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BOUNDS ON FEEDBACK NUMBERS OF DE BRUIJN GRAPHS

Xirong Xu, Jun-Ming Xu and Yongchang Cao

Abstract. The feedback number of a graph G is the minimum number of ver-
tices whose removal from G results in an acyclic subgraph. We use f(d, n)
to denote the feedback number of the de Bruijn graph UB(d, n). R. Královic
and P. Ruzicka [Minimum feedback vertex sets in shuffle-based interconnec-
tion networks. Information Processing Letters, 86 (4) (2003), 191-196] proved
that f(2, n) = � 2n−2

3
�. This paper gives the upper bound on f(d, n) for d ≥ 3,

that is, f(d, n) ≤ dn

(
1 −

(
d

1+d

)d−1
)

+
(
n+d−2

d−2

)
.

1. INTRODUCTION

Let G = (V, E) be a simple graph, i.e., loopless and without multiple edges,
with vertex set V (G) and edge set E(G). It is well known that the cycle rank
of a graph G is the minimum number of edges that must be removed in order to
eliminate all cycles in the graph. That is, if G has υ vertices, ε edges, and ω
components, then the minimum number of edges whose deletion from G leaves an
acyclic graph equals the cycle rank (or Betti number) ρ(G) = ε − υ + ω (see, for
example Xu [26]). A corresponding problem is the removal of vertices. A subset
F ⊂ V (G) is called a feedback vertex set if the subgraph G−F is acyclic, that is,
if G−F is a forest. The minimum cardinality of a feedback vertex set is called the
feedback number (or decycling number proposed first by Beineke and Vandell [5])
of G. A feedback vertex set of this cardinality is called a minimum feedback vertex
set.

Determining the feedback number of a graph G is equivalent to finding the
greatest order of an induced forest of G proposed first by Erd"os, Saks and Sós [8],
since the sum of the two numbers equals the order of G. A review of recent results
and open problems on the decycling number is provided by Bau and Beineke [4].
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Apart from its graph-theoretical interest, the minimum feedback vertex set prob-
lem has some important applications to several fields. For example, the problems are
in operating systems to resource allocation mechanisms that prevent deadlocks [17],
in artificial intelligence to the constraint satisfaction problem and Bayesian infer-
ence, in synchronous distributed systems to the study of monopolies and in optical
networks to converters placement problem(see [7, 9]).

In fact, the problem of finding the feedback number is NP -hard for general
graphs [13] (also see [11]). The best known approximation algorithm for this
problem has approximation ratio 2 [1]. There are also polynomial time algo-
rithms for a number of topologies, such as reducible graphs [22], cocomparabil-
ity graphs [11], convex bipartite graphs [11], cyclically reducible graphs [23], and
interval graphs [15].

Determining the feedback number is quite difficult even for some elementary
graphs. We refer the reader to an original research paper [5] for some results. The
lower and the upper bounds on the feedback numbers have been established for some
graphs, such as regular graphs, cubic graphs, hypercubic graphs, meshes, toroids,
butterflies, cube-connected cycles, hypercubes, star graphs and directed split-stars,
Kautz digraphs (see [1-3, 7, 9, 10, 15, 16, 18-24, 27]).

The de Bruijn digraph has many attractive features superior to the hypercube,
such as regular, Eulerian, Hamiltonian, small diameter, nearly optimal connectivity,
simple recursive structure, and simple routing algorithm. It contains some other
useful topologies as its subgraphs (see, for example, Section 3.3 in [25]). So it is
thought of as a good candidate for the next generation of parallel system architec-
tures, after the hypercube network [6].

For two given integers d ≥ 2 and n ≥ 1, the de Bruijn digraph, denoted by
B(d, n), is defined as follows. The vertex set of B(d, n) is

V (d, n) = {x1x2 . . . xn| xi ∈ {0, 1, 2, . . . , d− 1} for i = 1, 2, . . . , n},

and the edge set E(d, n) consists of all edges from one vertex x1x2 . . . xn to d other
vertices x2x3 . . .xnα, where α ∈ {0, 1, . . . , d− 1}.

The de Bruijn undirected graph, denoted by UB(d, n), is obtained from B(d, n)
by deleting the orientation of all edges and omitting multiple edges and loops.

