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BLOW-UP OF A DEGENERATE NON-LINEAR HEAT EQUATION
Chi-Cheung Poon

Abstract. We study the blowup behavior of non-negative solutions of the
following problem:
ur = uP(Au+ ud) in Qx(0,7),
u(z,t) =0 whenever 1z € 99,

with p > 0 and ¢ > 1. We will show that it is possible to have solutions
blowing up at only one point, and

lim sup ((T — )= max u(a, t)) = 00.
t—T- a

1. INTRODUCTION

Here, we study the blowup behavior of positive solutions of the following prob-
lem:

up =uP(Au+u?) in Qx(0,7),

(1.1)
u(z,t) =0 whenever x € 9.

We assume that € is a bounded C'2>* domain in R™, and
qg>1, and p>0.

We say a solution u blows up at a pointa € Q attime ¢t = 7' if u(x, t) is continuous
in Q x (0,T) and there is a sequence (zg, t) € © x (0,7T) such that z; — a and
tr — T as k — oo, and

lim wu(zg, ty) = oo.

k—o0

It is easy to see that if u blows up at ¢ = T, then there is a constant C' > 0 such
that

max u(z,t) > C|T — t‘—l/(p+q—1)_
ze
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The question is: when can we have an inequality of the form

(1.2) maé(u(x7 t) < O|T — t‘—l/(p-f—q—l)?
z€

When p = 0, equation (1.1) becomes
u; = Au +uf.

When € is a bounded convex domain in R™, Friedman and McLeod [2], proved
that for any ¢ > 1, there is a constant C' > 0 so that

(1.3) supu(z,t) < C|T — 75‘—1/(61—1)7

provided that the initial data «(z, 0) satisfies the differential inequality
(1.4 Au(z,0)+ u(z,0)? > 0.

They also proved that, under the assumptions in the above, there are no boundary
blowup points. Also, if Q a ball centered at = 0 and wu(z, t) is Ssymmetric and
depends on |z| and ¢ only, and if w, < 0, where » = |z|, then z = 0 the only
blowup point.

In [4, 5], among other results, Giga and Kohn proved that, when 1 < ¢ <
(n+2)/(n—2), orn <2, Qisa convex domain in R”, for any non-negative
positive initial data, then there is no boundary blowup point and (1.3) is true. When
Q2 is a general bounded domain in R", and ¢ < (n+ 3)/(n+ 1), using a different
method, Fila and Souplet [1], showed that (1.3) holds.

When ¢ = 1 and p > 0, the equation (1.1) becomes

up = uP (Au+ u).
Winkler, [7, 8], proved that

mag)fu(x,t) < C|T —t|7V/7, when 0<p<2,
Tre

and
lim sup <(T —t)l/p mgxu(x, t)) = o0, when p > 2.
t—T—

In this paper, we always assume that the domain  is convex. The existence
of solutions of (1.1) can be proved via many different methods. In the book [6],
chapter VII, section 2, existence of solutions is obtained using Galerkin’s method.
Here, we follow the approach by Friedman and McLeod, [3]. From the construction,
we can easily deduce some properties of the solution. For example, if the initial
data satisfies the inequality (1.4), then w(z,t) > 0 whenever u(zx, t) is defined.

Our results are:
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(i) Let u(z,t) be a positive solution of (1.1) in £ x (0,7") with 0 < p < 2 and
g > 1. Suppose that the initial data uo(x) = u(x, 0) satisfies the condition
%/Q | Dug|*(x) dz < q% A ul™ (z) da.
Then, u(z,t) blows up in finite time.
(ii) If ¢ > 1 and 0 < p < 2, we prove that for any solution of (1.1) which blows
up at time T, then, there is C' > 0 so that

1/(2—p)
</ P (x, t) dw) < C|T — ¢|~V/atr=1),
Q

(iii) Suppose that 2 a ball centered at = 0. If the solution u(x, t) is symmetric
and depends on |z| and ¢ only, and if u, < 0, where r = |z|, then z = 0 the
only blowup point.

(iv) For non-symmetric solutions, if p > 0 and ¢ > 1, the solution does not
blow-up in a neighborhood of 92.

(v) If p>0and g > 1, and the solution blows up at time 7', then we show that

maxu(z,t) < C|T —t|~1/ @1,
€

This result is probably not optimal.

(vi) If p > 2 and ¢ > 1, we then show that if « is a solution of (1.1) and is
symmetric and is radial decreasing, and if u blows up at ¢t = T', then

lim sup <(T — )M/ a1 max u(a, t)) = 00.
t—T— Q

2. EXISTENCE OF SoLuTION

Let © be a %2, bounded, convex domain in R”. Let ug(z) € C*>*(Q)NCH(Q)
and ug(z) > 0 for z € 2, and satisfies the differential inequality

(2.1) Aug+ud >0

in Q. Letp > 0, ¢ > 1. Following the method of Friedman and McLeod, [3],
we let g.(u) be a smooth function defined for u € (0, c0) so that g.(u) = e for
u € (0,€/2) and g.(u) = uP for u € [¢, 00).

For each € > 0, we consider the problem

up = ge(u)(Au + u?) in Qx(0,7),
(2.2) u(z,t) =€ whenever x € 0f)
u(z,0) = up(z) + € in Q
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There is a T, > 0 so that, for ¢ € (0, T), there is a positive solution u. € C>°(€ x
(0, T]. We note that w(x) = e is a sub-solution, i.e., Aw + w? > 0 in 2, and
w(z) = e for z € Q. Therefore, by the maximum principle, u. > € in Q x (0, T).
Thus, in fact, u. satisfies the equation

up = uP(Au + u?)

