Vol. 15, No. 3, pp. 1397-1409, June 2011

This paper is available online at http://www.tjm.nsysu.edu.tw/

EXISTENCE OF NONZERO, LINEAR AND CONTINUOUS OPERATOR BETWEEN TWO MUSIELAK-ORLICZ SPACES

Ewa Kasior and Marek Wisla

Abstract. Let X,Y be linear topological subspaces of the space of all measurable functions over a σ -finite, atomless and complete measure space Ω . The question of existence of a nonzero, linear continuous operator $T:X\to Y$ is a natural extension of the question "does X admit a nonzero, linear continuous functional?". In case of $X=L^\Phi(\Omega), Y=L^\Psi(\Omega)$ being Orlicz spaces Ph.Turpin ([11]) gave a criterion telling when there is no nonzero, linear and continuous operator between $L^\Phi(\Omega)$ and $L^\Psi(\Omega)$. That result was extended to the case of Musielak-Orlicz spaces by A.K.Kalindé, R.Pluciennik and M.Wisl ([2, 8]) but only necessary conditions have been presented by them - in fact conditions assuring that there is no nonzero, linear and continuous operator between $L^\Phi(\Omega)$ and $L^\Psi(\Omega)$. In this paper we give inverse theorems to the Kalindé and Pluciennik-Wisla theorems. Generally speaking we state that there exists a nonzero, linear and continuous operator if and only if it there exists a set $A\subset\Omega$ of positive and finite measure such that the inclusion operator $i:L^\Phi(A)\to L^\Psi(A)$ is nonzero and continuous.

1. Introduction

Orlicz functions were defined by W. Orlicz in [6]. Since that time a lot of mathematicians made some researches and there were received some generalizations. In 1959 J. Musielak and W. Orlicz in the paper [5] introduced the modular spaces generated by functions depended on parameter. In 1961 W. Orlicz in [7] introduced s-convex modulars, where $0 < s \le 1$. In this section we remind some facts and definitions.

A map $\varphi : \mathbb{R} \to [0, \infty]$ is said to be a pregenturation ([10]), if it is even, nondecreasing on $[0, \infty]$, $\varphi(0) = 0$ and φ is identically equal to neither 0 nor ∞ .

Received January 4, 2010, accepted Jaunary 26, 2010.

Communicated by Bor-Luh Lin.

2000 Mathematics Subject Classification: 46B20, 46E70.

Key words and phrases: Nonzero linear continuous operators, Weighted Orlicz spaces, Musielak-Orlicz spaces.

A pregenfunction $\varphi:\mathbb{R}\to[0,\infty]$ is said to be an Orlicz function if it is left-continuous on $[0,\infty)$, continuous at 0 and $\lim_{u\to\infty}\varphi(u)=\infty$. We will say that the Orlicz function φ takes only finite values whenever $\varphi(u)<\infty$ for all $u\in\mathbb{R}$. Let us note that if φ is concave on $(0,\infty)$ and takes finite values, then the condition $\lim_{u\to\infty}\varphi(u)=\infty$ is equivalent to the fact that φ is strictly increasing on $(0,\infty)$.

Let (Ω, Σ, μ) be a measure space with a σ -finite nonatomic and complete measure μ and $L^o(\mu)$ be the set of all μ -equivalence classes of real and Σ -measurable functions defined on Ω . A map $\Phi: \mathbb{R} \times \Omega \to [0, \infty]$ is called a Musielak-Orlicz function whenever the following conditions are satisfied:

- (i) for every $t \in \Omega$, the function $u \to \Phi(u, t)$ is an Orlicz function,
- (ii) for every $u \in \mathbb{R}$, the function $t \to \Phi(u, t)$ is Σ -measurable.

A Musielak-Orlicz function Φ is called locally integrable if $\int_A \Phi(u,t) d\mu < \infty$ for all $u \in \mathbb{R}$ and for all measurable subsets $A \subset \Omega$ of finite measure. We shall say that a Musielak-Orlicz function Φ is continuous if the function $u \to \Phi(u,t)$ takes only finite values and it is continuous on \mathbb{R} for μ -a.e. $t \in \Omega$.

We say that a Musielak-Orlicz function Φ satisfies the Δ_2 -condition ($\Phi \in \Delta_2$ in short) if there exist a constant K>0 and an non-negative integrable function h such that

$$(1.1) \qquad \Phi(2u,t) \le K\Phi(u,t) + h(t)$$

for all $u \in \mathbb{R}$ and μ -a.e. $t \in \Omega$. Note that $\Phi \in \Delta_2$ implies that Φ takes finite values for μ -a.e. $t \in \Omega$.

We will say that a Musielak-Orlicz function Φ is concave on an interval $(a,b)\subset (0,\infty)$, if the functions $u\to \Phi(u,t)$ are concave on (a,b) for μ -a.e. $t\in \Omega$. Note that if Φ takes finite values and it is concave on $(0,\infty)$ then Φ satisfies the Δ_2 -condition with the function h=0.

In the case of Orlicz function φ , the function h in (1.1) can be replaced by a nonnegative constant. We say that φ satisfies the the Δ_2 -condition at infinity (resp. for all $u \in \mathbb{R}$) whenever h > 0 (resp. h = 0).

For all $f \in L^0(\mu)$ the function $t \to \Phi(f(t),t)$ is Σ -measurable and the functional $m_{\Phi}(f) = \int_{\Omega} \Phi(f(t),t) d\mu$ is a modular on $L^0(\mu)$. Moreover, if $u \to \Phi(u,t)$ is an s-convex function for all $t \in \Omega$, then m_{Φ} is an s-convex modular.

