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EXISTENCE OF NONZERO, LINEAR AND CONTINUOUS OPERATOR
BETWEEN TWO MUSIELAK-ORLICZ SPACES

Ewa Kasior and Marek Wisla

Abstract. Let X, Y be linear topological subspaces of the space of all measur-
able functions over a o-finite, atomless and complete measure space 2. The
question of existence of a nonzero, linear continuous operator 7: X — Y is
a natural extension of the question ”does X admit a nonzero, linear continu-
ous functional?”. In case of X = L*(Q),Y = LY(Q) being Orlicz spaces
Ph.Turpin ([11]) gave a criterion telling when there is no nonzero, linear and
continuous operator between L® () and LY (€2). That result was extended to
the case of Musielak-Orlicz spaces by A.K.Kalindé, R.Pluciennik and M.Wisl
/a ([2, 8]) but only necessary conditions have been presented by them - in
fact conditions assuring that there is no nonzero, linear and continuous op-
erator between L®(Q2) and LY (Q). In this paper we give inverse theorems
to the Kalindé and Pluciennik-Wisla theorems. Generally speaking we state
that there exists a nonzero, linear and continuous operator if and only if it
there exists a set A C 2 of positive and finite measure such that the inclusion
operator i : L®(A) — LY (A) is nonzero and continuous.

1. INTRODUCTION

Orlicz functions were defined by W. Orlicz in [6]. Since that time a lot of
mathematicians made some researches and there were received some generalizations.
In 1959 J. Musielak and W. Orlicz in the paper [5] introduced the modular spaces
generated by functions depended on parameter. In 1961 W. Orlicz in [7] introduced
s-convex modulars, where 0 < s < 1. In this section we remind some facts and
definitions.

A map ¢ : R — [0,00] is said to be a pregenfunction ([10]), if it is even,
nondecreasing on [0, oo, ¢(0) = 0 and ¢ is identically equal to neither 0 nor oco.
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A pregenfunction ¢ : R — [0,00] is said to be an Orlicz function if it is left-
continuous on [0, co), continuous at 0 and lim ¢(u) = co. We will say that the
U—00

Orlicz function ¢ takes only finite values whenever p(u) < oo for all u € R. Let
us note that if ¢ is concave on (0, cc) and takes finite values, then the condition
lim (u) = oo is equivalent to the fact that  is strictly increasing on (0, co).

U—00

Let (2, X, ) be a measure space with a o-finite nonatomic and complete mea-
sure p and L°(u) be the set of all p-equivalence classes of real and X-measurable
functions defined on Q. A map ® : R x Q — [0, o] is called a Musielak-Orlicz
function whenever the following conditions are satisfied:

(i) for every t € Q, the function v — ®(u, t) is an Orlicz function,
(ii) for every u € R, the function t — ®(u, t) is X-measurable.

A Musielak-Orlicz function @ is called locally integrable if [, ®(u,t)du < oo for
all w € R and for all measurable subsets A C  of finite measure. We shall say
that a Musielak-Orlicz function & is continuous if the function v — ®(u, t) takes
only finite values and it is continuous on R for p-a.e. t € Q.

We say that a Musielak-Orlicz function & satisfies the As-condition (® € A,
in short) if there exist a constant K > 0 and an non-negative integrable function A
such that

(1.1) ®(2u,t) < K (u, t) + h(t)

for all u € R and p-a.e. t € Q2. Note that & € A, implies that & takes finite values
for y-a.e. t € Q.

We will say that a Musielak-Orlicz function @ is concave on an interval (a, b) C
(0, 00), if the functions u — ®(u, t) are concave on (a,b) for p-a.e. t € Q. Note
that if ® takes finite values and it is concave on (0, co) then & satisfies the Ao-
condition with the function h = 0.

In the case of Orlicz function ¢, the function A in (1.1) can be replaced by a
nonnegative constant. We say that ¢ satisfies the the As-condition at infinity (resp.
for all u € R) whenever h > 0 (resp. h = 0).

For all f € L°(u) the function t — ®(f(t),t) is -measurable and the func-
tional ma(f) = [, ®(f(t),t)du is a modular on LO(y). Moreover, if u — ®(u, t)
is an s-convex function for all ¢ € Q, then mg is an s-convex modular.