Moreover, by the maximum principle, if ¢ > § > 0, then, we have w(z,t) >
ugs(x,t), whenever both wu.(x,t) and us(z,t) are defined. Suppose that for e = 1,
ui(z,t) is defined for ¢ € (0,73]. Then, by the maximum principle, for any
0 < € < 1, the function u(z,t) is defined for ¢ € (0, T}].

Suppose that zo € 9. Since §2 is convex, after a translation and rotation, we
may assume that zo = 0 and Q C {x = (x1, x2, ..., z,) : &1 > 0}. Let

2
(2.3) 0<'y<max{1,a}

be fixed and A > 1 be a number to be determined. We define the function

(2.4) be(x1) = A(z] +¢€), for z >0.
Let
Co = max wui(x,t).
QX(O,Tl]

Then, by the maximum principle, for all € € (0, 1), we have

Co > max wuc(z,t).
QX(O,Tl]

Let C; be a positive constant so that
up(z) < Cray for x €.

By (2.3), we may choose 0 < L < 1 so that

1-— 1-—
25 L7 < % L < % and L1 > 0.
0

This implies that

q—1 _ _
(%) A=) 120

Then, we choose A > 1 such that

-1
(2.6) (%)q <At 20—
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Note that, both A and L are independent of e. Let Q;, = QN {z: 2z < L}. We
claim that, for any 0 < e < 1,

(2.7) () > uc(x,t) for ze€Qp te(0,Ty.
If x € Qp, by (2.5) and (2.6), we have
Age + ¢l = Ay(v = 1)
< Ay(y = D)a] 7% + (24)
< Az]? <fy(fy -1)+ 2qu_1x§_7>
< Aa] % (y(y— 1) + 27477 [277)
< 0.

1)a] 2 4+ A7 (2] + €)*

For z € Qp, since A > 1 and v < 1, we have

Also, for all t € (0,74, if z € QN {z : &1 > 0}, uc(x,t) = € < ¢.. If
x € QNn{z:xz = L}, by (2.6), ¢(z) > Cy > uc(x,t). Hence, by the maximum
principle, for x € QN {x:x; < L}, and t € (0,T1), we have

() > ue(z, t).

be(z) — ue(x,0) > Az} — Cray = 14 <Aw¥ Cl> L7 1 Cl) >0
0
t

This proves the claim (2.7).
As mentioned before, for (z,t) € Q x (0,7}], we have

ue(z,t) <us(z,t) if 0<e<d.

We may define
u(z,t) = lin% ue(z,t).
€E—>

By the claim (2.7), we have u(x,t) = 0 whenever x € 9S).

Let K C Q be an compact set. Suppose that u(z,t) > 0 for (z,t) € K x [0, T1].
There is a constant x > 0 so that u(z, t) > x in K x[0, T1]. Since ue(x,t) > u(x,t),
we have u.(z,t) > k in K x [0,T4], for all 0 < e < 1. By the parabolic regularity
theory, the functions u, is uniformly bounded in C2+®1+e/2(K x [0, T}]). Thus, by
choosing a subsequence, we see that u, converges to  in C2t318/2(K x [0, T}]),
with 0 < § < «. This implies that «(z,t) is a smooth solution of the equation
up = uP(Au+u?) in K x [0, T1]. Thus, we obtain a non-negative function u(x, t),
which satisfies the equation u; = u?(Awu + u9) in every open set where u(z,t) > 0
holds. Moreover, by repeating the process, either u(x,t) is defined for all ¢ > 0,
or, there is T > 0 so that max, u(x,t) — oo as t — T.
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Lemma 2.1. If we further assume that the initial data v o(x) = u(x,0) > 0 and
satisfies the differential inequality (2.1) in €, then w(z, ¢t) > 0 whenever u(z,t) is
defined.

Proof.  If (2.1) holds in 2, for any 0 < e < 1, by the maximum principle,
uet(x,t) > 0 whenever uc(x,t) is defined. Thus, for each z € Q, t — uc(x,t) is
an increasing function. When letting e — 0, for each = € Q, ¢t — u(x, t) is also an
increasing function. Thus, u.(z,t) > 0 whenever u(z, t) is defined. ]

From the construction, it is easy to see that, if ug > 0 in €, then u(x,t) > 0
for z € Q and ¢t € (0,73]. In general, even if u(x,0) > 0 for z € Q, we do not
know whether w(z,t) > 0 for x € 2 and ¢t > 0. However, if ug(z) > 0 in £, and
if (2.1) is true, by Lemma 2.1, we always have u(z,t) > 0 whenever x € Q and
t € (0,71). Furthermore, for any compact subset K C €, u. converges to « in
C*HBI4B/2(K % [0, Ty]), with 0 < B < a.

Let ¢; be the solution of the O.D.E.

W'+ pT=0,  ¢'(0)=0, ®(0)=1.

For any M > 0, let
() = My <M(q_1)/ 2x> .
Then, 1, the solution of the O.D.E.

W'+ =0,  ¢'(0)=0, (0)=M.

