξ3 − x2ξ4),

ξ̇1 = −∂H
∂x1

= −1
2 (−x3θ1θ2 + x4θ1θ3)

+1
4x1(θ21 − θ22 − θ23) − 1

2ξ2θ1 −
1
2ξ4θ2 −

1
2ξ3θ3,

ξ̇2 = −∂H
∂x2

= −1
2 (x4θ1θ2 + x3θ1θ3)

+1
4x2(θ21 − θ22 − θ23) + 1

2ξ1θ1 −
1
2ξ3θ2 + 1

2ξ4θ3,

ξ̇3 = −∂H
∂x3

= −1
2 (x2θ1θ3 − x1θ1θ2)

−1
4x3(θ21 − θ22 − θ23) + 1

2ξ4θ1 −
1
2ξ2θ2 −

1
2ξ1θ3,

ξ̇4 = −∂H
∂x4

= −1
2 (x2θ1θ2 + x1θ1θ3)

−1
4x4(θ21 − θ22 − θ23) − 1

2ξ3θ1 −
1
2ξ1θ2 + 1

2ξ2θ3,

θ̇1 = −∂H
∂z1

= 0,

θ̇2 = −∂H
∂z2

= 0,

θ̇3 = −∂H
∂z3

= 0.

We observe that θ1, θ2, θ3 are constants and they give the first integrals of (6.2).
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Let us remind that the projection of a solution of the Hamiltonian system onto
(x, z)-space is called extremal. In order to find it we will reduce the Hamiltonian
system to the system containing only (x1, x2, x3, x4, z1, z2, z3) coordinates. If we
express ξ1, . . . , ξ4 from the first 4 equations and substitute them in the equations of
the Hamiltonian system, then we obtain

ξ̇1 =
1
2
(ẋ2θ1 − ẋ4θ2 − ẋ3θ3),

ξ̇2 =
1
2
(−ẋ1θ1 − ẋ3θ2 + ẋ4θ3),

ξ̇3 =
1
2
(ẋ4θ1 + ẋ2θ2 + ẋ1θ3),

ξ̇4 =
1
2
(−ẋ3θ1 + ẋ1θ2 − ẋ2θ3).

Differentiating first 4 equations and substituting ξ̇1, . . . , ξ̇4 there, we get

ẍ1 = −ẋ2θ1 + ẋ4θ2 + ẋ3θ3,

ẍ2 = ẋ1θ1 + ẋ3θ2 − ẋ4θ3,

ẍ3 = ẋ4θ1 + ẋ2θ2 + ẋ1θ3,

ẍ4 = −ẋ3θ1 + ẋ1θ2 − ẋ2θ3

or

(6.3)




ẍ1

ẍ2

ẍ3

ẍ4


 =




0 −θ1 θ3 θ2
θ1 0 θ2 −θ3
θ3 θ2 0 θ1
θ2 −θ3 −θ1 0







ẋ1

ẋ2

ẋ3

ẋ4


 .

We are looking for the solution x1 = x1(t), . . . , x4 = x4(t), t ∈ [−∞,+∞], satis-
fying x1(0) = 0, . . . , x4(0) = 0 and ẋ1(0) = ẋ0

1, . . . , ẋ4(0) = ẋ0
4. The eigenvalues

of the matrix

A :=




0 −θ1 θ3 θ2
θ1 0 θ2 −θ3
θ3 θ2 0 θ1
θ2 −θ3 −θ1 0




are λ1 = a, λ2 = −a, λ3 = a, and λ4 = −a, where a = |k| + iθ1, a = |k| − iθ1
and k = θ2 + iθ3, k = θ2 − iθ3. The associated eigenvectors are

v1 = (ia|k|, a|k|, ak, iak),
v2 = (−ia|k|, a|k|,−ak, iak),
v3 = (ia|k|,−a|k|,−ak, iak),
v4 = (−ia|k|,−a|k|, ak, iak),
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where |k| =
√
θ22 + θ23 . Notice that the matrix A is skew-symmetric with respect to

our nondegenerate metric Q with index 2 in the sense that Q(Ax, y) = −Q(x, Ay).
This extends the idea of sub-Riemannian case, which was considered in [2], where
the matrix Q was just a unit matrix and A was skew-symmetric in the usual sense,
i. e. with respect to positively definite metric. Also it carries on the sub-Lorentzian
case, where A was skew-symmetric with respect to sub-Lorentzian metric Q [11].