It is clear that B(d, n) is d-regular, |V (d, n)| = dn and |E(d, n)| = dn+1.
Moreover, B(d, n) has 1

2d(d − 1) symmetric edges and d loops. Thus, UB(d, n)
has dn − 1

2d(d − 1) − d edges, the maximum degree 2d and the minimum degree
2d− 2.

We use f(d, n) to denote the feedback number of UB(d, n). Královic and
Ruzicka [14] proved f(2, n) = � 2n−2

3 �. In this paper, we establish the following
bounds on f(d, n) for any d ≥ 3 and n ≥ 1:
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⌈
dn+1−d− d(d−1)

2 −dn + 1
2d−1

⌉
≤ f(d, n)≤dn

(
1−
(

d

1+d

)d−1
)

+
(

n+d−2
d−2

)
.

The proof of the result is in Section 3. In Section 2, we construct a feedback
vertex set of UB(d, n) and gives several lemmas.

2. FEEDBACK VERTEX SETS AND LEMMAS

Throughout this paper, we follow Xu [26] for graph-theoretical terminology and
notation not defined here. Let G = (V, E) be a graph and S ⊂ V (G). The symbol
NG(S) denotes the set of neighbors of S, namely, NG(S) = {x ∈ V (G − S) :
xy ∈ E(G), y ∈ S}. The subgraph induced by S is denoted by G[S]. The set S is
independent if no two of vertices in S are adjacent in G, and is cycle-free if G[S]
is acyclic, that is, G[S] has no cycles.

For given positive integers k and d, we use P k,d to denote the set of all non-
negative integral solutions of the indefinite equation z1 + z2 + . . . + zd = k, that
is, an ordered sequence (n1, n2, . . . , nd) ∈P k,d means n1 + n2 + . . . + nd = k.
The following result is well known and contained in any textbook on combinatorics
(see, for example, p.3 in [12]).

Lemma 2.1. For any positive integers k and d,

|P k,d| =
(

k + d − 1
k

)
.

Let αsβt denote the sequence αα . . .α︸ ︷︷ ︸
s

ββ . . .β︸ ︷︷ ︸
t

and let the set Id = {0, 1, 2, . . . ,

d − 1}. We define d + 1 subsets of V (d, n) as follows.

S0 = {0x2x3 . . . xn| xi ∈ Id}.
For each i = 1, 2, . . . , d− 1, let

Si =




ini(i − 1)ni−1 . . . tntαxk+2xk+3 . . . xn| xj ∈ Id,

α ∈ Id \ {1, . . . , t}, 1 ≤ t ≤ i,

(nt, . . . , ni) ∈ P k,i−t+1, ni, nt �= 0,

2 ≤ k ≤ n − 1, k ≡ 0 (mod2)


 ,

and

Sd =




{(d− 1)nd−1(d − 2)nd−2 . . . tnt | nt �= 0 and nt ≡ 0 (mod2),
(nt, nt+1, . . . , nd−1) ∈ P n,d−t, 1 ≤ t ≤ d − 1, n ≡ 0 (mod2)};
∅, for n ≡ 1 (mod2).
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It is easy to verify that Si ∩ Sj = ∅ for any i, j ∈ Id, i �= j. Let

(2.1) S = S0 ∪ S1 ∪ S2 ∪ . . . ∪ Sd−1 ∪ Sd.

For example, for d = 3, n = 4, we have

S0 = {0000, 0001, 0002, 0010, 0011, 0012, 0020, 0021, 0022,

0100, 0101, 0102, 0110, 0111, 0112, 0120, 0121, 0122,
0200, 0201, 0202, 0210, 0211, 0212, 0220, 0221, 0222};

S1 = {1100, 1101, 1102, 1120, 1121, 1122};
S2 = {2100, 2101, 2102, 2120, 2121, 2122, 2200, 2201, 2202};
S3 = {1111, 2211, 2222}.

Let G = UB(d, n) and, for x = x1x2 . . .xn ∈ V (G), let

N
(L)
G (x) = {αx1x2 . . . xn−1 | α ∈ Id} and N

(R)
G (x) = {x2x3 . . .xnβ | β ∈ Id}.

Then NG(x) = N
(L)
G (x) ∪ N

(R)
G (x).

Lemma 2.2. Si is an independent set of UB(d, n) for each i = 1, 2, . . . , d.

