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EXISTENCE OF NONZERO, LINEAR AND CONTINUOUS OPERATOR
BETWEEN TWO MUSIELAK-ORLICZ SPACES

Ewa Kasior and Marek Wisl/a

Abstract. Let X, Y be linear topological subspaces of the space of all measur-
able functions over a σ-finite, atomless and complete measure space Ω. The
question of existence of a nonzero, linear continuous operator T : X → Y is
a natural extension of the question ”does X admit a nonzero, linear continu-
ous functional?”. In case of X = LΦ(Ω), Y = LΨ(Ω) being Orlicz spaces
Ph.Turpin ([11]) gave a criterion telling when there is no nonzero, linear and
continuous operator between LΦ(Ω) and LΨ(Ω). That result was extended to
the case of Musielak-Orlicz spaces by A.K.Kalindé, R.Pl/uciennik and M.Wisl
/a ([2, 8]) but only necessary conditions have been presented by them - in
fact conditions assuring that there is no nonzero, linear and continuous op-
erator between LΦ(Ω) and LΨ(Ω). In this paper we give inverse theorems
to the Kalindé and Pl/uciennik-Wisl/a theorems. Generally speaking we state
that there exists a nonzero, linear and continuous operator if and only if it
there exists a set A ⊂ Ω of positive and finite measure such that the inclusion
operator i : LΦ(A) → LΨ(A) is nonzero and continuous.

1. INTRODUCTION

Orlicz functions were defined by W. Orlicz in [6]. Since that time a lot of
mathematicians made some researches and there were received some generalizations.
In 1959 J. Musielak and W. Orlicz in the paper [5] introduced the modular spaces
generated by functions depended on parameter. In 1961 W. Orlicz in [7] introduced
s-convex modulars, where 0 < s ≤ 1. In this section we remind some facts and
definitions.

A map ϕ : R → [0,∞] is said to be a pregenfunction ([10]), if it is even,
nondecreasing on [0,∞], ϕ(0) = 0 and ϕ is identically equal to neither 0 nor ∞.
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A pregenfunction ϕ : R → [0,∞] is said to be an Orlicz function if it is left-
continuous on [0,∞), continuous at 0 and lim

u→∞ϕ(u) = ∞. We will say that the
Orlicz function ϕ takes only finite values whenever ϕ(u) < ∞ for all u ∈ R. Let
us note that if ϕ is concave on (0,∞) and takes finite values, then the condition
lim
u→∞ϕ(u) = ∞ is equivalent to the fact that ϕ is strictly increasing on (0,∞).

Let (Ω,Σ, µ) be a measure space with a σ-finite nonatomic and complete mea-
sure µ and Lo(µ) be the set of all µ-equivalence classes of real and Σ-measurable
functions defined on Ω. A map Φ : R × Ω → [0,∞] is called a Musielak-Orlicz
function whenever the following conditions are satisfied:

(i) for every t ∈ Ω, the function u→ Φ(u, t) is an Orlicz function,
(ii) for every u ∈ R, the function t→ Φ(u, t) is Σ-measurable.

A Musielak-Orlicz function Φ is called locally integrable if
∫
A Φ(u, t)dµ <∞ for

all u ∈ R and for all measurable subsets A ⊂ Ω of finite measure. We shall say
that a Musielak-Orlicz function Φ is continuous if the function u → Φ(u, t) takes
only finite values and it is continuous on R for µ-a.e. t ∈ Ω.

We say that a Musielak-Orlicz function Φ satisfies the ∆2-condition (Φ ∈ ∆2

in short) if there exist a constant K > 0 and an non-negative integrable function h
such that

(1.1) Φ(2u, t) ≤ KΦ(u, t) + h(t)

for all u ∈ R and µ-a.e. t ∈ Ω. Note that Φ ∈ ∆2 implies that Φ takes finite values
for µ-a.e. t ∈ Ω.

We will say that a Musielak-Orlicz function Φ is concave on an interval (a, b) ⊂
(0,∞), if the functions u → Φ(u, t) are concave on (a, b) for µ-a.e. t ∈ Ω. Note
that if Φ takes finite values and it is concave on (0,∞) then Φ satisfies the ∆2-
condition with the function h = 0.

In the case of Orlicz function ϕ, the function h in (1.1) can be replaced by a
nonnegative constant. We say that ϕ satisfies the the ∆2-condition at infinity (resp.
for all u ∈ R) whenever h > 0 (resp. h = 0).

