TAIWANESE JOURNAL OF MATHEMATICS

Vol. 15, No. 3, pp. 1163-1169, June 2011 This paper is available online at http://www.tjm.nsysu.edu.tw/

MULTIPLE SOLUTIONS FOR A NONLINEAR ELLIPTIC SYSTEM SUBJECT TO NONAUTONOMOUS PERTURBATIONS

Danila Sandra Moschetto

Abstract. In this paper we consider the following Neumann problem

$$\begin{cases} -\Delta u = \alpha(x)(F_u(u,v) - u) + \lambda G_u(x,u,v) \text{ in } \Omega \\ -\Delta v = \alpha(x)(F_v(u,v) - v) + \lambda G_v(x,u,v) \text{ in } \Omega \\ \frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} = 0 \text{ on } \partial \Omega \end{cases}$$

In particular, by means of a multiplicity theorem obtained by Ricceri, we establish that if the set of all global minima of the function $\mathbb{R}^2 \ni y \mapsto \frac{|y|^2}{2} - F(y)$ (where $F \in C^1(\mathbb{R}^2)$ and it satisfies the condition F(0,0) = 0) has at least $k \ge 2$ connected components, then the above Neumann problem admits at least k + 1 weak solutions, k of which are lying in a given set.

1. INTRODUCTION

In this paper we study the existence and the multiplicity of the solutions for the following Neumann problem

$$(P_{\lambda}) \begin{cases} -\Delta u = \alpha(x)(F_u(u,v) - u) + \lambda G_u(x,u,v) \text{ in } \Omega \\ -\Delta v = \alpha(x)(F_v(u,v) - v) + \lambda G_v(x,u,v) \text{ in } \Omega \\ \frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} = 0 \text{ on } \partial \Omega \end{cases}$$

(ν being the outer unit normal to $\partial \Omega$) by using the information about the number of the connected components of the set of all global minima of a given function, as the Ricceri's result [11] asserts. The analogous Neumann problem for one equation

$$(Q_{\lambda}) \qquad \begin{cases} -\Delta u = \alpha(x)(f(u) - u) + \lambda g(x, u) \text{ in } \Omega\\ \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega \end{cases}$$

Received November 19, 2009, accepted December 16, 2009.

Communicated by B. Ricceri.

²⁰⁰⁰ Mathematics Subject Classification: 35J20, 35J65.

Key words and phrases: Neumann problem, Multiplicity of solutions, Global minima, Connected components.

Danila Sandra Moschetto

where $\Omega \subset \mathbb{R}^n$ $(n \geq 2)$ is an open, bounded and connected set, having boundary of class C^2 , has been widely studied by Ricceri in [10]. In fact by assuming that the set of all global minima of the function $\mathbb{R} \ni \xi \longmapsto \frac{\xi^2}{2} - \int_0^{\xi} f(t) dt$ (here $f \in C^0(\mathbb{R})$ and satisfies the condition $\lim_{|\xi|\to+\infty} \frac{f(\xi)}{\xi} = 0$) has at least $k \geq 2$ connected components, the author finds that, for every $\alpha \in L^{\infty}(\Omega)$ and for every Carathéodory function $g : \Omega \times \mathbb{R} \longmapsto \mathbb{R}$ such that $\sup_{|\xi| \leq s} |g(\cdot, \xi)| \in L^p(\Omega)$ for some p > n and for all s > 0, the problem (Q_{λ}) admits at least k + 1 strong solutions, even in $W^{2,p}(\Omega)$. There is a wide literature dealing with multiple solutions for nonlinear elliptic problems. For instance, Neumann either non perturbed or perturbed problems, including the *p*-Laplacian but also the p(x)-Laplacian, have been studied, by using the variational principle of Ricceri [12], in recent years from different authors (see, for instance [1-9], [13]). In the present paper we intend to prove a multiplicity result of this type: for each integer k > 1, there is $\lambda^* > 0$ such that problem (P_{λ}) has at least k + 1 solutions for all $\lambda \in]0, \lambda^*[$. Our approach is based exactly on a general multiplicity theorem, which for the convenience of the reader, we state as follows:

Theorem A. ([11] Theorem 8). Let X be a reflexive and separable real Banach space, and let $\Phi, \Psi : X \to \mathbb{R}$ be two sequentially weakly lower semicontinuous and continuously Gâteaux-differentiable functionals, with Ψ also coercive. Let us assume that the functional $\Psi + \lambda \Phi$ satisfies the Palais-Smale condition for every $\lambda > 0$ small enough and that the set of all global minima of Ψ has at least k connected components in the weak topology, with $k \geq 2$.