Proof. Let G = UB(d, n) and x = ini(i− 1)ni−1 . . . tntαxk+2xk+3 . . . xn be
any vertex in Si (1 ≤ i ≤ d − 1). Then

(2.2)
N

(L)
G (x) = {γini(i − 1)ni−1 . . . tntαxk+2xk+3 . . . xn−1| γ ∈ Id},

N
(R)
G (x) = {ini−1(i − 1)ni−1 . . . tntαxk+2xk+3 . . . xnβ| β ∈ Id}.

For any y ∈ N
(L)
G (x), we have y = γini(i − 1)ni−1 . . . tntαxk+2xk+3 . . . xn−1. If

γ �= i, then y �∈ Si clearly. If γ = i, then y = ini+1(i−1)ni−1 . . . tntαxk+2xk+3 . . .
xn−1. Since k = nt+nt+1+. . .+(ni+1) ≡ 1 (mod2), that is, (nt, nt+1, . . . , (ni+
1)) /∈ P k,i−t+1, y �∈ Si. This implies N

(L)
G (x) ∩ Si = ∅.

For any y ∈ N
(R)
G (x), y = ini−1(i−1)ni−1(i−2)ni−2 . . . tntαxk+2xk+3 . . .xnβ.

If ni > 1, then ni − 1 �= 0. But k = nt + nt+1 + . . . + (ni − 1) ≡ 1 (mod2),
that is, (nt, nt+1, . . . , (ni − 1)) /∈ P k,i−t+1, and so y �∈ Si.

If ni = 1, then y = (i − 1)ni−1(i − 2)ni−2 . . . tntαxk+2xk+3 . . . xnβ. Since
k = nt + nt+1 + . . . + ni−1 ≡ 1 (mod2), that is, (nt, nt+1, . . . , ni−1) /∈ Pk,i−t,
and so y �∈ Si. This implies N

(R)
G (x) ∩ Si = ∅.

So, NG(x) ∩ Si = ∅ for any x ∈ Si, which implies that no two vertices of Si

are adjacent. Thus, Si is an independent set for each i = 1, 2, . . . , d− 1.
Similarly, we can prove that Sd is also an independent set. The lemma

follows.
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Lemma 2.3. For each k = 0, 1, . . . , d, let Gk = G[S0 ∪ S1 ∪ . . . ∪ Sk]. Then
Gk is acyclic.

Proof. The proof proceeds by induction on k ≥ 0. Suppose to the contrary
that G0 contains a cycle C. Then C contains a vertex x = x1x2 . . .xn different
from u = 00 . . .0. Assume the i-th position xi �= 0 in x. Then the vertex in C
with the first position xi is not in S0, a contradiction. Thus, the conclusion holds
when k = 0

Assume the conclusion is true for each � with 0 ≤ � < i and i < d. To prove
that Gi is acyclic, we only need to show that any vertex x ∈ Si has at most one
neighbor in Gi−1 since Gi−1 is acyclic by the induction hypothesis.

Choose any x ∈ Si, that is,

x = ini(i − 1)ni−1 . . . tntαxk+2xk+3 . . . xn,

where k = nt+. . .+ni, k ≡ 0 (mod2) and ni, nt �= 0. Then N
(L)
G (x) and N

(R)
G (x)

are expressed as that in (2.2). It is clear that N
(L)
G (x) can be expressed as

N
(L)
G (x) = {0ini(i − 1)ni−1 . . . tntαxk+2xk+3 . . . xn−1}

∪{ini+1(i− 1)ni−1 . . . tntαxk+2xk+3 . . .xn−1}
∪{γ ini(i − 1)ni−1 . . . tntαxk+2 . . .xn−1| γ ∈ Id, γ �= 0, i}.

Since nt + . . . + ni ≡ 0 (mod2), nt + . . . + (ni + 1) ≡ 1 (mod2), and so
ini+1(i − 1)ni−1 . . . tntαxk+2xk+3 . . .xn−1 is not in neither Si nor Sj for each
j = 0, 1, . . . , i−1. Since γ /∈ {0, i}, the vertex γ ini(i−1)ni−1 . . . tntαxk+2 . . . xn−1

is not in Sj for each j = 0, 1, . . . , i− 1. Thus,

N
(L)
G (x) ∩ V (Gi−1) = {0ini(i − 1)ni−1 . . . tntαxk+2 . . .xn−1} ⊂ S0.

