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BLOW-UP OF A DEGENERATE NON-LINEAR HEAT EQUATION

Chi-Cheung Poon

Abstract. We study the blowup behavior of non-negative solutions of the
following problem:

ut = up(∆u+ uq) in Ω × (0, T ),
u(x, t) = 0 whenever x ∈ ∂Ω,

with p > 0 and q > 1. We will show that it is possible to have solutions
blowing up at only one point, and

lim sup
t→T−

(
(T − t)1/(p+q−1) max

Ω
u(x, t)

)
= ∞.

1. INTRODUCTION

Here, we study the blowup behavior of positive solutions of the following prob-
lem:

(1.1)
ut = up(∆u+ uq) in Ω × (0, T ),

u(x, t) = 0 whenever x ∈ ∂Ω.

We assume that Ω is a bounded C2,α domain in R
n, and

q > 1, and p > 0.

We say a solution u blows up at a point a ∈ Ω at time t = T if u(x, t) is continuous
in Ω × (0, T ) and there is a sequence (xk, tk) ∈ Ω × (0, T ) such that xk → a and
tk → T as k → ∞, and

lim
k→∞

u(xk, tk) = ∞.

It is easy to see that if u blows up at t = T , then there is a constant C > 0 such
that

max
x∈Ω

u(x, t) ≥ C|T − t|−1/(p+q−1).
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The question is: when can we have an inequality of the form

(1.2) max
x∈Ω

u(x, t) ≤ C|T − t|−1/(p+q−1)?

When p = 0, equation (1.1) becomes

ut = ∆u+ uq.

When Ω is a bounded convex domain in R
n, Friedman and McLeod [2], proved

that for any q > 1, there is a constant C > 0 so that

(1.3) sup
x
u(x, t) ≤ C|T − t|−1/(q−1),

provided that the initial data u(x, 0) satisfies the differential inequality

(1.4) ∆u(x, 0) + u(x, 0)q ≥ 0.

They also proved that, under the assumptions in the above, there are no boundary
blowup points. Also, if Ω a ball centered at x = 0 and u(x, t) is symmetric and
depends on |x| and t only, and if ur ≤ 0, where r = |x|, then x = 0 the only
blowup point.

In [4, 5], among other results, Giga and Kohn proved that, when 1 < q <
(n + 2)/(n − 2), or n ≤ 2, Ω is a convex domain in R

n, for any non-negative
positive initial data, then there is no boundary blowup point and (1.3) is true. When
Ω is a general bounded domain in R

n, and q ≤ (n+ 3)/(n+ 1), using a different
method, Fila and Souplet [1], showed that (1.3) holds.

When q = 1 and p > 0, the equation (1.1) becomes

ut = up(∆u+ u).

Winkler, [7, 8], proved that

max
x∈Ω

u(x, t) ≤ C|T − t|−1/p, when 0 < p < 2,

and
lim sup
t→T−

(
(T − t)1/p max

Ω
u(x, t)

)
= ∞, when p ≥ 2.

In this paper, we always assume that the domain Ω is convex. The existence
of solutions of (1.1) can be proved via many different methods. In the book [6],
chapter VII, section 2, existence of solutions is obtained using Galerkin’s method.
Here, we follow the approach by Friedman and McLeod, [3]. From the construction,
we can easily deduce some properties of the solution. For example, if the initial
data satisfies the inequality (1.4), then ut(x, t) ≥ 0 whenever u(x, t) is defined.

Our results are:
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(i) Let u(x, t) be a positive solution of (1.1) in Ω × (0, T ) with 0 < p < 2 and
q > 1. Suppose that the initial data u0(x) = u(x, 0) satisfies the condition

1
2

∫
Ω

|Du0|2(x) dx ≤ 1
q + 1

∫
Ω
uq+1

0 (x) dx.

Then, u(x, t) blows up in finite time.
(ii) If q > 1 and 0 < p < 2, we prove that for any solution of (1.1) which blows

up at time T , then, there is C > 0 so that
(∫

Ω
u2−p(x, t) dx

)1/(2−p)

≤ C|T − t|−1/(q+p−1).

(iii) Suppose that Ω a ball centered at x = 0. If the solution u(x, t) is symmetric
and depends on |x| and t only, and if ur ≤ 0, where r = |x|, then x = 0 the
only blowup point.

(iv) For non-symmetric solutions, if p > 0 and q > 1, the solution does not
blow-up in a neighborhood of ∂Ω.

(v) If p > 0 and q > 1, and the solution blows up at time T , then we show that

max
x∈Ω

u(x, t) ≤ C|T − t|−1/(q−1).

This result is probably not optimal.
(vi) If p ≥ 2 and q > 1, we then show that if u is a solution of (1.1) and is

symmetric and is radial decreasing, and if u blows up at t = T , then

lim sup
t→T−

(
(T − t)1/(p+q−1) max

Ω
u(x, t)

)
= ∞.

2. EXISTENCE OF SOLUTION

Let Ω be a C2,α, bounded, convex domain in R
n. Let u0(x) ∈ C2,α(Ω)∩C1(Ω̄)

and u0(x) > 0 for x ∈ Ω, and satisfies the differential inequality

(2.1) ∆u0 + uq
0 ≥ 0

in Ω. Let p > 0, q > 1. Following the method of Friedman and McLeod, [3],
we let gε(u) be a smooth function defined for u ∈ (0,∞) so that gε(u) = ε for
u ∈ (0, ε/2) and gε(u) = up for u ∈ [ε,∞).

For each ε > 0, we consider the problem

(2.2)
ut = gε(u)(∆u+ uq) in Ω × (0, T ),
u(x, t) = ε whenever x ∈ ∂Ω
u(x, 0) = u0(x) + ε in Ω
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There is a Tε > 0 so that, for t ∈ (0, Tε), there is a positive solution uε ∈ C∞(Ω×
(0, Tε]. We note that w(x) = ε is a sub-solution, i.e., ∆w + wq > 0 in Ω, and
w(x) = ε for x ∈ ∂Ω. Therefore, by the maximum principle, uε ≥ ε in Ω× (0, Tε).
Thus, in fact, uε satisfies the equation

ut = up(∆u+ uq)

Moreover, by the maximum principle, if ε > δ > 0, then, we have uε(x, t) ≥
uδ(x, t), whenever both uε(x, t) and uδ(x, t) are defined. Suppose that for ε = 1,
u1(x, t) is defined for t ∈ (0, T1]. Then, by the maximum principle, for any
0 < ε < 1, the function uε(x, t) is defined for t ∈ (0, T1].