By L? = L*(Q) = L*(Q, X, 1) we define the class of all functions f € L°(y)
such that mg(Af) < oo for some A > 0. Analogously, by E* = E®(Q) =
E®(Q, %, u) we denote the class of all functions f € L(y) such that me(Af) < oo
for every A > 0. The classes L* and E® are linear subspaces of the space L°(u)
and E® c L®. The class L? is called the Musielak-Orlicz space and E? is called
the space of finite elements. For an arbitrary measurable subset A C € define
L2(A) ={f € L*(Q) :supp f C A} and E®(A) = {f € E®(Q) : supp f C A}.
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where supp f = {t € Q: f(t) # 0}. Let us note that & € A, implies the equality
L®(A) = E®(A) for any subset A C Q.
On the Musielak-Orlicz space L®(2) we define an F-norm by the formula

[|flle = inf{\ > 0:ma(f/N) < A}

It is known that the space L®(2) with this F-norm is complete. Let us note that
| fr — flle — 0 if and only if ma(A(f, — f)) — 0 for every A > 0. For more
information on F-normed spaces (and general metric linear spaces) we refer to [3, 9].

Let X and Y be two linear-topological spaces. By £(X,Y) we denote the
space of all linear and continuous operators from X to Y. One of the commonly
used linear operators are inclusions. We say that ¥ < &, if we can find constants
K1, Ko > 0 and an nonnegative integrable function & such that

U(u,t) < K1®(Kau,t) + h(t)

for all w € R and p-ae. t € Q.

Theorem 1.1. ([4], 8.5). Let ® and ¥ be Musielak-Orlicz functions. The in-
clusion operator i : L®(Q) — L¥(9) is well defined if and only if & < ®.

Note that inclusion operator need not to be continuous. In 1984 M. Wisla
received the necessary condition for the continuity of the inclusion operator between
two Musielak-Orlicz spaces.

Theorem 1.2. ([12], 3.2.2). Assume that & and ¥ are Musielak-Orlicz functions
such that ¥ < ®. If the function v — ®(u,t) is continuous for u-a.e. t € Q2 and
the function v — ¥ (u, t) is continuous at u = 0 for p-a.e. ¢t € Q then the inclusion
operator i : L®(Q) — LY (Q) is continuous.

Corollary 1.3. Under assumptions of Theorem 1.2, the inclusion operator i :
E®(Q) — EY(Q) is also continuous.

Proof. Since ¥ < ®, E*(Q) c EY(Q). Let f, € E*(Q), n € N, be such a
sequence that || f,,||e — 0. Since f, € L®(Q) as well, by Theorem 1.2,

[ folle — 0 in E*(Q) < || fulle — 0 in L*()
= || fullw = 0in LY(Q) < || fallw — 0 in E¥(Q). n

Evidently, if there exists a nonzero, linear and continuous operator between the
spaces X and Y it does not mean that this operator has to be an inclusion. But in
the case of Musielak-Orlicz spaces the inclusion operator is nearby every time. In
1973 P. Turpin proved the following theorem.
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Theorem 1.4. ([11], 2.2.1). Let ¢ and ¢ be Orlicz functions with finite values
such that ¢ satisfies the A ,-condition for all © € R and ¢ is concave on (0, o).

Then £(L#(92), L¥(92)) # {0} if and only if lim sup 24 < oo,

As an immediate consequence of Turpin result we get that, if the assumptions of
Theorem 1.4 are satisfied and, moreover, 1(Q) < oo, then L(L#(Q), L¥(Q)) # {0}
if and only if the Orlicz space L¥(2) is continuously embedded into the Orlicz space
LY () (see Corollary 1.5 below). In the case of infinite measure space €2 the above
conclusion does not hold true.

Corollary 1.5. Let ¢ and ) be Orlicz functions with finite values such that
o satisfies the Ay-condition for all w € R and + is concave on (0,00). Then
L(L?(Q), L¥(Q)) = L(E¥(Q), E¥(Q)) # {0} if and only if there exist a mea-
surable subset A C Q such that the inclusion operator i : L¥(A) — LY¥(A) is
continuous.