For all f ∈ L0(µ) the function t → Φ(f(t), t) is Σ-measurable and the func-
tional mΦ(f) =

∫
Ω Φ(f(t), t)dµ is a modular on L0(µ). Moreover, if u→ Φ(u, t)

is an s-convex function for all t ∈ Ω, then mΦ is an s-convex modular.
By LΦ = LΦ(Ω) = LΦ(Ω,Σ, µ) we define the class of all functions f ∈ L0(µ)

such that mΦ(λf) < ∞ for some λ > 0. Analogously, by EΦ = EΦ(Ω) =
EΦ(Ω,Σ, µ) we denote the class of all functions f ∈ L0(µ) such that mΦ(λf) <∞
for every λ > 0. The classes LΦ and EΦ are linear subspaces of the space L0(µ)
and EΦ ⊂ LΦ. The class LΦ is called the Musielak-Orlicz space and EΦ is called
the space of finite elements. For an arbitrary measurable subset A ⊂ Ω define
LΦ(A) = {f ∈ LΦ(Ω) : supp f ⊂ A} and EΦ(A) = {f ∈ EΦ(Ω) : supp f ⊂ A}.
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where supp f = {t ∈ Ω : f(t) �= 0}. Let us note that Φ ∈ ∆2 implies the equality
LΦ(A) = EΦ(A) for any subset A ⊂ Ω.

On the Musielak-Orlicz space LΦ(Ω) we define an F-norm by the formula

||f ||Φ = inf{λ > 0 : mΦ(f/λ) ≤ λ}.
It is known that the space LΦ(Ω) with this F-norm is complete. Let us note that
‖fn − f‖Φ → 0 if and only if mΦ(λ(fn − f)) → 0 for every λ > 0. For more
information on F-normed spaces (and general metric linear spaces) we refer to [3, 9].

Let X and Y be two linear-topological spaces. By L(X, Y ) we denote the
space of all linear and continuous operators from X to Y . One of the commonly
used linear operators are inclusions. We say that Ψ ≺ Φ, if we can find constants
K1, K2 > 0 and an nonnegative integrable function h such that

Ψ(u, t) ≤ K1Φ(K2u, t) + h(t)

for all u ∈ R and µ-a.e. t ∈ Ω.

Theorem 1.1. ([4], 8.5). Let Φ and Ψ be Musielak-Orlicz functions. The in-
clusion operator i : LΦ(Ω) → LΨ(Ω) is well defined if and only if Ψ ≺ Φ.

Note that inclusion operator need not to be continuous. In 1984 M. Wisl/a
received the necessary condition for the continuity of the inclusion operator between
two Musielak-Orlicz spaces.

Theorem 1.2. ([12], 3.2.2). Assume that Φ and Ψ are Musielak-Orlicz functions
such that Ψ ≺ Φ. If the function u → Φ(u, t) is continuous for µ-a.e. t ∈ Ω and
the function u→ Ψ(u, t) is continuous at u = 0 for µ-a.e. t ∈ Ω then the inclusion
operator i : LΦ(Ω) → LΨ(Ω) is continuous.

Corollary 1.3. Under assumptions of Theorem 1.2, the inclusion operator i :
EΦ(Ω) → EΨ(Ω) is also continuous.

Proof. Since Ψ ≺ Φ, EΦ(Ω) ⊂ EΨ(Ω). Let fn ∈ EΦ(Ω), n ∈ N, be such a
sequence that ‖fn‖Φ → 0. Since fn ∈ LΦ(Ω) as well, by Theorem 1.2,

‖fn‖Φ → 0 in EΦ(Ω) ⇔ ‖fn‖Φ → 0 in LΦ(Ω)

⇒ ‖fn‖Ψ → 0 in LΨ(Ω) ⇔ ‖fn‖Ψ → 0 in EΨ(Ω).

Evidently, if there exists a nonzero, linear and continuous operator between the
spaces X and Y it does not mean that this operator has to be an inclusion. But in
the case of Musielak-Orlicz spaces the inclusion operator is nearby every time. In
1973 P. Turpin proved the following theorem.
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Theorem 1.4. ([11], 2.2.1). Let ϕ and ψ be Orlicz functions with finite values
such that ϕ satisfies the ∆2-condition for all u ∈ R and ψ is concave on (0,∞).
Then L(Lϕ(Ω), Lψ(Ω)) �= {0} if and only if lim sup

u→∞
ψ(u)
ϕ(u) <∞.