Suppose that xo € 9. Since 2 is convex, after a translation and rotation, we may
assume that zp = 0 and Q C {z = (z1,292,...,2,) : 1 > 0}. Let M > 0 be a
constant to be determined. For each ¢ > 0, let ¢)¢ be a translation of 5, so that
¥¢(—€) = 0 and v* is increasing for z € (—e, M~(9=1)/2 _¢). Let v, be a function
defined on the region

Qe ={z = (#1, 29, ... ty) € Q: g € (0, M~ @7D/2_ )}

The function v, is a function depending on z; only and v (x) = ¥(x1). Then v,
satisfies the equation Av + v? = 0 on 2. Now, we choose M so that

M > max{u(z,t): 2 € Q, te]0,T1]}

and ve > ug in Q.. By the maximum principle, we have u(z,t) < v.(z) for all
x € Q.. Since it is true for all ¢ > 0, we conclude that u(z,?) < vo(x). This
implies that, there is a constant A > 0, probably depending on ¢, so that

(2.8) 0 < wu(zx,t) < A dist(z, 09).
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When the domain is a ball,
Q={zeR":|z| <R},

and wuo depends on r = |z| only, then, for any 0 < e < 1, the solutions, w,, to the
problem (2.2) are symmetric. If we further assume that ug,.(z) < 0 for all z € Q,
then by the reflection principle, we have w.,.(x,t) < 0 whenever u.(z, t) is defined.
By letting ¢ — 0, we conclude that u(x, t) is symmetric and w, (z, t) < 0 whenever
u(z, t) is defined.

3. THECASEO < p <2

Let u(x,t) be a positive solution of (1.1), i.e., u(x,t) > 0 for all z € Q and
t € [0,T). Using the scheme in section 2, we can find 73 > 0 and solutions u,. of
(2.2) so that for any K CC €, u, converges to u in C2t5:148/2( K x [0, T]).
Given any n > 0, we choose

I' = {z € Q: dist(z, 00) > n}.
Since wu, converges to u in C**A1+8/2(1" % [0, T1]), if e < n and is small enough,

sup |ue —ul| <.
FX[O,Tl]

Thus, we have

sup |ue —u| < sup |ue —u|+ sup  (ue +u) <n+ A(n+n)+ An.
QX[O,Tl] FX[O,Tl] (Q—F)X[O,Tl]

Hence, we conclude that . converges to « uniformly on © x [0, T3].
From equation (2.2), for any 0 < € < 1, we have

d Du?  wdtt
/ _Etdx_/ uEt(AuE—f—ug)dx:_E ) <‘ 2‘ - da

Thus, if 0 < s < 17,

alz,t 1 9
de dt+ = | |Du|(z,
//ugxt x —|—2/Q\u\(xs)dx

1 Du,|? .
— ultl(z, s) dw—i—/ (‘ uE\Q(x,O) Y (x,())) dx
Q

VRS q+1
1 Dul?(z,0 0 a+l
el A e e
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As € — 0, u, converges to u uniformly on © x (0, 73], and Du,, ue converge to
Du, u; almost everywhere on Q x (0,7;]. By Fatou’s Lemma, when ¢ — 0, we

have
1 2
d dt + = |Dul*(z, s) dx
(3.1) 2o
. D 2 q+1
< uq+1( . (\ u’(,0) u @,o)) .

Equation (3.1) implies that, for ¢ € (0,T),

(32) /Q<\Du\22(x,t) B uq+1(x,t)>dwg/g(\Du\Q(x,O) B uq+1(x,0)> d.

qg+1 2 qg+1

and

(3.3) // e d ds </Q (‘D“‘z(x’o)_“q;fl’o)) dz.

By repeating the process, we see that (3.2) and (3.3) are true for all ¢t € (0,7).
On the other hand, let

Q(e) = {z € Q : dist(z, 00Q) > €}.

When 0 < p < 2, using integration by parts, we have

1
L —/ P dx :/ utPuy da :/ w(Au+ u?) dx
dt \ 2 —p Jo Q(e) Q(e)

ou
=— Du|? — y9t! dw—i—/ u—— do(e),
/Q(e) (1Dul ) a0 Ov(e) ©

where v(e) is the unit outward normal to 9€(e) and do(¢) is the volume form on
0Q(€). Forany 0 < s; < s9 < T, we have

L(/ u?” (x82)dw—/ u“(wSz)d)
//Q( (|Duf? — utt) dxdt+/ /89( au( 2ot dt

We claim that for any 0 < ¢ < T, there is ¢, — 0 as i — oo such that

2 ; 2 do(e;) | — 0.
(35) (/m(si) " da(ez)> (/m(si) \Dul? d (Z)> 0

(3.4)
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In fact, if it is not true, there are ¢t € (0,7") and a constant ¢y > 0 so that, for any

€>0,
2 2
</8§2(5) u da(e)> </8§2(5) | Dul da(e)> > ¢o.

By (2.8), when € is small enough, we have

/ u? do(e) < Cé.
Q(e)

/ \Dul? do(e) > Ce 2.
Q(e)

Let ¢y > 0 be small enough so that the function dist(x, 99) is Lipschitz continuous
for z € {z € Q : dist(z, 09?) < ¢ }. By the coarea formula,

€0 €0
/ | Du? deC/ / |Du|? do(€) deZC/ 2 de = o0
Q 0 JoQ(e) 0

This contradicts (3.2). Therefore, (3.5) is true.
By (3.5) and Holder’s inequality, we have

/ uﬂ do(e;) dt — 0 as i — 0o.
o0(e;)  Ov(ei)

Now, we may replace € by ¢ in (3.4) and let i — oco. Then, we have

L </ u*7P(z, 59) da —/ u*7P(x, s9) dw)
/ / (|Duf? — udth) dz dt.

This implies that, for almost all ¢ € (0, T"), the function

/ u?7P(z,t) da
0
is differentiable and

(3.6) % <ﬁ/Q u?7P(z,t) dw) = —/Q (|Dul? — udtl) da.