For N
(R)
G (x), if ni > 1 then nt + nt+1 + . . . + ni − 1 ≡ 1 (mod2); if ni = 1 then

nt + nt+1 + . . . + ni−1 ≡ 1 (mod2), and so N
(R)
G (x) ∩ V (Gi−1) = ∅. Thus,

NGi−1(x) = NG(x) ∩ V (Gi−1) = N
(L)
G (x) ∩ V (Gi−1) = {y},

where y = 0ini(i− 1)ni−1 . . . tntαxk+2 . . . xn−1 ∈ S0.
Because Si is an independent set and G i−1 is acyclic, the induced subgraph Gi

is acyclic for each i = 0, 1, . . . , d− 1.
Similarly, we can prove that Gd is acyclic. The lemma follows.

For each k = 0, 1, 2, . . . , n, let
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T0 = S0,

Tk =




(d− 1)nd−1 . . . tntαxk+2xk+3 . . .xn| xj ∈ Id,

α ∈ Id \ {1, 2, . . . , t}, (nt, . . . , nd−1) ∈ P k,d−t,

nt �= 0, 1 ≤ t ≤ d − 1


 , 1 ≤ k ≤ n − 1,

Tn = {(d− 1)nd−1 . . . tnt | (nt, . . . , nd−1) ∈ P n,d−t, nt �= 0, 1 ≤ t ≤ d − 1}.

It is clear that

(2.3) V (d, n) =
n⋃

j=0

Tj and Ti ∩ Tj = ∅, 1 ≤ i �= j ≤ n.

For example, for d = 3, n = 4, we have

T0 = S0 = {0000, 0001, 0002, 0010, 0011, 0012, 0020, 0021, 0022,
0100, 0101, 0102, 0110, 0111, 0112, 0120, 0121, 0122,

0200, 0201, 0202, 0210, 0211, 0212, 0220, 0221, 0222};
T1 = {1000, 1001, 1002, 1010, 1011, 1012, 1020, 1021, 1022,

1200, 1201, 1202, 1210, 1211, 1212, 1220, 1221, 1222,

2000, 2001, 2002, 2010, 2011, 2012, 2020, 2021, 2022};
T2 = {1100, 1101, 1102, 1120, 1121, 1122, 2120, 2121,

2122, 2200, 2201, 2202, 2100, 2101, 2102, };
T3 = {1110, 1112, 2112, 2212, 2220, 2110, 2210};
T4 = {1111, 2111, 2211, 2221, 2222}.

and V (3, 4) = T0 ∪ T1 ∪ T2 ∪ T3 ∪ T4.

Theorem 2.1. Let S = V (d, n)\S, where S is defined in (2.1). Then S is a
feedback vertex set of UB(d, n). Moreover,

(2.4) |S| =
n−1∑

j=1,j≡1 (mod 2)

|Tj| + |Tn − Sd|.

Proof. By Lemma 2.3, S is a feedback vertex set of UB(d, n) immediately.
We prove (2.4) below. We first show that

(2.5)
d−1⋃
i=0

Si =
n−1⋃

j=1,j≡0 (mod 2)

Tj and Sd ⊆ Tn.
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We only need to consider the case of i, j �= 0 since S0 = T0. Arbitrarily choose
i (1 ≤ i ≤ d− 1) and

x = ini(i− 1)ni−1 . . . tntαxk+2xk+3 . . . xn ∈ Si,

where α, ni, nt, k are fixed and α ∈ Id \ {1, . . . , t}, 1 ≤ t ≤ i, (nt, . . . , ni) ∈
P k,i−t+1, and ni, nt �= 0, 2 ≤ k ≤ n − 1, k ≡ 0 (mod2). It is clear that
(nt, . . . , ni) ∈ P k,i−t+1 means (nt, . . . , ni, 0, . . . , 0) ∈ P k,d−t, and so x ∈ Tk.
Thus,

(2.6)
d−1⋃
i=1

Si ⊆
n−1⋃

j=2,j≡0 (mod2)

Tj.

Conversely, arbitrarily choose j (2 ≤ j ≤ n − 1, j ≡ 0 (mod2)) and

x = (d− 1)nd−1 . . . tntαxk+2xk+3 . . . xn ∈ Tj,

where α ∈ Id \ {1, 2, . . . , t}, (nt, . . . , nd−1) ∈ P k,d−t, nt �= 0, 1 ≤ t ≤ d− 1. Let
i = max{�| n� �= 0, t ≤ � ≤ d − 1}. Then x ∈ Si, and so

(2.7)
n−1⋃

j=2,j≡0 (mod 2)

Tj ⊆
d−1⋃
i=1

Si.