The solution of the system (6.3) is of the form

ẋ1(t) = i|k|(c1aeat − c2ae
−at + c3ae

at − c4ae
−at),

ẋ2(t) = |k|(c1aeat + c2ae
−at − c3ae

at − c4ae
−at),

ẋ3(t) = c1ake
at − c2ake

−at − c3ake
at + c4ake

−at,

ẋ4(t) = i(c1akeat + c2ake
−at + c3ake

at + c4ake
−at),

where

c1 =
1

4iak|k| · (k(ẋ
0
1 + iẋ0

2) + |k|(ẋ0
4 + iẋ0

3)),

c2 =
1

4iak|k|
· (−k(ẋ0

1 − iẋ0
2) + |k|(ẋ0

4 − iẋ0
3)),(6.4)

c3 =
1

4iak|k|
· (k(ẋ0

1 − iẋ0
2) + |k|(ẋ0

4 − iẋ0
3)),

c4 =
1

4iak|k| · (−k(ẋ
0
1 + iẋ0

2) + |k|(ẋ0
4 + iẋ0

3)).

Therefore, the general solution to (6.3) that gives the x-coordinates of the extremals
has a form

(6.5)

x1(t)=i|k|(c1eat+c2e−at + c3e
at+c4e−at)−i|k|(c1+c2+c3+c4),

x2(t)= |k|(c1eat−c2e−at−c3eat+c4e−at)−|k|(c1−c2−c3+c4),

x3(t)=c1keat + c2ke
−at−c3keat − c4ke

−at−(c1k + c2k−c3k−c4k),

x4(t)=i(c1keat−c2ke−at+c3keat−c4ke−at)−i(c1k−c2k+c3k−c4k).

From the horizontality conditions we get

ż1 =
1
2
(+x2ẋ1 − x1ẋ2 + x4ẋ3 − x3ẋ4),

ż2 =
1
2
(−x4ẋ1 − x3ẋ2 + x2ẋ3 + x1ẋ4),

ż3 =
1
2
(−x3ẋ1 + x4ẋ2 + x1ẋ3 − x2ẋ4).

Integrating, we find the vertical z-components
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(6.6)

z1(t) = 2i|k|2(−2(c1c2a−c3c4a)t+c1c2(eat − e−at)−c3c4(eat−e−at)),

z2(t) = 2θ2|k|(−2(c1c2a+c3c4a)t+c1c2(eat − e−at)+c3c4(eat−e−at))

+2θ1θ3(c1c3e2|k|t+c2c4e−2|k|t−c1c3−c2c4)

+2iθ3|k|(c1c3eat+c2c4e−at−c1c3eat−c2c4e−at),

z3(t) = 2θ3|k|(−2(c1c2a+c3c4a)t+c1c2(eat−e−at)+c3c4(eat−e−at))

−2θ1θ2(c1c3e2|k|t+c2c4e−2|k|t−c1c3−c2c4)

−2iθ2|k|(c1c3eat+c2c4e−at−c1c3eat−c2c4e−at).

The constants of integration ci, i = 1, . . . , 4 are given by (6.4) through the initial ve-
locity. We would like to calculate the homogeneous norm of an element

(
x(t), z(t)

)
given by

‖(x, z)‖4 = (−x2
1 − x2

2 + x2
3 + x2

4)
2 + z2

1 + z2
2 + z2

3 .

