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SEMI-RIEMANNIAN GEOMETRY WITH NONHOLONOMIC
CONSTRAINTS

Anna Korolko and Irina Markina

Abstract. In the present article the geometry of semi-Riemannian manifolds
with nonholonomic constraints is studied. These manifolds can be considered
as analogues to the sub-Riemannian manifolds, where the positive definite
metric is substituted by a nondegenerate metric. We study properties of the
exponential map, the Christoffel symbols and other differential operators are
introduced. We study solutions of the Hamiltonian system and their projections
into the underlying manifold. The explicit formulae were found for a specific
example of a semi-Riemannian manifold with nonholonomic constraints.

1. INTRODUCTION

Sub-Riemannian manifolds and the geometry introduced by bracket generating
distributions of smoothly varying m-dimensional planes are widely studied interest-
ing subject, which has applications in control theory, quantum physics, C-R geom-
etry, the theory of principal bundles, and other areas. The main difference between
the sub-Riemannian manifold and Riemannian one is the presence of a smooth sub-
bundle of the tangent bundle, generating the entire tangent bundle by means of the
commutators of vector fields. The subbundle, which is often called horizontal, is
equipped with a positively definite metric that leads to the triple: manifold, hor-
izontal subbundle, and Riemannian metric on the horizontal subbundle, which is
called a sub-Riemannian manifold. The foundation of the sub-Riemannian geome-
try can be found in [13-15, 18]. The following question can be asked. What kind
of geometrical features will have the mentioned triplet if we change the positive
definite metric on the subbundle to an indefinite nondegenerate metric? We use the
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term semi-Riemannian to emphasis that the considered metric is nondegenerate in
contrast to the positive definite metric, which is referred as Riemannian. As it is
known to the authors the present work is the first attempt to study systematically the
geometry of semi-Riemannian manifolds with nonholonomic constraints, which we
will call the sub-semi-Riemannian manifolds or shortly ssr-manifolds. In the present
paper we study the exponential map and solutions to the Hamiltonian system that
has no established terminology in the literature and can be called geodesics or ex-
tremals, see for instance [13, 18]. The ssr-manifolds have their own peculiarity that
distinguishes them from the sub-Riemannian and semi-Riemannian manifolds. The
simplest example of a semi-Riemannian manifold with nonholonomic constraints is
the Heisenberg group equipped with the Lorentzian metric and it has been consid-
ered in [6, 7, 11]. It was shown in [11] that in contrast with the Heisenberg group
with positive definite metric the Lorentzian type of the Heisenberg group possesses
the uniqueness of extremals both of timelike or spacelike type. The structure of the
article is the following. Section 2 is devoted to main definitions. The collection of
technical lemmas concerning Christoffel symbols is proved in Section 3. In Sec-
tion 4 the extremals and the exponential map are introduced and the extendability
of extremals and Gauss lemma are shown. Some properties of the length are also
studied. Section 5 is devoted to the differential properties of the exponential map. It
is shown that the exponential map possesses an analogue of “local diffeomorphism”
property, although it is not a diffeomorphism at the origin. The final Section 6
shows an example of ssr-manifold, where the explicit formulae of extremals are
found.

2. MAIN DEFINITIONS

Let M be a connected n-dimensional, C°°-manifold, where n > 3. Let T, and
T denote the tangent and cotangent spaces at a point x € M, and (Y, &) the pairing
between them, Y € T, £ € T;;. The tangent and cotangent bundles are denoted by
T and T respectively. Fix an integer m, such that 1 < m < n. Let S be a fixed
subbundle of the tangent bundle 7', S = J S,, S, be a fiber over z, of the rank

M
m. A subbundle S will be called brackgtegenerating or complete nonholonomic,
if the vector fields which are sections of .S, together with all brackets span T, at
each z € M. In this case any two points in M can be connected by a piecewise
smooth curve y(s) such that the tangent vector (s) belongs to S, at each point
v(s) where the tangent vector exists. The bracket generating subbundle S is called
the horizontal bundle or horizontal distribution, and a curve ~(s) satisfying #(s) €
S, (s) is called the horizontal curve. A result of Chow [4], see also [17], guarantees
the connectivity of M by horizontal curves. The necessary and sufficient condition
on connectivity by curves tangent to a given distribution of a smooth manifold can
be found in [19]. We notice that the connectivity of a manifold by horizontal curves
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tangent to a given distribution depends only on properties of the distribution and
not on any metric defined on it or on the tangent bundle. If Y € S, let S + [V, 5]
denote the subbundle of T" spanned by S and all the vector fields [Y, X ], where X
varies over sections S. A fiber at a point = € M is written as S, + [Y (), Si] € T}
with Y (x) € S,.. Similarly we define bracket(k, Y") inductively by bracket(2,Y) =
S + 1Y, S] and bracket(k,Y) = S + [bracket(k — 1,Y"),S]. More generally we
set bracket(2,S) = S + [5, S] and bracket(k, S) = S + [bracket(k — 1,5),S]. A
restriction of a bundle to x € M is denoted by writing the subscript z, for example:
bracket(k, Y (x)) = S, + [bracket(k — 1, Y (x)), S;| € T,.. We will say that a vector
field Y € S'is a k-step generator if bracket(k, Y (x)) = T, for all z € M. Similarly,
S will be said to be k-step bracket generating distribution if bracket(k, S,) = T,
for every x. From now on we work with a distribution S possessing the bracket
generating property.
By analogy with the sub-Riemannian metric we give the following definition.

Definition 2.1. Let M be a smooth manifold, S be a bracket generating subbun-
dle of the tangent bundle T'. A sub-semi-Riemannian metric ) on S is a smoothly
varying in = nondegenerate quadratic form @, on S,. We abbreviate the long and
tedious name of sub-semi-Riemannian metric by the term ssr-metric. We call the
pair (S, Q) the sub-semi-Riemannian (ss-Riemannian) structure on M.

We remind that the index v of a metric is the maximal dimension of the space
Ve C S, where the form @, is negative definite. If v = 1 then we call the
ssr-metric the sub-Lorentzian metric following the tradition in semi-Riemannian
geometry. The ssr-metric with the index v = 0 is just a sub-Riemannian metric.
Given @, we may define a linear mapping g,: 7y — T as follows: for given
¢ € T, the linear mapping W — (W, &), W € S, can be represented uniquely as
W — Q.(W, X) for some X € S,, then X is chosen to be g,£. The map g, is
called a cometric and is completely defined by the two following relations:

(i) image of T under g, is S,
(ii) g, and @, are related by the identity

(2.1) Q. (W, g,€) = (W, &) forall W e S,.

Let S denote the kernel of g,, and S+ C T* be the subbundle with fibers S ;-
Then g,: T7/S;+ — S, is bijection.

Lemma 2.1. If Q, is symmetric, nondegenerate and has index v, then g, is
symmetric, degenetareted on S+ C T* and has index v on T} /S

Proof. We understand the action of the cometric g on 7" x T* — R (omitting
x) as following: ¢(&,1) = (g&, ¢) for any two covectors £ and ¢ from T*.
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Thus by definition of the cometric g we have g(v, &) = (gv, &) = Q(g¥, g€),
which equals to Q(g¢, gv) = (g€, ¥) = g(&, 1) by the symmetry of the ssr-metric
Q.

Now, having the nondegeneracy of ), we prove the nondegeneracy of g on
T*/S+, that is if g(¢,) = 0 for any ¢ € T*/S* then ¢ = 0. First of all, we
notice that the pairing (Y, ¢), y € S, € € T*/S+, is not degenerated by (2.1). Then,
taking arbitrary ¢» € T* /S~ and setting Y = g1/, we obtain

9(¥,§) = (Y, §) =0 forany Y eS.

This implies the necessary result by the nondegeneracy of the pairing. The rela-
tion (2.1) shows that the index of Q.. and g, coincides for any = € M where g, is
non degenerated. ]

Conversely, given a symmetric linear operator ¢,: 7 — T, with image Sm,
there is a unique nondegenerate quadratic form @, satisfying (2.1). We write gm ,
j,k=1,...n for the symmetric matrix defining the cometric g, to empha5|s that it
is a tensor of covariant type and operates with covectors. The matrix g;, is never
invertible.

A differential manifold M with a chosen subbundle S of the tangent bundle
and with a given nondegenerate ssr-metric @ on S will be called the sub-semi-
Riemannian manifold or shortly ssr-manifold. If the index v of @ is 1, then we
call the triplet (M, S, Q) a sub-Lorentzian manifold and in the case of v = 0 we
get the sub-Riemannian manifold widely studied in [9, 13, 15, 18] and numerous
references therein.

We present a couple of examples of ssr-manifolds.