As an immediate consequence of Turpin result we get that, if the assumptions of
Theorem 1.4 are satisfied and, moreover, µ(Ω) <∞, then L(Lϕ(Ω), Lψ(Ω)) �= {0}
if and only if the Orlicz space Lϕ(Ω) is continuously embedded into the Orlicz space
Lψ(Ω) (see Corollary 1.5 below). In the case of infinite measure space Ω the above
conclusion does not hold true.

Corollary 1.5. Let ϕ and ψ be Orlicz functions with finite values such that
ϕ satisfies the ∆2-condition for all u ∈ R and ψ is concave on (0,∞). Then
L(Lϕ(Ω), Lψ(Ω)) = L(Eϕ(Ω), Eψ(Ω)) �= {0} if and only if there exist a mea-
surable subset A ⊂ Ω such that the inclusion operator i : L ϕ(A) → Lψ(A) is
continuous.

Proof. Since ψ is concave, ψ ∈ ∆2. Since ϕ ∈ ∆2 as well, Lϕ(Ω) = Eϕ(Ω)
and Lψ(Ω) = Eψ(Ω) up to set and topology.

If L(Lϕ(Ω), Lψ(Ω)) �= {0} then, by Theorem 1.4, we can find constants
K, u0 > 0 such that ψ(u) ≤ Kϕ(u) for all u ≥ u0. Let f be a measurable
function, λ > 0 and put B = {t ∈ Ω : λ|f(t)| < u0}. Then

mψ(λfχA) ≤ ψ(u0)µ(A ∩ B) +mϕ(λfχA)

for every measurable subset A ⊂ Ω, so Lϕ(A) ⊂ Lψ(A) as long as µ(A) <∞.
We shall show that the inclusion operator i : Lϕ(A) → Lψ(A) is continuous.

Let fn ∈ Lϕ(A) be such that ‖fn‖ϕ → 0, i.e., mϕ(λfn) → 0 for every λ > 0. Fix
λ > 0 and let ε > 0. Since ψ is continuous at 0, we can find 0 < u1 ≤ u0 such
that ψ(u1)µ(A) < ε/2. Since ϕ satisfies ∆2 for all u ∈ R, ϕ can vanish only at 0,
so ϕ(u1) > 0. Put K1 = max {K, ψ(u0)/ϕ(u1)}. Then

ψ(u) ≤ K1ϕ(u) + ψ(u1)

for all u ∈ R. Take n0 ∈ N such that mϕ(λfn) < ε/2 for all n ≥ n0. Then

mψ(λfn) ≤ K1mϕ(λfn) + ψ(u1)µ(A) < ε

for all n ≥ n0, i.e., mψ(λfn) → 0. By arbitrariness of λ > 0, ‖fn‖ψ → 0, and we
have proved that the inclusion i : Lϕ(A) → Lψ(A) is continuous.

Conversely, let i : Lϕ(A) → Lψ(A), i(f) = f be well defined and continuous.
Let T1 : Lϕ(Ω) → Lϕ(A) and T2 : Lψ(A) → Lψ(Ω) be the operators defined by
the formulas: T1(f) = fχA, T2(f) = f . Since the F-norm ‖ · ‖ϕ is monotone, the
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operator T1 is continuous. Further, sinceKer(T2) = {0}, the operator T = T2◦i◦T1

is a nonzero, linear and continuous operator from Lϕ(Ω) to Lψ(Ω).

A. Kalindé generalized Turpin’s result to the case of Musielak-Orlicz function
Φ and the finite measure space.

Theorem 1.6. ([2], p. 34). Let µ(Ω) <∞, Φ be a continuous Musielak-Orlicz
function satisfying the ∆ 2-condition and let ψ be a concave and strictly increasing
Orlicz function with finite values. If, for all t ∈ Ω, the limit lim

u→∞
ψ(u)

Φ(u,t) exists and
it is equal to ∞, then L(LΦ(Ω), Lψ(Ω)) = {0}.