By $L^{\Phi}=L^{\Phi}(\Omega)=L^{\Phi}(\Omega,\Sigma,\mu)$ we define the class of all functions $f\in L^0(\mu)$ such that $m_{\Phi}(\lambda f)<\infty$ for some $\lambda>0$. Analogously, by $E^{\Phi}=E^{\Phi}(\Omega)=E^{\Phi}(\Omega,\Sigma,\mu)$ we denote the class of all functions $f\in L^0(\mu)$ such that $m_{\Phi}(\lambda f)<\infty$ for every $\lambda>0$. The classes L^{Φ} and E^{Φ} are linear subspaces of the space $L^0(\mu)$ and $E^{\Phi}\subset L^{\Phi}$. The class L^{Φ} is called the Musielak-Orlicz space and E^{Φ} is called the space of finite elements. For an arbitrary measurable subset $A\subset\Omega$ define $L^{\Phi}(A)=\{f\in L^{\Phi}(\Omega): \operatorname{supp} f\subset A\}$ and $E^{\Phi}(A)=\{f\in E^{\Phi}(\Omega): \operatorname{supp} f\subset A\}$.

where supp $f = \{t \in \Omega : f(t) \neq 0\}$. Let us note that $\Phi \in \Delta_2$ implies the equality $L^{\Phi}(A) = E^{\Phi}(A)$ for any subset $A \subset \Omega$.

On the Musielak-Orlicz space $L^{\Phi}(\Omega)$ we define an F-norm by the formula

$$||f||_{\Phi} = \inf\{\lambda > 0 : m_{\Phi}(f/\lambda) \le \lambda\}.$$

It is known that the space $L^{\Phi}(\Omega)$ with this F-norm is complete. Let us note that $||f_n - f||_{\Phi} \to 0$ if and only if $m_{\Phi}(\lambda(f_n - f)) \to 0$ for every $\lambda > 0$. For more information on F-normed spaces (and general metric linear spaces) we refer to [3, 9].

Let X and Y be two linear-topological spaces. By $\mathcal{L}(X,Y)$ we denote the space of all linear and continuous operators from X to Y. One of the commonly used linear operators are inclusions. We say that $\Psi \prec \Phi$, if we can find constants $K_1, K_2 > 0$ and an nonnegative integrable function h such that

$$\Psi(u,t) \le K_1 \Phi(K_2 u, t) + h(t)$$

for all $u \in \mathbb{R}$ and μ -a.e. $t \in \Omega$.

Theorem 1.1. ([4], 8.5). Let Φ and Ψ be Musielak-Orlicz functions. The inclusion operator $i: L^{\Phi}(\Omega) \to L^{\Psi}(\Omega)$ is well defined if and only if $\Psi \prec \Phi$.

Note that inclusion operator need not to be continuous. In 1984 M. Wisla received the necessary condition for the continuity of the inclusion operator between two Musielak-Orlicz spaces.

Theorem 1.2. ([12], 3.2.2). Assume that Φ and Ψ are Musielak-Orlicz functions such that $\Psi \prec \Phi$. If the function $u \to \Phi(u,t)$ is continuous for μ -a.e. $t \in \Omega$ and the function $u \to \Psi(u,t)$ is continuous at u=0 for μ -a.e. $t \in \Omega$ then the inclusion operator $i: L^{\Phi}(\Omega) \to L^{\Psi}(\Omega)$ is continuous.

Corollary 1.3. Under assumptions of Theorem 1.2, the inclusion operator $i: E^{\Phi}(\Omega) \to E^{\Psi}(\Omega)$ is also continuous.

Proof. Since $\Psi \prec \Phi$, $E^{\Phi}(\Omega) \subset E^{\Psi}(\Omega)$. Let $f_n \in E^{\Phi}(\Omega)$, $n \in \mathbb{N}$, be such a sequence that $||f_n||_{\Phi} \to 0$. Since $f_n \in L^{\Phi}(\Omega)$ as well, by Theorem 1.2,

$$||f_n||_{\Phi} \to 0 \text{ in } E^{\Phi}(\Omega) \Leftrightarrow ||f_n||_{\Phi} \to 0 \text{ in } L^{\Phi}(\Omega)$$

$$\Rightarrow ||f_n||_{\Psi} \to 0 \text{ in } L^{\Psi}(\Omega) \Leftrightarrow ||f_n||_{\Psi} \to 0 \text{ in } E^{\Psi}(\Omega).$$

Evidently, if there exists a nonzero, linear and continuous operator between the spaces X and Y it does not mean that this operator has to be an inclusion. But in the case of Musielak-Orlicz spaces the inclusion operator is nearby every time. In 1973 P. Turpin proved the following theorem.

Theorem 1.4. ([11], 2.2.1). Let φ and ψ be Orlicz functions with finite values such that φ satisfies the Δ_2 -condition for all $u \in \mathbb{R}$ and ψ is concave on $(0, \infty)$. Then $\mathcal{L}(L^{\varphi}(\Omega), L^{\psi}(\Omega)) \neq \{0\}$ if and only if $\limsup_{u \to \infty} \frac{\psi(u)}{\varphi(u)} < \infty$.

As an immediate consequence of Turpin result we get that, if the assumptions of Theorem 1.4 are satisfied and, moreover, $\mu(\Omega)<\infty$, then $\mathcal{L}(L^{\varphi}(\Omega),L^{\psi}(\Omega))\neq\{0\}$ if and only if the Orlicz space $L^{\varphi}(\Omega)$ is continuously embedded into the Orlicz space $L^{\psi}(\Omega)$ (see Corollary 1.5 below). In the case of infinite measure space Ω the above conclusion does not hold true.

Corollary 1.5. Let φ and ψ be Orlicz functions with finite values such that φ satisfies the Δ_2 -condition for all $u \in \mathbb{R}$ and ψ is concave on $(0, \infty)$. Then $\mathcal{L}(L^{\varphi}(\Omega), L^{\psi}(\Omega)) = \mathcal{L}(E^{\varphi}(\Omega), E^{\psi}(\Omega)) \neq \{0\}$ if and only if there exist a measurable subset $A \subset \Omega$ such that the inclusion operator $i : L^{\varphi}(A) \to L^{\psi}(A)$ is continuous.