Proof.  Since ¢ is concave, ¢ € Ag. Since p € Ay as well, L#(Q2) = E¥(Q)
and LY (Q2) = E¥(Q) up to set and topology.

If £(L¥(Q), L¥(Q)) # {0} then, by Theorem 1.4, we can find constants
K,up > 0 such that ¢(u) < K¢(u) for all w > uo. Let f be a measurable
function, A > 0 and put B = {t € Q : A[f(¢)| < ug}. Then

my(Afxa) < P(uo)p(AN B) +my(Afxa)

for every measurable subset A C Q, so L#(A) C L¥(A) as long as u(A) < oc.

We shall show that the inclusion operator i : L¥(A) — L¥(A) is continuous.
Let f,, € L¥(A) be such that || f,, ||, — 0, i.e., my(Af,) — 0 for every A > 0. Fix
A > 0 and let ¢ > 0. Since 1) is continuous at 0, we can find 0 < u; < ug such
that ¢ (u1)u(A) < €/2. Since ¢ satisfies A, for all u € R, ¢ can vanish only at 0,
S0 @(uy) > 0. Put K7 = max {K, ¥ (up)/¢(ui)}. Then

Y(u) < Kip(u) + 1 (ur)

for all u € R. Take ny € N such that m,(\f,) < e/2 for all n > ng. Then

mw()‘fn) < Klmgo()‘fn) + ¢(u1)M(A) <¢

for all n > ny, i.e., my(A\f,) — 0. By arbitrariness of A > 0, || /||, — 0, and we
have proved that the inclusion i : L¥(A) — L¥(A) is continuous.

Conversely, let i : LY(A) — LY (A),i(f) = f be well defined and continuous.
Let Ty : L¥(Q) — L¥(A) and Ty : LY(A) — L¥(Q) be the operators defined by
the formulas: T (f) = fxa, T2(f) = f. Since the F-norm || - ||, is monotone, the
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operator 77 is continuous. Further, since Ker(T3) = {0}, the operator T' = TyoioT}
is a nonzero, linear and continuous operator from L?(Q2) to LY (). |

A. Kalindé generalized Turpin’s result to the case of Musielak-Orlicz function
® and the finite measure space.

Theorem 1.6. ([2], p. 34). Let u(Q2) < oo, ® be a continuous Musielak-Orlicz
function satisfying the A 5-condition and let ) be a concave and strictly increasing
Orlicz function with finite values. If, for all ¢ € ©, the limit lim -2 exists and

U—0o0

D(u,t)
it is equal to oo, then L(L®(Q), L¥(Q)) = {0}.

2. KALINDE INVERSE THEOREM

Let X and Y be some linear-topological spaces. It is obvious that if X* # {0},
then £(X,Y") # {0}, but the inverse implication is not true. Hence the most inter-
esting case is the one when (L®)* = {0}. In the paper [1] L.Drewnowski showed
that if ® is a continuous Musielak-Orlicz function satisfying the A,-condition, then
there exists an linear functional on L® if and only if there exists a measurable set
A € ¥ with pu(A) > 0 such that

i}
lim infM >0

U—00 u

for all ¢t € A.
Taking into account that the function ¢(u) = |u| is an Orlicz function, the
Drewnowski condition can be written as follows

, ¥(u)
lim su
for all t € A and we get a similar condition that is used in Kalindé Theorem 1.6.
Note that this condition implies that the inclusion operator i : L*(A) — L(A) is
continuous. Hence, evidently, (L*(A4))* # {0}.
We start with a few auxiliary lemmas.

< 00

Lemma 2.1. If there is a measurable set A C © with 0 < p(A) < oo such that
L®(A) # {0} and the inclusion operator i : L®(A) — LY(A), i(f) = f is well
defined and continuous, then £(L®(Q), L¥(Q)) # {0}.

Proof. Define the operators 77 : L®(Q) — L®(A) and Ty : LY(A) — LY(Q)
by T1(f) = fxa and To(f) = f. Then T =Ty 0i o T} is a linear and continuous
operator from L®(Q) to LY(Q). Take f € L®(A)\ {0}. Then fxa # 0, so
T(f) = fxa # 0 as well. ]

Analogously, the following lemma can be proved.
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Lemma 2.2. If there is a measurable set A C Q with 0 < u(A) < oo such that
E®(A) # {0} and the inclusion operator i : E®(A) — EY(A), i(f) = f is well
defined and continuous, then £(E®(Q), EY(Q)) # {0}.