Example 1. Let us consider the following example of sub-Lorentzian manifold
that we call the Heisenberg group with sub-Lorentzian metric. This example was
considered first in [6, 7] and was also studied in [11]. We remind that the Heisenberg
group H! is the space R? furnished with the non-commutative law of multiplication

1
((I,', Y, z)(wlv ylv Z/) = (II,' + xlv Y + ylv z+ Z/ + 3 y(I,'/ - xy/))

5(
This gives the R? the structure of a non-abelian Lie group. The two-dimensional
horizontal bundle S is given as a span of left invariant vector fields

x 0 N 1 0 o 1 0
= — —1Y — = — — —T—
ox 270z oy 2 0z’
that can be found as the left action of the Lie group. There is only one nonvanishing
commutator [X,Y] = Z = %. We suppose that the Lorentzian metric @ is defined

on S by setting
QX,X)=-1, Q,Y)=1, Q(X,Y)=0.
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Thus the triple (R3, S, Q) is called the Heisenberg group with the Lorentzian metric,
and to differ it from the classical case H' we use the notation H}. We say the
classical case bearing in mind the manifold (R3,S,d) with a positively definite
metric d on S.

The quadratic nondegenerate symmetric form @, written in the left invariant

basis X,Y of S, is
-1 0
Q:{Qab}:<0 1)

Take the basis of Lie algebra associated with the Heisenberg group, considered as the
Lie group, (X,Y, Z) € T. The dual basis of 7* consists of the forms dz, dy, w =
dz — %(xdy—ydx). We wish to find the cometric g = g7%. Let gdx = a1 X +asY.
Making use of (2.1) for W replaced by X and Y, we deduce that gdx = —X. In
the same way we get gdy = Y. Thus, the equality ¢(¢, &) = Q(g¢, g&) calculated
for the basic forms implies the values ¢ = ¢7* for j,k = 1,2. The rest of the
terms vanish because of g(dz,w) = (gdz,w) = 0, g(dy,w) = (gdy,w) = 0, and
gw = 0. Finally we get in the basis dz, dy, w

‘ -1 .0 0
gF=[0 10
0 00

Example 2. Consider the example of ssr-manifold related to the notion of
Heisenberg-type groups based on quaternions [2, 5, 10]. The manifold M is R”.
The vector fields

P (mi A _x3i>
81‘1 2 821 822 823 ’
I wi)
81‘2 2 821 822 823 ’
X3 = i+ ! <—|—x4i+9€2 0 +x1i>
81‘3 2 821 822 823 ’
o0 1 <_x3i e 0 _mi)
81‘4 2 821 822 823 ’

form the basis of four-dimensional horizontal distribution S. These vector fields
come from the infinitesimal action of the noncommutative group law multiplication

1
Lz (@', 2) = (z,2) 0 (¢, 2) = (x4 2/, 2 4+ 2 + JIm(x X))

for (z,2) and (2/,2') from R* x R3. Here Im(x * x’) is the imaginary part of the
product z x 2’ of the conjugate quaternion z to = by another quaternion /. See the
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details in Section . The distribution S is bracket generating due to the commutation
relations

(X1, Xo) =21, [X1,X3] =23, [X1,X4] = 2o,
[Xo, X3| = Zs, [Xo, Xu|=—2Z3, [X3,X4]=—21,
where Zg = %, 8 =1,2,3 form a basis of the complement to S in the tangent

bundle.
We define the ssr-metric @ on S by the matrix

1 0 0 0
0 -1 00
Q=149 o 1 0
0 0 0 1

The ssr-metric @ has index 2. The corresponding cometric ¢’* is obtained like in
the Example 1, has index 2, and assumes the following form

-1 0
-1

9ik =

OO OO oo
o O O O O

(el elNoll S =]
S oo~ OO o
OO OO O oo
OO OO O oo
OO OO O oo

The triple (M, S, Q) is a ssr-manifold. More details about the manifold of the
Example 2 the reader can find in Section .

The example of Heisenberg-type group based on quaternions with the nonde-
generate metric which has index 1, i. e. sub-Lorentzian, is considered in [11, 12].

We refer to [3] for an example of sub-Lorentzian manifold based on the Lie
group different from the nilpotent group.

3. CHRISTOFFEL SYMBOLS

Recall that S denotes the kernel of g(z) and S+ C T*, S* = U,enrSy. The
space S;- is the annihilator of S, in 7. From now on, we use the summation
convention of the differential geometry.

Lemma 3.1. We have (v,Y) = 0 for all Y € S if and only if g7%v;, = 0,
j=1,...,n
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Proof. Let (v,Y) =0 forany Y € S. Pick up an arbitrary Y € S, then there
exists a form w such that Y = gw. Moreover, we can assume that w € T%/S*.
Indeed, if w = w; + v1, where w; € T*/S+ and v; € S+, then for any X € S we
get

Q(X, gw) = Q(X, gw1) + Q(X, gv1) = Q(X, gw1) + (v1, X) = Q(X, gw1).
Thus
0=(v,Y)=(v,9w) =Q(gw,gv) forall Y =gweS = gv=0.

Here we used the symmetry and the nondegeneracy of Q.
Conversely, having gv = 0 we derive 0 = (v, gw) for any w € T*/S+. Thus,
(v,Y)=0forany Y = gw. [

Lemma 3.2. (a) If v is a section of the annihilator S+, then

jkﬁvk B ﬁgjk
azr  ozp *

(b) If z:(t) is a curve in M and v(t) is such that v(t) is a section of S over z(t),
then ()
IR (e \eyy — —
g (@) = oxp
for all ¢ (here the dot denotes the ¢-derivative).
(¢) If v and w are sections of S+, then

zPuy,

ﬁgﬂ“
ka’wj = 0.
Proof.  To prove (a) one applies % to the identity g7*(z)vx(x) = 0 which
€T
defines the null-bundle. 4
To prove (b) we take the derivative pn of the identity ¢7% ((t))vr(t) = 0.
Finally, to prove (c) first we apply (a) to obtain
e _ gt

oz  OxP

Vg

Then we multiply both sides by w € S+ and, making use of the symmetry of g, we
get

dg7* B KO g Ovg
U= 0 G = I i

because of g*w; = 0. =
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The following question can arise: how the information about the bracket gen-
erating properties reflects in the properties of ¢? If X, Y € S, then [X,Y] is an
element of 7'/S. If X € S, then there exists £ € T with X = g,¢, and similarly
Y = g.n. The covectors £ and n are not defined uniquely, as it was shown in the
proof of Lemma 3.1. Thus they should be regarded as elements of T¥/S.. The
annihilator S+ contains all the necessary information concerning the commutators
through the pairing ([X, Y], v), when v varies over S+. Let us consider the trilinear
form ([g¢, gn],v) on (I3/Sy) x (T7/Sz) % Sy

Lemma 3.3. In local coordinates

L0 4 0g"”
(3.1) ([9€, gnl,v) = (g ang g’ aggcj>€pnqu

for v varying over S;- for any .

Proof. Let £ and n denote any sections of 7. Then X" = ¢"P¢, and
Y" = g"n, are sections of S, and

) )
X, Y] = XTI =y -y X"
(X, Y] 527 527
; 8g”1 0g"™P ¢9M4q » 98
= 9785 10— Mg & + 97 Epg" 5 — g7 Mg %

Taking the inner product with v € S+, we find that the last two terms are annihilated

. on ong 0& o0&

M = g and g"? =Ly, = gP'v,—£ = 0. Thus we
smCE-E qg" 8xjv g?v D =0 g D v D
obtain (3.1). n

We want to define the analogue of the Christoffel symbols but with the raised in-
dexes and see the relation between them and the trilinear form defined in Lemma 3.3.
We write

1 . agpq . agkq . agkp
2 rhrd — — (g2 _gpi 2 _gai )
(32) 2 <g ozi 7 9w Y o

For sections £ € T* and v € S+ define T'(¢,v) € T by T*(&,v) = I'*4¢,u,. In
classical case of differential geometry the Christoffel symbols are used to express the
covariant derivative in local coordinates. Unlike to the classical covariant derivative,
which associates for two vector fields another vector field, the operator T', as we
will see from the following lemma, associates a vector field for a pair of covector
fields and, moreover, the resulting vector field is horizontal.

Lemma 3.4. T'({,v) is a well-defined vector field; that is it is independent
of the choice of coordinates. Moreover, I'(, v) is a horizontal vector field and
(&4 w,v) =T(&v) forw € S*, so that T': (T*/S+) x S+ — 8.
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Proof.  Let us prove that T'* (¢, v) transforms as a tangent vector at each x:
f’“( ) =Tz )8 7, Where y = 1 (x) and ¢ is a local diffeomorphism determining
a new coordinate system. By g, £ and v denote the expressions for g, £ and v in
the new coordinates. We have

0P (z) » oPI(z) . 4

Ok (x) oI
(B3 G=—piG U= § V() O (z)

oxP ox4

(y) = g™ ()

In the new coordinates

:qvjpa:qvkq _ < ab 8yj 8yp> i < cdayk 8yq> da!