Theorem 3.2. Let u(z,t) be a positive solution of (1.1) with 0 < p < 2 and
g > 1. Suppose that the initial data uo(x) = u(x, 0) satisfies the condition

(3.7) / | Dug|*(x q P u8+1(x) dzx.

Thus,

Then, u(x,t) blows up in finite time.
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We note that given any v € C* (), if k& > 0 is chosen large enough, then the
function wy(x) = kv(x) would satisfies (3.7).
Proof. From (3.2) and (3.7), for any ¢ > 0, we have

2
/ |Dul?(z,t) do < —/ ultt(z,t) d.
Q q+1Jq

Thus, when 0 < p < 2, from (3.6),

1 —1
(3.8) 4 <—/ u?7P(z,t) dw) > q_/ udtt(z,t) d.
Also, by Holder’s inequality, there is a constant C; > 0 so that
gi

(3.9) / wit dz > ¢y </ u?7P dw) o .
Q Q

Let

From (3.8) and (3.9), we obtain

g+1
2—p .

I/(t) > Ch1
Since ¢ > 1 and p > 0, we have

1
)
2—-p
If the solution u(z, t) exists in the time interval (0, ¢), for certain constant C; > 0,
we have

I'(t) < I1'77(0) = (v — 1)Cht,

or )
1 =1
2-p
U xz,t) de > .
/Q (:8) do 2 (Il‘”(o) —(r— 1)0175)
Therefore, the solution has to blow up in finite time. ]

Theorem 3.3. Let u(x,t) be a positive solution of (1.1) in © x (0,7 with
0<p<2andgqg>1. Then, there is C' > 0 so that

1
</ WP (z,t) dx) o <C|T - t‘—l/(q—kp—l)_
Q
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Proof. From (3.2), we have

2
/ |Du|? dx < ?/ u?™ (z,t) de + B,
Q q Q

where

B:/Q <\Du\2(x,0) B uq+1(x,0)> .

2 qg+1
Thus, when 0 < p < 2, from (3.6),

d 1 9 p g—1 / 11
. Z(— >4 [yt gx — B.
(3.10) dt<2—p/gu (x,t)dx)_q+1 Qu x
As before, let
1) = / W2 (3. 1) da.
Q

Combining (3.10) and (3.9), we see that there are constants Co > 0 and C3 > 0 so
that,

(3.11) I'> —Cy+ G35,
If
(3.12) 20y £ CyIFF <0 for  te(0,T)

then there is constant Cy > 0 so that
1) = / W2 (3,1) da < Ci
Q

for all t € (0,T"), and the Theorem is true.
If (3.12) is not true, either there is s; > 0 such that

+1
—Cy + C5I57 (1) > 0,

for all t € (s1,T), or, there is an interval (s;,.S) such that

g+l Cy
22— —_=
(0> &
forall t € (s1,5), and
JEEn (S) = G
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The latter case implies that 7'(t) < 0 for some ¢t € (s1,5). It contradicts the

equation (3.11). Therefore, for all t € (s1,7T), I'(t) > —Cs + 03[%(75) > 0, and
I(t) > I(s1). Thus, we can find C; > 0 so that

(3.13) I'(t) > CoI(1)5F for t> s1.
Let S, be a sequence so that S,, > s; for all n and S,, — T as ntooco and

limsup/ u?7P(z,S,) de = occ.
Q

n—oo

After integrating equation (3.13), from ¢ to .S,,, with ¢ > sq, we have

- 1 4P - — —
L5 () - 155 (5,) = Cu(Sa — 1),
By letting n — oo, we have
1
</ ’Ll,2_p(x7 t) d(I,') ar < C5‘T _ t‘—l/((ﬂ—p—l)_ ]
Q

4., SYMMETRIC SOLUTIONS
In this section, we let
Q={zeR":|z| < R}

Let » = |z|. We assume that u(z, t) depends on r and ¢ only. Then equation (1.1)
becomes

up = uP (upr + Uy + ud) for re (0,R), te(0,7),

@D w0,)=0, wBt)=0 for te(0,T),
u(r,0) = uo(r) for r € (0,R).

We assume that ug € C*%(0, R) N C?[0, R], and

up(R) =0 uj(0) =0, ug(R)<0 and wuj(0) <0
(4.2) , , n—1, q
up(r) >0, wuy(r) <0, wuy+ — U +ul >0 for r e (0,R).
It follows that
4.3) ug(r,t) >0,  wu(r,t) <0 for re (0,R), te(0,7).

Under these conditions, using the method of Friedman and McLeod, [2], we will
show that = = 0 is the only blowup point.
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Lemma 4.1. Letp > 0, ¢ > 1 and v € (1,¢). There is a constant ¢ > 0 so
that
—u, > er?u’ for  re(0,R), te(0,7).

Proof. We let f(u) = u9 and F(u) = u”, with 1 < v < q. Let ¢(r) = er™*!
and
J=7""Yu, +c(r)F(u).

Then,
Jy =r" Yy, + c(r)Fluy
-1 -1
:prn_lu_lutur + rn_lup(urrr - r b) U + r Upp + f/uT)v
r r
- =(n—1)r" 2u, + r" Yy, + ¢, F + cFlu,,
and
Jrr = (n—1)(n = 2)r"Bu, 4+ 2(n — 1)1 2ty + 1" Lty
+'F+2dFu, + cF"uz + cFlug,.
Hence,

1
Jp — uP (Jrr L Jr>
T

= pr" g, + Py — uP ('"F +2d Flu, + cF"u? + cFluy,)

n—1
_|_

uP(F + cF'u,) + cFluy.