Lemma 2.3. Let ® be a continuous locally integrable Musielak-Orlicz func-
tion and let ¢ be an Orlicz function continuous at 0. If the set B = {t € Q :
lim A < oo} contains a subset of positive measure, then B contains a subset

oo P(v,t)
A with positive and finite measure such that the inclusion operator i : L ®(A) —
L¥(A) is nonzero and continuous.

Proof. Let Ag C B be a set of positive and finite measure and define

p(v) »
B 2

Then Ag = U,en Ap and A4, T A. Since 0 < u(Ag) < oo, we have 0 < p(4,) <
oo for some (fixed from now on) p € N. Define the sets A, ,. by the formula

P(v)
O (v, t)

Ap:{tGAQ: lim
v—00

Ay ={tea,: <2P(1—%) for all v > r},

where 7 € N. Then ¢ (v) < 2P(1 — 1)®(v,t) forall v > r and ¢t € A,,. From
A, = Up2 Apr, we infer that 0 < p(A,,) < oo for some r € N. Therefore
L®(A,,) C LY(A,,) for all r € N. Finally, by Theorem 1.2, we conclude that
the inclusion operator i : L®(A,,) — LY(A,,) is continuous. Since ® is locally
integrable, L*(A,,,) # {0}, so the operator 4 is nonzero as well. |

Theorem 2.4. Let ® be a continuous locally integrable Musielak-Orlicz function
satisfying the As-condition and let ) be a concave and strictly increasing Orlicz
function with finite values. Assume that lim . %(u?% exists for all t € Q. Then
L(L*(Q),LY(Q)) = L(E®(Q), E¥(Q)) # {0} if and only if the inclusion operator
i: L®(A) — L¥(A) is continuous for some measurable set 0 < pu(A) < oo.

Proof.  The sufficiency part of the prof follows from Lemma 2.1. Note, that
the local integrability of ® implies that L®(A) # {0}, so the inclusion operator i
and the operator 7" defined in Lemma 2.1 are nonzero operators.

Assume that T : L*(Q) — L¥(Q) is a nonzero, linear and continuous oper-
ator. From Theorem 1.6 it follows that the set {¢t € © : lim, . % < oo}
contains a subset of positive measure. Hence, by Lemma 2.3, the inclusion op-
erator i : L®(A) — L¥(A) is continuous for some measurable set A C Q with

0 < u(A) < . ]



Existence of Nonzero, Linear Continuous Operators 1403

3. WEIGHTED ORLICZ SPACES

In this section we will consider a special subclass of Musielak-Orlicz functions
called weighted Orlicz functions. We say that a Musielak-Orlicz function ® is
weighted Orlicz function if there exists an Orlicz function ¢ and a nonnegative
measurable function w with finite values such that ®(u,t) = ¢(u)w(t) for all
u € R and t € Q. Analogously, the space L*(€2) is called weighted Orlicz space
in that case.

Theorem 3.1. Let ® and ¥ be weighted Orlicz functions defined by ®(u,t) =
o(uw)w(t), U(u,t) = ¥ (u)q(t), where ¢ and ¢ are Orlicz functions with finite
values such that  satisfies the A o-condition for all u € R, ¢ is concave on (0, o)
and w and ¢ are nonnegative measurable functions. The following conditions are
equivalent:

(i) LOL®(Q), LY(Q)) = LIE®(Q), EY(Q)) # {0},
(ii) L(L?(Q), L¥(Q)) = L(E#(Q), E¥(Q)) # {0},
(iii) limsup wg ; < 00,
)

U—00

(iv there exist a measurable subset A C € such that the inclusion operator
i: LP(A) — LY(A) is continuous.

Proof. Let B, = {t € Q: 1 < w(t) < n,L < q(t) < n}. Since the
weights w and ¢ are bounded on the set B,,, we have L*(B,) = L¥(B,) and
LY(B,) = L¥(B,). Moreover, the F-norms | - |l and || - ||, (respectively, | - ||&
and || - ||) reduced to L®(B,,) (respectively, to LY(B,,)) are equivalent. Thus

(3.1) L(L?(By), LY(By,) = L(L*(By), LY (B,))

for all n € N. Evidently |J,,cy B, = Q and B, T Q.