OyI Oz fzb ) Ot dxc Ozl ) dyi’
hence
o PT[u00 o dy oy oyt 01!
oyi P Ya = Ox® Ozb Ozl dxc Ozl OyI
(3.4)

+gab5yj dyP da! cd( 2k oyt 9yF 9%ye )] >

D Oz Dy 9zloxc 0zd T Oz 0rloxd Eplg-

The first term of (3.4) equals to

Ay* [ o0y dg°* 9at - dy* abag -

9rc \7 9xa 9l ayi ) ST \ Bue bud:

Changing indexes b to p, d to ¢, and a to j we recognize the tangent bundle
kq

. 0 . . :
transformation of g/? 89 +&pvg. The middle term vanishes since
X

(3_ 5) cd ayq ~ cd

and the last term gives

QOyF 0%yl
92° 0zl &

(3.6) 9"

The middle term in ['*P9¢,v, transforms as follows

;g 09" = Y\ (a0 Y \ ([ ;4997
Jq =
oyI &V = <8xc 9" oz Sav = oz OxJ EpVa-
The other terms vanish by the same reason as in (3.5). The third term in F"“qupvq

in the new coordinates takes the form

. OgP? ﬁyk ﬁgpq ﬁyk 82yq -
_ikZI __ZJ b cd
37 I oy D7 91° ( SV = 97589 e gt Ve
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We see that the last term from (3.7) is canceled with (3.6) (after the change of
indexes). Taking together the rest of terms, we get the desired transformation law
oy*

kaquiq = Oxc

IPIE,v,.
To show that I'(¢, v) € S we take a covector w € S and calculate
(D(€,v),w) = T™Ig 0 0.
Using (3.2) and Lemma 3.2, we argue for each term of T%(¢,v,) as it follows

kq , o ,
g — kY% ko 2V
97 PVaWk = —97pg ™ o wr = —g7PEpgTwp o5 = 0
and get (I'(§, v),w) = 0, that implies T'(§, v) € S.

The property T'(¢ + w,v) = T'(¢,v) for w € S+ follows from

gjp

1/ v 1. 0gP?
(38) U6 0) = 5 (760" 5ot + 0 55 6m)

and Lemma 3.2. n
Analogously to sub-Riemannian situation [18] we have

Theorem 3.1. A vector field X € S is a 2-step bracket generator if and only
if I'(¢,-): St — S is injective, where X = g&. In particular, S satisfies the 2-step
bracket generating hypothesis if and only if T'(¢,-): S+ — S is injective for every
nonzero form & € T*/S+.

Proof. In the proof we exploit the properties of different linear mappings which
we defined up to now. We have

(3.9) ([g€, gnl, v) = 2T'(§, v)n

by (3.1) and (3.8). In order to show that the vector field X is a 2 step bracket
generator we must show that the vector fields [X, Y] mod S fill out all 7'/S (at
each z) as Y varies over S. In other words, the mapping

(3.10) [X,]] modS :S—T/S Iissurjective at each z.

Since at any x the space 7" /S is canonically isomorphic to the dual to S, state-
ment (3.10) is equivalent to

(3.11) [gg,g(-)]:T*/Sl — T/S s surjective at each =, where X = g¢.
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We notice that at any - the space S+ is canonically isomorphic to the dual to 7'/S.
Thus (3.11) is equivalent to

(3.12) I(¢,-): St — S s injective at each z. m

We discussed earlier the relation between classical notion of covariant derivative
and the Christoffel symbols. The closest notion to the notion of covariant derivative
is symmetrized covariant derivative in sub-Riemannian geometry, that was defined
in [18]. It is natural to define the same concept on ssr-manifolds.

Definition 3.5. The symmetrized covariant derivative /sy, Of a vector field Y’
is defined by
QY4 Yk
kq _ kj qj
Thus (Vsym)z: T — Ty X Ty

Lemma 3.6. /sy is a well-defined differential operator from tensors of type
(1,0) to symmetric tensors of type (2,0). Furthermore, if Y is a vector field from
S, thatis Y = g¢&, then (VsymY)*9v, = 2I'%(&,v) for any v € S+

Proof.  The symmetry follows from the symmetry of the cometric g. Let us
show that \7symY, Y € T, transforms as a tensor field of rank (2,0). We check
how the first term of (3.13) transforms with the following change of coordinates:

k
1997
oxd

~ oF oYk By
vk Y9 yi kj — gpaZd _ZJ
o 0 Y I 0up Ot
g oy - Oéﬂa_yk % 9 (oyf ye ﬁ_xl
OyI Oz 2P 9z \ dz@ oyJ

ofB oy* oy ozt 9%y1

ofB Ay* Oyl ozt OY* Oyt

a

ay" Py
Ox® Ozldxa

Analogously, the second term

Yk B al% a2yk

Ox® OxP ﬁ—yj Oxtox®
L OyF oY@ 9yt

a (07

9z daB Oyl 9zl D

Oz Ozl oz

al Oyt oY oYk

gv _ = a .
OyJ Ox® Ozldxa Oz 9zl dzo
And the third term
B N LAY
OyI Oxe”  Oxl Ox® Oxb ) Oyl

ﬁijya g OyF oy Ozt

oz~ Ozl Oz Oxb Hyi
L o a O Oy Ot Oy o Oyt Oy Oal
Ox® 0xldz Oxb Oyl Oz Ox® 02l 0xb Oy
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After summation and necessary renaming of indexes we have

~ Ay* oyd
3 mY kq == Pl
(VeymY') oz 0xJ

Let us show the second statement of the theorem. We assume Y = ¢g¢ € S and
v € St. Then from (3.9) follows that

(VsymY )"

(Vsymgf)kqvq = < fp kj pq@fg;)yq
8 Pk 0 _ 9gka
+<9 i 29 f + QC”kaafj )v — g'%¢, 89 —
= ¢g"6pg" "8 Y g g = 2T4 (€ )
by (3.8) and gv = 0. .

4., HAMILTONIAN SYSTEM, EXPONENTIAL MAP AND LENGTHS OF CURVES

The distribution S, at each point = of ssr-manifold M has the structure of
R™ equipped with a nondegenerate metric 0, of index v. The presence of the
nondegenerate metric yields the following trichotomy.

Definition 4.1. A horizontal tangent vector w € S, is

spacelike if Qu(w,w)>0 or w=0,
null if Quw,w)=0 and w #0,
timelike if  Qu(w,w) <0,

nonspacelike  if it is either timelike or null.

The set of all null vectors in S, is called null-cone at x € M. The category into
which a given tangent vector falls is called its causal character. The terminology is
adapted from the relativity theory, and particularly in the Lorentz case, null-vectors
are called lightlike. For the nice and complete presentation of the semi-Riemannian
geometry see [16].

The covectors &(x) € T3 /S, receive the same causal structure according to the
values of (g,&(x),&(x)). The covectors v € S+(x) we shall call annihilators to
distinguish them from the null-covectors.

Definition 4.2. A horizontal tangent vector field X € S is spacelike, null or
timelike if at each point = € M the vector X (x) is spacelike, null or timelike
respectively.

Definition 4.3. A section & € T*/S~ is spacelike, null or timelike if at each
point z € M the covector £(x) is spacelike, null or timelike respectively.
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As we mentioned from the beginning, we work with the special class of admis-
sible curves that are tangent to the distribution S and that we call horizontal curves.
We borrow this name from the sub-Riemannian geometry. We say that a horizon-
tal curve c(s) is spacelike, null or timelike if the tangent vector ¢(s) is spacelike,
null or timelike respectively at each point of ¢(s) where it exists. We can give the
definition of the spacelike, null or timelike curve using the causal structure of the
cotangent space 7™ according to the sign of (g.(5§(s),&(s)) = Qes)(E(5), ¢(s)),
where ¢(s) = ge(s)§(s). We call a horizontal curve the causal if the tangent vector
¢(s) (the covector &(s)) is nonspacelike

In the sub-Lorentzian case we also introduce (as in the classical Lorentz mani-
folds) the time orientation.

Definition 4.4. A time orientation on (M, S, Q) is a continuous horizontal time-
like section 7 os S.

If M admits a time orientation 7, then 7 divides all nonspacelike horizontal vec-
tors into two disjoint classes, called future directed and past directed. Namely, non-
spacelike w € S, is said to be future (respectively past) directed if Q. (7 (z),w) < 0
(respectively Q,.(7 (x), w) > 0). We assume that any considered in the article sub-
Lorentzian manifold (M, S, Q) will be time oriented.

Since g: T*/S+ — S is injective the time orientation can be brought to 7/ S~

Definition 4.5. The globally defined section 7 € T such that 7 = g7 is time
orientation on 7% /S-.

The covectors from S+ we can consider as null-covectors.

The notion of arc length of a curve segment in Euclidean space generalizes in a
natural way to ssr-manifolds. Since the term “arc length” can be misleading since,
for example, a null-curve has length zero. Therefore, we use the name “natural
parameter” in stead of “arc length”.