We define this norm taking into account the nondegenerate ssr-metric of index 2
and the Hausdorff dimension of the Quaternion ssr-manifold. We have

(6.7)

‖x(t)‖2 = (−x2
1 − x2

2 + x2
3 + x2

4)(t)

= 8|k|2(2c1c2 + 2c3c4 − c1c2(eat + e−at) − c3c4(eat + e−at))

= −32|k|2(c1c2 sinh2 at

2
+ c3c4 sinh2 āt

2
).

Let us introduce the notation w1 = k
|k|(ẋ

0
1+iẋ0

2), w2 = ẋ0
4 +iẋ0

3 in order to simplify
the calculations. Then

c1 =
1

4iak
(w1 + w2), c2 =

1
4iak̄

(−w̄1 + w̄2),

c3 =
1

4iāk̄
(w̄1 + w̄2), c4 =

1
4iāk

(−w1 + w2).

Observe that c3 = −c̄1, c4 = −c̄2, c3c4 = c1c2, c1c3 = −|c1|2, c2c4 = −|c2|2,
and

c1c2 = − 1
16a2|k|2

(
|w2|2 − |w1|2 + 2iIm(w1w̄2)

)
,

c1c3 = − 1
16|a|2|k|2 |w2 + w1|2, c2c4 = − 1

16|a|2|k|2 |w2 −w1|2.

We see that (6.7) takes the form

‖x(t)‖2 = −64|k|2Re(c1c2sinh2 at

2
), a = |k|+ iθ1.

The letter calculations we can summarize in the following theorem.
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Theorem 6.1. Let M be ssr-manifold described in Example 2 of Section 2.
The normal extremals starting from the identity of the group M are given by the
solution of the Hamiltonian system (6.2) by the following parametric equations

x1(t) =
1

|a|2Re
[
C1sinh(at) + C2(cosh(at) − 1)

]
,

x2(t) =
1

|a|2 Im
[
C2sinh(at) +C1(cosh(at) − 1)

]
,

x3(t) =
1

|a|2 Im
[
C3sinh(at) +C4(cosh(at) − 1)

]
,

x4(t) =
1

|a|2Re
[
C4sinh(at) + C3(cosh(at) − 1)

]
,

and

z1(t) =
1

4|a|2 Im
[
K1(t+ 2āsinh(at))

]
,

z2(t) = − θ2
4|a|2|k|Re

[
K1(t+ 2āsinh(at))

]

+
θ3

(
|k| sin(θ1t) − θ1sinh(|k|t)

)
2|a|2|k|2 Re

[
K2

(
sinh(|k|t) − icosh(|k|t)

)]
,

z3(t) = − θ3
4|a|2|k|Re

[
K1(t+ 2āsinh(at))

]

−
θ2

(
|k| sin(θ1t) − θ1sinh(|k|t)

)
2|a|2|k|2 Re

[
K2

(
sinh(|k|t) − icosh(|k|t)

)]
,

where constants C1 = ā|k|
(
Rew1

k + iImw2
k

)
, C2 = ā|k|

(
Rew2

k + iImw1
k

)
, C3 =

ā
(
Rew1+iImw2

)
, C4 = ā

(
Rew2+iImw1

)
, K1 = ā

(
|w2|2−|w1|2+2iIm(w1w̄2)

)
,

K2 = |w2|2 + |w1|2 + 2iIm(w1w̄2), w1 = k
|k|(ẋ

0
1 + iẋ0

2) and w2 = ẋ0
4 + iẋ0

3 are
expressed in terms of initial velocity (ẋ 0

1, ẋ
0
2, ẋ

0
3, ẋ

0
4) and the first integrals of the

Hamiltonian system (6.2) k = θ2 + iθ3 and a = |k|+ iθ1.
The homogeneous norm is

‖(x, z)‖4(t) =
4

|a|4
(
Re

[K1

a
sinh2 at

2

])2
+

1
16|a|4

∣∣K1(t+ 2āsinh(at))
∣∣2

+

(
|k| sin(θ1t) − θ1sinh(|k|t)

)2

4|a|4|k|2
(
Re

[
K2

(
sinh(|k|t)− icosh(|k|t)

)] )2
.
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