2. KALINDÉ INVERSE THEOREM

Let X and Y be some linear-topological spaces. It is obvious that if X∗ �= {0},
then L(X, Y ) �= {0}, but the inverse implication is not true. Hence the most inter-
esting case is the one when (LΦ)∗ = {0}. In the paper [1] L.Drewnowski showed
that if Φ is a continuous Musielak-Orlicz function satisfying the ∆2-condition, then
there exists an linear functional on LΦ if and only if there exists a measurable set
A ∈ Σ with µ(A) > 0 such that

lim inf
u→∞

Φ(u, t)
u

> 0

for all t ∈ A.
Taking into account that the function ψ(u) = |u| is an Orlicz function, the

Drewnowski condition can be written as follows

lim sup
u→∞

ψ(u)
Φ(u, t)

<∞

for all t ∈ A and we get a similar condition that is used in Kalindé Theorem 1.6.
Note that this condition implies that the inclusion operator i : LΦ(A) → L1(A) is
continuous. Hence, evidently, (LΦ(A))∗ �= {0}.

We start with a few auxiliary lemmas.

Lemma 2.1. If there is a measurable set A ⊂ Ω with 0 < µ(A) <∞ such that
LΦ(A) �= {0} and the inclusion operator i : LΦ(A) → LΨ(A), i(f) = f is well
defined and continuous, then L(LΦ(Ω), LΨ(Ω)) �= {0}.

Proof. Define the operators T1 : LΦ(Ω) → LΦ(A) and T2 : LΨ(A) → LΨ(Ω)
by T1(f) = fχA and T2(f) = f . Then T = T2 ◦ i ◦ T1 is a linear and continuous
operator from LΦ(Ω) to LΨ(Ω). Take f ∈ LΦ(A) \ {0}. Then fχA �= 0, so
T (f) = fχA �= 0 as well.

Analogously, the following lemma can be proved.
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Lemma 2.2. If there is a measurable set A ⊂ Ω with 0 < µ(A) <∞ such that
EΦ(A) �= {0} and the inclusion operator i : E Φ(A) → EΨ(A), i(f) = f is well
defined and continuous, then L(E Φ(Ω), EΨ(Ω)) �= {0}.

Lemma 2.3. Let Φ be a continuous locally integrable Musielak-Orlicz func-
tion and let ψ be an Orlicz function continuous at 0. If the set B = {t ∈ Ω :
lim
v→∞

ψ(v)
Φ(v,t)

< ∞} contains a subset of positive measure, then B contains a subset

A with positive and finite measure such that the inclusion operator i : L Φ(A) →
Lψ(A) is nonzero and continuous.

Proof. Let A0 ⊂ B be a set of positive and finite measure and define

Ap = {t ∈ A0 : lim
v→∞

ψ(v)
Φ(v, t)

< 2p}.

Then A0 =
⋃
p∈N

Ap and Ap ↑ A. Since 0 < µ(A0) < ∞, we have 0 < µ(Ap) <
∞ for some (fixed from now on) p ∈ N. Define the sets Ap,r by the formula

Ap,r =
{
t ∈ Ap :

ψ(v)
Φ(v, t)

< 2p
(
1 − 1

r

)
for all v ≥ r

}
,

where r ∈ N. Then ψ(v) < 2p(1 − 1
r )Φ(v, t) for all v ≥ r and t ∈ Ap,r. From

Ap =
⋃∞
r=1 Ap,r, we infer that 0 < µ(Ap,r) < ∞ for some r ∈ N. Therefore

LΦ(Ap,r) ⊂ Lψ(Ap,r) for all r ∈ N. Finally, by Theorem 1.2, we conclude that
the inclusion operator i : LΦ(Ap,r) → Lψ(Ap,r) is continuous. Since Φ is locally
integrable, LΦ(Ap,r) �= {0}, so the operator i is nonzero as well.

Theorem 2.4. Let Φ be a continuous locally integrable Musielak-Orlicz function
satisfying the ∆2-condition and let ψ be a concave and strictly increasing Orlicz
function with finite values. Assume that lim u→∞

ψ(u)
Φ(u,t) exists for all t ∈ Ω. Then

L(LΦ(Ω), Lψ(Ω)) = L(EΦ(Ω), Eψ(Ω)) �= {0} if and only if the inclusion operator
i : LΦ(A) → Lψ(A) is continuous for some measurable set 0 < µ(A) <∞.

Proof. The sufficiency part of the prof follows from Lemma 2.1. Note, that
the local integrability of Φ implies that LΦ(A) �= {0}, so the inclusion operator i
and the operator T defined in Lemma 2.1 are nonzero operators.