Suppose that x0 ∈ ∂Ω. Since Ω is convex, after a translation and rotation, we
may assume that x0 = 0 and Ω ⊂ {x = (x1, x2, ..., xn) : x1 > 0}. Let

(2.3) 0 < γ < max{1, 2
q
}

be fixed and A > 1 be a number to be determined. We define the function

(2.4) φε(x1) = A(xγ
1 + ε), for x1 ≥ 0.

Let
C0 = max

Ω×(0,T1]
u1(x, t).

Then, by the maximum principle, for all ε ∈ (0, 1), we have

C0 ≥ max
Ω×(0,T1]

uε(x, t).

Let C1 be a positive constant so that

u0(x) ≤ C1x1 for x ∈ Ω.

By (2.3), we may choose 0 < L < 1 so that

(2.5) L2−qγ <
γ(1− γ)
2qCq−1

0

, L2−γ <
γ(1− γ)

2q
and Lγ−1 > C1.

This implies that (
C0

Lγ

)q−1

<
γ(1− γ)
2qL2−γ

and 1 <
γ(1− γ)
2qL2−γ

.

Then, we choose A > 1 such that

(2.6)
(
C0

Lγ

)q−1

< Aq−1 <
γ(1− γ)
2qL2−γ

.
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Note that, both A and L are independent of ε. Let ΩL = Ω ∩ {x : x1 < L}. We
claim that, for any 0 < ε < 1,

(2.7) φε(x) ≥ uε(x, t) for x ∈ ΩL t ∈ (0, T1].

If x ∈ ΩL, by (2.5) and (2.6), we have

∆φε + φq
ε = Aγ(γ − 1)xγ−2

1 +Aq (xγ
1 + ε)q

< Aγ(γ − 1)xγ−2
1 + (2A)q

< Ax
γ−2
1

(
γ(γ − 1) + 2qAq−1x

2−γ
1

)
≤ Axγ−2

1

(
γ(γ − 1) + 2qAq−1L2−γ

)
< 0.

For x ∈ ΩL, since A > 1 and γ < 1, we have

φε(x) − uε(x, 0) ≥ Axγ
1 −C1x1 = x1

(
Axγ−1

1 − C1

)
≥ x1

(
Lγ−1 − C1

) ≥ 0.

Also, for all t ∈ (0, T1], if x ∈ ∂Ω ∩ {x : x1 > 0}, uε(x, t) = ε ≤ φε. If
x ∈ Ω ∩ {x : x1 = L}, by (2.6), φε(x) ≥ C0 ≥ uε(x, t). Hence, by the maximum
principle, for x ∈ Ω ∩ {x : x1 < L}, and t ∈ (0, T1), we have

φε(x) ≥ uε(x, t).

This proves the claim (2.7).
As mentioned before, for (x, t) ∈ Ω× (0, T1], we have

uε(x, t) ≤ uδ(x, t) if 0 < ε ≤ δ.

We may define
u(x, t) = lim

ε→0
uε(x, t).

By the claim (2.7), we have u(x, t) = 0 whenever x ∈ ∂Ω.
LetK ⊂ Ω be an compact set. Suppose that u(x, t) > 0 for (x, t) ∈ K×[0, T1].

There is a constant κ > 0 so that u(x, t) ≥ κ inK×[0, T1]. Since uε(x, t) ≥ u(x, t),
we have uε(x, t) ≥ κ in K × [0, T1], for all 0 < ε < 1. By the parabolic regularity
theory, the functions uε is uniformly bounded in C2+α,1+α/2(K× [0, T1]). Thus, by
choosing a subsequence, we see that uε converges to u in C2+β,1+β/2(K× [0, T1]),
with 0 < β < α. This implies that u(x, t) is a smooth solution of the equation
ut = up(∆u+uq) in K × [0, T1]. Thus, we obtain a non-negative function u(x, t),
which satisfies the equation ut = up(∆u+uq) in every open set where u(x, t) > 0
holds. Moreover, by repeating the process, either u(x, t) is defined for all t > 0,
or, there is T > 0 so that maxx u(x, t) → ∞ as t→ T .
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Lemma 2.1. If we further assume that the initial data u 0(x) = u(x, 0) > 0 and
satisfies the differential inequality (2.1) in Ω, then u t(x, t) ≥ 0 whenever u(x, t) is
defined.

Proof. If (2.1) holds in Ω, for any 0 < ε < 1, by the maximum principle,
uεt(x, t) ≥ 0 whenever uε(x, t) is defined. Thus, for each x ∈ Ω, t → uε(x, t) is
an increasing function. When letting ε→ 0, for each x ∈ Ω, t→ u(x, t) is also an
increasing function. Thus, ut(x, t) ≥ 0 whenever u(x, t) is defined.

From the construction, it is easy to see that, if u0 ≥ 0 in Ω, then u(x, t) ≥ 0
for x ∈ Ω and t ∈ (0, T1]. In general, even if u(x, 0) > 0 for x ∈ Ω, we do not
know whether u(x, t) > 0 for x ∈ Ω and t > 0. However, if u0(x) > 0 in Ω, and
if (2.1) is true, by Lemma 2.1, we always have u(x, t) > 0 whenever x ∈ Ω and
t ∈ (0, T1). Furthermore, for any compact subset K ⊂ Ω, uε converges to u in
C2+β,1+β/2(K × [0, T1]), with 0 < β < α.

Let ψ1 be the solution of the O.D.E.

ψ′′ + ψq = 0, ψ′(0) = 0, ψ(0) = 1.

For any M > 0, let
ψM(x) = Mψ1

(
M (q−1)/2x

)
.

Then, ψM the solution of the O.D.E.

ψ′′ + ψq = 0, ψ′(0) = 0, ψ(0) = M.

Suppose that x0 ∈ ∂Ω. Since Ω is convex, after a translation and rotation, we may
assume that x0 = 0 and Ω ⊂ {x = (x1, x2, ..., xn) : x1 > 0}. Let M > 0 be a
constant to be determined. For each ε > 0, let ψε be a translation of ψM so that
ψε(−ε) = 0 and ψε is increasing for x ∈ (−ε,M−(q−1)/2− ε). Let vε be a function
defined on the region

Ωε = {x = (x1, x2, ..., xn) ∈ Ω : x1 ∈ (0,M−(q−1)/2 − ε)}.

The function vε is a function depending on x1 only and vε(x) = ψε(x1). Then vε

satisfies the equation ∆v + vq = 0 on Ωε. Now, we choose M so that

M ≥ max{u(x, t) : x ∈ Ω, t ∈ [0, T1]}

and vε ≥ u0 in Ωε. By the maximum principle, we have u(x, t) ≤ vε(x) for all
x ∈ Ωε. Since it is true for all ε > 0, we conclude that u(x, t) ≤ v0(x). This
implies that, there is a constant A > 0, probably depending on t, so that

(2.8) 0 ≤ u(x, t) ≤ A dist(x, ∂Ω).