Using equation (4.1), we obtain

1
Jy — uP <Jrr - Jr>
T

L gy + e P fu, — P (c”F + 2 Flu, + cF"uz)

ur—i—f)—i—n

= prn_

+ cF'uP <n uP(c'F + cF'uy)
2(n—1
= pr" Ty — cF”upug + uP <r”_1f' —2JF + LcF’) Uy
r

n—1

+ uP <cF’f +
r

cF — c”F) )

Now, we use the fact that

Ur = (J —cF)
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and have
-1
Jy — P (Jrr - ”—Jr>
T
2 2(n—1
—pr" Y g, — cFuPu? + uP <f’ — —F' + Mcﬂ) J
T T
(4.4) 0
+ uP <cF’f—|— cF d'"F —cFf + ——cc'F'F
T
2(n—1
_MCQFF’> )
rn
Since f =u?, F =uY with1 < v < ¢ and c = er™*!, we have
2 2(n—1
P+ " op o ey + el F'F — M&FF’
T T

=422y (g — y)er™ Tyt g — (n + 1)y

We choose ¢ small enough so that 4eR < g — ~. Then, when u > 1, since v < ¢,
we have

42 227 (g—y)er" Tyt < 4l Ry (g—y)er T ud L < 0,

Also, we choose e small enough so that 4cR? < n + 1. When « < 1, since vy > 1,
we have

422277 _e(n 4+ 1)l <4ER3ITIUP T —e(n 4+ 1)l < 0.
Therefore, for any » > 0 and u > 0, if € is chosen small enough, we have

2(n—-1)

1 2
cFf+ 2Tl R F R + el F'F — EFF <.

From (4.4) and our assumptions (4.3), the function J satisfies an equation of the
form

Jy =P (J., — AJ. + BJ) for  re(0,R) and te(0,7),

where
n—1
T

A= and B =qui™ = 2ey(n+ 1)ru ™! 4 2e(n — 1)ru? ™t

When r = 0, we have J = 0. When r = R, since u,(r,t) < 0, we have

lim sup u,(r, t) < 0.

r—R
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This implies that
limsup J(r,t) <0 forall ¢e (0,7).

r—R
Also, from the fact that u((0) < 0 and the mean value theorem, we can see that
when 7 is small enough, for some small constant C' > 0, we have v (r) < —C'r.
Hence, if r is small, J(r,0) < —Cr™ + er" ud(r), and uo(0) > 0. We may
choose e small enough, so that J(r,0) < 0 for all » € (0,R). Then, by the
maximum principle, we have J(r,t) < 0 for all » € (0, R) and ¢ € (0,T). u

Theorem 4.2. Let u(x,t) be a solution of (1.1) in Br(0) x (0,7") with ¢ > 1
and p > 0. We assume that u(z,t) depends on r = |z| and ¢ only. If the initial
data ug(r) satisfies assumptions (4.2), then the point = 0 is the only blow-up
point.

Proof. By Lemma 4.1, for some v > 1, we have —u, > r2u”. For any
0O<r<Randte (0,7), we have

—/ ur(5,1) dsZe/ s2 ds.
o (s, 1) 0

67"3

ul_’y(r, t) Z ?

It follows that

Thus, for any » > 0, we have

lim sup u(r,t) < oo. ]
t—T

5. NON-SYMMETRIC SOLUTIONS

In this section, we will show that if u(x,t) is a non-negative solution of (1.1)
in Q x (0,7) with ¢ > 1 and p > 0, then there is a constant C' > 0 such that

u(z,t) < C(T —t)~ /a1,
Again, we follow the method of Friedman and McLeod, [2].

Theorem 5.1. Let Q be a bounded convex €2 domain in R™ and u(x,t)
be a non-negative solution of (1.1) in © x (0,7) with ¢ > 1 and p > 0. Let
up(x) = u(x,0) be the initial data of u. We assume that uo € C?(2) N C?%(),

8u0

(5.1) ug =0 and — <0 on 00
ov

and



1216 Chi-Cheung Poon

(5.2) ug > 0 and Aug +ul >0 in Q.

Then, there are constants « > 0 and M > 0 such that u(x,t) < M whenever
dist(z, 00) < a/2.

Proof. Take any z € 2. After a translation and a rotation, we may assume
that z = 0, Q C {z : x; < 0}, and that the hyperplane z; = 0 is tangent to 02 at
Z. Given a > 0, we define

Qo ={z€Q: —a<x <0}
By (5.1), there is o > 0 such that

Ouo

. <0 for (x,t) € Q4 x (0,T).

Moreover, the choice of o« depends only on €2 and the initial data uy. Then, by the
reflection principle, we have

aa—;g() for (x,t) € Q4 x (0,T).

