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GRAPHS WITH ISOMORPHIC NEIGHBOR-SUBGRAPHS

Chi-Feng Chan, Hung-Lin Fu and Chao-Fang Li

Abstract. A graph G is said to be H-regular if for each vertex v ∈ V (G),
the graph induced by NG(v) is isomorphic to H . A graph H is a feasible

neighbor-subgraph if there exists an H-regular graph, otherwise H is a for-

bidden neighbor-subgraph. In this paper, we obtain some classes of graphs

H which are forbidden and then we focus on searching H-regular graphs
especially those graphs of smaller order.

1. INTRODUCTION

A graphG is said to beH-regular if for each vertex v ∈ V (G), the graph induced
by NG(v) is isomorphic to H . Since for each vertex in an H-regular graph its
neighbor inducesH , an H-regular must be a regular graph. A bit of reflection, such

graphs do exist. For example, the complete graphs, balanced complete multipartite

graphs and triangle-free regular graphs are H-regular for some H respectively. On

the other hand, it is not difficult to realize that H can not be a star with at least two

edges. For convenience, we say a graph H is feasible if there exists an H-regular

graph, otherwise H is forbidden.

In this paper, by using several results on finding forbidden graphs and feasible

graphs we are able to characterize all feasible graphs of order at most 5. We also

include four graphs in Appendix which are C6, C7, P6 and P7-regular respectively.

From these graphs, we expect that to characterize all feasible graphs in general is

going to be very difficult. To conclude, we also present a strongly regular graph

which is not an H-regular graph for some H , this supports our expectation.

2. FORBIDDEN GRAPHS

We start the study with the existence of forbidden graphs. For the graph terms,

we refer to the textbook written by D.B. West [3]. The following lemma shows that

there are quite a few connected graphs which are forbidden.
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Proposition 2.1. LetH be a graph with |V (H)| ≥ 3. If there exist two vertices
x and y such that x, y ∈ V (H), dH(x) = |V (H)| − 1 and dH(y) = 1, then H is

a forbidden graph.

Proof. Suppose not. Let G be an H-regular graph and we consider an arbitrary

vertex v in G. By the definition of an H-regular graph, NG(v) induces a graph
G′ which is isomorphic to H . Let u ∈ NG(v) such that dG′(u) = |V (H)| − 1
and w ∈ NG(v) such that dG′(w) = 1. Now, since w ∈ V (G), NG(w) also
induces a graph G′′ which is isomorphic to H . But, by the fact that w ∈ NG(v)
and dG′(w) = 1, V (G′′) contains exactly |V (H)| − 2 vertices which are not in
V (G′) ∪ {v}, moreover {u, v} ⊆ V (G′′). Now, since dG(u) = dG(v) = |V (H)|,
uv is an independent edge in G′′. By assumption that H is connected, G′′ is not

isomorphic to H . Therefore, G can not be an H-regular graph. This concludes the
proof.

Corollary 2.2. Let H be a graph with |V (H)| ≥ 3. If there exist two vertices
x and y in H such that dH(x) = |V (H)| − 1 and dH(y) = 1. Then H ∪ Ot is a

forbidden graph for each t ≥ 1.

Proof. The proof follows by a similar argument.

If the connected graph we consider in Proposition 2.1 is a tree, then we can

lower down the maximum degree.

Proposition 2.3. Let H be a tree of order n and x ∈ V (H) such that
dH(x) > (2n − 2)/3. Then H is a forbidden graph.

Proof. Suppose not. Let G be an H-regular graph and v is an arbitrary vertex
of NG(v). By assumption G[NG(v)] = H . Let u ∈ NG(v) be the vertex of degree
k larger than (2n−2)/3 in G[NG(v)] and A = NG(v)\NG[u], B = NG(u)\NG[v].
If any vertex in A

⋃
B is adjacent to two vertices in NG(v)

⋂
NG(u), then we

will find a C4 in G[NG(v)] or G[NG(u)] which are not trees. Since |A| + |B|
< 2[n − 1 − (2n−2)

3 ]= (2n−2)
3 , there exists a vertex w such that only u and v are

adjacent to w in NG[u] (similarly in NG[v]). If w is adjacent to any vertex of

NG(v)
⋂

NG(u) in G, then there is a C3 in NG(v). So, uv is an independent edge

in G[NG(w)]. By assumption that H is connected, G[NG(w)] is not isomorphic to
H . Therefore, G can not be an H-regular graph.

Proposition 2.4. If H = Kn −Ps, then H is a forbidden graph for n ≥ 3 and
2 ≤ s ≤ n − 1.