(i)=(ii). Let T € L(L?(Q),L¥(Q))\ {0}. Take fy € L¥(Q)\ {0} with
T(fo) # 0. By Ag-condition, m(f) < oc.

Since B, T Q and |fxz,(t) — f(¢)| < |f(¢)] for all t € Q, by Lebesgue
Theorem we get m,(fxs, — f) — 0. Again, by the A,-condition, we have
\lfxs, — fll, — 0. By the continuity of T, ||T(fxs,) — T(f)|[v — 0. Since
T(f) # 0, we have T'(fxg, ) # 0 for sufficiently large n. By definition of the sets
B,,, passing to a larger index if necessary, we can assume that 7'(foxs,)xB, # 0
as well.

Define Ty : L®(B,) — LY (By,) by To(f) = T(f)xs,. Applying (3.1), itis easy
to verify that Tj is continuous. Let Ty : L*(Q) — L®(B,), To : LY(B,) — LY ()
be defined by T3 (f) = fxs,. To(f) = f . Then the operator S : L*(Q) — L¥ ()
defined by S = T5 o Ty o T3 is continuous and nonzero, because

S(fo) = To(To(T1(fo))) = T(foxs,)xs, # 0.
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The implication (ii)=-(i) can be proved analogously. The equivalence (ii)< (iii)
follows from Theorem 1.4 and (iii)<(iv) follows from Corollary 1.5. ]

Theorem 3.2. Let ® be a locally integrable continuous Musielak-Orlicz function
satisfying the As-condition and let ¥ be a weighted Orlicz function defined by
U(u,t) = (u)q(t) such that the Orlicz function ¢ takes finite values and it is

concave on (0, c0). Assume that, for all ¢ € €, there exists the limit &l_r)noo qﬁﬂ(;“z)
The following conditions are equivalent:
(i) L(L2(Q), L¥(Q)) = L(E®(Q), E¥(Q)) # {0},
(if) L(L®(Q), L¥(Q)) = LIE®(Q), BY(Q)) # {0},
(iii) there exist a measurable subset A C € such that the inclusion operator
i: L®(A) — L¥(A) is continuous.

Proof. Let B, ={t € Q: 1 <q(t) <n}. Then B, T Q and there exists
no € N such that u(B,,) > 0. Since on the set B,, the weight ¢ is bounded, we
have LY(B,) = L¥(B,) and the norms || - ||w, || - || restricted to LY(B,) are
equivalent for all n > nyg.

(i)=(ii). Let T € L(L®(Q),LY(Q))\{0} and take f € L* () with T'(f) # 0.
Since B, T Q, T'(f)xs, # 0 for some n > 0. Note that

T(f)xp, € LY(By) = L¥(B,) C LY(Q).

Thus the operator Tp : L®(Q) — L¥(Q) defined by To(f) = T(f)xs, is nonzero.
Since |To(/)ly =~ 1T(f)xsallw < |T(f)|lw, To is continuous as well.

(if)=-(i). This implication can be proved in an analogous way as the implication
(i)=(ii) - it suffices to replace ¥ with ¢ and v with W, respectively.

(i)=(iii). Let T € L(L®(Q), L¥(22))\ {0}. and take f € LT(Q) with T(f) #
0. By As-condition, ma(f) < oco. Since B, T Q and |fxg, (t) — f(t)| < |f(?)]
for all ¢t € Q, by Lebesgue Theorem we get ma(fx5, — f) — 0. Again, by the
Ay-condition, we have || fxp, — flle — 0. By the continuity of 7" it follows that
|T(fxB,)—T(f)|lw — 0. Since T'(f) # 0, we have T'(fxp,) # 0 for sufficiently
large p € N. Since B,, 1 €2, we can assume that T'(fxg,)xn, 7 0 as well.

Hence the operator Ty : L*(B,) — L¥(B,), To(f) = T(f)xs, is nonzero,
linear and continuous. By Theorem 1.6 there exists a set A € ¥, A C B,,
0 < u(A) < oo such that vli—{go v) - o for every t € A. By Lemma 2.3,

D(v,t)
L(L*(Q), LY () # {0}.