Let f(u) =u? and F(u) = u” with 1 < v < ¢. We introduce the function
J = g, +e(x + a)?F(u),
where € > 0 is to be determined. Using (1.1), we compute that
Jp = Uy, +€(x1 + )2 Flu, = pu_lumlut +uP (Aug, + flug,) +e(z1 + )2 Fuy,
and
AJ = Auy, +4de(z1 + a)Flug, + e(z1 + a)?F"|Dul?® + e(z1 + o)*F' Au + 2¢F.
Thus, we have

Jy —uPAT

= pu tug,up — e(z1 4+ @) F" | Dul*uP 4+ uP flu,, — 2eFuP
—de(zy + @) F'uPug, + e(x1 + a)?F' fuP

= pu tug, up — e(z1 4+ @) F" | Dul*uP + uP £ (J — e(z1 + a)?F) — 2eFuP
—de(x1 + @) F'uP(J — e(z1 4+ )*F) + €(x1 + a)’F' fuP

In Q, x (0,7), since u,, <0 and u; > 0, we obtain,
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Ji —uPAJ
<(f — 4e(z1 + a)FWuPJ — e(x1 + a)?uP (f'F — fF')
+ 4€*(x1 + a)3uP FF — 2euPF
From the definitions of f and F, we have f'F — fF' = (¢ — y)u?""~! > 0 and
e(z1 + oa)2up(f/F — fF') — 462(x1 + a)gupFF’
= e(q — ) (z1 + a)?uPTITT 4Py (2 + a)duP T

Since —a < x1 <0, if u > 1, and € > 0 is chosen small enough, since ¢ > ~, we

have
e(x1 + a)’uP(f'F — fF') — 4€*(x1 + o)3uPFF’

>e(q — ) (z1 + a)?uP T 4oy (z) + a)?uP T2
>0.
If 0 <wu <1,and e > 0 is chosen small enough, since v > 1, we have
4€*(z1 + a)3uPFF' — 2euPF
=43y (z1 + a)3uP T = 2Pt
<delyaluPt 1l — eyt
<0.
Hence, when ¢ is chosen small enough, the function .J satisfies an equation of the
form
Jy < uP(AJ + EJ)
in Qq x (0,7), with E = (f" — 4e(x1 + ) F")uP. We also choose e small enough
such that J(z,0) < 0 for x € Q,. Itis easy to check that J(z,¢) < 0 for all
x € 09Q,. By the maximum principle, we have J(z,t) < 0in Q, x (0,7). Then,
for (z,t) € Q)9 % (0,T), we have u,, < —e(x; + a)?u?. Fix t € (0,T). We let
w(s) = u(s,0',t), where 0’ = (0,0,...0) € R". Then, w’ < —e(s + a)?w”. For
all s € (—,0), we have

1 o o (s +a)?
- (=D (gy — 0~ (—D(_ < TR
po— (w (s) —w ( a)) < T
Then, when s € (—a/2,0), we have
1 e’
= Dy«
o T (s) < 5L
We note that v > 1, therefore,
24
L Y P
ws) < (v —1)ea?’

and the Theorem follows. n
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Theorem 5.2. Let u(x, t) be a non-negative solution of (1.1) in © x (0, 7) with
g > 1andp > 0. We assume that ug(x) = u(x,0) is of C** and satisfies (5.1)
and (5.2). Then there is a constant C' > 0 such that

u(z,t) < C(T —t)~ /a1,
Proof. By Lemma 2.1, we have
ug(x,t) >0 for all (x,t) € Qx(0,7).

Forany = € Q, u(z,t) > u(z,0) > 0. Let &« > 0 be the constant in Theorem 5.1,
and
Q' ={ze€Q:a/4<dist(z,00) < a/2}.

Let ¢ > 0 be a constant, so that ug(z) > ¢ for = € . From Theorem 5.1, there are
positive constants o and M such that u(x,t) < M whenever dist(z, 9Q) < a/2.
Thus, ¢ < u(z,t) < M for 2z € . By the parabolic regularity theory, there is a
constant C; > 0 such that

u(z, t) < Cy for  (z,t) € Q x (0,T).

The function w(z, t) = u.(x, t) satisfies the equation

wy = uP Aw + (quP T 4 pulw)w
in Q" x (0,7). It follows that there is C, > 0 such that

0<Cy <w(zx,t)<Cy for (x,t) € Q" x (a, T),

where Q" = {z € Q: 5a/16 < dist(x,00) < Ta/16}. Let

Q= {z e Q:dist(x,0Q) > 3a/8}.
There is a constant 0 < § < 1 such that
(5.3) ur(x,t) — oud(z,t) >0 for (z,t) € 9 x (o, T).

Moreover, by the maximum principle, we have w(x,t) > 0 for (z,t) € Q x (0,T).
Therefore, we can choose ¢ small enough so that

(5.4) u(z, ) — dul(z, ) > 0 for  z €.
Let v > 1 and ¢ be the constant in (5.3). Let

J =wuy — ou” = uP(Au+u?) — ou”.
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By direct computations, we have

Jy = pu‘lu? 4 uP (Auy + quitug) — dyu? Ly,
and

AJ = Auy — dyu" P Au — 6y(y — 1)u 2| Dul?.
Thus,

Jt — ’U,pAJ
= pu~tu? + quP Ty — Sy "ty 4 SyuP T AU 4 Sy (y — 1)uP T2 Dl

Using equation (1.1) and the fact that u; = J + du”, we have

Jt — ’U,pAJ
= pu M2 + quP Ty — Sy T 4 Sy (y — 1) uP T2 Duf?
=pu”tui + 8y(y = P2 Dul? + quP (T + u?) — SyuP Tt

Thus, we conclude that

Jt —uPAJ

55
OO 12 oyl — DD T 4 8(g —

Then, in equation (5.5), we choose v = ¢. Then, the function satisfies an inequality
of the form )
Je>uPAJ+BJ in Qx(a,T)

with B = quPt?~1. By (5.3), we have .J(z,t) > 0 whenever = € 8Q. Also, when
t=a, by (5.4), J = w(x,a) — éul(z,a) > 0. Then, by the maximum principle,
J=u—ou?>0in Q x (a,T). Forany a <t < s < T, we have
1
q—1

(u_(q_l)(x, ) —u (g, s)) > 0(s—1t).