Definition 4.6. Let ¢ : [a,b] — M be a piecewise smooth curve segment in a
ssr-manifold (M, S, Q). The natural parameter of c(s) is

b
L) = [ 1Q(e(s).é(s))| 2 ds:

As in the classical case it can be shown that

¢ the natural parameter is not changing under the monotone reparameterization
and

e if c(s) is a curve segment with |¢(s)| = |Q(¢&(s), é(s))[/2 > 0, there is
a strictly increasing reparameterization function h such that v = c(h) has
9 = 1.
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In the latter cases ~ is said to have unit speed or natural reparameterization.
Now we define the extremal using the Hamilton function. Given the cometric
gz T — S, we form the Hamiltonian function

1

(4.1) H(z,§) = 3

(92(8), )

on T;. To emphasize the dependence of the cometric on = we write g(z) instead
of g, when it is necessary. If we have the orthonormal basic X7,..., X,,..., X
of S we can write the Hamiltonian function in the form

@) H(r,6) = —5 3K, 674 5 3 (,(0),6)%
j=1 Jj=v+1

where v is the index of g,. Consider the Hamiltonian equations
i(s) = VeH(x,6),  &(s) = ~VaH(x,§)
that explicitly can be expressed as

i*(s) = g™ (x(s))&(s),  k=1,....m,

us) = —2 20N e e (s).

(4.3)

An absolutely continuous curve I'(s) on M satisfying (4.3) is called a characteristic
of H. In this paper we will consider only the bicharacteristics I'(s) such that
H(I'(s)) = H(x(s),&(s)) # 0 that are called in literature the normal biextremals.
The detailed discussion of the structures of normal and abnormal geodesics see, for
instance, [13, 14, 1]. Since we work only with normal biextremals we will drop
the word “normal” for shortness. If H € C*(T*) then an extremal, of H is a
curve z(s) which is a projection on manifold of some biextremal I'(s) of H. The
bicharacteristics of a Hamiltonian H € C*(T*) are curves of class C* along which
H is constant. In this case it means that an extremal has a parametrization by the
natural parameter. The next result is the consequence of this.

Proposition 4.7. If v: [a,b] — M is a normal extremal, then either @ (5 (¥(s),
5(5)) < 0 0F Qy()(3(5), 3(5)) = 0 0F Q) (3(5),4(s)) > 0 for all s € [a,B].
Moreover, if ~ is nonspacelike in the sub-Lorentzian manifold, then it does not
change its orientation.

Proof. We have

%Q'y(s) (7(3)7 7(3)) = §<£(3)7 g'y(s)f(s» = H(7(3)7 5(3))
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which is constant along ~. The orientation preserving property of a smooth curve
is obvious. u

It is possible to reformulate Proposition 4.7 in terms of cometric g.

Proposition 4.8. If v: [a, b] — M is a normal extremal, then either ({(s), g-(s)
€(s)) < 00r (£(s), gy()§(s)) = 0 0r (£(s), gy(5)&(s)) > 0 for all s € [a, b].
Let us define the energy for the curve ¢ : [a,b] — M by

b
(4.4) B = [ 1) i) ds.

In semi-Riemannian geometry extremals ~(s) are defined as curves which have
parallel tangent vector field () or, equivalently, which have the acceleration zero:
4(s) = 0. It is true that semi-Riemannian extremals lift to solutions of (4.3) on the
cotangent bundle. Thus the definition of extremals like Hamilton extremals is correct
generalization. For the sub-Riemannian and sub-Lorentzian cases see [8, 15, 18].
Also, if we formulate the variational problem of minimizing energy E(c) over all
smooth horizontal curves joining points p and ¢ in M then the associated Euler
equation is (4.3). Notice also that if we differentiate the first equation and substitute
the second we obtain

(4.5) B (s) +T7(,€) =0

which is the analogue of the equation of the extremals in semi-Riemannian geometry.
Notice, that we can not solve (4.5) for £ in terms of = in any way. Thus (4.5) can
not be reduced to the equation in = alone. Neither (4.5) together with & = ¢¢ is
equivalent to (4.3).

Given p € M, u € T}, and the coordinate system with the origin at p, the
existence and uniqueness theorem for ordinary differential equations guarantees that
the solution exists and is unique on an interval around zero provided the initial
conditions z(0) = p, £(0) = w. As on sub-Riemannian manifolds the solution
to (4.3) can be continued as long as z(s) remains in M.

Lemma 4.9. Let x(s) be a normal extremal for 0 < s < a and suppose z(s)
remains inside a compact subset of M. Then z(s) can be extended beyond s = a.

Proof. Over the compact set K C M choose an orthonormal basis (") (z), . . .,
v("=F) (z) of S+ and complete to an orthonormal basis of 7>* by adding (! (x), . . .,
u®)(z). By definition all sections are smoothly varying on the compact set and
hence bounded. Then the section £(s) along the extremal x(s) can be written as

m

(4.6) £ = 3 as(shul () + 3 bi(s)o(x(s),
=1

j=1



1596 Anna Korolko and Irina Markina

where m is the rank of S. Consider (4.3) as a system of equations for z(s), a;(s),
and b;(s). The functions z*(s) are uniformly bounded on K. Let us show that the
functions a;(s) and b;(s) are also bounded. We have
1 :
H(z(s),€(5)) = 5 Z;@u(”, u®)a;(s)ar(s)
j:

by (4.6). Since extremals do not change the causal character and the Hamilton is
constant along them, the value of the matrix g(u9)(z(s)), u®)(z(s))) is bounded
from zero on K. It follows that a;(s) are uniformly bounded along extremals. Let
us show that b;(s) are bounded. We write £ (s) as

@.7) &s) = 3 as(u@ () + 3 bils)o (x(s)),
=1 1=1

where uﬁcj) and v,(f) are coordinates of «() and v(" in the local chart coordinates.
We substitute (4.7) in the second equation of (4.3) and take into account the first one
99 1), (m)

also. Notice, that the terms involving gv and kP Va vanish by Lemma 3.2
X
¢) since v € S*. Finally, we get
m ' ) n-—m ) m au(J) n—m m a,u(j)
Zajug) + Z ij,gj) —|—Z Zaj 8—£rgrpalug) + ija—;,g”pazu;”
j=1 j=1 j=1 1=1 =1 =1
L0 93 a3 a3 b4 S b S e
= 59k iy g iy Vg iUp ajuy’ ).
j=1 =1 j=1 =1 j=1 =1
If we dot both sides of equation with v,(ﬁl),v,(f), . .,v,g”_m), then we obtain the

linear system '

b=Ab+C, b= (b1,...,bp—m),
where the matrix A and the vector function C linearly depend on bounded functions
aj, u), vU) and hence A and C' are bounded. The linear system of the first order
differential equations with bounded coefficients has bounded solution. We conclude

that b; are bounded for j = 1,...,n — m. Thus all the functions z*(s) and &(s)
are uniformly bounded, and the local existence theorem implies the solution of (4.3)
extends. -

Now we can define the exponential map.

Definition 4.10. If p € M, let D, be the set of covectors w in Ty such that
the extremal x,,(s) is defined at least on [0, 1] and z(0) = p, £(0) = w. The
exponential map of M at p is the function

exp,: Dp — M, suchthat exp,(w) = (1)
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The set D, is the largest subset of 77 on which exp, can be defined. Fix
w € Ty and 7 € R. Then the extremal s — z,,(s7) is such that 7£(0) = Tw.
Hence x,,(7) = z,(s7) for all 7 and s where the both sides are well defined.
Particularly

exp,(sw) = Tgy (1) = T (s).

As in the sub-Riemannian geometry the exponential map is always differentiable,
since the solution of the Hamiltonian system depends smoothly on the initial data.
But the exponential map is not a diffeomorphism at the origin. The reason is that
all the extremals emanating from p must have tangent vectors in S, but for any
annihilator v € S+ we have

exp,(v) = z,(1) = p, since i* =0 by (4.3).

We prove the following analogue of Gauss lemma. In lemma we use the iden-
tification of a cotangent space 7,; at p with the tangent to 7 space 7,(7,) at
point u € T,;. The covector w € T at point u € T, is identified with the vector
w € T, (T,). The radial vector » € T,,(T,y) means that it is a scalar multiple of a
covector u € Tj;.

Lemma 4.11. Let u be a cotangent vector in Ty such that v # 0 and lies inside
Dy. Let r be a radial vector and w be any other covector at point u € 7';. Then

i
v (gpr, w) = Qexppu(d(expp)uw, d(exp,)ur)
provided d(exp,,),w € Sexp, u
(i)
(gpr, w) = (d(expp)uw, &)
where ¢ is a cotangent lift of the extremal ¢ +— exp ,(tu) at t = 1.