Then, for each $\rho > \inf_X \Psi$, there exists $\lambda^* > 0$ such that, for every $\lambda \in]0, \lambda^*[$, the functional $\Psi + \lambda \Phi$ has at least k + 1 critical points, k of which are lying in $\Psi^{-1}(] - \infty, \rho[)$.

2. Results

From now on, $\Omega \subset \mathbb{R}^n$ $(n \geq 2)$ will be an open, bounded and connected set, with boundary of class C^1 . We shall consider the $W^{1,2}(\Omega)$ Sobolev space with the norm $|| u || = (\int_{\Omega} (|\nabla u(x)|^2 + |u(x)|^2) dx)^{\frac{1}{2}}$ and the $[W^{1,2}(\Omega)]^2$ product space with the norm $|| (u, v) || = \sqrt{|| u ||^2 + || v ||^2}$. As usual, a weak solution of the problem (P_{λ}) is any $(u, v) \in [W^{1,2}(\Omega)]^2$ such that

$$\int_{\Omega} [\nabla u(x) \cdot \nabla \omega(x) + \nabla v(x) \cdot \nabla \phi(x) + \alpha(x)(u(x)\omega(x) + v(x)\phi(x))]dx$$
$$-\int_{\Omega} \alpha(x) [F_u(u(x), v(x))\omega(x) + F_v(u(x), v(x))\phi(x)]dx$$
$$-\lambda \int_{\Omega} [G_u(x, u(x), v(x))\omega(x) + G_v(x, u(x), v(x))\phi(x)]dx = 0$$

1164

Multiple Solutions for a Nonlinear Elliptic System Subject to Nonautonomous Perturbations 1165

for all $(\omega, \phi) \in [W^{1,2}(\Omega)]^2$.

Theorem 2.1. Let us assume that

(i1) $F : \mathbb{R}^2 \longrightarrow \mathbb{R}$ is a continuously differentiable function such that F(0,0) = 0; moreover, the following condition holds

(1)
$$\lim_{|y| \to +\infty} \frac{|\nabla F(y)|}{|y|} = 0$$

- (i2) $G: \Omega \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ is a measurable function in $x \in \Omega$ for each $y \in \mathbb{R}^2$, such that G(x, 0, 0) = 0, for every $x \in \Omega$, and continuously differentiable in y for a.e. $x \in \Omega$; furthermore G_u and G_v are bounded functions in \mathbb{R}^2 for every $x \in \Omega$ with $\sup_{y \in \mathbb{R}^2} |G_u(\cdot, y)|$ and $\sup_{y \in \mathbb{R}^2} |G_v(\cdot, y)|$ functions of $L^2(\Omega)$.
- (i₃) the set of all global minima of the function $\mathbb{R}^2 \ni y \longmapsto \frac{|y|^2}{2} F(y)$, has at least k connected components with $k \ge 2$.

Then, for every $\alpha \in L^{\infty}(\Omega)$, with $\operatorname{ess\,inf}_{\Omega} \alpha > 0$ and for every number ρ satisfying

$$\rho > \parallel \alpha \parallel_{L^1(\Omega)} \inf_{y \in \mathbb{R}^2} \left(\frac{|y|^2}{2} - F(y) \right)$$

there exists $\lambda^* > 0$ such that, for each $\lambda \in]0, \lambda^*[$, the Neumann problem (P_{λ}) admits at least k + 1 weak solutions, k of which belong to the set

$$\left\{ (u,v) \in [W^{1,2}(\Omega)]^2 : \frac{1}{2} \int_{\Omega} (|\nabla u(x)|^2 + |\nabla v(x)|^2) dx + \int_{\Omega} \alpha(x) \left(\frac{|u(x)|^2 + |v(x)|^2}{2} - F(u(x),v(x)) \right) dx < \rho \right\}.$$