(iii)=-(ii). Since @ is locally integrable, L*(A) # {0}. Thus (ii) follows from
Lemma 2.1. ]
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4. GENERAL CASE OF MUSIELAK-ORLICZ SPACES

In this section we look for conditions on the functions ® and W that will imply
the inverse theorem to Theorem 4.1 in the real valued Musielak-Orlicz function
case. We will consider the spaces of finite elements £® instead of the whole spaces
L®. Although the Theorem 2.4 provides nice equivalent conditions for existence of
nonzero, linear and continuous operator, the assumption that the limit lim,, . qf((u“z)
exists for all ¢ € Q is very strong. We will give a theorem that will use a weaker
condition than the above one.

R. Pluciennik and M. Wisla presented the necessary condition for a nonexis-
tence of any linear continuous operators from E®(T, %, i) into E¥ (S, Z, v), where
(T, %, u) and (S, E, v) are two measure spaces with the o-finite and atomless mea-
sures, and @ : X x T — [0,00] and ¥ : Y x S — [0, cc] are Musielak-Orlicz
vector valued functions, where X is p-normed space, and Y is g-normed space. In
order to simplify the notation, we will recall that theorem in the case of real-valued
Musielak-Orlicz functions only. Let A, C be arbitrary Y-measurable subsets of €.
Define

~ _f [supess;ca @(L,1)]71 foru#0
Palu) = { 0 for u = 0,
min {1, |uv|}

Jc(u) = SUpess;c SuUp
te v#£0 \I/(’U,t)

In the case when W is an Orlicz function we have ¢ (u) = [w(L)]~! for u > 0.

Both functions &, and ¢ are even, nondecreasing on (0, 00) and vanish at 0. But
it can happen that they are not pregenfunctions. By Lemma 2.2 and 2.3 in [8] ¢ 4
and ¢ are pregenfunctions if and only if there exist a, b, ¢ > 0 such that

0 < supess;c 4 P(c,t) < o0

vl

supess;cc  sup < oo and infess;ec (b, t) > 0.

0<jv|<a \P(’U, t)

Note that if & 4 is a pregenfunction, then L®(A) # {0}. But in order to assure that
E?®(A) # {0} we have to assume that @ is locally integrable.

Theorem 4.1. ([8], 3.1). Assume that for every é > 0 there exist divisions:
Ag, Ay ... and Cy, C1, . .. of the set © such that the families {A;} and {C};} consist

of pairwise disjoint sets, 11(Ao) < 6, u(Co) < 0 and p4,, ¢, are pregenfunctions

u
fori,j =1,2,.... If liminfw =0foralld>0andi,j=1,2,.., then
u—0 LpAi( u)

L(E®(Q), E¥(Q)) = {0}.
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Let ¥ is a weighted Orlicz function, say W(u,t) = ¢ (u)q(t). If the function ¢
is bounded on a set C' then zZC a pregenfunction if and only if there exist a > 0
and K > 0 such that |v| < K (v) for all 0 < v < a. This condition is satisfied if,
for example, the function ¢ is concave on the interval (0, a).

We shall say that a Musielak-Orlicz function ® is of bounded growth on Q at
infinity, if for every € > 0 we can find a measurable set 7 such that u(Q2\T.) < ¢
and

supess,cr, P (u, 1)

4.1 li < 0.
(4.1) lgi,sogp infessier. @ (u,t) >

Lemma 4.2. If a Musielak-Orlicz function ® is of bounded growth on 2 at
infinity, then ¢ 4 is a pregenfunction for every A C T-.

Proof. By (4.1), we can find a set 7. and constants M/ > 0 and a > 0 such
that

0 < supess;c 4 P(a, t) < supess,c. ®(a,t) < M infessier, P(a,t) < oo

for every A C 1. ]

Theorem 4.3. Let ® be a locally integrable continuous Musielak-Orlicz function
of bounded growth on  at infinity and let ¥ be a weighted Orlicz space, ¥(u,t) =
¥ (u)q(t), where ¢ is a concave Orlicz function on (0, co). The following conditions
are equivalent:

(i) L(E®(Q), E¥()) # {0},
(ii) L(E®(Q), E¥(Q)) # {0},
(iii) there exists a set A € X of positive and finite measure such that

Y(u)
4.2 i
(4.2) IT?LSCEP infessic 4 P(u, t)

< 00,

(iv) there exists a set A € 3 of positive and finite measure such that the inclusion
operator i : E®(A) — E¥(A) is well defined and continuous,

Proof. The proof of the equivalence (i)<(ii) goes analogously to the proof of
the part (i)<(ii) of the Theorem 3.2.