Proof. Since ψ is concave, $\psi \in \Delta_2$. Since $\varphi \in \Delta_2$ as well, $L^{\varphi}(\Omega) = E^{\varphi}(\Omega)$ and $L^{\psi}(\Omega) = E^{\psi}(\Omega)$ up to set and topology.

If $\mathcal{L}(L^{\varphi}(\Omega), L^{\psi}(\Omega)) \neq \{0\}$ then, by Theorem 1.4, we can find constants $K, u_0 > 0$ such that $\psi(u) \leq K\varphi(u)$ for all $u \geq u_0$. Let f be a measurable function, $\lambda > 0$ and put $B = \{t \in \Omega : \lambda | f(t)| < u_0\}$. Then

$$m_{\psi}(\lambda f \chi_A) \leq \psi(u_0)\mu(A \cap B) + m_{\varphi}(\lambda f \chi_A)$$

for every measurable subset $A \subset \Omega$, so $L^{\varphi}(A) \subset L^{\psi}(A)$ as long as $\mu(A) < \infty$.

We shall show that the inclusion operator $i:L^{\varphi}(A)\to L^{\psi}(A)$ is continuous. Let $f_n\in L^{\varphi}(A)$ be such that $\|f_n\|_{\varphi}\to 0$, i.e., $m_{\varphi}(\lambda f_n)\to 0$ for every $\lambda>0$. Fix $\lambda>0$ and let $\varepsilon>0$. Since ψ is continuous at 0, we can find $0< u_1\leq u_0$ such that $\psi(u_1)\mu(A)<\varepsilon/2$. Since φ satisfies Δ_2 for all $u\in\mathbb{R}$, φ can vanish only at 0, so $\varphi(u_1)>0$. Put $K_1=\max\{K,\psi(u_0)/\varphi(u_1)\}$. Then

$$\psi(u) \le K_1 \varphi(u) + \psi(u_1)$$

for all $u \in \mathbb{R}$. Take $n_0 \in \mathbb{N}$ such that $m_{\varphi}(\lambda f_n) < \varepsilon/2$ for all $n \geq n_0$. Then

$$m_{\psi}(\lambda f_n) \le K_1 m_{\varphi}(\lambda f_n) + \psi(u_1)\mu(A) < \varepsilon$$

for all $n \ge n_0$, i.e., $m_{\psi}(\lambda f_n) \to 0$. By arbitrariness of $\lambda > 0$, $||f_n||_{\psi} \to 0$, and we have proved that the inclusion $i : L^{\varphi}(A) \to L^{\psi}(A)$ is continuous.

Conversely, let $i: L^{\varphi}(A) \to L^{\psi}(A)$, i(f) = f be well defined and continuous. Let $T_1: L^{\varphi}(\Omega) \to L^{\varphi}(A)$ and $T_2: L^{\psi}(A) \to L^{\psi}(\Omega)$ be the operators defined by the formulas: $T_1(f) = f\chi_A$, $T_2(f) = f$. Since the F-norm $\|\cdot\|_{\varphi}$ is monotone, the operator T_1 is continuous. Further, since $Ker(T_2) = \{0\}$, the operator $T = T_2 \circ i \circ T_1$ is a nonzero, linear and continuous operator from $L^{\varphi}(\Omega)$ to $L^{\psi}(\Omega)$.

A. Kalindé generalized Turpin's result to the case of Musielak-Orlicz function Φ and the finite measure space.

Theorem 1.6. ([2], p. 34). Let $\mu(\Omega) < \infty$, Φ be a continuous Musielak-Orlicz function satisfying the Δ_2 -condition and let ψ be a concave and strictly increasing Orlicz function with finite values. If, for all $t \in \Omega$, the limit $\lim_{u \to \infty} \frac{\psi(u)}{\Phi(u,t)}$ exists and it is equal to ∞ , then $\mathcal{L}(L^{\Phi}(\Omega), L^{\psi}(\Omega)) = \{0\}$.

2. Kalindé Inverse Theorem

Let X and Y be some linear-topological spaces. It is obvious that if $X^* \neq \{0\}$, then $\mathcal{L}(X,Y) \neq \{0\}$, but the inverse implication is not true. Hence the most interesting case is the one when $(L^\Phi)^* = \{0\}$. In the paper [1] L.Drewnowski showed that if Φ is a continuous Musielak-Orlicz function satisfying the Δ_2 -condition, then there exists an linear functional on L^Φ if and only if there exists a measurable set $A \in \Sigma$ with $\mu(A) > 0$ such that

$$\liminf_{u \to \infty} \frac{\Phi(u, t)}{u} > 0$$

for all $t \in A$.

Taking into account that the function $\psi(u)=|u|$ is an Orlicz function, the Drewnowski condition can be written as follows

$$\limsup_{u \to \infty} \frac{\psi(u)}{\Phi(u,t)} < \infty$$

for all $t \in A$ and we get a similar condition that is used in Kalindé Theorem 1.6. Note that this condition implies that the inclusion operator $i: L^{\Phi}(A) \to L^{1}(A)$ is continuous. Hence, evidently, $(L^{\Phi}(A))^* \neq \{0\}$.

We start with a few auxiliary lemmas.

Lemma 2.1. If there is a measurable set $A \subset \Omega$ with $0 < \mu(A) < \infty$ such that $L^{\Phi}(A) \neq \{0\}$ and the inclusion operator $i: L^{\Phi}(A) \to L^{\Psi}(A)$, i(f) = f is well defined and continuous, then $\mathcal{L}(L^{\Phi}(\Omega), L^{\Psi}(\Omega)) \neq \{0\}$.