Proof. For the convenience of the reader, in the proof procedure of a such theorem we'll check, step by step, the hypotheses of Theorem A. First of all, we define the functionals $I, J, H : [W^{1,2}(\Omega)]^2 \longrightarrow \mathbb{R}$ as

$$I(u,v) = \frac{1}{2} \int_{\Omega} [|\nabla u(x)|^2 + |\nabla v(x)|^2 + \alpha(x)(|u(x)|^2 + |v(x)|^2)]dx,$$

$$J(u,v) = -\int_{\Omega} \alpha(x)F(u(x),v(x)dx$$

and

$$H(u, v) = -\int_{\Omega} G(x, u(x), v(x)) dx.$$

Danila Sandra Moschetto

We put $\Im = I + J$ and we choose as X the $[W^{1,2}(\Omega)]^2$ Banach space and as functionals Ψ and Φ , \Im and H respectively which are both well defined. From (1) follows, indeed, that for every $\epsilon > 0$ there exists r > 0 such that if $y \in \mathbb{R}^2$ and |y| > r then $|\nabla F(y)| < \epsilon |y|$. Thus, for every $\epsilon > 0$, there exists M > 0 such that $|\nabla F(y)| < \epsilon |y| + M$ for every $y \in \mathbb{R}^2$. Then, by the Mean Value Theorem, it follows

$$|F(y)| < \epsilon |y|^2 + M|y|$$

for every $y \in \mathbb{R}^2$. In virtue of Lebesgue's dominated convergence theorem, the (2) ensures that the functional J is sequentially weakly continuous. Analogously, the assumption (i_2) implies that H is sequentially weakly continuous too. Moreover, by known results, the functional I is sequentially weakly lower semi-continuous, being convex and continuous, whence \Im is sequentially weakly lower semi-continuous, as well as H. Finally, (i_1) and (i_2) ensure that \Im and H are continuously Gâteaux-differentiable functionals with compact derivatives. Since the expressions of \Im' and H' at any $(u, v) \in X$ are given as

$$\begin{aligned} \Im'(u,v)(\omega,\phi) \\ &= \int_{\Omega} [\nabla u(x) \cdot \nabla \omega(x) + \nabla v(x) \cdot \nabla \phi(x) + \alpha(x)(u(x)\omega(x) + v(x)\phi(x))]dx \\ &- \int_{\Omega} \alpha(x) [F_u(u(x),v(x))\omega(x) + F_v(u(x),v(x))\phi(x)]dx \end{aligned}$$

and

$$H'(u,v)(\omega,\phi) = -\int_{\Omega} [G_u(x,u(x),v(x))\omega(x) + G_v(x,u(x),v(x))\phi(x)]dx,$$

for every $(\omega, \phi) \in X$, it is easy to show that the critical points of the functionals \Im and H are rightly the weak solutions of (P_{λ}) . We now prove that \Im is also coercive. For this purpose, we choose $\epsilon > 0$ as in (2) and we observe that

$$\int_{\Omega} \alpha(x) F(u(x), v(x)) dx \leq \epsilon \int_{\Omega} \alpha(x) (|u(x)|^2 + |v(x)|^2) dx$$
$$+ M \int_{\Omega} \alpha(x) (|u(x)| + |v(x)|) dx$$
$$\leq \epsilon \parallel \alpha \parallel_{\infty} \parallel (u, v) \parallel^2 + M_1 \parallel \alpha \parallel_{\infty} \parallel (u, v) \parallel$$