Assume that T : LΦ(Ω) → Lψ(Ω) is a nonzero, linear and continuous oper-
ator. From Theorem 1.6 it follows that the set {t ∈ Ω : limv→∞

ψ(v)
Φ(v,t) < ∞}

contains a subset of positive measure. Hence, by Lemma 2.3, the inclusion op-
erator i : LΦ(A) → Lψ(A) is continuous for some measurable set A ⊂ Ω with
0 < µ(A) <∞.
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3. WEIGHTED ORLICZ SPACES

In this section we will consider a special subclass of Musielak-Orlicz functions
called weighted Orlicz functions. We say that a Musielak-Orlicz function Φ is
weighted Orlicz function if there exists an Orlicz function ϕ and a nonnegative
measurable function ω with finite values such that Φ(u, t) = ϕ(u)ω(t) for all
u ∈ R and t ∈ Ω. Analogously, the space LΦ(Ω) is called weighted Orlicz space
in that case.

Theorem 3.1. Let Φ and Ψ be weighted Orlicz functions defined by Φ(u, t) =
ϕ(u)ω(t), Ψ(u, t) = ψ(u)q(t), where ϕ and ψ are Orlicz functions with finite
values such that ϕ satisfies the ∆ 2-condition for all u ∈ R, ψ is concave on (0,∞)
and ω and q are nonnegative measurable functions. The following conditions are
equivalent:

(i) L(LΦ(Ω), LΨ(Ω)) = L(EΦ(Ω), EΨ(Ω)) �= {0},
(ii) L(Lϕ(Ω), Lψ(Ω)) = L(Eϕ(Ω), Eψ(Ω)) �= {0},
(iii) lim sup

u→∞
ψ(u)
ϕ(u) <∞,

(iv) there exist a measurable subset A ⊂ Ω such that the inclusion operator
i : Lϕ(A) → Lψ(A) is continuous.

Proof. Let Bn = {t ∈ Ω : 1
n ≤ ω(t) ≤ n, 1

n ≤ q(t) ≤ n}. Since the
weights ω and q are bounded on the set Bn, we have LΦ(Bn) = Lϕ(Bn) and
LΨ(Bn) = Lψ(Bn). Moreover, the F-norms ‖ · ‖Φ and ‖ · ‖ϕ (respectively, ‖ · ‖Ψ

and ‖ · ‖ψ) reduced to LΦ(Bn) (respectively, to LΨ(Bn)) are equivalent. Thus

(3.1) L(Lϕ(Bn), Lψ(Bn) = L(LΦ(Bn), LΨ(Bn))

for all n ∈ N. Evidently
⋃
n∈N

Bn = Ω and Bn ↑ Ω.
(i)⇒(ii). Let T ∈ L(Lϕ(Ω), Lψ(Ω)) \ {0}. Take f0 ∈ Lϕ(Ω) \ {0} with

T (f0) �= 0. By ∆2-condition, mϕ(f) <∞.
Since Bn ↑ Ω and |fχBn(t) − f(t)| ≤ |f(t)| for all t ∈ Ω, by Lebesgue

Theorem we get mϕ(fχBn − f) → 0. Again, by the ∆2-condition, we have
||fχBn − f ||ϕ → 0. By the continuity of T , ||T (fχBn) − T (f)||Ψ → 0. Since
T (f) �= 0, we have T (fχBn) �= 0 for sufficiently large n. By definition of the sets
Bn, passing to a larger index if necessary, we can assume that T (f0χBp)χBp �= 0
as well.

Define T0 : LΦ(Bp) → LΨ(Bp) by T0(f) = T (f)χBp . Applying (3.1), it is easy
to verify that T0 is continuous. Let T1 : LΦ(Ω) → LΦ(Bp), T2 : LΨ(Bp) → LΨ(Ω)
be defined by T1(f) = fχBp , T2(f) = f . Then the operator S : LΦ(Ω) → LΨ(Ω)
defined by S = T2 ◦ T0 ◦ T1 is continuous and nonzero, because

S(f0) = T2(T0(T1(f0))) = T (f0χBp)χBp �= 0.
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The implication (ii)⇒(i) can be proved analogously. The equivalence (ii)⇔(iii)
follows from Theorem 1.4 and (iii)⇔(iv) follows from Corollary 1.5.