Proof. Define the operators $T_1:L^\Phi(\Omega)\to L^\Phi(A)$ and $T_2:L^\Psi(A)\to L^\Psi(\Omega)$ by $T_1(f)=f\chi_A$ and $T_2(f)=f$. Then $T=T_2\circ i\circ T_1$ is a linear and continuous operator from $L^\Phi(\Omega)$ to $L^\Psi(\Omega)$. Take $f\in L^\Phi(A)\setminus\{0\}$. Then $f\chi_A\neq 0$, so $T(f)=f\chi_A\neq 0$ as well.

Analogously, the following lemma can be proved.

Lemma 2.2. If there is a measurable set $A \subset \Omega$ with $0 < \mu(A) < \infty$ such that $E^{\Phi}(A) \neq \{0\}$ and the inclusion operator $i : E^{\Phi}(A) \to E^{\Psi}(A)$, i(f) = f is well defined and continuous, then $\mathcal{L}(E^{\Phi}(\Omega), E^{\Psi}(\Omega)) \neq \{0\}$.

Lemma 2.3. Let Φ be a continuous locally integrable Musielak-Orlicz function and let ψ be an Orlicz function continuous at 0. If the set $B=\{t\in\Omega:\lim_{v\to\infty}\frac{\psi(v)}{\Phi(v,t)}<\infty\}$ contains a subset of positive measure, then B contains a subset A with positive and finite measure such that the inclusion operator $i:L^{\Phi}(A)\to L^{\psi}(A)$ is nonzero and continuous.

Proof. Let $A_0 \subset B$ be a set of positive and finite measure and define

$$A_p = \{ t \in A_0 : \lim_{v \to \infty} \frac{\psi(v)}{\Phi(v, t)} < 2^p \}.$$

Then $A_0 = \bigcup_{p \in \mathbb{N}} A_p$ and $A_p \uparrow A$. Since $0 < \mu(A_0) < \infty$, we have $0 < \mu(A_p) < \infty$ for some (fixed from now on) $p \in \mathbb{N}$. Define the sets $A_{p,r}$ by the formula

$$A_{p,r} = \left\{ t \in A_p : \frac{\psi(v)}{\Phi(v,t)} < 2^p \left(1 - \frac{1}{r}\right) \text{ for all } v \ge r \right\},$$

where $r \in \mathbb{N}$. Then $\psi(v) < 2^p(1-\frac{1}{r})\Phi(v,t)$ for all $v \geq r$ and $t \in A_{p,r}$. From $A_p = \bigcup_{r=1}^\infty A_{p,r}$, we infer that $0 < \mu(A_{p,r}) < \infty$ for some $r \in \mathbb{N}$. Therefore $L^\Phi(A_{p,r}) \subset L^\psi(A_{p,r})$ for all $r \in \mathbb{N}$. Finally, by Theorem 1.2, we conclude that the inclusion operator $i: L^\Phi(A_{p,r}) \to L^\psi(A_{p,r})$ is continuous. Since Φ is locally integrable, $L^\Phi(A_{p,r}) \neq \{0\}$, so the operator i is nonzero as well.

Theorem 2.4. Let Φ be a continuous locally integrable Musielak-Orlicz function satisfying the Δ_2 -condition and let ψ be a concave and strictly increasing Orlicz function with finite values. Assume that $\lim_{u\to\infty}\frac{\psi(u)}{\Phi(u,t)}$ exists for all $t\in\Omega$. Then $\mathcal{L}(L^\Phi(\Omega),L^\psi(\Omega))=\mathcal{L}(E^\Phi(\Omega),E^\psi(\Omega))\neq\{0\}$ if and only if the inclusion operator $i:L^\Phi(A)\to L^\psi(A)$ is continuous for some measurable set $0<\mu(A)<\infty$.

Proof. The sufficiency part of the prof follows from Lemma 2.1. Note, that the local integrability of Φ implies that $L^{\Phi}(A) \neq \{0\}$, so the inclusion operator i and the operator T defined in Lemma 2.1 are nonzero operators.

Assume that $T:L^{\Phi}(\Omega)\to L^{\psi}(\Omega)$ is a nonzero, linear and continuous operator. From Theorem 1.6 it follows that the set $\{t\in\Omega:\lim_{v\to\infty}\frac{\psi(v)}{\Phi(v,t)}<\infty\}$ contains a subset of positive measure. Hence, by Lemma 2.3, the inclusion operator $i:L^{\Phi}(A)\to L^{\psi}(A)$ is continuous for some measurable set $A\subset\Omega$ with $0<\mu(A)<\infty$.

3. WEIGHTED ORLICZ SPACES

In this section we will consider a special subclass of Musielak-Orlicz functions called weighted Orlicz functions. We say that a Musielak-Orlicz function Φ is weighted Orlicz function if there exists an Orlicz function φ and a nonnegative measurable function ω with finite values such that $\Phi(u,t)=\varphi(u)\omega(t)$ for all $u\in\mathbb{R}$ and $t\in\Omega$. Analogously, the space $L^\Phi(\Omega)$ is called weighted Orlicz space in that case.

Theorem 3.1. Let Φ and Ψ be weighted Orlicz functions defined by $\Phi(u,t) = \varphi(u)\omega(t)$, $\Psi(u,t) = \psi(u)q(t)$, where φ and ψ are Orlicz functions with finite values such that φ satisfies the Δ_2 -condition for all $u \in \mathbb{R}$, ψ is concave on $(0,\infty)$ and ω and q are nonnegative measurable functions. The following conditions are equivalent:

- (i) $\mathcal{L}(L^{\Phi}(\Omega), L^{\Psi}(\Omega)) = \mathcal{L}(E^{\Phi}(\Omega), E^{\Psi}(\Omega)) \neq \{0\},\$
- (ii) $\mathcal{L}(L^{\varphi}(\Omega), L^{\psi}(\Omega)) = \mathcal{L}(E^{\varphi}(\Omega), E^{\psi}(\Omega)) \neq \{0\},\$
- (iii) $\limsup_{u \to \infty} \frac{\psi(u)}{\varphi(u)} < \infty$,
- (iv) there exist a measurable subset $A \subset \Omega$ such that the inclusion operator $i: L^{\varphi}(A) \to L^{\psi}(A)$ is continuous.