Blow-up of a Degenerate Non-linear Heat Equation 1207

When the domain is a ball,

Ω = {x ∈ R
n : |x| < R},

and u0 depends on r = |x| only, then, for any 0 < ε < 1, the solutions, uε, to the
problem (2.2) are symmetric. If we further assume that u0r(x) ≤ 0 for all x ∈ Ω,
then by the reflection principle, we have uεr(x, t) ≤ 0 whenever uε(x, t) is defined.
By letting ε → 0, we conclude that u(x, t) is symmetric and ur(x, t) ≤ 0 whenever
u(x, t) is defined.

3. THE CASE 0 < p < 2

Let u(x, t) be a positive solution of (1.1), i.e., u(x, t) > 0 for all x ∈ Ω and
t ∈ [0, T ). Using the scheme in section 2, we can find T1 > 0 and solutions uε of
(2.2) so that for any K ⊂⊂ Ω, uε converges to u in C2+β,1+β/2(K × [0, T1]).

Given any η > 0, we choose

Γ = {x ∈ Ω : dist(x, ∂Ω) ≥ η}.

Since uε converges to u in C2+β,1+β/2(Γ × [0, T1]), if ε < η and is small enough,

sup
Γ×[0,T1]

|uε − u| < η.

Thus, we have

sup
Ω×[0,T1]

|uε − u| ≤ sup
Γ×[0,T1]

|uε − u| + sup
(Ω−Γ)×[0,T1]

(uε + u) ≤ η + A(η + η) + Aη.

Hence, we conclude that uε converges to u uniformly on Ω × [0, T1].
From equation (2.2), for any 0 < ε < 1, we have

∫
Ω

u2
εt

up
ε
dx =

∫
Ω
uεt(∆uε + uq

ε) dx = − d

dt

∫
Ω

(
|Duε|2

2
− uq+1

ε

q + 1

)
dx

Thus, if 0 < s < T1,∫ s

0

∫
Ω

u2
εt(x, t)
up

ε (x, t)
dx dt+

1
2

∫
Ω

|Duε|2(x, s) dx

=
1

q + 1

∫
Ω

uq+1
ε (x, s) dx+

∫
Ω

(
|Duε|2(x, 0)

2
− uq+1

ε (x, 0)
q + 1

)
dx

=
1

q + 1

∫
Ω
uq+1

ε (x, s) dx+
∫

Ω

( |Du|2(x, 0)
2

− (u(x, 0) + ε)q+1

q + 1

)
dx
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As ε → 0, uε converges to u uniformly on Ω × (0, T1], and Duε, uεt converge to
Du, ut almost everywhere on Ω × (0, T1]. By Fatou’s Lemma, when ε → 0, we
have

(3.1)

∫ s

0

∫
Ω

u2
t (x, t)
up(x, t)

dx dt+
1
2

∫
Ω

|Du|2(x, s) dx

≤ 1
q + 1

∫
Ω

uq+1(x, s) dx+
∫

Ω

( |Du|2(x, 0)
2

− uq+1(x, 0)
q + 1

)
dx

Equation (3.1) implies that, for t ∈ (0, T1),

(3.2)
∫

Ω

( |Du|2(x, t)
2

− uq+1(x, t)
q + 1

)
dx ≤

∫
Ω

( |Du|2(x, 0)
2

− uq+1(x, 0)
q + 1

)
dx,

and

(3.3)
∫ t

0

∫
Ω

u2
s(x, s)
up(x, s)

dx ds ≤
∫

Ω

( |Du|2(x, 0)
2

− uq+1(x, 0)
q + 1

)
dx.

By repeating the process, we see that (3.2) and (3.3) are true for all t ∈ (0, T ).
On the other hand, let

Ω(ε) = {x ∈ Ω : dist(x, ∂Ω) ≥ ε}.

When 0 < p < 2, using integration by parts, we have

d

dt

(
1

2 − p

∫
Ω(ε)

u2−p dx

)
=
∫

Ω(ε)
u1−put dx =

∫
Ω(ε)

u(∆u+ uq) dx

= −
∫

Ω(ε)
(|Du|2 − uq+1) dx+

∫
∂Ω(ε)

u
∂u

∂ν(ε)
dσ(ε),

where ν(ε) is the unit outward normal to ∂Ω(ε) and dσ(ε) is the volume form on
∂Ω(ε). For any 0 < s1 < s2 < T , we have

(3.4)

1
2 − p

(∫
Ω(ε)

u2−p(x, s2) dx−
∫

Ω(ε)
u2−p(x, s2) dx

)

= −
∫ s2

s1

∫
Ω(ε)

(|Du|2 − uq+1) dx dt+
∫ s2

s1

∫
∂Ω(ε)

u
∂u

∂ν(ε)
dσ(ε) dt,

We claim that for any 0 < t < T , there is εi → 0 as i → ∞ such that

(3.5)

(∫
∂Ω(εi)

u2 dσ(εi)

)(∫
∂Ω(εi)

|Du|2 dσ(εi)

)
→ 0.
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In fact, if it is not true, there are t ∈ (0, T ) and a constant c0 > 0 so that, for any
ε > 0, (∫

∂Ω(ε)
u2 dσ(ε)

)(∫
∂Ω(ε)

|Du|2 dσ(ε)

)
≥ c0.

By (2.8), when ε is small enough, we have∫
∂Ω(ε)

u2 dσ(ε) ≤ Cε2.

Thus, ∫
∂Ω(ε)

|Du|2 dσ(ε) ≥ Cε−2.

Let ε0 > 0 be small enough so that the function dist(x, ∂Ω) is Lipschitz continuous
for x ∈ {x ∈ Ω : dist(x, ∂Ω) < ε0}. By the coarea formula,∫

Ω
|Du|2 dx ≥ C

∫ ε0

0

∫
∂Ω(ε)

|Du|2 dσ(ε) dε ≥ C

∫ ε0

0
ε−2 dε = ∞.

This contradicts (3.2). Therefore, (3.5) is true.
By (3.5) and Holder’s inequality, we have∫

∂Ω(εi)
u

∂u

∂ν(εi)
dσ(εi) dt→ 0 as i→ ∞.

Now, we may replace ε by εi in (3.4) and let i → ∞. Then, we have

1
2 − p

(∫
Ω
u2−p(x, s2) dx−

∫
Ω
u2−p(x, s2) dx

)

= −
∫ s2

s1

∫
Ω

(|Du|2 − uq+1) dx dt.