Theorem 3.2. Let Φ be a locally integrable continuous Musielak-Orlicz function
satisfying the ∆2-condition and let Ψ be a weighted Orlicz function defined by
Ψ(u, t) = ψ(u)q(t) such that the Orlicz function ψ takes finite values and it is
concave on (0,∞). Assume that, for all t ∈ Ω, there exists the limit lim

u→∞
ψ(u)

Φ(u,t) .
The following conditions are equivalent:

(i) L(LΦ(Ω), LΨ(Ω)) = L(EΦ(Ω), EΨ(Ω)) �= {0},
(ii) L(LΦ(Ω), Lψ(Ω)) = L(EΦ(Ω), Eψ(Ω)) �= {0},
(iii) there exist a measurable subset A ⊂ Ω such that the inclusion operator

i : LΦ(A) → Lψ(A) is continuous.

Proof. Let Bn = {t ∈ Ω : 1
n ≤ q(t) ≤ n}. Then Bn ↑ Ω and there exists

n0 ∈ N such that µ(Bn0) > 0. Since on the set Bn the weight q is bounded, we
have LΨ(Bn) = Lψ(Bn) and the norms ‖ · ‖Ψ, ‖ · ‖ψ restricted to LΨ(Bn) are
equivalent for all n ≥ n0.

(i)⇒(ii). Let T ∈ L(LΦ(Ω), LΨ(Ω))\{0} and take f ∈ LΦ(Ω) with T (f) �= 0.
Since Bn ↑ Ω, T (f)χBn �= 0 for some n ≥ 0. Note that

T (f)χBn ∈ LΨ(Bn) = Lψ(Bn) ⊂ Lψ(Ω).

Thus the operator T0 : LΦ(Ω) → Lψ(Ω) defined by T0(f) = T (f)χBn is nonzero.
Since ‖T0(f)‖ψ ≈ ‖T (f)χBn‖Ψ ≤ ‖T (f)‖Ψ, T0 is continuous as well.

(ii)⇒(i). This implication can be proved in an analogous way as the implication
(i)⇒(ii) - it suffices to replace Ψ with ψ and ψ with Ψ, respectively.

(ii)⇒(iii). Let T ∈ L(LΦ(Ω), Lψ(Ω)) \ {0}. and take f ∈ LΦ(Ω) with T (f) �=
0. By ∆2-condition, mΦ(f) < ∞. Since Bn ↑ Ω and |fχBn(t) − f(t)| ≤ |f(t)|
for all t ∈ Ω, by Lebesgue Theorem we get mΦ(fχBn − f) → 0. Again, by the
∆2-condition, we have ||fχBn − f ||Φ → 0. By the continuity of T it follows that
||T (fχBn)−T (f)||Ψ → 0. Since T (f) �= 0, we have T (fχBp) �= 0 for sufficiently
large p ∈ N. Since Bn ↑ Ω, we can assume that T (fχBp)χBp �= 0 as well.

Hence the operator T0 : LΦ(Bp) → Lψ(Bp), T0(f) = T (f)χBp is nonzero,
linear and continuous. By Theorem 1.6 there exists a set A ∈ Σ, A ⊂ Bp,
0 < µ(A) < ∞ such that lim

v→∞
ψ(v)

Φ(v,t) < ∞ for every t ∈ A. By Lemma 2.3,

L(LΦ(Ω), Lψ(Ω)) �= {0}.
(iii)⇒(ii). Since Φ is locally integrable, LΦ(A) �= {0}. Thus (ii) follows from

Lemma 2.1.
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4. GENERAL CASE OF MUSIELAK-ORLICZ SPACES

In this section we look for conditions on the functions Φ and Ψ that will imply
the inverse theorem to Theorem 4.1 in the real valued Musielak-Orlicz function
case. We will consider the spaces of finite elementsEΦ instead of the whole spaces
LΦ. Although the Theorem 2.4 provides nice equivalent conditions for existence of
nonzero, linear and continuous operator, the assumption that the limit limu→∞

ψ(u)
Φ(u,t)

exists for all t ∈ Ω is very strong. We will give a theorem that will use a weaker
condition than the above one.