Proof. Let $B_n=\{t\in\Omega:\frac{1}{n}\leq\omega(t)\leq n,\frac{1}{n}\leq q(t)\leq n\}$. Since the weights ω and q are bounded on the set B_n , we have $L^\Phi(B_n)=L^\varphi(B_n)$ and $L^\Psi(B_n)=L^\psi(B_n)$. Moreover, the F-norms $\|\cdot\|_\Phi$ and $\|\cdot\|_\varphi$ (respectively, $\|\cdot\|_\Psi$ and $\|\cdot\|_\psi$) reduced to $L^\Phi(B_n)$ (respectively, to $L^\Psi(B_n)$) are equivalent. Thus

(3.1)
$$\mathcal{L}(L^{\varphi}(B_n), L^{\psi}(B_n) = \mathcal{L}(L^{\Phi}(B_n), L^{\Psi}(B_n))$$

for all $n \in \mathbb{N}$. Evidently $\bigcup_{n \in \mathbb{N}} B_n = \Omega$ and $B_n \uparrow \Omega$.

(i) \Rightarrow (ii). Let $T \in \mathcal{L}(L^{\varphi}(\Omega), L^{\psi}(\Omega)) \setminus \{0\}$. Take $f_0 \in L^{\varphi}(\Omega) \setminus \{0\}$ with $T(f_0) \neq 0$. By Δ_2 -condition, $m_{\varphi}(f) < \infty$.

Since $B_n \uparrow \Omega$ and $|f\chi_{B_n}(t) - f(t)| \leq |f(t)|$ for all $t \in \Omega$, by Lebesgue Theorem we get $m_{\varphi}(f\chi_{B_n} - f) \to 0$. Again, by the Δ_2 -condition, we have $||f\chi_{B_n} - f||_{\varphi} \to 0$. By the continuity of T, $||T(f\chi_{B_n}) - T(f)||_{\Psi} \to 0$. Since $T(f) \neq 0$, we have $T(f\chi_{B_n}) \neq 0$ for sufficiently large n. By definition of the sets B_n , passing to a larger index if necessary, we can assume that $T(f_0\chi_{B_p})\chi_{B_p} \neq 0$ as well.

Define $T_0:L^\Phi(B_p)\to L^\Psi(B_p)$ by $T_0(f)=T(f)\chi_{B_p}$. Applying (3.1), it is easy to verify that T_0 is continuous. Let $T_1:L^\Phi(\Omega)\to L^\Phi(B_p)$, $T_2:L^\Psi(B_p)\to L^\Psi(\Omega)$ be defined by $T_1(f)=f\chi_{B_p}$, $T_2(f)=f$. Then the operator $S:L^\Phi(\Omega)\to L^\Psi(\Omega)$ defined by $S=T_2\circ T_0\circ T_1$ is continuous and nonzero, because

$$S(f_0) = T_2(T_0(T_1(f_0))) = T(f_0\chi_{B_n})\chi_{B_n} \neq 0.$$

The implication (ii) \Rightarrow (i) can be proved analogously. The equivalence (ii) \Leftrightarrow (iii) follows from Theorem 1.4 and (iii) \Leftrightarrow (iv) follows from Corollary 1.5.

Theorem 3.2. Let Φ be a locally integrable continuous Musielak-Orlicz function satisfying the Δ_2 -condition and let Ψ be a weighted Orlicz function defined by $\Psi(u,t)=\psi(u)q(t)$ such that the Orlicz function ψ takes finite values and it is concave on $(0,\infty)$. Assume that, for all $t\in\Omega$, there exists the limit $\lim_{u\to\infty}\frac{\psi(u)}{\Phi(u,t)}$. The following conditions are equivalent:

- (i) $\mathcal{L}(L^{\Phi}(\Omega), L^{\Psi}(\Omega)) = \mathcal{L}(E^{\Phi}(\Omega), E^{\Psi}(\Omega)) \neq \{0\},\$
- (ii) $\mathcal{L}(L^{\Phi}(\Omega), L^{\psi}(\Omega)) = \mathcal{L}(E^{\Phi}(\Omega), E^{\psi}(\Omega)) \neq \{0\},\$
- (iii) there exist a measurable subset $A \subset \Omega$ such that the inclusion operator $i: L^{\Phi}(A) \to L^{\psi}(A)$ is continuous.

Proof. Let $B_n=\{t\in\Omega:\frac{1}{n}\leq q(t)\leq n\}$. Then $B_n\uparrow\Omega$ and there exists $n_0\in\mathbb{N}$ such that $\mu(B_{n_0})>0$. Since on the set B_n the weight q is bounded, we have $L^\Psi(B_n)=L^\psi(B_n)$ and the norms $\|\cdot\|_\Psi, \|\cdot\|_\psi$ restricted to $L^\Psi(B_n)$ are equivalent for all $n\geq n_0$.