Hence,
1

q—1
When letting s — T, we have

u @D (2, 8) > (s — t).

and the Theorem follows. n
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6. THE CASE p > 2

Lemma 6.1 Let 0 < 2R < L, A\ >0,0< X< 1, p>2 g>1. Let
w(z) € C%(2R, L) N C[2R, L] be a solution of the ODE

(6.1) w” — MwPw'z — w P +w! =0 on (2R, L)

which is decreasing in x and satisfies the boundary conditions: w(2R) = w ¢ > 0,
and w(L) = 0. Let
‘T anL
Then, there is constant 6 > 0 so that w’(z) 4+ ew(z) < 0 when z € (L — 6, L).
Proof. Let w(x) be a solution as described in the lemma. Suppose that there
is a point @ € (2R, L) such that w’(a) + ew(a) > 0. Since w is decreasing in
(2R, L) and w(L) = 0, we have

> 0.

lim sup(w'(z) 4+ ew(z)) < 0.

rx—L—

Thus, we can find an interval (a,b) C (2R, L) such that w'(z) + ew(x) > 0 for
x € (a,b) and w'(b) + ew(b) = 0. Then, for = € (a,b), we have

w”(x) + ew'(x) = Mw Pw'z + dow' P — w! + ew’
> — New' Pz + Aow' P —w? — w
> — A\eLw P + Mow! P — w? — Ew

wl™P — wl — Ew.

vV
w|[\>;

We let » > 0 so that if 0 < w < 7, then

1
5)\211)1_1’ —wl — Ew > 0.

Since w is decreasing and w(L) = 0, there is 6 > 0 such that 0 < w(z) < n for
x€(L—-96,L). Ifa>L—90,then 0 < w(z) <n for z € (a,b). This implies that

w’(z) +ew'(z) >0  in (a,b).

Hence, w’(z)+ew(x) is an increasing function in (a, b). However, w'(z)+ew(x) >
0in (a,b) and w’(b) + ew(b) = 0, and we have a contradiction. |

We let

1
w? P+ ——w? when p> 2,

(6.2) Flw) === I
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and

(6.3) F(w) = =Xy logw + 1wq+1 when p=2.

q+

In both cases, we have

lim F(w) = lim F(w) = oo,

r—0+ T—00

and the function F'(w) has a unique minimum at w = A5/ ®*7Y for w € (0, 00).
It is easy to check that, since 0 < Ay < 1, we have

Ia <)\;/(p+q—1)> > 0.

Lemma 6.2. Let R >0, A\ >0,0< Ao <1,p>2¢g>1. Letw(z)bea
solution of the ODE (6.1) with initial data w(2R) = wq > )é/(p“’_l) > 0, and
w'(2R) = 0. Then, either w(z) can be extended as a positive, decreasing function
defined on (2R, co) and

64)  F(m)> F(w), with m= lim w(z) < AP,

r—00

or, there is K > 2R such that w(z) is decreasing in (2R, K), w'(K) = 0, and

(6.5) F(p) > F(wy),  with  n=w(K) < \/#TY,

Proof. By our assumption on w(2R), we have w”(2R) < 0. Thus w is a
decreasing function near z = 2R.

Let K > 2R be the first point where w’(K) = 0 and n = w(K) > 0. We first
assume that p > 2. From the equation (6.1), when p > 2, we have

(6.6) % <%w’2 + z%wQ_p + H%wq“) = \w Pw?z > 0.
Thus, if F'(w) is the function in (6.2), we have F'(n) > F(wy).

Suppose that the point K in the above does not exist. Then, either w(x) is
defined for all x € (2R, 00) and is a decreasing function, or there is L > 2R so
that w(x) is a decreasing function in (2R, L) and w(L) = 0. In the first case, let
w(z) — m > 0as ¢ — oo. Then, there is an increasing sequence x,, such that
Ty — 00 asn — oo and w'(z,) — 0 as n — oco. When p > 2, from (6.6), we
have

S0 () + F(w(za) > Flu).

When n — oo, we see that F'(m) > F(wy).
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Suppose that there is L > 2R so that w(z) is a decreasing function in (2R, L)
and w(L) = 0. By Lemma 6.1, there are § > 0 and ¢ > 0 such that v’ (z)+ew(x) >
0in (L — 4, L). Then, we have

A
w” — gwl_p + w? =w” + ey Lw' P — Mgw' P + w?

> w” — Mw Pw'z — Mow! P + w!
=0.

Since w’ < 0, when p > 2, we have

d 1 12 )‘2 2—p
dx<2w'+%p—mw R

wq+1> <0.

Thus, for z € (L — 0, L),

1.2 A2 2-p L ar

W (x)—|—2(p_2)w (x)+q+1w (z)
<L sy 22 e — gy e — g
~ 2 2(p —2) q+1

and is bounded from above. However, since w(xz) — 0 as z — L, this is impossible.
When p = 2, we let F'(w) be the function in (6.3). Using the same arguments,
we obtain the same result. ]

Theorem 6.3. Let Q = {z : |z| < Ry} and let u(x,t) be a positive solution
of (1.1) in Q x (0,7T) with p > 2 and ¢ > 1. Suppose that « is symmetric, and is
radially decreasing, and blows up at ¢ = T, then

lim sup <(T — )/ a1 max u(a, t)) = 00.
t—=T~ Q

Proof. Let u(x,t) be a positive solution of (1.1) in 2 x (0,7") with p > 2 and
g > 1. We assume that « depends on r and ¢ only, where r = |z|, and u,(z,t) <0
for all (z,t) € Q x (0,T). Note that