Proof. Letus prove (i). Since r is radial, we can assume » =u. Take the curve
v(s) = u+sw in T, . Let us suppose that the exponential mapping is defined in the
cylindrical neighborhood D,, x [0, 1]. Consider the parameterized surface z : A —
M, A={(t,;s) : 0 <t <1,—e<s <e}given by z(t,s) := exp,(t(u + sw)).
Note that

A(t(u+ sw)) A(t(u+ sw))
0s ot

and the curves t — z(t, s) are extremals for any fixed s starting from the point
x(0, s) = p with the initial covectors u + sw. Then

(1,0) = w, (1,0) = u,

Oz Ot(u + sw)

_(17 0) = d(epr)u Is

s (17 0) - d(expp)uw,
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Oz Ot(u + sw)

_(17 0) = d(epr)u ot

5 (1,0) = d(exp,,)yu.

Thus, we need to show (g,u, w) = Qexppu(%, %)(1, 0). Let £(t, s) be a cotan-

gent lift of the extremal ¢ — exp,(tv(s)), particularly £(1,s) = u + sw. Then

Qexppu(%, %)(1, 0) = <%,5>(1, 0) and our main aim becomes to show

ox
(4-8) <gpuvw> - <£75>(170)'
ox ... Of
We denote f(t,s) = <£, €)(t, s) and calculate the derivative E(t’ 0). We have
of _ 0% dx* 0?xP

ot (tv 3) - ot (tv 3)%(757 3) + fp(t, 3)@“7 3)'

. 0 oxP . . .
Replacing E(t’ s) and E(t’ s) from the Hamilton-Jacobi equations (4.3) we
obtain

0 ) P
a—{(t, 5) = —%%@(L )&, (t, 8)8—z(t’ 5)

49) (1, 5) 2 (g7 (t,5)) 6l )
0
- £<%<g(x)f(t, 9).6(65))  forany ¢ and s
Since the Hamilton 3(g(x)&(%, s), (¢, s)) is constant along the extremal, then (4.9)
can be written as

L t5) = o (506t 51,69 ) = o (Glgplutsw), wbsw))) Tor any .

s\2 2
Then
%(t, 0) = %(%@p(u Fow), (ut s0)))(4.0) = (gu,w)  forany .
We have 9
£(0,0) = (5=, £)(0,0) = (d(exp,)utw, u)(0,0) = 0
that implies

F(1,0) = tlggw) = F(1,0)= {55.€)(1,0) = (gyu.w).

We proved (4.8) and hence (i).



Semi-Riemannian Geometry with Constraints 1599

To prove (ii) we argue in a similar way. Take the curve v(s) = u 4 sw in T

p
and parameterized surface z(t, s) = exp,(t(u + sw)). Let £(1,s) be a cotangent
. . 3}
lift of the extremal ¢ — exp,(tv(s)) at t = 1. Since d(exp,),w = a—i(l, 0) the
statement (ii) is reduced to (4.8). |

Let c(t) be a C'! piecewise curve in M for t € (a, b), where (a, b) is an interval
in R. We remind that a curve ¢(¢) is called horizontal if ¢(¢) € S, forany ¢ € (a, b).
A section £(t) is called a cotangent lift of c(¢) if £(t) € Ty and g,¢ = x(t) for
every ¢t where it is defined. The notion of the natural parameter or arc length (4.6)
for ¢(t): (a,b) — M can be reformulated as follows

b

L(e) = / (GewE (1), E()) 2 dt.

a

Let us focus for the moment on the case of sub-Lorentzian manifold. At each
point p € M the distribution S, and the cotangent subbundle T;/Spl carry the
structure of the Lorentz vector space and thus inherit the typical features of the
Lorentz structure. Since the orthogonal complement w to any timelike vector w is
spacelike then the vector space S, can be decomposed into the direct sum Rm @ w.
The same regards the cotangent vector space 77/ Spi. We define the future timecone

in S, by
C(T(p) = {X(p) € Sp: Qp(T(p), X(p)) <0},
where 7 is the time orientation on S,,.
Analogously the future timecone in 7} is

C(r(p) ={w e Ty (gpw, 7(p)) <0}, 7
where is the time orientation on T;/S;-.

There is a consequence that vectors (covectors) v, w are timelike if and only if
Q(v,w) < 0 ({gv,w) < 0). In vector spaces with positively definite metric the
Schwarz inequality permits the definition of the angle 6 between v and w as the
unique number 0 < # < «. The analogues Lorentz result is as follows.

Proposition 4.12. Let v and w be timelike vectors in a Lorentz vector space
equipped with the scalar product (v, w). Then
(1) [{v,w)| > |v||w|, where |v| = [(v, v)|"/?, Jw| = |(w,w)|*/2. The equality is
possible if and only if v and w are collinear.
(2) There is a unique number 9 > 0, called hyperbolic angle between v and w,
such that
(v,w) = —|v||w| cosh .
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Consider a piecewise smooth timelike curve ¢(t). The timelike means not only
that every ¢(t) is timelike, but that at each break ¢; of ¢

Qe (€(t7), e(t)) < 0.

Here the first vector derives from ¢ on the interval [t;_1,t;] before break, and the
second from the interval after break [t;,t;11]. Thus ¢ does not switch timecone at
a break. Similarly we require that a piecewise smooth causal curve does not switch
causal cones at a break.

Lemma 4.13. Let p be a point at Lorentz manifold M. Suppose that ~: [0, b] €
T is a piecewise smooth curve starting at the origin such that a = exp , oy is
timelike. Then ~ remains in a single timecone of 7.

Proof. We consider two cases. The first one is related with the smooth curve
~ and the second case will be general. Thus, we assume that ~(¢), and hence «(t)
are smooth in all the domain of definition. Since g, (7(0),%(0)) = (g,7(0),7(0)) =
Qp(&(0),a(0)) < 0, then the curve ~(¢) is in the same timecone for ¢ € (0,¢),
where ¢ is sufficiently small. We also conclude that /(¢) maintains in the same
timecone with ¢ € (0, ) for sufficiently small e > 0. Let us denote by r, the
radial tangent vector in 7', (7,;) corresponding to the timelike covector ~(t). The
vector 7., is timelike and therefore, (g,¥(t), 7)) is negative for t € (0,¢). We
calculate

(#.10) o), 9(0)) = 2 (1), ()

is negative for ¢ € (0,¢). Since &(t) = d(expp) )y and itis in S,y () the last
expression in (4.10) is equal t0 2Q .., ~(1) (a(t), d(ea}pp),y(t)r,y(t)) by Lemma 4.11.
We conclude that so long as ~ remains in timecone the radial vector r., and the
vector d(expp) ()T remains timelike. Thus Q.p, ) (&(t), d(expp) )
hence (g,7(t),~(t)) and hence %<gp7(t), ~(t)) remains negative. But  can leave
the timecone only by reaching null-cone or the origin. In any of these cases
(gpy(t),~(t)) = 0. Thus v must remain in the same timecone.

Now suppose that v and hence « is piecewise smooth. We know from the first
part of the proof that on its first smooth segment ~ stays in the same timecone and
therefore in the first break

(Ga(to)¥(t1 ) Ta(e)) <O
Hence by Lemma 4.11
Qempp’Y(tl) (d(tl_)v d(expp)’v(tl)r’Y(tl)) <0.

The additional condition on « at breaks keeps ¢(t;") in the same timecone, namely
at 1 = d(expp) (1) (ty)- SO, again by Lemma 4.11 (go)¥(t1), 751y} < 0 and
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therefore it follows as above that %(g”y, «) can not change signs at breaks. Hence
the argument for the smooth case remains valid. ]

Minor changes in this proof show that the lemma remains true if the words
timelike and timecone are replaced by causal and causal cone.

Lemma 4.14. Let U be a normal neighborhood of p in a Lorentz manifold. If
there exists a piecewise timelike curve « in U from p to ¢, then the segment o of
the extremal from p to ¢ is the unique longest timelike curve in U from p to q.