(i) \Rightarrow (ii). Let $T \in \mathcal{L}(L^{\Phi}(\Omega), L^{\Psi}(\Omega)) \setminus \{0\}$ and take $f \in L^{\Phi}(\Omega)$ with $T(f) \neq 0$. Since $B_n \uparrow \Omega$, $T(f)\chi_{B_n} \neq 0$ for some $n \geq 0$. Note that

$$T(f)\chi_{B_n} \in L^{\Psi}(B_n) = L^{\psi}(B_n) \subset L^{\psi}(\Omega).$$

Thus the operator $T_0: L^{\Phi}(\Omega) \to L^{\psi}(\Omega)$ defined by $T_0(f) = T(f)\chi_{B_n}$ is nonzero. Since $\|T_0(f)\|_{\psi} \approx \|T(f)\chi_{B_n}\|_{\Psi} \leq \|T(f)\|_{\Psi}$, T_0 is continuous as well.

(ii) \Rightarrow (i). This implication can be proved in an analogous way as the implication (i) \Rightarrow (ii) - it suffices to replace Ψ with ψ and ψ with Ψ , respectively.

(ii) \Rightarrow (iii). Let $T \in \mathcal{L}(L^{\Phi}(\Omega), L^{\psi}(\Omega)) \setminus \{0\}$. and take $f \in L^{\Phi}(\Omega)$ with $T(f) \neq 0$. By Δ_2 -condition, $m_{\Phi}(f) < \infty$. Since $B_n \uparrow \Omega$ and $|f\chi_{B_n}(t) - f(t)| \leq |f(t)|$ for all $t \in \Omega$, by Lebesgue Theorem we get $m_{\Phi}(f\chi_{B_n} - f) \to 0$. Again, by the Δ_2 -condition, we have $||f\chi_{B_n} - f||_{\Phi} \to 0$. By the continuity of T it follows that $||T(f\chi_{B_n}) - T(f)||_{\Psi} \to 0$. Since $T(f) \neq 0$, we have $T(f\chi_{B_p}) \neq 0$ for sufficiently large $p \in \mathbb{N}$. Since $B_n \uparrow \Omega$, we can assume that $T(f\chi_{B_p})\chi_{B_p} \neq 0$ as well.

Hence the operator $T_0: L^\Phi(B_p) \to L^\psi(B_p), \quad T_0(f) = T(f)\chi_{B_p}$ is nonzero, linear and continuous. By Theorem 1.6 there exists a set $A \in \Sigma, \ A \subset B_p, \ 0 < \mu(A) < \infty$ such that $\lim_{v \to \infty} \frac{\psi(v)}{\Phi(v,t)} < \infty$ for every $t \in A$. By Lemma 2.3, $\mathcal{L}(L^\Phi(\Omega), L^\psi(\Omega)) \neq \{0\}.$

(iii) \Rightarrow (ii). Since Φ is locally integrable, $L^{\Phi}(A) \neq \{0\}$. Thus (ii) follows from Lemma 2.1.

4. General Case of Musielak-Orlicz Spaces

In this section we look for conditions on the functions Φ and Ψ that will imply the inverse theorem to Theorem 4.1 in the real valued Musielak-Orlicz function case. We will consider the spaces of finite elements E^{Φ} instead of the whole spaces L^{Φ} . Although the Theorem 2.4 provides nice equivalent conditions for existence of nonzero, linear and continuous operator, the assumption that the limit $\lim_{u\to\infty} \frac{\psi(u)}{\Phi(u,t)}$ exists for all $t\in\Omega$ is very strong. We will give a theorem that will use a weaker condition than the above one.

R. Pluciennik and M. Wisła presented the necessary condition for a nonexistence of any linear continuous operators from $E^{\Phi}(T,\Sigma,\mu)$ into $E^{\Psi}(S,\Xi,\nu)$, where (T,Σ,μ) and (S,Ξ,ν) are two measure spaces with the σ -finite and atomless measures, and $\Phi:X\times T\to [0,\infty]$ and $\Psi:Y\times S\to [0,\infty]$ are Musielak-Orlicz vector valued functions, where X is p-normed space, and Y is q-normed space. In order to simplify the notation, we will recall that theorem in the case of real-valued Musielak-Orlicz functions only. Let A,C be arbitrary Σ -measurable subsets of Ω . Define

$$\widetilde{\varphi}_A(u) = \begin{cases} [\operatorname{supess}_{t \in A} \Phi(\frac{1}{u}, t)]^{-1} & \text{for } u \neq 0 \\ 0 & \text{for } u = 0, \end{cases}$$

$$\widetilde{\psi}_C(u) = \operatorname{supess}_{t \in C} \sup_{v \neq 0} \frac{\min\{1, |uv|\}}{\Psi(v, t)}.$$

In the case when Ψ is an Orlicz function we have $\widetilde{\psi}_C(u) = [\Psi(\frac{1}{u})]^{-1}$ for u>0. Both functions $\widetilde{\varphi}_A$ and $\widetilde{\psi}_C$ are even, nondecreasing on $(0,\infty)$ and vanish at 0. But it can happen that they are not pregenfunctions. By Lemma 2.2 and 2.3 in [8] $\widetilde{\varphi}_A$ and $\widetilde{\psi}_C$ are pregenfunctions if and only if there exist a,b,c>0 such that

$$0 < \operatorname{supess}_{t \in A} \Phi(c,t) < \infty$$

$$\operatorname{supess}_{t \in C} \sup_{0 < |v| < a} \frac{|v|}{\Psi(v,t)} < \infty \quad and \quad \operatorname{infess}_{t \in C} \Psi(b,t) > 0.$$

Note that if $\widetilde{\varphi}_A$ is a pregenfunction, then $L^{\Phi}(A) \neq \{0\}$. But in order to assure that $E^{\Phi}(A) \neq \{0\}$ we have to assume that Φ is locally integrable.