0,t) = t).
u(0,t) = maxu(z, t)

If the Theorem is not true, then there is a constant A/ > 0 such that

(6.7) lim sup (T — )/ P+=Dy,(0,1) = M < oo.
t—T

Leta = (—a1,0,...,0) € Qwitha; > 0. We letw(y, s) be the rescaled function
of v at a, i.e.,

w(y, s)=(T—t)/Pra=1y <a + y(T — t)(a=D/2pFa1), t) with s=—log(T—t).
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Then, w(y, s) satisfies the equation
(68) wg = wP <A’U} — &w_pr Sy — #wl_p + wq)
’ 2(p+q—1) ptaqg—1

on the set

r, {(y, s):s>—logT, a+y(T —t)la=D/2pta=1) ¢ Q} )

Tu(s) = {y :a+y(T — t)laD/2pta=1) ¢ Q} with s = —log(T —t).

We note that, for each s > 0, the set I', () is a ball centered at (7'—¢) ~(4—1)/2(p+a—1)
(a1,0, ...,0) with radius (T — t)~(¢=D/2+e-D R, and s = In(T — t). When
y € dT,(s), we have w(y,s) = 0. Fory ¢ T'y(s), we let w(y,s) = 0. Then,
w(y, s) is defined for all y € R™ and s > —logT'. From our assumptions, we have

(6.9) g—w(y,t) <0 when y=(y1,0,...,0), vy > (T_t)—(q—1)/2(p+q_1)a1'
Y1

Moreover, if y € (T—t)~(a=1/2(0+a=D (g, a1+ Ry), and (y1,9') € Tqo(s), thenwe
have w(y1,y';t) < w(yr, 0;t). Here y' = (ya,...,yn) and 0’ = (0, ...,0) € R*~ 1,
By (6.7), there is a sequence ¢ such that ¢, — oo as k — oo and

(6.10) lim (T — t;) Y/ P+a=Dy(0, 1) = M.

n—oo

Let
R=T"(e)/2p+te-D R

Let ¢(z) be a solution of the ODE (6.1), with

q—1 1
M=—"7—"— and A= ———.
2(p+q—1) p+qg—1

and ¢(2R) = a > 0 and ¢'(2R) = 0, where

a = 2max <M, )\é/(pﬂ_l)) .
By Lemma 6.2, either ¢ can be extended as as decreasing function for z € (2R, c0),
or ¢(z) is defined on (2R, K), ¢'(z) <0 in (2R, K) and ¢'(K) = 0. By equation
(6.4) and (6.5), we choose oo = ¢(2R) large enough so that

(6.11) m = zll)rgo o(z) < M/2
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or
(6.12) H(K) < M/2.

We first assume that ¢ is a decreasing function and is defined on [2R, c0). We
let ¢(z) = ¢(2R) for z € [0,2R), and define the function ¢(y) to be a function
depending on y; only, and ¢(y) = ¢(y1). Then, we have ¢(y) > w(y, —InT). Let
a = (a1,0"), and

S = — log(T — tk) and Yk = a(T _ tk)—(‘1—1)/2(117-1'(]—1)7
where ¢ is the sequence in (6.10). Note that
lyx| — 00 as k — oo,

and
lim w(y, sx) = M.

k—oo

Hence, by (6.11), when k is large, we have w(y, si) > ¢(yx). Thus, there is
so > —1InT such that w(y,s) < ¢(y) for all y € R™ and —logT < s < sy,
and, for certain yo € R™, w(yo, so) = ¢(yo). By our assumption, we must have
yo = (yo1,0’), and yo1 > 2R. Then, in a neighborhood of y,, the function ¢ (y) is
also a solution of the equation (1.1). Also, we have w(y,s) < ¢(y) for all y and
s < 80, but w(yo, so) = ¢(yo). By the maximum principle, it is impossible.

Next, we assume that ¢ is a decreasing function for = € (R, K), ¢'(2R) =
¢'(K) = 0. By (6.5), we choose o« = ¢(2R) large enough so that ¢(K) < M/2.
Then, ¢"(K) > 0 and we may extend ¢ to be function on the interval (2R, K),
for some K > K so that on (K, K), the function ¢ is strictly increasing. When
z € (0,2R), we let ¢(z) = ¢(2R). When z > K, we let ¢(z) = ¢(K). We then
define the function ¢(y) to be a function depending on y; only, and ¢(y) = &(v1).
Then, we have ¢(y) > w(y, —logT). As in the above, let a = (ap,0’), and

s = —log(T — tx) and yr = a(T — tk)—(q—l)/Q(p-f—q—l)_

Then, we have |yx| — oo as k — oo, and limy o w(yk, sx) = M. Hence, by
(6.12), when £k is large, we have w(yg, sk) > ¢(yx). Thus, there is s > —InT
such that w(y, s) < ¢(y) for all y € R™ and —logT < s < sg, and, for certain
yo € R", w(yo, s0) = ¢(yo). Let yo = (yo1,y,). We claim that yo1 € (2R, K].
By the choice of #(2R), it is clear that yo; > 2R. If yo1 > K, let gy = (K,0).
Since w(y, so) < (y) for all y, we have w(g, so) < ¢(7) < ¢(yo) = w(yo, S0). It
contradicts (6.9). Hence, yo1 € (2R, K]. In a neighborhood of vy, ¢(y) is also a
solution of the equation (1.1). Also, we have w(y, s) < ¢(y) for all y and s < s,
but w(yo, so) = ¢(yo). By the maximum principle, it is also impossible. ]
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