Therefore, putting $C_1 = \frac{1}{2} \min\{1, \operatorname{ess\,inf}_{\Omega} \alpha\}$ one obtaines

$$\Im(u,v) \ge \left(C_1 - \epsilon \parallel \alpha \parallel_{\infty}\right) \parallel (u,v) \parallel^2 - M_1 \parallel \alpha \parallel_{\infty} \parallel (u,v) \parallel$$

whence follows

1166

Multiple Solutions for a Nonlinear Elliptic System Subject to Nonautonomous Perturbations 1167

$$\lim_{\|(u,v)\|\to+\infty}\Im(u,v)=+\infty$$

provided that $0 < \epsilon < C_1/|| \alpha ||_{\infty}$. We check that the functional $\Im + \lambda H$ satisfies Palais-Smale's property; at first we observe that

$$\begin{split} &\int_{\Omega} G(x, u(x), v(x)) dx \\ &= \int_{\Omega} \Big(\int_{0}^{1} [G_{u}(x, tu(x), tv(x))u(x) + G_{v}(x, tu(x), tv(x))v(x)] dt \Big) dx \\ &\leq \int_{\Omega} \sup_{y \in \mathbb{R}^{2}} |G_{u}(x, y)| |u(x)| dx + \int_{\Omega} \sup_{y \in \mathbb{R}^{2}} |G_{v}(x, y))| |v(x)| dx \\ &\leq \Big(\int_{\Omega} \sup_{y \in \mathbb{R}^{2}} |G_{u}(x, y)|^{2} dx \Big)^{\frac{1}{2}} \Big(\int_{\Omega} |u(x)|^{2} dx \Big)^{\frac{1}{2}} \\ &+ \Big(\int_{\Omega} \sup_{y \in \mathbb{R}^{2}} |G_{v}(x, y)|^{2} dx \Big)^{\frac{1}{2}} \Big(\int_{\Omega} |v(x)|^{2} dx \Big)^{\frac{1}{2}} \end{split}$$

and so by putting

$$C_{2} = \max\left[\left(\int_{\Omega} \sup_{y \in \mathbb{R}^{2}} |G_{u}(x,y)|^{2} dx\right)^{\frac{1}{2}}, \left(\int_{\Omega} \sup_{y \in \mathbb{R}^{2}} |G_{v}(x,y)|^{2} dx\right)^{\frac{1}{2}}\right]$$

one has

$$H(u, v) \ge -C_2(||u|| + ||v||).$$

Therefore, for each $\lambda \geq 0$, we clearly have

$$(\Im + \lambda H)(u, v) \ge (C_1 - \epsilon \| \alpha \|_{\infty}) \| (u, v) \|^2 - M_1 \| \alpha \|_{\infty} \| (u, v) \| -\lambda C_2(\| u \| + \| v \|)$$

whence follows that

$$\lim_{\|(u,v)\|\to+\infty}\Im(u,v)+\lambda H(u,v)=+\infty.$$

Thus, $\Im + \lambda H$ satisfies Palais-Smale's condition, as it is the sum of I, whose derivative is a homeomorphism between $[W^{1,2}(\Omega)]^2$ and its dual (see [4] and references therein), and of a functional $J + \lambda H$ with compact derivative in virtue of the conditions imposed on F and G. Finally, we prove that the set of all global minima of \Im has at least k weakly connected components, with $k \geq 2$.

At first, let us observe that the function $y \mapsto \frac{|y|^2}{2} - F(y)$ is coercive as it comes immediately from (2), for a convenient choice of ϵ . Thus, the set

$$\left\{ (s,r) \in \mathbb{R}^2 : \frac{s^2 + r^2}{2} - F(s,r) = \inf_{y \in \mathbb{R}^2} \left(\frac{|y|^2}{2} - F(y) \right) \right\}$$

that we denote by \mathfrak{M} is not empty and, by assumption, has at least k connected components. For each $(u, v) \in [W^{1,2}(\Omega)]^2$, one clearly has

$$\Im(u,v) \ge \inf_{y \in \mathbb{R}^2} \left(\frac{|y|^2}{2} - F(y) \right) \parallel \alpha \parallel_{L^1(\Omega)}$$

and if $(s_0, r_0) \in \mathfrak{M}$, the functions, defined by putting $u_0(x) = s_0$ and $v_0(x) = r_0$, both belong to $[W^{1,2}(\Omega)]^2$ holding the equality

$$\Im(u_0, v_0) = \inf_{y \in \mathbb{R}^2} \left(\frac{|y|^2}{2} - F(y) \right) \| \alpha \|_{L^1(\Omega)}.$$