R. Pl/uciennik and M. Wisl/a presented the necessary condition for a nonexis-
tence of any linear continuous operators from EΦ(T,Σ, µ) into EΨ(S,Ξ, ν), where
(T,Σ, µ) and (S,Ξ, ν) are two measure spaces with the σ-finite and atomless mea-
sures, and Φ : X × T → [0,∞] and Ψ : Y × S → [0,∞] are Musielak-Orlicz
vector valued functions, where X is p-normed space, and Y is q-normed space. In
order to simplify the notation, we will recall that theorem in the case of real-valued
Musielak-Orlicz functions only. Let A,C be arbitrary Σ-measurable subsets of Ω.
Define

ϕ̃A(u) =
{

[supesst∈AΦ( 1
u , t)]

−1 for u �= 0
0 for u = 0,

ψ̃C(u) = supesst∈C sup
v �=0

min{1, |uv|}
Ψ(v, t)

.

In the case when Ψ is an Orlicz function we have ψ̃C(u) = [Ψ( 1
u)]−1 for u > 0.

Both functions ϕ̃A and ψ̃C are even, nondecreasing on (0,∞) and vanish at 0. But
it can happen that they are not pregenfunctions. By Lemma 2.2 and 2.3 in [8] ϕ̃A
and ψ̃C are pregenfunctions if and only if there exist a, b, c > 0 such that

0 < supesst∈AΦ(c, t) < ∞

supesst∈C sup
0<|v|<a

|v|
Ψ(v, t)

< ∞ and infesst∈C Ψ(b, t) > 0.

Note that if ϕ̃A is a pregenfunction, then LΦ(A) �= {0}. But in order to assure that
EΦ(A) �= {0} we have to assume that Φ is locally integrable.

Theorem 4.1. ([8], 3.1). Assume that for every δ > 0 there exist divisions:
A0, A1 . . . and C0, C1, . . . of the set Ω such that the families {A i} and {Cj} consist
of pairwise disjoint sets, µ(A0) < δ, µ(C0) < δ and ϕ̃Ai , ψ̃Cj are pregenfunctions

for i, j = 1, 2, . . . . If lim inf
u→0

ψ̃Cj(u)
ϕ̃Ai(du)

= 0 for all d > 0 and i, j = 1, 2, ..., then

L(EΦ(Ω), EΨ(Ω)) = {0}.
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Let Ψ is a weighted Orlicz function, say Ψ(u, t) = ψ(u)q(t). If the function q
is bounded on a set C then ψ̃C a pregenfunction if and only if there exist a > 0
and K > 0 such that |v| ≤ Kψ(v) for all 0 < v < a. This condition is satisfied if,
for example, the function ψ is concave on the interval (0, a).

We shall say that a Musielak-Orlicz function Φ is of bounded growth on Ω at
infinity, if for every ε > 0 we can find a measurable set Tε such that µ(Ω \Tε) < ε
and

(4.1) lim sup
u→∞

supesst∈Tε
Φ(u, t)

infesst∈Tε Φ(u, t)
<∞.

Lemma 4.2. If a Musielak-Orlicz function Φ is of bounded growth on Ω at
infinity, then ϕ̃A is a pregenfunction for every A ⊂ Tε.

Proof. By (4.1), we can find a set Tε and constants M > 0 and a > 0 such
that

0 < supesst∈AΦ(a, t) ≤ supesst∈Tε
Φ(a, t) ≤M infesst∈Tε Φ(a, t) <∞

for every A ⊂ Tε.

Theorem 4.3. Let Φ be a locally integrable continuous Musielak-Orlicz function
of bounded growth on Ω at infinity and let Ψ be a weighted Orlicz space, Ψ(u, t) =
ψ(u)q(t), where ψ is a concave Orlicz function on (0,∞). The following conditions
are equivalent:

(i) L(EΦ(Ω), EΨ(Ω)) �= {0},
(ii) L(EΦ(Ω), Eψ(Ω)) �= {0},
(iii) there exists a set A ∈ Σ of positive and finite measure such that

(4.2) lim sup
u→∞

ψ(u)
infesst∈AΦ(u, t)

<∞,

(iv) there exists a set A ∈ Σ of positive and finite measure such that the inclusion
operator i : EΦ(A) → Eψ(A) is well defined and continuous,

Proof. The proof of the equivalence (i)⇔(ii) goes analogously to the proof of
the part (i)⇔(ii) of the Theorem 3.2.