This implies that, for almost all t ∈ (0, T ), the function∫
Ω
u2−p(x, t) dx

is differentiable and

(3.6)
d

dt

(
1

2− p

∫
Ω

u2−p(x, t) dx
)

= −
∫

Ω

(|Du|2 − uq+1) dx.

Theorem 3.2. Let u(x, t) be a positive solution of (1.1) with 0 < p < 2 and
q > 1. Suppose that the initial data u 0(x) = u(x, 0) satisfies the condition

(3.7)
1
2

∫
Ω

|Du0|2(x) dx ≤ 1
q + 1

∫
Ω
uq+1

0 (x) dx.

Then, u(x, t) blows up in finite time.
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We note that given any v ∈ C1(Ω̄), if k > 0 is chosen large enough, then the
function u0(x) = kv(x) would satisfies (3.7).

Proof. From (3.2) and (3.7), for any t > 0, we have∫
Ω

|Du|2(x, t) dx ≤ 2
q + 1

∫
Ω

uq+1(x, t) dx.

Thus, when 0 < p < 2, from (3.6),

(3.8)
d

dt

(
1

2 − p

∫
Ω

u2−p(x, t) dx
)

≥ q − 1
q + 1

∫
Ω

uq+1(x, t) dx.

Also, by Holder’s inequality, there is a constant C0 > 0 so that

(3.9)
∫

Ω
uq+1 dx ≥ C0

(∫
Ω
u2−p dx

) q+1
2−p

.

Let
I(t) =

∫
Ω
u2−p(x, t) dx.

From (3.8) and (3.9), we obtain

I ′(t) ≥ C1I
q+1
2−p .

Since q > 1 and p > 0, we have

γ =
q + 1
2 − p

> 1.

If the solution u(x, t) exists in the time interval (0, t), for certain constant C1 > 0,
we have

I1−γ(t) ≤ I1−γ(0) − (γ − 1)C1t,

or ∫
Ω
u2−p(x, t) dx ≥

(
1

I1−γ(0) − (γ − 1)C1t

) 1
γ−1

.

Therefore, the solution has to blow up in finite time.

Theorem 3.3. Let u(x, t) be a positive solution of (1.1) in Ω × (0, T ) with
0 < p < 2 and q > 1. Then, there is C > 0 so that

(∫
Ω
u2−p(x, t) dx

) 1
2−p

≤ C|T − t|−1/(q+p−1).
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Proof. From (3.2), we have∫
Ω

|Du|2 dx ≤ 2
q + 1

∫
Ω
uq+1(x, t) dx+B,

where

B =
∫

Ω

( |Du|2(x, 0)
2

− uq+1(x, 0)
q + 1

)
dx.

Thus, when 0 < p < 2, from (3.6),

(3.10)
d

dt

(
1

2 − p

∫
Ω
u2−p(x, t) dx

)
≥ q − 1
q + 1

∫
Ω
uq+1 dx−B.

As before, let

I(t) =
∫

Ω
u2−p(x, t) dx.

Combining (3.10) and (3.9), we see that there are constants C2 > 0 and C3 > 0 so
that,

(3.11) I ′ ≥ −C2 +C3I
q+1
2−p .

If

(3.12) −2C2 + C3I
q+1
2−p ≤ 0 for t ∈ (0, T )

then there is constant C4 > 0 so that

I(t) =
∫

Ω
u2−p(x, t) dx ≤ C4

for all t ∈ (0, T ), and the Theorem is true.
If (3.12) is not true, either there is s1 > 0 such that

−C2 + C3I
q+1
2−p (t) > 0,

for all t ∈ (s1, T ), or, there is an interval (s1, S) such that

I
q+1
2−p (t) >

C2

C3
,

for all t ∈ (s1, S), and

I
q+1
2−p (S) =

C2

C3
.
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The latter case implies that I ′(t) < 0 for some t ∈ (s1, S). It contradicts the
equation (3.11). Therefore, for all t ∈ (s1, T ), I ′(t) ≥ −C2 +C3I

q+1
2−p (t) > 0, and

I(t) ≥ I(s1). Thus, we can find C4 > 0 so that

(3.13) I ′(t) ≥ C4(I(t))
q+1
2−p for t > s1.

Let Sn be a sequence so that Sn > s1 for all n and Sn → T as nto∞ and

lim sup
n→∞

∫
Ω

u2−p(x, Sn) dx = ∞.

After integrating equation (3.13), from t to Sn, with t > s1, we have

q + p− 1
2 − p

(I−
q+p−1
2−p (t) − I

− q+p−1
2−p (Sn)) ≥ C4(Sn − t).

By letting n→ ∞, we have(∫
Ω
u2−p(x, t) dx

) 1
2−p

≤ C5|T − t|−1/(q+p−1).

4. SYMMETRIC SOLUTIONS

In this section, we let

Ω = {x ∈ R
n : |x| < R}.

Let r = |x|. We assume that u(x, t) depends on r and t only. Then equation (1.1)
becomes

(4.1)
ut = up(urr +

n− 1
r

ur + uq) for r ∈ (0, R), t ∈ (0, T ),

ur(0, t) = 0, u(R, t) = 0 for t ∈ (0, T ),
u(r, 0) = u0(r) for r ∈ (0, R).

We assume that u0 ∈ C2,α(0, R)∩ C2[0, R], and

(4.2)
u0(R) = 0 u′0(0) = 0, u′0(R) < 0 and u′′0(0) < 0

u0(r) > 0, u′0(r) < 0, u′′0 +
n − 1
r

u′0 + uq
0 ≥ 0 for r ∈ (0, R).

It follows that

(4.3) ut(r, t) ≥ 0, ur(r, t) ≤ 0 for r ∈ (0, R), t ∈ (0, T ).

Under these conditions, using the method of Friedman and McLeod, [2], we will
show that x = 0 is the only blowup point.
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Lemma 4.1. Let p > 0, q > 1 and γ ∈ (1, q). There is a constant ε > 0 so
that

−ur ≥ εr2uγ for r ∈ (0, R), t ∈ (0, T ).

Proof. We let f(u) = uq and F (u) = uγ , with 1 < γ < q. Let c(r) = εrn+1

and
J = rn−1ur + c(r)F (u).

Then,

Jt = rn−1utr + c(r)F ′ut

= prn−1u−1utur + rn−1up(urrr − n− 1
r2

ur +
n− 1
r

urr + f ′ur),

Jr = (n− 1)rn−2ur + rn−1urr + c, F + cF ′ur,

and
Jrr = (n− 1)(n− 2)rn−3ur + 2(n− 1)rn−2urr + rn−1urrr

+ c′′F + 2c′F ′ur + cF ′′u2
r + cF ′urr.