Proof. We understand the uniqueness as the uniqueness up to a mono-
tone reparametrization and can suppose that « is parameterized by arc length. If
a: [0,b] — U is a timelike curve in U from p = a(0) to ¢ = «(b), then from the
lemma above the lifting w(t): [0,b] — T}, a(t) = exp, ow(t) remains in a sin-
gle timecone in 7,;. The section w(t) is the timelike vector for any ¢ € [0, 1]
and therefore define a unite timelike section w(t) = [{gyw(t), w(t))| 1/ 2w(t).
Since (gpu(t),u(t)) = 0 the vector field u(t) is spacelike. Let us write r(t) =
|(gpw(t), w(t))|'/2 then w(t) = r(t)u(t). We calculate

a(t) = %ea:ppw(t) = d(expp)wn)™ (t)u(t) + d(expp)wr (t)i(t).
Let us denote by £(¢) the cotangent lift of the extremal v : s — exp,(su(t)) at
s = r(t). Since u(t) is timelike the same does £(¢). Since ¢ is horizontal, then
d(expp)weyr(t)u(t) € S It means that there is spacelike section 7(¢) such that
d(expp)weyr(t)u(t) = ga)n(t) almost everywhere and orthogonal to the section &
by Lemma 4.11. Then the length of timelike vector « is given by

(~ Quin(@ )" = (= GOEW) + 1.+ D) + gan(e)))
= (1O = Gaem(®n @) <10

Therefore
b b

L) = / |Quge)(é )] /2 dt < / 1#(1)] dt = |r(b)| = L(o).
0

0

The equality holds if and only if 7(¢) is monotone and (g,)n(t), n(t)) = 0.
In this case the velocity of « satisfies the equation ¢&(t) = 7(t)d(expp)wpyu(t) =
7(t)ga()é(a(t)). From the other hand the extremal (s) = exp,(r(t)u(to)), s =
r(t), satisfies the equation 4(s) = d(expp)r(tyu(ty)w(to) = 39,(5E(v(s)). Since
a(t) and () satisfy the same equation and have the same initial point, we conclude
that « is a reparameterization of the extremal ~. |
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We have noticed that a general piecewise smooth horizontal curve does not have
a unique cotangent lift. If the curve is an extremal then there is a special cotangent
lift, the one that satisfies the Hamilton-Jacobi equation. In the case of the two step
bracket generating distributions it is possible to find a canonical cotangent lift. The
condition for this is formulated in the following lemma.

Lemma 4.15. Assume the strong bracket generating hypothesis. Let x(¢) be

any Lipshitz horizontal curve. Then there exists such a cotangent lift (z(t),£(t))

: 1
that a cotangent vector w; = &; + 8g fpfq is orthogonal to T/ (¢, v(z)) for any

v € St at a.e. t so that pairing <wj, FJ (&, v(x))) = 0. This cotangent lift does
not depend on the coordinate system and is called a canonical cotangent lift.

Proof. Let (z(t),n(t)) be any cotangent lift and let v(»), ..., v(»=) be a basis
of sections of null-space S+ over a neighborhood of the curve. Since ¢ belongs in
general to T3 /S+ x Sy then we can write

E(t) = n(t) +o(t) =n(t) + Y ax(tp®().

Then

1 9g7(z) 19gPi

é+2 O i &p8q = ﬁj+1')j+28 j(np+vp)(nq—|—vq)

1 0qgP4

=ty g W\t g e )

Recall that for w € S;-
1 ow 0gP? 1 .. 0gP?
(fv )= <9jp9kqf — +9jk Gy wqu) = 29jk(wj + Wfpw(J)'
i ow;
a 8
We had already shown that TV (¢, w) transforms as a tangent vector. Show now that
f‘ 1dgP ( )
J

2 Oxd
laws

0 .
Here we used that gP9¢, 81915) = ;. Notice that T'* (¢, w) = T*(n, w).

———=&,¢, transforms as a cotangent vector. Consider the transformation

Oyl ~ —~ s OyP 0y!
=2 ¢ Pq —
& Oxk & and g g Az dx®

Then

~ 10gP1~ ag 1 0gP1~
fj 2 a J fpfq - Mqup j + 5_8 J fpfq

rs OYP ﬁyq ozt 0 <8x ¢ ) 8x 1 0 < s OYP 8yq> ozt 9xF  xm
= k

Oz Oa® Oyp > D \ Dy oy 3 20zt 0z 0z° ) yi oyp > oyt

€n
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=9 %%a—ypiaxmayj Byt I S B g Oy e ayq'fl

10g™ OyP Oyl dx! Ox* O™

T 02T B 0 Byf Dyp By oF"

+1 o O%yP Oyl OyP 9%yl ozt 9xF Oz 0" ¢
29 \0atoz" 0z " 92" 0510 dyd yp Oya ™
. s 0z 0, 10g™ 0x*
The second and the third terms here are equal to g 8—yJ e & and - 5 D Oy —&&s

respectively, which gives in the whole the transformation of a covariant vector:

0" ( rog, Ok ]89r85r58) 0" (fk-+-1 89r85r58).

oy 2 Oxk 2 Oxk

The rest of the terms give in sum

82 k 1 . O%yP ozt Ok 1 . O%yP ozt Ok
e+ 15 57 e Sk + 39 31— 55
oyI 8 ox® ﬁyﬂ OyP 8x Oxs Oyl Oyp

82 k . O%yP 8xl oz
=g 910y Aan sk T 520w Dy aypﬁ r&k

s 0%k 82yp oz Ox*
— 976 Rl i
0xs0y?  Ox'0x® Oyl OyP

. 0 .
since W(Sf = 0, where 6% is a Kronecker symbol.
Y . L
Now we see that the orthogonality condition is of the form

. 10gP . 10gr
[(nj + 3 2 Oxd npnq> + <’Uj + 5%”1’%)] . I‘k(njw) = 0.

AsT'(¢, ) is injective the converse matrix (I'*(n, w)) ™! exists. Therefore the linear
system of n — m equations in n — m variables a(t)

n—m n—m
k), OgP *) _ ok 1 1 0gP4
> el +oud) + Foom 3 awef) = () i + 550

= pTlg)

is uniquely solvable. ]
5. DIFFERENTIAL OF THE EXPONENTIAL MAP

As it was mentioned, the exponential mapping exp,, is not a diffeomorphism at
the origin, but as in the case of sub-Riemannian geometry there is a hope that it
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is a local diffeomorphism at some points. The main result can be stated that the
exponential map exp,,(u) is a local diffeomorphism if w is neither a null vector no
an annihilator. We consider only the case of 2-step bracket generating distribution.
First, let us set out the Taylor expansion for k-th component of exp,(u), where p
is fixed at the origin of the coordinates and u € T, M:

N

1
(5.1) epr(u)k = Z ﬁ')’(kslmprum ot + O(JuMHY,
r=1 "

where y(ﬁf’)l'“pr is symmetric in indexes p, . ..p, and will be computed later, |u| is

any Euclidean norm on Ty M. Notice that exp,(tu) = z(t), where (z(t),&(t)) -
solution of the system (4.3) with z(0) = p, £(0) = uw. Then at the origin

kp1...pr a\"
fy(f)l Py, oy, = <E) z"(0).

We count for some value of ¢

(%Hlﬁ(ﬂ = & (AR @) (1) -, (1)

(5.2) AT
| = g (@(0) - (1) £, (1), (1)
o€, R
-y %(t) e (8) . (t) 6 (1),

where Epi (t) denotes the absence of &,,(t). Now, using (4.3) and changing indexes,
we get

kp1...pr
d\"*! s
() 0 = (oo am ule)
r k‘ D agprpr+1
5 Ay T W@U))) Epy (1) - Eppy (D)
Therefore,
APV () = sym(pr, - .- Pre1)
(5.3) 1P
")’r T k.. . agprpr-H
(gm0 =5 @) = Sl @ 2 @),
here sym(p1, . .., pr4+1) Means that we symmetrize the indexes py, . . ., p,4+1. Setting
r = 0 in the previous formula we get
k
(5.4) - »20 — gkr

(1) =9 Oxq g
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k
since ’y(ko) = 2%(0) and % equals to 1 if and only if & = ¢ and zero otherwise.

Analogously, observe that for » = 1 in (5.3)

a')’kpl 1 HqP1p2
k a kq 99
55) 7(21'31172 = sym(p1,p2) <gqp2 axq) _ 57(% . )
| dgkrr 1 HaP1p2
= sym(p1, p2) - <9qp2% -5 m%) — _Tkpipz

It is rather hard to calculate a general term, but it will be sufficient for us to
look into the view of 3.
Now (5.1) receives the following form

kp1...pr N
expp( ) = 7(1 Y, + Z r'ﬁy(:l P Up, .- Up, +O(|u]™)
and differentiating it, we obtain

k kp1...pr
d expy (u) —v(f”+2 R Pty -, + O(lul™)

N
= 90+ T g, + Ol
r=2
More precisely,
dexp,(u)" = g"9(0) + 7(2) Uy, + A iy + O((u)
= §M9(0) ~ TPy 4 Ly + O(Jul).

Since we assumed 2-step bracket generating hypothesis, choose coordinates near
p so that p is an origin and
ik
ik _ €jIj 0
o= (75 9):

where 1% is a m x m unit matrix and ;1% is a m x m matrix with v negative
unities on the diagonal and m — v positive unities, which can be also written as
follows: ¢7%(0) = ;47 , where 4 is a Kronecker symbol and

-1, if 1<j<y,
gg=141, if v<j<m,
0, if m<j<n
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Denote with a, b the indexes responsible for elements standing in rows or
columns with numbers 1,...,m, and a, 8 — for m + 1, ..., n respectively. Then
dexp,(u) is a n x n matrix of the following form

ij _ <Aab Baﬂ)

cob pos
with
A% = ¢, 1% + O(|ul),
B = 1%y, + O(|u|?),
(56) Cob = —To%y, 4 O(|uf?),

1
D*F = §Vé€pqupuq + O(Jul?).

Since fy(ogp = 0 due to the special choice of g7, there are no terms of order 2 in

DB, The following proposition is an easy computation on determinant.