(ii)⇒(iii) Let ε > 0 and put M = lim sup
u→∞

supesst∈Tε Φ(u,t)

infesst∈Tε Φ(u,t) < ∞. Since the

measure µ is σ-finite, we can find a countable family (Aj) of pairwise disjoint
measurable subsets of Tε of finite measures such that

⋃∞
j=1 Aj = Tε. By Lemma

4.2 and by concavity of ψ, each function ϕ̃Aj and ψ̃Ak
is a pregenfunction.
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Suppose that lim sup
u→∞

ψ(u)
infess

t∈Aj
Φ(u,t) = ∞ for each j ∈ N. Fix any 1 ≤ j, k <

∞. Then there exists a sequence (un) such that un → ∞ and

ψ(un) ≥ 2n infesst∈Ak
Φ(un, t).

For any 0 < d <∞ put d1 = min{d, 1}. Applying the concavity of ψ, we obtain

lim inf
v→0

ψ̃Ak
(v)

ϕ̃Aj (dv)
≤ lim inf

v→0

ψ̃Ak
(v)

ϕ̃Aj (d1v)
≤ lim

n→∞
ψ̃Ak

( 1
d1un

)

ϕ̃Aj (
1
un

)

= lim
n→∞

supesst∈Aj
Φ(un, t)

ψ(d1un)

≤ lim
n→∞

1
2nd1

· supesst∈Aj
Φ(un, t)

infesst∈Ak
Φ(un, t)

≤ lim
n→∞

M

2nd1
= 0.

By Theorem 4.1 we get L(EΦ(Ω), Eψ(Ω)) = {0}, and we arrived at a contradiction.
Thus (ii) holds true.

(iii)⇒(iv) By (4.2), we can find A ∈ Σ, K > 0, u0 > 0 such that 0 < µ(A) <
∞ and

ψ(u) ≤ K · infesst∈A Φ(u, t) ≤ KΦ(u, t)

for all u ≥ u0 and t ∈ A. Then, ψ(u) ≤ KΦ(u, t) + ψ(u0) for every u ∈ R and
t ∈ A, so LΦ(A) ⊂ Lψ(A) and EΦ(A) ⊂ Eψ(A). By continuity of Φ and by
Theorem 1.2, the inclusion operator i : LΦ(A) → Lψ(A) is continuous. Hence the
inclusion operator i0 : EΦ(A) → Eψ(A) is continuous as well.

(iv)⇒(ii) By local integrability of Φ, EΦ(A) �= {0}. Thus, by Lemma 2.2,
L(EΦ(Ω), Eψ(Ω)) �= {0}.

Remark. The boundedness growth at infinity of the function Φ and the con-
cavity of ψ was used in the proof of the implication (i)⇒(ii) only.

Example 4.4. Let Ω = (0, 1), Φ(u, t) = |u|t and ψ(u) =
√|u|. Then Φ is a

locally integrable Musielak-Orlicz function and ψ is concave on (0,∞). Moreover,
infesst∈(0,1) Φ(u, t) = u and lim

u→∞ sup ψ(u)
infess

t∈(0,1)
Φ(u,t) = lim

u→∞

√
u
u = 0 < ∞.

Hence, by Theorem 4.3, L(EΦ(Ω), Eψ(Ω)) �= {0}. Moreover, since Φ, ψ ∈ ∆2,
we have L(LΦ(Ω), Lψ(Ω)) �= {0} as well.

Example 4.5. Let Ω = [0, 1], Φ(u, t) = uαt and ψ(u) = uβ , where 0 < α <∞
and 0 < β ≤ 1. Then Φ is a locally integrable, continuous Musielak-Orlicz function
and ψ is concave. Moreover, Φ, ψ ∈ ∆2 and Φ is of bounded growth on Ω at ∞.
Indeed, for any ε > 0, putting Tε = (ε/2, 1], we have µ(Ω \ Tε) < ε and

lim sup
u→∞

supesst∈(ε/2,1]u
αt

infesst∈(ε/2,1]uαt
= lim

u→∞
uα

uαε/2
=

2
ε
<∞.
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Thus, by Theorem 4.3 L(EΦ(Ω), Eψ(Ω)) �= {0} if and only if there exist a > 0
such that

lim sup
u→∞

ψ(u)
infesst≥a Φ(u, t)

= lim
u→∞

uβ

uαa
= lim

u→∞ a−1uβ−α <∞

and this is true if and only if 0 < β ≤ α <∞.
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