Hence,

Jt − up

(
Jrr − n− 1

r
Jr

)
= prn−1u−1utur + rn−1upf ′ur − up

(
c′′F + 2c′F ′ur + cF ′′u2

r + cF ′urr

)
+
n − 1
r

up(c′F + cF ′ur) + cF ′ut.

Using equation (4.1), we obtain

Jt − up

(
Jrr − n − 1

r
Jr

)
= prn−1u−1utur + rn−1upf ′ur − up

(
c′′F + 2c′F ′ur + cF ′′u2

r

)
+ cF ′up

(
n− 1
r

ur + f

)
+
n − 1
r

up(c′F + cF ′ur)

= prn−1u−1ut − cF ′′upu2
r + up

(
rn−1f ′ − 2c′F ′ +

2(n− 1)
r

cF ′
)
ur

+ up

(
cF ′f +

n − 1
r

c′F − c′′F
)
.

Now, we use the fact that

ur =
1

rn−1
(J − cF )
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and have

(4.4)

Jt − up

(
Jrr − n− 1

r
Jr

)

=prn−1u−1utur − cF ′′upu2
r + up

(
f ′ − 2

rn−1
c′F ′ +

2(n− 1)
rn

cF ′
)
J

+ up

(
cF ′f +

n− 1
r

c′F − c′′F − cFf ′ +
2

rn−1
cc′F ′F

−2(n− 1)
rn

c2FF ′
)
.

Since f = uq, F = uγ with 1 < γ < q and c = εrn+1, we have

cF ′f +
n− 1
r

c′F − c′′F − cFf ′ +
2

rn−1
cc′F ′F − 2(n− 1)

rn
c2FF ′

=4ε2rn+2u2γ−1 − (q − γ)εrn+1uq+γ−1 − ε(n+ 1)rn−1uγ

We choose ε small enough so that 4εR ≤ q − γ . Then, when u ≥ 1, since γ < q,
we have

4ε2rn+2u2γ−1−(q−γ)εrn+1uq+γ−1 ≤ 4ε2Rrn+1u2γ−1−(q−γ)εrn+1uq+γ−1 < 0.

Also, we choose ε small enough so that 4εR3 < n+ 1. When u ≤ 1, since γ > 1,
we have

4ε2rn+2u2γ−1 − ε(n + 1)rn−1uγ ≤ 4ε2R3rn−1u2γ−1 − ε(n + 1)rn−1uγ < 0.

Therefore, for any r > 0 and u > 0, if ε is chosen small enough, we have

cF ′f +
n− 1
r

c′F − c′′F − cFf ′ +
2

rn−1
cc′F ′F − 2(n− 1)

rn
c2FF ′ < 0.

From (4.4) and our assumptions (4.3), the function J satisfies an equation of the
form

Jt = up (Jrr − AJr + BJ) for r ∈ (0, R) and t ∈ (0, T ),

where

A =
n− 1
r

and B = quq−1 − 2εγ(n+ 1)ruγ−1 + 2ε(n − 1)ruγ−1.

When r = 0, we have J = 0. When r = R, since ur(r, t) ≤ 0, we have

lim sup
r→R

ur(r, t) ≤ 0.
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This implies that

lim sup
r→R

J(r, t) ≤ 0 for all t ∈ (0, T ).

Also, from the fact that u′′0(0) < 0 and the mean value theorem, we can see that
when r is small enough, for some small constant C > 0, we have u′0(r) ≤ −Cr.
Hence, if r is small, J(r, 0) ≤ −Crn + εrn+1u

q
0(r), and u0(0) > 0. We may

choose ε small enough, so that J(r, 0) ≤ 0 for all r ∈ (0, R). Then, by the
maximum principle, we have J(r, t) ≤ 0 for all r ∈ (0, R) and t ∈ (0, T ).

Theorem 4.2. Let u(x, t) be a solution of (1.1) in BR(0) × (0, T ) with q > 1
and p > 0. We assume that u(x, t) depends on r = |x| and t only. If the initial
data u0(r) satisfies assumptions (4.2), then the point x = 0 is the only blow-up
point.

Proof. By Lemma 4.1, for some γ > 1, we have −ur ≥ r2uγ . For any
0 < r < R and t ∈ (0, T ), we have

−
∫ r

0

ur(s, t)
uγ(s, t)

ds ≥ ε

∫ r

0

s2 ds.

It follows that
u1−γ(r, t) ≥ εr3

3
.

Thus, for any r > 0, we have

lim sup
t→T

u(r, t) <∞.

5. NON-SYMMETRIC SOLUTIONS

In this section, we will show that if u(x, t) is a non-negative solution of (1.1)
in Ω × (0, T ) with q > 1 and p > 0, then there is a constant C > 0 such that

u(x, t) ≤ C(T − t)−1/(q−1).

Again, we follow the method of Friedman and McLeod, [2].

Theorem 5.1. Let Ω be a bounded convex C2,α domain in R
n and u(x, t)

be a non-negative solution of (1.1) in Ω × (0, T ) with q > 1 and p > 0. Let
u0(x) = u(x, 0) be the initial data of u. We assume that u 0 ∈ C2,α(Ω) ∩C2(Ω̄),

(5.1) u0 = 0 and
∂u0

∂ν
< 0 on ∂Ω

and
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(5.2) u0 > 0 and ∆u0 + uq
0 ≥ 0 in Ω.

Then, there are constants α > 0 and M > 0 such that u(x, t) ≤ M whenever
dist(x, ∂Ω)< α/2.

Proof. Take any x̃ ∈ Ω. After a translation and a rotation, we may assume
that x̃ = 0, Ω ⊂ {x : x1 < 0}, and that the hyperplane x1 = 0 is tangent to ∂Ω at
x̃. Given α > 0, we define

Ωα = {x ∈ Ω : −α < x1 < 0}.

By (5.1), there is α > 0 such that

∂u0

∂x1
< 0 for (x, t) ∈ Ωα × (0, T ).

Moreover, the choice of α depends only on Ω and the initial data u0. Then, by the
reflection principle, we have

∂u

∂x1
≤ 0 for (x, t) ∈ Ωα × (0, T ).

Let f(u) = uq and F (u) = uγ with 1 < γ < q. We introduce the function

J = ux1 + ε(x1 + α)2F (u),

where ε > 0 is to be determined. Using (1.1), we compute that

Jt = utx1 + ε(x1 +α)2F ′ut = pu−1ux1ut + up(∆ux1 + f ′ux1) + ε(x1 +α)2F ′ut,

and

∆J = ∆ux1 + 4ε(x1 + α)F ′ux1 + ε(x1 + α)2F ′′|Du|2 + ε(x1 + α)2F ′∆u+ 2εF.