Proof. Suppose G is a (Kn−Ps)-regular graph for some 2 ≤ s ≤ n−1 and v is

an arbitrary vertex of G. By assumption, G[NG(v)] = Kn−Ps. Let H = Kn−Ps.
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Then there exist x, y, z ∈ V (H) such that dH(x) = n − 1, dH(y) = n − 2, and
dH(z) = n − 2. Let H1 = H ∪ {v}. Now, we consider two cases. Case 1. s = 2.
Consider the vertex y. Because y is adjacent to v, so dH1(y) = n− 2 + 1 = n− 1.
Since n − 1 neighbors of y which are of full degrees, G[NG(y)] 6= Kn − P2. Case

2. 3 ≤ s ≤ n − 1. Let G1 = G[NH1(y)] and consider the vertex y. Because y

is adjacent to v, so dH1(y) = n − 2 + 1 = n − 1, dG1(v) = 2 + n − 4 = n − 2,
dG1(x) = 2 + n− 4 = n− 2, and the vertices of G1 −{v, x} are of degree at most
n−2 in G1. Since y is adjacent to z and dH1(y) = n−2+1 = n−1, there exists a
vertex w which is not inH1, and w is adjacent to z. As to the vertex u ∈ G[NG(y)],
dG[NG(y)](u) ≤ n − 2. Now, consider the vertex w. Since dG(y) = dG(z) = n,
G[NG(w)] 6= Kn − Ps. Both cases lead to a contradiction. Hence, the proof is

concluded.

Proposition 2.5. If H = Km,n and m 6= n, then H is a forbidden graph.

Proof. Suppose not. Let G be an H-regular graph and v be an arbitrary
vertex of G. By assumption, G[NG(v)] = H . Suppose that H consists of X

and Y , where |X | = m, |Y | = n and m > n. Let G1 = G[NG(v)]. Then
dG1(x) = n + 1 for all x ∈ X and G[NG1(x)] = K1,n. Since X is an independent

part, NG(v)
⋂

NG(x)= Y . By the fact that G[NG(x)] is isomorphic to H , each
vertex of A joins to each vertex of Y , where A = NG(x) \ (Y ∪ {v}). But
dG(y) = (m + 1) + (m − 1) = 2m > m + n for all y ∈ Y , this leads to a
contradiction. Hence, the proof is concluded.

Corollary 2.6. If H = Kn1 ,n2,··· ,nr and ni 6= nj , for some i 6= j, then H is a

forbidden graph.

Proof. The proof follows by a similar argument.

3. CONSTRUCTIONS OF H-REGULAR GRAPHS

In this section, we will use operations of graphs to discuss the structure of

H-regular graphs.

Proposition 3.1. If G is an H-regular graph, then G∨G is a (G∨H)-regular
graph.

Proof. Let v be an arbitrary vertex of G∨G. Then G[NG∨G(v)] = G∨
G[NG(v)] = G∨H .

Corollary 3.2. Cn∨Cn is a K5-regular graph for n = 3 and it is a (Cn∨O2)-
regular graph for all n ≥ 4.
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Proof. By Proposition 3.1, since C3 is an P2-regular graph, C3∨C3 is a (C3∨P2)
-regular graph, i.e., K5-regular graph. On the other hand, Cn is an O2-regular graph,

for all n≥4, Cn∨Cn is a (Cn∨O2)-regular graph, for all n≥4.

Proposition 3.3. If G1 is anH1-regular graph and G2 is an H2-regular graph,

then the Cartesian product G1 G2 is an (H1 ∪ H2)-regular graph.

Proof. Choose a vertex x ∈ V (G1 G2). By definition of Cartesian product,
NG1 G2

(x) = NG1(x) ∪ NG2(x). Hence G[NG1 G2
(x)] = G[NG1(x) ∪ NG2(x)]

= H1 ∪ H2.

Corollary 3.4. If H-regular graphs exist, then (H ∪ Ot)-regular graphs exist
for t ≥ 1.

Proof. Let G be an H-regular graph. Because Kt,t is an Ot-regular graph for

each t ≥ 1, by Proposition 3.3, G Kt,t is an (H ∪ Ot)-regular graph.

Proposition 3.5. If G is an H-regular graph, then Gt is a (
⋃t H)-regular

graph for each t ≥ 1, where
⋃t H is H ∪ H ∪ · · · ∪ H (t tuple).

Proof. By Proposition 3.3, Gt is an (
⋃t H)-regular graph for each t ≥ 1.

Corollary 3.6. (K3)t is an Mt-regular graph for each t ≥ 1.

Proof. Because K3 is an M1-regular graph, by Proposition 3.5, we conclude

that (K3)t is an Mt-regular graph.

Corollary 3.7. If G is an H-regular graph, then G (K3)t is an (H ∪ Mt)-
regular graph.

Proof. Because (K3)t is an Mt-regular graph, by Proposition 3.3, we get

G (K3)t is an (H ∪ Mt)-regular graph.

4. H-REGULAR GRAPHS OF SMALL ORDERS

We shall consider the graphs H with order ≤ 5.