Lemma 5.1. det W (u) = det W (u) + O(Ju|2"=™+1) where W W (u) is ob-
tained from W by discarding the error terms containing O(]u| H,i=1,2,3and
det W (u) is homogeneous of degree 2(n — m) in w.

To estimate the determinant of W(u) we need some more calculations. From
(5.3) and (5.5) we get
afp

} oy - HgPl
aBpq, .\ _ ) (2) _ aBj 9
Yoy (@) = sym(B,p, q) (g”(w) i (L) ~ V) (@) 55 (w)>

) afp . pq
:symw,p,cn-(—gﬂqmbT (2) + T°%(2) % <x>)

oxJ oxJ

1 - QgPl - QgPe - QgP?
= — [ posi - Teps - e 2
3( () S (@) + T (@) () + 120 ()
. orerr . oreha . orera
_J9 _ ,Jp _ 4iB

Setting here 2 = 0, we get that the first and the last terms in the last sum are zero,
because ¢7*(0) = 0 for j, k > m. Hence, for p, ¢ <m

L[ dg® o 0g  ored  grem
afab - aaj g abj g o o
6.7) T3 T 3<F OxI 1 Bri VT axb SV g )

and for p, ¢ > m fy(o‘qu = 0 since ¢7%(0) = 0 for j,k > m. Let us calculate the
involved terms in (5.7>).
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) 1 kagaj kagocj kagoca
Faaj‘mzo ) <9a Dk -9 Ok -9 Ok
1 agaj agaa

Eg—— 4 £, =2
2 \ " 9o T oxi )’

=0

posal  _ L (k09" 509°" 009" _ 1 _0g*”
=0 2 oxk oxk oxk ) la=0 27" gga’
grefe)  _ 1(89“"“ 0g% _ ox 09" _ 99”05
Oxb lz=0 2\ Ozb OxF Oxboxk  Oxb OxF
B L 529‘“5)
Oxbzk  Oxb Oxk Oxbak ) lz=0
1 agak agﬂa agﬂk agaa 829045
T2 < ozt 0z dxb 9k ° ﬁx‘l@xb>
af
owing to g** = ¢f* = 0 and aa — = 0 by Lemma 3.2. Now we simplify the form
X
9297 .
of ﬁ Take a null-section v(z), then

ik Ov B ﬁgﬂ“

oz  OxP

Thus, making use of Lemma 3.2 and differentiating both parts, we obtain

i( jk%) _ 99" Oun | i O

Vg

Ox4 dxP ) x4 dOzP OxPOzY’
P agjk B a2gjk agjk Ovg
oxd \ oz * Uk T 0ap Oxd”

 Qx40xP
From here
0%¢7*(z) 09’ (x) dug(x)  9g’*(x) Ovg(x)
va(x) T 0xp 9x1  Oat oxP
Taking inner product with another null-section, we get

) 0g’* (x) vy () 09" (x) vy ()
0x40xP vk(x)wj(x) T OxP ox4 wj(x) - Oxt oxP wj(x)

02y ()
OxPOxd’

— g% (x)

0 (z) .
Der Dt w;(z) = 0 by virtue of Lemma 3.2.
oy gl

. Ov
Set 2z = 0 and, since ¢'*(0)=—(0) = 0) = —;—=——(0)vg, then
et §H0) % (0) = a5 (0) = ~e1 2 O
2 gi* dg7* duy, dg7* duy,
Srag.b kWi = T o Wi T oy o Wi
0x®0x ﬁx‘ ox ox® Ox ‘
agjk agkm - agjk agkmv
Sk oga gb T T ER G hga

since g/ ()

’U)j.
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Take v (0) = 05, w;(0) = &% and get

829045 ., agak agkﬂ . agak agkﬂ
Oxa0xb Oxe Oxb oxb Oxe
Therefore,
orebae 1 g dgPe B g% oge . E‘agaj gl . E‘agaj gl
oxt 2\ 9zt Oai oxb Oxi YT gxa Jab YT Pgb gx

Substituting calculated terms in (5.7)

afab 1[_( dg* Og”‘“> dg"* ( dg* 09‘“”) dg"e

Fa oz tE oxJ

T3 T g 027\ osb T ri ) Ou
g% dgPe  0gPI g Dg®I OgPi Dg®I OgPi
_€b< Dzt Dwi  Oxb Oz T oza b " gt 596“)
g% 0gB  9gPi pgab Dg®I OgPi Dg®I OgPi
- “(axa Dzi  Ox® Oxi T 9xb dxr YT pge 0ab )]
To simplify this let us introduce the following notations
agaﬂ agﬂb
B _— B _
EY =g ol o = ppa b

Then

V(Ogabuaub — 3 <2€anjEﬂj - QEWFJ@ - EjFJqFJ@ + Eﬂijq)

1 , , ,
=2 <<ngf - Eﬂﬂ) ((Fja — 5, BY) — 3(e; B + Ff‘)))
9 e~ —
= gngJﬁBJO‘ +2¢;BIPC.
Thus, we have the form of the matrix Wk
— g;17° B8
whi = | L 1 ~ .~ e
Cocb gEijﬂBja + EijﬂCaj ’
therefore,

Iab 0 ij B Ej[jb E‘lﬂ
_Gob ¢, i 0 Lpisgi |
3
from which we obtain .
| det W| = | det gBJﬂBjO‘\.
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From here we have the homogeneity of detW(u) of degree 2(n—m) in u, since the
matrix B is represented by the mapping I'(u,-): S* — S, where S+ is (n — m)-
dimensional.

Lemma 5.2. Let us assume 2-step bracket generating hypothesis for the ssr-
manifold M, and let w € T*M. Then for every u with (gu,u) # 0 there exists
d > 0 such that .

| det M (u)| > 6] (gu, u)| ™.

Proof. By Theorem 3.1 the mapping I'(u,-): S+ — S is injective for every
nonzero u with (gu, u) # 0. From the other hand, BJ is a matrix for —I'(u,-) by
(5.6) and, hence, the matrix for B#% Bie s the matrix for I'(u, -)'" - T'(u, -), which
is invertible by injectivity of I'(u, -). Therefore, detW(u) # 0 if (gu,u) # 0 and
the statement of the lemma holds due to a homogeneity argument. |

Remark 5.2. Lemma 5.2 can be reformulated in the following way: detW(u) #
0 if and only if gu is a 2-step bracket generator.

Theorem 5.2. i) If gu is a 2-step bracket generator, then there exists § > 0
such that exp,,(tu) is a local diffeomorphism for any 0 < ¢ < 4.
i1) Assuming 2-step bracket generating hypothesis, there exists 6 > 0 depending
continuously on p such that exp,(u) is a local diffeomorphism for « near the origin,
provided (gu, u) # 0.

Proof. ~ The assertion ¢) follows from Lemma 5.2 and the Remark 5.2. By
Lemma 5.1 N
det W(u) > det W(u) — C‘u‘Q(n—mH—l

o))"

Juf?

for small w. Thus, ) holds for |u| < § (K

6. QUATERNION SSR-MANIFOLD

In the present chapter we find the parametric equations of extremals for a group
furnished with the sub-semi-Riemannian metric of the index 2 described earlier in
Example 2 at Section 2. The Hamiltonian function H (¢, 0, z, z) has the following
form

1 1
H= 5(—'5% —E+E+ED)+ 5(9529649192 +(wox3+2124)0103 —21230,02)
1
45 (0F =03~ 0)(~a? —f o 4 o)
(6.1) .
+§01(—x2£1 +x1£2+x4£3—x3£4)—1—502(36451 +x3&0+2983+11€4)

1
—1—593(96351 — 248 + 1183 — x2&4).
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The corresponding Hamiltonian system is

T = g—g = —&1 — 3901 + w40 + Ju30s,
To = g—& = —& + L2101 + S2300 — 12405,
Ty = g—g = &+ 33401 + $2202 + 12103,
Ty = g—g = & — Jw301 + 32102 — La003,

Y
21 = a0, 5 (z2wq — 2123)02 + (923 + 2104)63)

+201 (=22 — 23 + 2% + 27)
+3(—22&t + 216 + 14&3 — 3E4),

Zg = g—g = 5 (wowy — w1w3)0) — {02 (—af — 23 + 23 + 23)
+5 (2481 + w380 + 1263 + 2184),

33 = S—Z = L(moxs + 2134)01 — 103(—2F — 2% + 2} + 23)
+5 (w381 — 4o + 1183 — 1264),

(6.2) : oH

1= g = —h(aaifa + 246103)
Fa (02 — 03 — 62) — J6a0 — 1e400 — Le0s,

€= _S_Z = L4010y + 236165)
+229(07 — 03 — 02) + 26101 — $E305 + 36405,

& = _g—fg = —%(1‘20103 — x16162)
—223(02 — 03 — 02) + 1£401 — 16005 — 1£4105,

€ o _S—Z = L(a10y + 210165)
—Lay(02 — 03 — 62) — 1630, — 1610 + 160,

. H

01 = —% =0,

by = T 0,

We observe that 601, 05, 65 are constants and they give the first integrals of (6.2).
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Let us remind that the projection of a solution of the Hamiltonian system onto
(z, z)-space is called extremal. In order to find it we will reduce the Hamiltonian
system to the system containing only (xi, z2, x3, x4, 21, 22, 23) coordinates. If we

express &1, . . ., &4 from the first 4 equations and substitute them in the equations of
the Hamiltonian system, then we obtain

: 1. . .

fl = 5(1‘201 — 1‘402 — 1‘303),

: 1, . . .
& = 5(—36191 — @30y + 1403),

. 1

&= 5(56491 + @9l + 0163),
.1 '

54 = 5(—1"301 + 2109 — 1‘203).

