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MULTIPLE SOLUTIONS FOR A NONLINEAR ELLIPTIC SYSTEM
SUBJECT TO NONAUTONOMOUS PERTURBATIONS

Danila Sandra Moschetto

Abstract. In this paper we consider the following Neumann problem


−∆u = α(x)(Fu(u, v) − u) + λGu(x, u, v) in Ω

−∆v = α(x)(Fv(u, v) − v) + λGv(x, u, v) in Ω

∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω

In particular, by means of a multiplicity theorem obtained by Ricceri, we
establish that if the set of all global minima of the function R

2 � y �−→
|y|2
2 − F (y) (where F ∈ C1(R2) and it satisfies the condition F (0, 0) = 0)

has at least k ≥ 2 connected components, then the above Neumann problem
admits at least k + 1 weak solutions, k of which are lying in a given set.

1. INTRODUCTION

In this paper we study the existence and the multiplicity of the solutions for the
following Neumann problem

(Pλ)




−∆u = α(x)(Fu(u, v)− u) + λGu(x, u, v) in Ω

−∆v = α(x)(Fv(u, v)− v) + λGv(x, u, v) in Ω
∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω

(ν being the outer unit normal to ∂Ω) by using the information about the number
of the connected components of the set of all global minima of a given function, as
the Ricceri’s result [11] asserts. The analogous Neumann problem for one equation

(Qλ)




−∆u = α(x)(f(u)− u) + λg(x, u) in Ω
∂u

∂ν
= 0 on ∂Ω
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where Ω ⊂ R
n (n ≥ 2) is an open, bounded and connected set, having boundary

of class C2, has been widely studied by Ricceri in [10]. In fact by assuming
that the set of all global minima of the function R � ξ �−→ ξ2

2 − ∫ ξ
0 f(t)dt (here

f ∈ C0(R) and satisfies the condition lim|ξ|→+∞
f(ξ)

ξ = 0) has at least k ≥ 2
connected components, the author finds that, for every α ∈ L∞(Ω) and for every
Carathéodory function g : Ω × R �−→ R such that sup|ξ|≤s |g(·, ξ)| ∈ Lp(Ω) for
some p > n and for all s > 0, the problem (Qλ) admits at least k + 1 strong
solutions, even in W 2,p(Ω). There is a wide literature dealing with multiple solutions
for nonlinear elliptic problems. For instance, Neumann either non perturbed or
perturbed problems, including the p-Laplacian but also the p(x)-Laplacian, have
been studied, by using the variational principle of Ricceri [12], in recent years from
different authors (see, for instance [1-9], [13]). In the present paper we intend to
prove a multiplicity result of this type: for each integer k > 1, there is λ∗ > 0 such
that problem (Pλ) has at least k + 1 solutions for all λ ∈]0, λ∗[. Our approach is
based exactly on a general multiplicity theorem, which for the convenience of the
reader, we state as follows:

Theorem A. ([11] Theorem 8). Let X be a reflexive and separable real
Banach space, and let Φ, Ψ : X → R be two sequentially weakly lower
semicontinuous and continuously Gâteaux -differentiable functionals, with Ψ
also coercive. Let us assume that the functional Ψ + λΦ satisfies the Palais-
Smale condition for every λ > 0 small enough and that the set of all global
minima of Ψ has at least k connected components in the weak topology , with
k ≥ 2.

Then, for each ρ > infX Ψ , there exists λ∗ > 0 such that , for every
λ ∈]0, λ∗[, the functional Ψ +λΦ has at least k +1 critical points, k of which
are lying in Ψ−1 (]−∞, ρ[).

2. RESULTS

From now on, Ω ⊂ R
n (n ≥ 2) will be an open, bounded and connected set,

with boundary of class C1. We shall consider the W 1,2(Ω) Sobolev space with the
norm ‖ u ‖ = (

∫
Ω(|∇u(x)|2+ |u(x)|2)dx)

1
2 and the [W 1,2(Ω)]2 product space with

the norm ‖ (u, v) ‖=√‖ u ‖2 + ‖ v ‖2. As usual, a weak solution of the problem
(Pλ) is any (u, v) ∈ [W1,2(Ω)]2 such that∫

Ω
[∇u(x) · ∇ω(x) + ∇v(x) · ∇φ(x) + α(x)(u(x)ω(x) + v(x)φ(x))]dx

−
∫

Ω

α(x)[Fu(u(x), v(x))ω(x)+ Fv(u(x), v(x))φ(x)]dx

−λ

∫
Ω
[Gu(x, u(x), v(x))ω(x)+ Gv(x, u(x), v(x))φ(x)]dx = 0
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for all (ω, φ) ∈ [W 1,2(Ω)]2.