Thus, we have

Jt − up∆J

= pu−1ux1ut − ε(x1 + α)2F ′′|Du|2up + upf ′ux1 − 2εFup

− 4ε(x1 + α)F ′upux1 + ε(x1 + α)2F ′fup

= pu−1ux1ut − ε(x1 + α)2F ′′|Du|2up + upf ′(J − ε(x1 + α)2F ) − 2εFup

− 4ε(x1 + α)F ′up(J − ε(x1 + α)2F ) + ε(x1 + α)2F ′fup

In Ωα × (0, T ), since ux1 ≤ 0 and ut ≥ 0, we obtain,
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Jt − up∆J

≤ (f ′ − 4ε(x1 + α)F ′)upJ − ε(x1 + α)2up(f ′F − fF ′)

+ 4ε2(x1 + α)3upFF ′ − 2εupF

From the definitions of f and F , we have f ′F − fF ′ = (q − γ)uq+γ−1 > 0 and

ε(x1 + α)2up(f ′F − fF ′) − 4ε2(x1 + α)3upFF ′

= ε(q − γ)(x1 + α)2up+q+γ−1 − 4ε2γ(x1 + α)3up+2γ−1.

Since −α < x1 < 0, if u ≥ 1, and ε > 0 is chosen small enough, since q > γ , we
have

ε(x1 + α)2up(f ′F − fF ′) − 4ε2(x1 + α)3upFF ′

≥ ε(q − γ)(x1 + α)2up+q+γ−1 − 4ε2αγ(x1 + α)2up+2γ−1

≥ 0.

If 0 ≤ u ≤ 1, and ε > 0 is chosen small enough, since γ > 1, we have

4ε2(x1 + α)3upFF ′ − 2εupF

= 4ε2γ(x1 + α)3up+2γ−1 − 2εup+γ

≤ 4ε2γα3up+2γ−1 − 2εup+γ

≤ 0.

Hence, when ε is chosen small enough, the function J satisfies an equation of the
form

Jt ≤ up(∆J + EJ)

in Ωα × (0, T ), with E = (f ′ − 4ε(x1 + α)F ′)up. We also choose ε small enough
such that J(x, 0) ≤ 0 for x ∈ Ωα. It is easy to check that J(x, t) ≤ 0 for all
x ∈ ∂Ωα. By the maximum principle, we have J(x, t) ≤ 0 in Ωα × (0, T ). Then,
for (x, t) ∈ Ωα/2 × (0, T ), we have ux1 ≤ −ε(x1 + α)2uγ . Fix t ∈ (0, T ). We let
w(s) = u(s, 0′, t), where 0′ = (0, 0, ...0) ∈ R

n−1. Then, w′ ≤ −ε(s + α)2wγ . For
all s ∈ (−α, 0), we have

− 1
γ − 1

(
w−(γ−1)(s) −w−(γ−1)(−α)

)
≤ −ε(s + α)3

3
.

Then, when s ∈ (−α/2, 0), we have

− 1
γ − 1

w−(γ−1)(s) ≤ −εα
3

24
.

We note that γ > 1, therefore,

wγ−1(s) ≤ 24
(γ − 1)εα3

,

and the Theorem follows.
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Theorem 5.2. Let u(x, t) be a non-negative solution of (1.1) in Ω×(0, T ) with
q > 1 and p > 0. We assume that u0(x) = u(x, 0) is of C2,α and satisfies (5.1)
and (5.2). Then there is a constant C > 0 such that

u(x, t) ≤ C(T − t)−1/(q−1).

Proof. By Lemma 2.1, we have

ut(x, t) ≥ 0 for all (x, t) ∈ Ω× (0, T ).

For any x ∈ Ω, u(x, t) ≥ u(x, 0) > 0. Let α > 0 be the constant in Theorem 5.1,
and

Ω′ = {x ∈ Ω : α/4 < dist(x, ∂Ω) < α/2}.
Let c > 0 be a constant, so that u0(x) ≥ c for x ∈ Ω′. From Theorem 5.1, there are
positive constants α and M such that u(x, t) ≤ M whenever dist(x, ∂Ω) < α/2.
Thus, c ≤ u(x, t) ≤ M for x ∈ Ω′. By the parabolic regularity theory, there is a
constant C1 > 0 such that

ut(x, t) ≤ C1 for (x, t) ∈ Ω′ × (0, T ).

The function w(x, t) = ut(x, t) satisfies the equation

wt = up∆w + (qup+q−1 + pu−1w)w

in Ω′ × (0, T ). It follows that there is C2 > 0 such that

0 < C2 ≤ w(x, t) ≤ C1 for (x, t) ∈ Ω′′ × (α, T ),

where Ω′′ = {x ∈ Ω : 5α/16 < dist(x, ∂Ω)< 7α/16}. Let

Ω̃ = {x ∈ Ω : dist(x, ∂Ω) > 3α/8}.

There is a constant 0 < δ ≤ 1 such that

(5.3) ut(x, t)− δuq(x, t) ≥ 0 for (x, t) ∈ ∂Ω̃ × (α, T ).

Moreover, by the maximum principle, we have w(x, t) > 0 for (x, t) ∈ Ω× (0, T ).
Therefore, we can choose δ small enough so that

(5.4) ut(x, α)− δuq(x, α) ≥ 0 for x ∈ Ω̃.

Let γ > 1 and δ be the constant in (5.3). Let

J = ut − δuγ = up(∆u+ uq) − δuγ .
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By direct computations, we have

Jt = pu−1u2
t + up(∆ut + quq−1ut) − δγuγ−1ut,

and
∆J = ∆ut − δγuγ−1∆u− δγ(γ − 1)uγ−2|Du|2.

Thus,

Jt − up∆J

= pu−1u2
t + qup+q−1ut − δγuγ−1ut + δγup+γ−1∆u+ δγ(γ − 1)up+γ−2|Du|2.

Using equation (1.1) and the fact that ut = J + δuγ , we have

Jt − up∆J

= pu−1u2
t + qup+q−1ut − δγup+q+γ−1 + δγ(γ − 1)up+γ−2|Du|2

= pu−1u2
t + δγ(γ− 1)up+γ−2|Du|2 + qup+q−1(J + δuγ) − δγup+q+γ−1

Thus, we conclude that

(5.5)
Jt − up∆J

= pu−1u2
t + δγ(γ − 1)up+γ−2|Du|2 + qup+q−1J + δ(q − γ)up+q+γ−1.