Proposition 4.1. Cn-regular graph exists for n = 3, 4, 5.

Proof. The followings are easy to check.
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• n = 3 Tetrahedron is a C3-regular graph.

Fig. 1. C3-regular graph.

• n = 4 Octahedron is a C4-regular graph.

Fig. 2. C4-regular graph.

• n = 5 Icosahedron is a C5-regular graph.

Fig. 3. C5-regular graph.

Proposition 4.2. A Pn-regular graph exists for n = 2, 4, 5.

Proof. The followings are easy to check,

• n = 2 C3 is a P2-regular graph.

• n = 3 No P3-regular graph, by Proposition 2.4.
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• n = 4

Fig. 4. P4-regular graph.

• n = 5

Fig. 5. P5-regular graph.

Proposition 4.3. For each graph of order 2, H , there exists an H-regular
graph.

Proof. Since H is of order 2, H = P2 or O2. The proof follows by letting the

H-regular graphs be K3 and C4 respectively.

Proposition 4.4. There exists an H-regular graph for each graph H of order

3 except H = P3.

Proof.

• H = O3 K3,3 is an O3-regular graph.

• H = P2 ∪ O1 Since K3 is an P2-regular graph, by Proposition 3.3, K3 K2

is a P2 ∪ O1-regular graph.

• H = P3 Because P3 = K3 − P2, by Proposition 2.4, no P3-regular graphs

exist.

• H = K3 K4 is a K3-regular graph.

Proposition 4.5. There exists an H-regular graph for the graphs H of order

4 except H = K4 − P2, K4 − P3, S3 or P3 ∪ O1.

Proof.
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• H = O4 K4,4 is a a O4-regular graph.

• H = P2 ∪ O2 Since K3 K2 is a P2 ∪ O1-regular graph, by Proposition 3.3,

(K3 K2) K2 is a P2 ∪ O2-regular graph.

• H = M2 (K3)2 is an M2-regular graph. (Corollary 3.6.)

• H = C3 ∪O1 Since K4 is a C3-regular graph, by Proposition 3.3, K4 K2 is

a C3 ∪ O1-regular graph.

• H = P4 or C4 By Proposition 4.1 and Proposition 4.2.

• H = K4 K5 is a K4-regular graph.

• H = K4 − P2 or K4 − P3 By Proposition 2.4, no (K4 − P2)-regular graphs
and (K4 − P3)-regular graphs exist.

• H = S3 or P3 ∪ O1 By Proposition 2.1 and Corollary 2.2, no S3-regular

graphs and (P3 ∪ O1)-regular graphs exist.

Proposition 4.6. Let H be a graph of order 5. Then an H-regular graph exists
if and only ifH = G1, G2, G4, G5, G7, G8, G10, G13, G14, G20, G21, G24, G25, G34,

see Figure 6.

Fig. 6. All graphs of order 5 [2].
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Proof.

• H = G1 and G34 K5,5 is aG1-regular graph and K6 is a G34-regular graph.

• H = G2, G4, G5, G7, G10, G14 and G21 By Corollary 3.4, G2, G4, G5, G7,

G10, G14 and G21-regular graphs exist respectively.

• H = G24 and G25 D1 = (Z8, E1) where uv ∈ E1 if and only if min{8 −
|u − v|, |u − v|} ∈ {1, 3, 4} is a G24-regular graph. D2 = (Z8, E2) where
uv ∈ E2 if and only if min{8− |u− v|, |u− v|} ∈ {1, 2, 4} is a G25-regular

graph.

• H = G8 It was obtained by D.G. Hoffman first. Here, we present a G8-

regular graph with smaller order.

Fig. 7. (P3 ∪P2)-regular graph.

• H = G13 and G20 By Proposition 4.1 and Proposition 4.2, G13 and G20-

regular graphs exist respectively.

• H = G3, G6 and G11 By Corollary 2.2, G3, G6 and G11 are forbidden graphs.

• H = G12 By Proposition 2.3, G12 is a forbidden graph.

• H = G9, G15, G29, G31 and G33 By Corollary 2.2 and Proposition 2.4,

G9, G15, G29, G31 and G33 are forbidden graphs.

• H = G16, G22 and G27 By Proposition 2.1, G16, G22 and G27 are forbidden

graphs.

• H = G26 Because G26 is K3,2. By Proposition 2.5, no G26-regular graphs

exist.

• H = G28 By Proposition 2.6, no G28-regular graphs exist.