Theorem 2.1. Let us assume that

(i1) F : R
2 −→ R is a continuously differentiable function such that F (0, 0) =

0; moreover , the following condition holds

lim
|y|→+∞

|∇F (y)|
|y| = 0(1)

(i2) G : Ω × R
2 −→ R is a measurable function in x ∈ Ω for each y ∈ R

2,
such that G(x, 0, 0) = 0, for every x ∈ Ω, and continuously differentiable
in y for a.e. x ∈ Ω; furthermore Gu and Gv are bounded functions in R

2

for every x ∈ Ω with supy∈R2 |Gu(·, y)| and supy∈R2 |Gv(·, y)| functions
of L2(Ω).

(i3) the set of all global minima of the function R
2 � y �−→ |y|2

2 −F (y), has
at least k connected components with k ≥ 2.

Then, for every α ∈ L∞(Ω), with ess infΩ α > 0 and for every number ρ

satisfying

ρ >‖ α ‖L1(Ω) inf
y∈R2

( |y|2
2

− F (y)
)

there exists λ∗ > 0 such that , for each λ ∈]0, λ∗[, the Neumann problem (Pλ)
admits at least k + 1 weak solutions , k of which belong to the set{

(u, v) ∈ [W 1,2(Ω)]2 :
1
2

∫
Ω
(|∇u(x)|2 + |∇v(x)|2)dx+

+
∫

Ω

α(x)
( |u(x)|2 + |v(x)|2

2
− F (u(x), v(x))

)
dx < ρ

}
.

Proof. For the convenience of the reader, in the proof procedure of a such
theorem we’ll check, step by step, the hypotheses of Theorem A. First of all, we
define the functionals I, J, H : [W 1,2(Ω)]2 −→ R as

I(u, v) =
1
2

∫
Ω
[|∇u(x)|2 + |∇v(x)|2 + α(x)(|u(x)|2 + |v(x)|2)]dx,

J(u, v) = −
∫

Ω
α(x)F (u(x), v(x)dx

and
H (u, v) = −

∫
Ω

G(x , u(x), v(x))dx .
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We put 
 = I + J and we choose as X the [W 1,2(Ω)]2 Banach space and as
functionals Ψ and Φ , 
 and H respectively which are both well defined. From (1)
follows, indeed, that for every ε > 0 there exists r > 0 such that if y ∈ R

2 and
|y| > r then |∇F (y)| < ε|y|. Thus, for every ε > 0, there exists M > 0 such
that |∇F (y)| < ε|y| + M for every y ∈ R

2. Then, by the Mean Value Theorem, it
follows

|F (y)| < ε|y|2 + M |y|(2)

for every y ∈ R
2. In virtue of Lebesgue’s dominated convergence theorem, the (2)

ensures that the functional J is sequentially weakly continuous. Analogously, the
assumption (i2) implies that H is sequentially weakly continuous too. Moreover, by
known results, the functional I is sequentially weakly lower semi-continuous, being
convex and continuous, whence 
 is sequentially weakly lower semi-continuous, as
well as H . Finally, (i1) and (i2) ensure that 
 and H are continuously Gâteaux-
differentiable functionals with compact derivatives. Since the expressions of 
′ and
H ′ at any (u, v) ∈ X are given as


′(u, v)(ω, φ)

=
∫

Ω
[∇u(x) · ∇ω(x) + ∇v(x) · ∇φ(x) + α(x)(u(x)ω(x) + v(x)φ(x))]dx

−
∫

Ω
α(x)[Fu(u(x), v(x))ω(x)+ Fv(u(x), v(x))φ(x)]dx

and

H ′(u, v)(ω, φ) = −
∫
Ω

[Gu(x , u(x), v(x))ω(x) + Gv (x , u(x), v(x))φ(x)]dx ,

for every (ω, φ) ∈ X , it is easy to show that the critical points of the functionals 

and H are rightly the weak solutions of (Pλ). We now prove that 
 is also coercive.
For this purpose, we choose ε > 0 as in (2) and we observe that∫