Theorem 4.1. ([8], 3.1). Assume that for every $\delta > 0$ there exist divisions: $A_0, A_1 \ldots$ and C_0, C_1, \ldots of the set Ω such that the families $\{A_i\}$ and $\{C_j\}$ consist of pairwise disjoint sets, $\mu(A_0) < \delta$, $\mu(C_0) < \delta$ and $\widetilde{\varphi}_{A_i}$, $\widetilde{\psi}_{C_j}$ are pregenfunctions for $i, j = 1, 2, \ldots$ If $\liminf_{u \to 0} \frac{\widetilde{\psi}_{C_j}(u)}{\widetilde{\varphi}_{A_i}(du)} = 0$ for all d > 0 and $i, j = 1, 2, \ldots$, then $\mathcal{L}(E^{\Phi}(\Omega), E^{\Psi}(\Omega)) = \{0\}.$

Let Ψ is a weighted Orlicz function, say $\Psi(u,t) = \psi(u)q(t)$. If the function q is bounded on a set C then $\widetilde{\psi}_C$ a pregenfunction if and only if there exist a>0 and K>0 such that $|v| \leq K\psi(v)$ for all 0 < v < a. This condition is satisfied if, for example, the function ψ is concave on the interval (0,a).

We shall say that a Musielak-Orlicz function Φ is of bounded growth on Ω at infinity, if for every $\varepsilon>0$ we can find a measurable set T_ε such that $\mu(\Omega\setminus T_\varepsilon)<\varepsilon$ and

(4.1)
$$\limsup_{u \to \infty} \frac{\sup_{t \in T_{\varepsilon}} \Phi(u, t)}{\inf_{t \in T_{\varepsilon}} \Phi(u, t)} < \infty.$$

Lemma 4.2. If a Musielak-Orlicz function Φ is of bounded growth on Ω at infinity, then $\widetilde{\varphi}_A$ is a pregenfunction for every $A \subset T_{\varepsilon}$.

Proof. By (4.1), we can find a set T_{ε} and constants M>0 and a>0 such that

$$0 < \operatorname{supess}_{t \in A} \Phi(a, t) \le \operatorname{supess}_{t \in T_{\varepsilon}} \Phi(a, t) \le M \operatorname{infess}_{t \in T_{\varepsilon}} \Phi(a, t) < \infty$$
 for every $A \subset T_{\varepsilon}$.

Theorem 4.3. Let Φ be a locally integrable continuous Musielak-Orlicz function of bounded growth on Ω at infinity and let Ψ be a weighted Orlicz space, $\Psi(u,t) = \psi(u)q(t)$, where ψ is a concave Orlicz function on $(0,\infty)$. The following conditions are equivalent:

- (i) $\mathcal{L}(E^{\Phi}(\Omega), E^{\Psi}(\Omega)) \neq \{0\},\$
- (ii) $\mathcal{L}(E^{\Phi}(\Omega), E^{\psi}(\Omega)) \neq \{0\},\$
- (iii) there exists a set $A \in \Sigma$ of positive and finite measure such that

(4.2)
$$\limsup_{u \to \infty} \frac{\psi(u)}{\inf \operatorname{ess}_{t \in A} \Phi(u, t)} < \infty,$$

(iv) there exists a set $A \in \Sigma$ of positive and finite measure such that the inclusion operator $i: E^{\Phi}(A) \to E^{\psi}(A)$ is well defined and continuous,

Proof. The proof of the equivalence (i) \Leftrightarrow (ii) goes analogously to the proof of the part (i) \Leftrightarrow (ii) of the Theorem 3.2.

(ii) \Rightarrow (iii) Let $\varepsilon > 0$ and put $M = \limsup_{u \to \infty} \frac{\sup_{i \to \infty} \Phi(u,t)}{\inf_{i \to \infty} \Phi(u,t)} < \infty$. Since the measure μ is σ -finite, we can find a countable family (A_j) of pairwise disjoint measurable subsets of T_{ε} of finite measures such that $\bigcup_{j=1}^{\infty} A_j = T_{\varepsilon}$. By Lemma 4.2 and by concavity of ψ , each function $\widetilde{\varphi}_{A_j}$ and $\widetilde{\psi}_{A_k}$ is a pregenfunction.

Suppose that $\limsup_{u \to \infty} \frac{\psi(u)}{\inf \operatorname{ess}_{t \in A_j} \Phi(u,t)} = \infty$ for each $j \in \mathbb{N}$. Fix any $1 \leq j, k < \infty$. Then there exists a sequence (u_n) such that $u_n \to \infty$ and

$$\psi(u_n) \ge 2^n \inf \operatorname{ess}_{t \in A_k} \Phi(u_n, t).$$

For any $0 < d < \infty$ put $d_1 = \min\{d, 1\}$. Applying the concavity of ψ , we obtain

$$\begin{split} \liminf_{v \to 0} \frac{\widetilde{\psi}_{A_k}(v)}{\widetilde{\varphi}_{A_j}(dv)} &\leq \liminf_{v \to 0} \frac{\widetilde{\psi}_{A_k}(v)}{\widetilde{\varphi}_{A_j}(d_1v)} \leq \lim_{n \to \infty} \frac{\widetilde{\psi}_{A_k}(\frac{1}{d_1u_n})}{\widetilde{\varphi}_{A_j}(\frac{1}{u_n})} \\ &= \lim_{n \to \infty} \frac{\sup_{v \to 0} \Phi(u_n, t)}{\psi(d_1u_n)} \\ &\leq \lim_{n \to \infty} \frac{1}{2^n d_1} \cdot \frac{\sup_{v \to 0} \Phi(u_n, t)}{\inf_{v \to 0} \Phi(u_n, t)} \leq \lim_{n \to \infty} \frac{M}{2^n d_1} = 0. \end{split}$$

By Theorem 4.1 we get $\mathcal{L}(E^{\Phi}(\Omega), E^{\psi}(\Omega)) = \{0\}$, and we arrived at a contradiction. Thus (ii) holds true.