If $(u, v) \in [W^{1,2}(\Omega)]^2$, with u or v not constant, as Ω is connected, one has $|\nabla u| > 0$ in some set Ω_1 of positive measure or $|\nabla v| > 0$ in some set Ω_2 of positive measure. Consequently, the pair (u, v) can not be a global minimum of \Im . Let $\Upsilon : \mathbb{R}^2 \longmapsto [W^{1,2}(\Omega)]^2$ the mapping that at each $(b, c) \in \mathbb{R}^2$ associates the pair (u, v) of the equivalence classes with u and v everywhere equal in Ω to b and c respectively. Since Υ is a homeomorphism between \mathbb{R}^2 and $\Upsilon(\mathbb{R}^2)$, endowed with the relativization of the weak topology on $[W^{1,2}(\Omega)]^2$, $\Upsilon(\mathfrak{M})$ is the set of all global minima of \Im and then it has at least k weakly connected components. The proof is now complete.

Remark 2.1. We observe that the same conclusion of the Theorem 2.1. holds by replacing in (1) a limit $\ell < C_1/|| \alpha ||_{\infty}$. In such a case, in order to prove the coerciveness of the functional \Im , we have to choose $0 < \epsilon < (C_1/|| \alpha ||_{\infty}) - \ell$.

REFERENCES

- 1. G. Anello and G. Cordaro, Existence of solutions of the Neumann problem for a class of equations involving the *p*-Laplacian via a variational principle of Ricceri, *Arch. Math. (Basel)*, **79** (2002), 274-287.
- 2. G. Anello, Remarks on a multiplicity theorem for a perturbed Neumann problem, *J. Math. Anal. Appl.*, **346** (2008), 274-279.
- 3. G. Cordaro, Multiple solutions to a perturbed Neumann problem, *Studia Math.*, **178** (2007), 167-175.
- 4. X. L. Fan and S.-G. Deng, Remarks on Ricceri's variational principle and applications to the p(x)-Laplacian equations, *Nonlinear Anal.*, **67** (2007), 3064-3075.
- 5. F. Faraci, Multiplicity results for a Neumann problem involving the *p*-Laplacian, *J. Math. Anal. Appl.*, **277** (2003), 180-189.
- 6. F. Faraci and A. Iannizzotto, A multiplicity theorem for a perturbed second-order non-autonomous system, *Proc. Edinb. Math. Soc.*, **49(2)** (2006), 267-275.

Multiple Solutions for a Nonlinear Elliptic System Subject to Nonautonomous Perturbations 1169

- 7. A. Iannizzotto, A sharp existence and localization theorem for a Neumann problem, *Arch. Math. (Basel)*, **82** (2004), 352-360.
- 8. D. S. Moschetto, A quasilinear Neumann problem involving the p(x)-Laplacian, Nonlinear Anal., **71** (2009), 2739-2743.
- 9. D. S. Moschetto, Infinitely many solutions to the Neumann problem for quasilinear elliptic systems involving the p(x) and q(x)-Laplacian, *Int. Math. Forum*, 4 (2009), 1201-1211.
- 10. B. Ricceri, A multiplicity theorem for the Neumann problem, *Proc. Amer. Math. Soc.*, **134** (2006), 1117-1124.
- 11. B. Ricceri, Sublevel sets and global minima of coercive functionals and local minima of their perturbations, *J. Nonlinear Convex Anal.*, **5** (2004), 157-168.
- 12. B. Ricceri, A general variational principle and some of its applications, *J. Comput. Appl. Math.*, **113** (2000), 401-410.
- 13. B. Ricceri, Infinitely many solutions of the Neumann problem for elliptic equations involving the *p*-Laplacian, *Bull. London Math. Soc.*, **33** (2001), 331-340.

Danila Sandra Moschetto Department of Mathematics and Computer Science University of Catania Viale A. Doria 6-95125-Catania Italy E-mail: moschetto@dmi.unict.it