For the followings cases, we shall use similar technique to prove the nonexistence

of anH-regular graph forH = G17, G18, G19, G23, G30 and G32. Since their proofs

are similar, we show the proofs of the first two cases, and omit the others.
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• H = G17 Let G be a G17-regular graph and v ∈ V (G) such that G[NG(v)] =
G17. Let NG(v) = {x, y, z, w, u} such that x ∼ y, x ∼ z, x ∼ w, z ∼ w and
w ∼ u. By assumption G[NG(z)] = G17, there exist two vertices p and q

which are not in NG(v) such that p ∼ x and q ∼ w. It’s easy to see that p is
not incident to q by consider G[NG(x)]. Since dG(v) and dG(x) are both of
degree 5, xv is an independent edge in G[NG(y)]. Hence, G[NG(y)] 6= G17.

This is a contradiction and thus G17 is forbidden.

• H = G18 Let G be a G18-regular graph and v ∈ V (G) such that G[NG(v)] =
G18. Let NG(v) = {x, y, z, w, u} such that x ∼ y, x ∼ w, x ∼ u, y ∼ z and
w ∼ u. By assumption G[NG(x)] = G18, there exists a vertex p which is

not in NG(v) such that p ∼ x and p ∼ y. Consider G[NG(y)]. Since dG(v)
and dG(x) are of degree 5, G[NG(y)] 6= G18. This is a contradiction. Hence,

G18 is forbidden.

5. CONCLUDING REMARK

The study of neighbor-regular graphs has just begun. So far, not much is known.

In this paper, we manage to obtain several classes of graphs which are forbidden

and for quite a few graphs H we construct an H-regular graph. But, we also realize

the difficulty of obtaining general results. For example, we can construct H-regular
graphs for H = Cn or Pn whenever n ≤ 7 (Figure 8, 9, 10, 11). How about n ≥ 8?
On the other hand, we are able to say something about forbidden graphs, but there

are quite a few forbidden graphs remained unknown. To conclude this paper, we

would like to present an example to show the differences betweenH-regular graphs

and strongly regular graphs, see Appendix.

Fig. 8. C6-regular graph.



1180 Chi-Feng Chan, Hung-Lin Fu and Chao-Fang Li

Fig. 9. C7-regular graph.

V (G) = {ai, bi, ci, di, ei, f | i ∈ Z7}, and edges of G are :
ai ∼ [ai+1, ai+3, ai+4, ai+6, bi, ci, bi+6]; bi ∼ [ai, ci, ci+1, ai+1, di, ei+1, ei+4];
ci ∼ [ai, bi, bi+6, di, di+3, di+5, ei]; di ∼ [bi, ci, ci+2, ci+4, di+2, di+5, ei+4];
ei ∼ [bi+3, bi+6, ci, di+3, ei+3, ei+4, f ]; f ∼ [e0, e3, e6, e2, e5, e1, e4].
Note : x ∼ [α1, α2, . . . , αk] =def {x ∼ αi| i = 1, 2, . . . , k}.

Fig. 10. P6-regular graph.

V (G) = {ai, bi, ci, di| i ∈ Z6}, and edges of G are :
ai ∼ [ai+1, bi, ci, di, bi+5, ai+5]; bi ∼ [ci+2, ci, ai, ai+1, di+1, di+5];
ci ∼ [di, ai, bi, ci+2, ci+4, bi+4]; di ∼ [ci, ai, bi+5, di+4, di+2, bi+1].
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Fig. 11. P7-regular graph.

V (G) = {ai, bi, ci, di, ei| i ∈ Z6}, and edges of G are :
ai ∼ [ai+1, bi, ci, di, ei, bi+5, ai+5 ]; bi ∼ [di+4, ei+1, ai+1, ai, ci, bi+3, ci+3];
ci ∼ [ei+2, di+2, ei+3, di, ai, bi, bi+3]; di ∼ [ei+1, ci+4, ei, ai, ci, ei+3, bi+2];
ei ∼ [ci+4, di, ai, bi+5, di+3, ci+3, di+5].

APPENDIX

A strongly regular graph which is not an H-regular graph for some H . Let G
be a strongly regular graph with 17 vertices and parameters (k, λ, µ) = (8, 3, 4),
and the adjacent matrix of G is




v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17

v1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
v2 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
v3 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0
v4 1 1 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1
v5 1 1 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0
v6 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0 1 1
v7 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1
v8 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1
v9 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0
v10 0 1 1 1 0 0 0 1 0 0 0 0 1 1 1 1 0
v11 0 1 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1
v12 0 1 0 1 1 0 1 0 0 0 1 0 0 0 1 1 1
v13 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1
v14 0 0 1 0 1 1 1 0 0 1 0 0 1 0 0 1 1
v15 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 1 0
v16 0 0 0 1 1 1 0 0 1 1 0 1 0 1 1 0 0
v17 0 0 0 1 0 1 1 1 0 0 1 1 1 1 0 0 0



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where vi ∈ V (G) for all i = 1, 2, 3, . . . , 17. Consider the neighbors of v1 and v5,

then we get G[NG(v1)] is not isomorphic to G[NG(v5)].
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