Then, in equation (5.5), we choose γ = q. Then, the function satisfies an inequality
of the form

Jt ≥ up∆J + BJ in Ω̃ × (α, T )

with B = qup+q−1. By (5.3), we have J(x, t) ≥ 0 whenever x ∈ ∂Ω̃. Also, when
t = α, by (5.4), J = ut(x, α) − δuq(x, α) ≥ 0. Then, by the maximum principle,
J = ut − δuq ≥ 0 in Ω̃ × (α, T ). For any α < t < s < T , we have

1
q − 1

(
u−(q−1)(x, t)− u−(q−1)(x, s)

)
≥ δ(s− t).

Hence,
1

q − 1
u−(q−1)(x, t) ≥ δ(s− t).

When letting s→ T , we have

1
q − 1

u−(q−1)(x, t) ≥ δ(T − t),

and the Theorem follows.



1220 Chi-Cheung Poon

6. THE CASE p ≥ 2

Lemma 6.1. Let 0 < 2R < L, λ1 > 0, 0 < λ2 < 1, p ≥ 2, q > 1. Let
w(x) ∈ C2(2R, L)∩ C[2R, L] be a solution of the ODE

(6.1) w′′ − λ1w
−pw′x− λ2w

1−p +wq = 0 on (2R, L)

which is decreasing in x and satisfies the boundary conditions: w(2R) = w 0 > 0,
and w(L) = 0. Let

ε =
λ2

2λ1L
> 0.

Then, there is constant δ > 0 so that w ′(x) + εw(x) ≤ 0 when x ∈ (L− δ, L).
Proof. Let w(x) be a solution as described in the lemma. Suppose that there

is a point a ∈ (2R, L) such that w ′(a) + εw(a) > 0. Since w is decreasing in
(2R, L) and w(L) = 0, we have

lim sup
x→L−

(w′(x) + εw(x)) ≤ 0.

Thus, we can find an interval (a, b) ⊂ (2R, L) such that w ′(x) + εw(x) > 0 for
x ∈ (a, b) and w′(b) + εw(b) = 0. Then, for x ∈ (a, b), we have

w′′(x) + εw′(x) =λ1w
−pw′x+ λ2w

1−p −wq + εw′

≥ − λ1εw
1−px+ λ2w

1−p − wq − ε2w

≥ − λ1εLw
1−p + λ2w

1−p − wq − ε2w

≥ λ2

2
w1−p −wq − ε2w.

We let η > 0 so that if 0 < w < η, then

1
2
λ2w

1−p −wq − ε2w ≥ 0.

Since w is decreasing and w(L) = 0, there is δ > 0 such that 0 < w(x) < η for
x ∈ (L− δ, L). If a > L− δ, then 0 < w(x) < η for x ∈ (a, b). This implies that

w′′(x) + εw′(x) ≥ 0 in (a, b).

Hence, w′(x)+εw(x) is an increasing function in (a, b). However, w′(x)+εw(x) >
0 in (a, b) and w′(b) + εw(b) = 0, and we have a contradiction.

We let

(6.2) F (w) =
λ2

p− 2
w2−p +

1
q + 1

wq+1 when p > 2,
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and

(6.3) F (w) = −λ2 logw +
1

q + 1
wq+1 when p = 2.

In both cases, we have

lim
x→0+

F (w) = lim
x→∞F (w) = ∞,

and the function F (w) has a unique minimum at w = λ
1/(p+q−1)
2 , for w ∈ (0,∞).

It is easy to check that, since 0 < λ2 < 1, we have

F
(
λ

1/(p+q−1)
2

)
> 0.

Lemma 6.2. Let R > 0, λ1 > 0, 0 < λ2 ≤ 1, p ≥ 2, q > 1. Let w(x) be a
solution of the ODE (6.1) with initial data w(2R) = w 0 > λ

1/(p+q−1)
2 > 0, and

w′(2R) = 0. Then, either w(x) can be extended as a positive, decreasing function
defined on (2R,∞) and

(6.4) F (m) ≥ F (w0), with m = lim
x→∞w(x) < λ

1/(p+q−1)
2 ,

or, there is K > 2R such that w(x) is decreasing in (2R,K), w ′(K) = 0, and

(6.5) F (η) ≥ F (w0), with η = w(K) < λ
1/(p+q−1)
2 .

Proof. By our assumption on w(2R), we have w′′(2R) < 0. Thus w is a
decreasing function near x = 2R.

Let K > 2R be the first point where w ′(K) = 0 and η = w(K) > 0. We first
assume that p > 2. From the equation (6.1), when p > 2, we have

(6.6)
d

dx

(
1
2
w′2 +

λ2

p− 2
w2−p +

1
q + 1

wq+1

)
= λ1w

−pw′2x ≥ 0.

Thus, if F (w) is the function in (6.2), we have F (η) ≥ F (w0).
Suppose that the point K in the above does not exist. Then, either w(x) is

defined for all x ∈ (2R,∞) and is a decreasing function, or there is L > 2R so
that w(x) is a decreasing function in (2R, L) and w(L) = 0. In the first case, let
w(x) → m ≥ 0 as x → ∞. Then, there is an increasing sequence xn such that
xn → ∞ as n → ∞ and w′(xn) → 0 as n → ∞. When p > 2, from (6.6), we
have

1
2
w′2(xn) + F (w(xn)) ≥ F (w0).

When n→ ∞, we see that F (m) ≥ F (w0).
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Suppose that there is L > 2R so that w(x) is a decreasing function in (2R, L)
and w(L) = 0. By Lemma 6.1, there are δ > 0 and ε > 0 such that w′(x)+εw(x) ≥
0 in (L− δ, L). Then, we have

w′′ − λ2

2
w1−p +wq =w′′ + ελ1Lw

1−p − λ2w
1−p +wq

≥ w′′ − λ1w
−pw′x− λ2w

1−p +wq

= 0.

Since w′ ≤ 0, when p > 2, we have

d

dx

(
1
2
w′2 +

λ2

2(p− 2)
w2−p +

1
q + 1

wq+1

)
≤ 0.

Thus, for x ∈ (L− δ, L),

1
2
w′2(x) +

λ2

2(p− 2)
w2−p(x) +

1
q + 1

wq+1(x)

≤ 1
2
w′2(L− δ) +

λ2

2(p− 2)
w2−p(L− δ) +

1
q + 1

wq+1(L− δ)

and is bounded from above. However, since w(x) → 0 as x→ L, this is impossible.
When p = 2, we let F (w) be the function in (6.3). Using the same arguments,

we obtain the same result.