(iii) \Rightarrow (iv) By (4.2), we can find $A \in \Sigma$, K > 0, $u_0 > 0$ such that $0 < \mu(A) < \infty$ and

$$\psi(u) \le K \cdot \inf_{t \in A} \Phi(u, t) \le K\Phi(u, t)$$

for all $u \geq u_0$ and $t \in A$. Then, $\psi(u) \leq K\Phi(u,t) + \psi(u_0)$ for every $u \in \mathbb{R}$ and $t \in A$, so $L^{\Phi}(A) \subset L^{\psi}(A)$ and $E^{\Phi}(A) \subset E^{\psi}(A)$. By continuity of Φ and by Theorem 1.2, the inclusion operator $i: L^{\Phi}(A) \to L^{\psi}(A)$ is continuous. Hence the inclusion operator $i_0: E^{\Phi}(A) \to E^{\psi}(A)$ is continuous as well.

(iv) \Rightarrow (ii) By local integrability of Φ , $E^{\Phi}(A) \neq \{0\}$. Thus, by Lemma 2.2, $\mathcal{L}(E^{\Phi}(\Omega), E^{\psi}(\Omega)) \neq \{0\}$.

Remark. The boundedness growth at infinity of the function Φ and the concavity of ψ was used in the proof of the implication (i) \Rightarrow (ii) only.

Example 4.4. Let $\Omega=(0,1), \ \Phi(u,t)=|u|^t$ and $\psi(u)=\sqrt{|u|}$. Then Φ is a locally integrable Musielak-Orlicz function and ψ is concave on $(0,\infty)$. Moreover, infess $_{t\in(0,1)}\Phi(u,t)=u$ and $\lim_{u\to\infty}\sup\frac{\psi(u)}{\inf_{t\in(0,1)}\Phi(u,t)}=\lim_{u\to\infty}\frac{\sqrt{u}}{u}=0<\infty$. Hence, by Theorem 4.3, $\mathcal{L}(E^\Phi(\Omega),E^\psi(\Omega))\neq\{0\}$. Moreover, since $\Phi,\psi\in\Delta_2$, we have $\mathcal{L}(L^\Phi(\Omega),L^\psi(\Omega))\neq\{0\}$ as well.

Example 4.5. Let $\Omega=[0,1]$, $\Phi(u,t)=u^{\alpha}t$ and $\psi(u)=u^{\beta}$, where $0<\alpha<\infty$ and $0<\beta\leq 1$. Then Φ is a locally integrable, continuous Musielak-Orlicz function and ψ is concave. Moreover, $\Phi,\psi\in\Delta_2$ and Φ is of bounded growth on Ω at ∞ . Indeed, for any $\varepsilon>0$, putting $T_{\varepsilon}=(\varepsilon/2,1]$, we have $\mu(\Omega\setminus T_{\varepsilon})<\varepsilon$ and

$$\limsup_{u \to \infty} \frac{\sup_{t \in (\varepsilon/2,1]} u^{\alpha} t}{\inf_{t \in (\varepsilon/2,1]} u^{\alpha} t} = \lim_{u \to \infty} \frac{u^{\alpha}}{u^{\alpha} \varepsilon/2} = \frac{2}{\varepsilon} < \infty.$$

Thus, by Theorem 4.3 $\mathcal{L}(E^{\Phi}(\Omega), E^{\psi}(\Omega)) \neq \{0\}$ if and only if there exist a > 0 such that

$$\limsup_{u\to\infty}\frac{\psi(u)}{\inf\!\operatorname{ess}_{t\geq a}\Phi(u,t)}=\lim_{u\to\infty}\frac{u^\beta}{u^\alpha a}=\lim_{u\to\infty}a^{-1}u^{\beta-\alpha}<\infty$$

and this is true if and only if $0 < \beta \le \alpha < \infty$.

REFERENCES

- 1. L. Drewnowski, Compact operators on Musielak-Orlicz spaces, *Comment. Math.*, **27** (1988), 225-232.
- 2. A. Kalindé, Operateurs lineaires continus entre des espaces de Musielak-Orlicz et d'Orlicz non localement convexes, *Bull. Soc. Math. de Belgique*, **37(1)** Ser. B, (1985), 27-36.
- 3. N. Kalton, An F-Space Sampler, Cambridge University Press, 1984.
- 4. J. Musielak, Orlicz Spaces and Modular Spaces, Vol. 1034, Springer-Verlag, 1983.
- 5. J. Musielak and W. Orlicz, On modular spaces, Studia Math., 18 (1959), 49-65.
- 6. W. Orlicz, Über eine gewisse Klasse von Räumen von Typus B, *Bull. Acad. Polon.* A, (1932), 207-220.
- 7. W. Orlicz, A note on modular spaces I, Bull. Acad. Sci. Math., 9 (1961), 157-162.
- 8. R. Pluciennik and M. Wisła, Linear operators between Musielak-Orlicz spaces of vector valued functions, *Bull. Soc. Math. Belg.*, **40(1)** (1988), Ser. B, 95-109.
- 9. S. Rolewicz, Metric Linear Spaces, PWN, Warsaw, 1972.
- 10. I. V. Sragin, Conditions for the inbedding of classes of sequences and their consequences, *Mat. Zamietki*, **20(5)** (1976), 681-692, (in Russian).
- 11. P. Turpin, Operateurs lineaires entre espaces d'Orlicz non localement convexes, *Studia Math.*, **46** (1973), 153-165.
- 12. M. Wisla, Continuity of the identity embedding of some Orlicz spaces, *Comment. Math.*, **24** (1984), 343-356.

Ewa Kasior Institute of Mathematics University of Szczecin Wielkopolska 15 70-451 Szczecin 3 Poland

E-mail: ekasior@univ.szczecin.pl

Marek Wisla
Faculty of Mathematics
and Computer Science,
Adam Mickiewicz University
ul. Umultowska 87
61-614 POZNAŃ
Poland

E-mail: marek.wisla@amu.edu.pl