Differentiating first 4 equations and substituting &, . . ., &4 there, we get
1 = —&90) + £402 + 303,
Zo = @101 + 302 — 2403,

Iy = T461 + To0s + 2103,

T4 = —d36) + £102 — D203

or

i‘l 0 —01 03 672 1"1

‘;I:'Q _ 01 0 02 _03 j’:Q
(63) i‘g - 03 02 0 01 i‘g

i‘4 02 —03 —01 0 i‘4
We are looking for the solution 1 = z1(t),...,z4 = x4(t) t e —00, +00], satis-
fying 1(0) = 0,...,24(0) = 0 and #1(0) = x?, ..., 24(0) = &Y. The eigenvalues

of the matrix

0 -0, 05 0
0, 0 0y —03
03 0o 0 0,
0y —63 —6; 0

are \y = a, A2 = —a, \3 =, and Ay = —a, where a = |k| + 6y, @ = |k| — i6y
and k = 0y + 63, k = 0, — if3. The associated eigenvectors are

A=

v = (ialk|, alk|, ak, iak),

vy = (—ialk|, a|k|, —ak,iak),
vy = (ialk|, —alk|, —ak, iak),

vg = (—ialk|, —alk|, ak, iak),
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where |k| = /63 + 63. Notice that the matrix A is skew-symmetric with respect to

our nondegenerate metric Q with index 2 in the sense that Q(Azx, y) = —Q(x, Ay).

This extends the idea of sub-Riemannian case, which was considered in [2], where

the matrix @ was just a unit matrix and A was skew-symmetric in the usual sense,

i. e. with respect to positively definite metric. Also it carries on the sub-Lorentzian

case, where A was skew-symmetric with respect to sub-Lorentzian metric @ [11].
The solution of the system (6.3) is of the form

i1(t) = i|k|(crae™ — coae™™ + cz@e™ — cyme ™),
o (t) = ‘k‘(claeat + coae — cqae®™ — 6466_5'5)7
i3(t) = crake™ — coake " — czake™ + C4Eke_at7
1"4(75) = ’i(C1akeat + CQCLEe_“t + CgEEeat + C4Eke_at)7
where
1 . .. . ..
T Liak|k| (k2] + @) + |k|(£9 + id3)),
1 7 . .. . ..
¢4) - diak|k| k(&) — id3) + [k| (2] — id5)),
1 7 . .. . ..
8 = Gy (UL — 18) + [kI(35 — 25,
1 . .. . ..
€4 = Gy (TR +i83) + K3 + i),

Therefore, the general solution to (6.3) that gives the x-coordinates of the extremals
has a form

x1(t) =ilk|(c1e¥ +coe™ % + cze® +cge” ) —i|k|(c1+eateztcy),
©5) 2o (t) = |k|(c1e¥ —coe™ % —c3e™ +cye ™) — |k|(c1—co—c3+c4),
6.5 _ _ _ _ _

x3(t) =crke™ + coke™ % —c3ke™ — cyke™ " —(c1k + cok—c3k—cyk),

z4(t) =i(c1ke® —coke™ 4 cske™ —cyke™) —i(crk —cok+c3k —cqk).

From the horizontality conditions we get

) 1 . . . .
21 = 5(4—1‘21'1 — X122 + T4X3 — 1‘31‘4),

. 1 . . . .
2o = 5(—1‘41‘1 — X3%2 + To2x3 + 1‘11‘4),

. 1 . . . .
Z3 = 5(—1‘31‘1 + 2420 + X123 — 1‘21‘4).

Integrating, we find the vertical z-components
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21(t) = 2i|k[A(—2(creaa—czea@)t+erca(e™ — e ) —czeq(e™ —e” ™)),
29(t) = 209|k|(—2(crcoa+c3cq@)t+crca(e® — e ) d-czcq(e™ —e ™))
+20105(cres3e® ™ 4 eocqe 2R ¢ e5—coey)
(6.6) +2i03]k|(crese™ +cacae™ —creze™ —cocse™ ™),

23(t) = 203|k|(—2(c1coa+cacq@)t+erca(e™ —e ™) dczea(e™ —e™ ™))

2[k|t 2[k|t

—20102(61636 +cocqe —6163—6264)

—2i92\k\(clcge“t+6264e_“t—clcgeat—6264e_at).
The constants of integrationc¢;, ¢ = 1, ..., 4 are given by (6.4) through the initial ve-
locity. We would like to calculate the homogeneous norm of an element (z(t), z(t))
given by

(2, 2)|I* = (=2t — 23 + 23 + 23)* + 2 + 23 + 23
We define this norm taking into account the nondegenerate ssr-metric of index 2
and the Hausdorff dimension of the Quaternion ssr-manifold. We have

lz(@)I* = (=af — a3 + 5 + 23)(2)

(6.7) = 8|k|*(2c1ca + 2c3cq — crea(e™ + e7 M) — czea(e™ + 7))

t t
= —32|k|*(c1co sinh? % + ¢3¢4 sinh? %)

Let us introduce the notation w; = %(m? +i49), we = 29 +423 in order to simplify
the calculations. Then
(w1 + w2) (0 + )
C1 = w w Co = =(—W w
YT diak T T ek TR
€= Ggp 1T W)= ozt ws).
Observe that c3 = —¢1, ¢4 = —C2, c3c4 = CiCa, C1C3 = —‘61‘2, CoCy = —‘62‘2,
and .
_ 2 2 | o _
cicy = _W (\wg\ — |w|* + QzIm(wlwg)),
i e+ Ll —
Cl1C3 = ——F 5 5 W w CoC4p = ——F— 5.5 Wy — W .

We see that (6.7) takes the form
t
| (t)]% = —64\k\2Re(clcgsinh2%), a = |k| +i6;.

The letter calculations we can summarize in the following theorem.
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Theorem 6.1. Let M be ssr-manifold described in Example 2 of Section 2.
The normal extremals starting from the identity of the group M are given by the
solution of the Hamiltonian system (6.2) by the following parametric equations

w1lt) = 1 Re :Clsinh(at) + Cy(cosh(at) —1)],
2o(t) = #Im (Cosinh(at) + 1 (coshar) — 1)),
23(t) = #Im (Cysinh(at) + Ci(cosh(at) — 1)],
2a(t) = #Re (Casin(at) + C3(cosh(a) — 1)],
and
a(t) = ﬁlm [t + 2asinh(ar) |,
() = -7 H‘ZWRe [Kl(t—i—Qasmh (at)) }
Gl Sln(@;‘iz‘_‘;‘flnh(‘k“)) Re [Ky (sinh(|k[t) — icosh(|k[))] .
z3(t) = —4‘a0‘2‘k‘Re [Kl(t—i—Qasmh at) }
05(Jk| sin(0t) — Brsinh(Jk]1))

PERE Re [K> (sinh(|k|t) — icosh(|k|t))],
where constants C'; = a|k|(Re%* —|—zIm—2) Cy = alk|(Re%2 + ilm%), C5 =
&(Rewl —|—iImw2) Cy= a(Rewg—i—zImw K= EL( wo|? — \w1\2—|—2ﬂm(w1u72))
Koy = |wa]? 4 |wq|?* + 2iIm(w1ws), wy %( O +ii9) and wy = 29 + 23 are
expressed in terms of initial velocity (9, xg, xg, #9) and the first integrals of the
Hamiltonian system (6.2) k = 65 + i03 and a = |k| + i6;.

The homogeneous norm is

|| NSV

I 20 = - H(Re[ 'hQC;tD +ﬁ|mu+zasinh(at))|2

(Ik| sin(61t) — @y sinh(|k[t))”
Afal*|k|?

(Re [£65(sinh(|k]1) — icosh([k]1)] )
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