Theorem 6.3. Let Ω = {x : |x| < R0} and let u(x, t) be a positive solution
of (1.1) in Ω × (0, T ) with p ≥ 2 and q > 1. Suppose that u is symmetric, and is
radially decreasing, and blows up at t = T , then

lim sup
t→T−

(
(T − t)1/(p+q−1) max

Ω
u(x, t)

)
= ∞.

Proof. Let u(x, t) be a positive solution of (1.1) in Ω× (0, T ) with p ≥ 2 and
q > 1. We assume that u depends on r and t only, where r = |x|, and ur(x, t) ≤ 0
for all (x, t) ∈ Ω × (0, T ). Note that

u(0, t) = max
x∈Ω

u(x, t).

If the Theorem is not true, then there is a constant M > 0 such that

(6.7) lim sup
t→T

(T − t)1/(p+q−1)u(0, t) = M <∞.

Let a = (−a1, 0, ..., 0) ∈ Ω with a1 > 0. We let w(y, s) be the rescaled function
of u at a, i.e.,

w(y, s)=(T−t)1/(p+q−1)u
(
a+ y(T − t)(q−1)/2(p+q−1), t

)
with s=− log(T−t).
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Then, w(y, s) satisfies the equation

(6.8) ws = wp

(
∆w − q − 1

2(p+ q − 1)
w−pDw · y − 1

p+ q − 1
w1−p + wq

)

on the set

Γa

{
(y, s) : s > − logT, a+ y(T − t)(q−1)/2(p+q−1) ∈ Ω

}
.

Let

Γa(s) =
{
y : a+ y(T − t)(q−1)/2(p+q−1) ∈ Ω

}
with s = − log(T − t).

We note that, for each s > 0, the set Γa(s) is a ball centered at (T−t)−(q−1)/2(p+q−1)

(a1, 0, ..., 0) with radius (T − t)−(q−1)/2(p+q−1)R0, and s = ln(T − t). When
y ∈ ∂Γa(s), we have w(y, s) = 0. For y /∈ Γa(s), we let w(y, s) = 0. Then,
w(y, s) is defined for all y ∈ R

n and s > − logT . From our assumptions, we have

(6.9)
∂w

∂y1
(y, t) ≤ 0 when y = (y1, 0, ..., 0), y1 > (T − t)−(q−1)/2(p+q−1)a1.

Moreover, if y1 ∈ (T−t)−(q−1)/2(p+q−1)(a1, a1+R0), and (y1, y′) ∈ Γa(s), then we
have w(y1, y′; t) ≤ w(y1, 0′; t). Here y′ = (y2, ..., yn) and 0′ = (0, ..., 0) ∈ R

n−1.
By (6.7), there is a sequence tk such that tk → ∞ as k → ∞ and

(6.10) lim
n→∞(T − tk)1/(p+q−1)u(0, tk) = M.

Let
R = T−(q−1)/2(p+q−1)R0.

Let φ(z) be a solution of the ODE (6.1), with

λ1 =
q − 1

2(p+ q − 1)
and λ2 =

1
p+ q − 1

,

and φ(2R) = α > 0 and φ′(2R) = 0, where

α = 2 max
(
M, λ

1/(p+q−1)
2

)
.

By Lemma 6.2, either φ can be extended as as decreasing function for z ∈ (2R,∞),
or φ(z) is defined on (2R,K), φ′(z) ≤ 0 in (2R,K) and φ′(K) = 0. By equation
(6.4) and (6.5), we choose α = φ(2R) large enough so that

(6.11) m = lim
z→∞ φ(z) < M/2
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or

(6.12) φ(K) < M/2.

We first assume that φ is a decreasing function and is defined on [2R,∞). We
let φ(z) = φ(2R) for z ∈ [0, 2R), and define the function ϕ(y) to be a function
depending on y1 only, and ϕ(y) = φ(y1). Then, we have ϕ(y) > w(y,− lnT ). Let
a = (a1, 0′), and

sk = − log(T − tk) and yk = a(T − tk)−(q−1)/2(p+q−1),

where tk is the sequence in (6.10). Note that

|yk| → ∞ as k → ∞,

and
lim

k→∞
w(yk, sk) = M.

Hence, by (6.11), when k is large, we have w(yk, sk) > ϕ(yk). Thus, there is
s0 > − lnT such that w(y, s) < ϕ(y) for all y ∈ R

n and − logT < s < s0,
and, for certain y0 ∈ R

n, w(y0, s0) = ϕ(y0). By our assumption, we must have
y0 = (y01, 0′), and y01 > 2R. Then, in a neighborhood of y0, the function ϕ(y) is
also a solution of the equation (1.1). Also, we have w(y, s) ≤ φ(y) for all y and
s < s0, but w(y0, s0) = ϕ(y0). By the maximum principle, it is impossible.

Next, we assume that φ is a decreasing function for x ∈ (R,K), φ′(2R) =
φ′(K) = 0. By (6.5), we choose α = φ(2R) large enough so that φ(K) < M/2.
Then, φ′′(K) > 0 and we may extend φ to be function on the interval (2R, K̄),
for some K̄ > K so that on (K, K̄), the function φ is strictly increasing. When
z ∈ (0, 2R), we let φ(z) = φ(2R). When z > K̄ , we let φ(z) = φ(K̄). We then
define the function ϕ(y) to be a function depending on y1 only, and ϕ(y) = φ(y1).
Then, we have ϕ(y) > w(y,− logT ). As in the above, let a = (a0, 0′), and

sk = − log(T − tk) and yk = a(T − tk)−(q−1)/2(p+q−1).

Then, we have |yk| → ∞ as k → ∞, and limk→∞ w(yk, sk) = M. Hence, by
(6.12), when k is large, we have w(yk, sk) > ϕ(yk). Thus, there is s0 > − lnT
such that w(y, s) < ϕ(y) for all y ∈ R

n and − logT < s < s0, and, for certain
y0 ∈ R

n, w(y0, s0) = ϕ(y0). Let y0 = (y01, y
′
0). We claim that y01 ∈ (2R,K].

By the choice of φ(2R), it is clear that y01 > 2R. If y01 > K, let ỹ = (K, 0′).
Since w(y, s0) ≤ ϕ(y) for all y, we have w(ỹ, s0) ≤ ϕ(ỹ) < ϕ(y0) = w(y0, s0). It
contradicts (6.9). Hence, y01 ∈ (2R,K]. In a neighborhood of y0, ϕ(y) is also a
solution of the equation (1.1). Also, we have w(y, s) ≤ φ(y) for all y and s < s0,
but w(y0, s0) = ϕ(y0). By the maximum principle, it is also impossible.
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