Ω
α(x)F (u(x), v(x))dx ≤ ε

∫
Ω

α(x)(|u(x)|2 + |v(x)|2)dx

+M

∫
Ω

α(x)(|u(x)|+ |v(x)|)dx

≤ ε ‖ α ‖∞‖ (u, v) ‖2 +M1 ‖ α ‖∞‖ (u, v) ‖

Therefore, putting C1 = 1
2 min{1, ess infΩ α} one obtaines


(u, v) ≥ (C1 − ε ‖ α ‖∞
) ‖ (u, v) ‖2 −M1 ‖ α ‖∞‖ (u, v) ‖

whence follows



Multiple Solutions for a Nonlinear Elliptic System Subject to Nonautonomous Perturbations 1167

lim
‖(u,v)‖→+∞


(u, v) = +∞

provided that 0 < ε < C1/‖ α ‖∞. We check that the functional 
 + λH satisfies
Palais-Smale’s property; at first we observe that∫

Ω
G(x, u(x), v(x))dx

=
∫

Ω

(∫ 1

0
[Gu(x, tu(x), tv(x))u(x)+ Gv(x, tu(x), tv(x))v(x)]dt

)
dx

≤
∫

Ω
sup
y∈R2

|Gu(x, y)||u(x)|dx+
∫

Ω
sup
y∈R2

|Gv(x, y))||v(x)|dx

≤
(∫

Ω
sup
y∈R2

|Gu(x, y)|2dx
) 1

2
(∫

Ω
|u(x)|2dx

) 1
2

+
(∫

Ω
sup
y∈R2

|Gv(x, y)|2dx
)1

2
(∫

Ω
|v(x)|2dx

) 1
2

and so by putting

C2 = max

[(∫
Ω

sup
y∈R2

|Gu(x, y)|2dx
) 1

2
,
(∫

Ω
sup
y∈R2

|Gv(x, y)|2dx
)1

2

]

one has
H(u, v) ≥ −C2(‖ u ‖ + ‖ v ‖).

Therefore, for each λ ≥ 0, we clearly have

(
 + λH )(u, v) ≥ (C1 − ε ‖ α ‖∞) ‖ (u, v) ‖2 −M1 ‖ α ‖∞‖ (u, v) ‖
−λC2(‖ u ‖ + ‖ v ‖)

whence follows that

lim
‖(u,v)‖→+∞


(u, v) + λH (u, v) = +∞.

Thus, 
+λH satisfies Palais-Smale’s condition, as it is the sum of I , whose deriva-
tive is a homeomorphism between [W1,2(Ω)]2 and its dual (see [4] and references
therein ), and of a functional J + λH with compact derivative in virtue of the con-
ditions imposed on F and G. Finally, we prove that the set of all global minima of

 has at least k weakly connected components, with k ≥ 2.
At first, let us observe that the function y �−→ |y|2

2 − F (y) is coercive as it comes
immediately from (2), for a convenient choice of ε. Thus, the set{

(s, r) ∈ R
2 :

s2 + r2

2
− F (s, r) = inf

y∈R2

(
|y|2
2

− F (y)

)}
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that we denote by M is not empty and, by assumption, has at least k connected
components. For each (u, v) ∈ [W1,2(Ω)]2, one clearly has


(u, v) ≥ inf
y∈R2

(
|y|2
2

− F (y)

)
‖ α ‖L1(Ω)

and if (s0, r0) ∈ M, the functions, defined by putting u0(x) = s0 and v0(x) = r0,
both belong to [W1,2(Ω)]2 holding the equality


(u0, v0) = inf
y∈R2

(
|y|2
2

− F (y)

)
‖ α ‖L1(Ω) .

If (u, v) ∈ [W1,2(Ω)]2, with u or v not constant, as Ω is connected, one has
|∇u| > 0 in some set Ω1 of positive measure or |∇v| > 0 in some set Ω2 of
positive measure. Consequently, the pair (u, v) can not be a global minimum of 
.
Let Υ : R

2 �−→ [W 1,2(Ω)]2 the mapping that at each (b, c) ∈ R
2 associates the pair

(u, v) of the equivalence classes with u and v everywhere equal in Ω to b and c
respectively. Since Υ is a homeomorphism between R

2 and Υ(R2), endowed with
the relativization of the weak topology on [W1,2(Ω)]2, Υ(M) is the set of all global
minima of 
 and then it has at least k weakly connected components. The proof is
now complete.

Remark 2.1. We observe that the same conclusion of the Theorem 2.1. holds
by replacing in (1) a limit 
 < C1/‖ α ‖∞. In such a case, in order to prove the
coerciveness of the functional 
, we have to choose 0 < ε < (C1/‖ α ‖∞) − 
.
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