(if)=-(iii) Let ¢ > 0 and put M = hmsup

supess;cp, P(u,t)

fessen, @0 < OO Since the

measure p is o-finite, we can find a countable family (A;) of pairwise disjoint
measurable subsets of 7. of finite measures such that (J7Z; A; = 7.. By Lemma

4.2 and by concavity of ¢, each function ¢4, and zZAk is a pregenfunction.
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. )
Suppose that h?rln_) sup infess, 4 P(u.d)

oo. Then there exists a sequence (u,,) such that u,, — oo and

= oo for each j € N. Fixany 1 < j, k <

up) > 2" infessic 4, @ (uy, t).
k

ba, (V)

For any 0 < d < oo put d; = min {d, 1}. Applying the concavity of ), we obtain
liminf —%—— < lim

'lZAk(m)

v—0 @A],(dl’[)) T n—oo 8514]'( 1 )

Un

lim inf iﬂAk (v)
v=0 ., (dv)

IN

supess;c 4. P(up, t)
= lim z
n—00 Y(diuy)
. 1 supessycy, D (up, t) . M
< lim - = < lim —— =
n—oo 27dy  infessic 4, P(up,t) ~ n—oo 2d;

0.

By Theorem 4.1 we get L(E®(Q), E¥(Q)) = {0}, and we arrived at a contradiction.
Thus (ii) holds true.
(iii))=(iv) By (4.2), we can find A € ¥, K > 0, up > 0 such that 0 < u(A) <
oo and
P(u) < K -infessic g O(u,t) < KO (u,t)

for all u > ug and t € A. Then, ¥ (u) < K®(u,t) + ¢ (ug) for every u € R and
t € A, s0o L*(A) ¢ L¥Y(A) and E®(A) c EY(A). By continuity of ® and by
Theorem 1.2, the inclusion operator i : L®(A) — L¥(A) is continuous. Hence the
inclusion operator ig : E®(A) — E¥(A) is continuous as well.

(iv)=(ii) By local integrability of ®, E*(A) # {0}. Thus, by Lemma 2.2,
L(E®(Q), EY(Q)) # {0}. .

Remark. The boundedness growth at infinity of the function ¢ and the con-
cavity of ¢) was used in the proof of the implication (i)=-(ii) only.

Example 4.4. Let Q = (0,1), ®(u,t) = |u|* and ¥ (u) = \/|u|. Then ® is a
locally integrable Musielak-Orlicz function and « is concave on (0, co). Moreover,
P(u) — lim Y& —
infesste(oz) D(u,t) uli{goTu =0 < oo

Hence, by Theorem 4.3, L(E®(Q), E¥(Q2)) # {0}. Moreover, since ®,v € Ay,
we have £(L®(Q), L¥(Q2)) # {0} as well.

Example 4.5. LetQ = [0, 1], ®(u,t) = ut and ¢(u) = v, where 0 < a < 00
and 0 < B < 1. Then ® is a locally integrable, continuous Musielak-Orlicz function
and ¢ is concave. Moreover, ®,1 € A, and ® is of bounded growth on Q at cc.
Indeed, for any € > 0, putting 7. = (¢/2, 1], we have p(Q2\ 7.) < € and

infess;c(o,1) ®(u,t) = u and uli)rglo sup

. supessie(c/2 Ut . u® 2
lim sup - = lim —— = - < o0.
u—oo  infessiecjpu®t  u—couve/2 e
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Thus, by Theorem 4.3 L(E®(Q), E¥(R2)) # {0} if and only if there exist a > 0
such that

B

u U

lim sup - (v = lim — = lim « "/ <
u—oo infessisq ®(u,t) u—oo u®a  u—oo

and this is true if and only if 0 < 6 < a < oc.
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