Combining (2.6) with (2.7) yields the equality in (2.5). Sd ⊆ Tn clearly from
the definitions of Sd and Tn, and so the conclusion in (2.5) follows.

It follows from (2.3) and (2.5) that

|S| =
n−1∑

j=0,j≡0 (mod2)

|Tj|+ |Sd|,

and so

|S| =
n−1∑

j=1,j≡1 (mod 2)

|Tj| + |Tn − Sd|.

The equation (2.4) follows and the proof of the theorem is complete.

Lemma 2.4. For each k with 1 � k < n, we have

|Tk| =
d−1∑
t=1

(
k + d − t − 2

k − 1

)
(d − t)dn−k−1(2.8)

and

|Tn| =
(

n + d − 2
d − 2

)
.(2.9)
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Proof. From the definition of Tk, for a vertex

x = (d− 1)nd−1 . . . tntαxk+2xk+3 . . . xn ∈ Tk,(2.10)

the first k positions depend on the choice of (nt, nt+1, . . . , nd−1) ∈ P k,d−t with
nt �= 0. Let

P t
k,d−t = {(nt, nt+1, . . . , nd−1) ∈ P k,d−t| nt �= 0}.

Then (nt, nt+1, . . . , nd−1) ∈ P t
k,d−t ⇔ (nt, nt+1, . . . , nd−1) ∈ P k−1,d−t.

It follows from Lemma 2.1 that for each k with 1 ≤ k ≤ n,

|P t
k,d−t| = |P k−1,d−t| =

(
k + d − t − 2

k − 1

)
.(2.11)

Since α ∈ Id \ {1, 2, . . . , t}, there are (d− t) choices of α in (2.10). Also since
xj ∈ Id, there are dn−k−1 of the subsequence xk+2xk+3 . . .xn in (2.10). Therefore,
for a fixed t with 1 ≤ t ≤ d − 1, there are

(k+d−t−2
k−1

)
(d− t)dn−k−1 choices of the

vertex x in (2.10). Thus, for a fixed k with 1 � k < n, we have

|Tk| =
d−1∑
t=1

(
k + d − t − 2

k − 1

)
(d − t)dn−k−1,

and so (2.8) follows. For k = n, using (2.11), we have that

|Tn| =
d−1∑
t=1

(
n + d − t − 2

n − 1

)
=
(

n + d − 2
n

)
=
(

n + d− 2
d − 2

)
,

where the second equality is obtained by using the combinatorial equality (Pascal’s
formula) (

n

k

)
+
(

n

k + 1

)
=
(

n + 1
k + 1

)
.(2.12)

The equality (2.9) follows.

Lemma 2.5. If n is even, then for d = 2, |Tn − S2| = 0, and for any d ≥ 3,

|Tn − Sd| =
n−1∑

k≡1 (mod2)

(
k + d − 2

d − 3

)
.(2.13)
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Proof. For each t with 1 ≤ t ≤ d − 1, let

Bt =

{
{(d− 1)nd−1(d− 2)nd−2 . . . tnt | and nt ≡ 1 (mod2),

(nt, nt+1, . . . , nd−1) ∈ P n,d−t, n ≡ 0 (mod2)}

}
.

From the definitions of Sd and Tn, we have
d−1⋃
t=1

Bt = Tn − Sd.

If t = d − 1 then nd−1 = n. Since n ≡ 0 (mod2), we have |Bd−1| = 0, and so
|Tn − S2| = 0 for d = 2.

For d ≥ 3 and 1 ≤ t ≤ d − 2, if (nt, nt+1, . . . , nd−1) ∈ P n,d−t with n ≡
0 (mod2) and nt ≡ 1 (mod2) then (nt+1, . . . , nd−1) is a solution of the indefinite
equation zt+1 + zt+2 + . . . + zd−1 = n − nt. Let

P o
n,d−t = {(nt, nt+1, . . . , nd−1) ∈ P n,d−t| nt ≡ 1(mod2), n ≡ 0(mod2)}.

Then (nt, nt+1, . . . , nd−1) ∈ P o
n,d−t ⇔ (nt+1, . . . , nd−1) ∈ P n−nt ,d−t−1.

Since nt can be taken over all odd numbers in {1, 2, . . . , n − 1}, for 1 ≤ t ≤
d − 2, we have that

|Bt| = |P o
n,d−t| =

n−1∑
k≡1 (mod 2)

|P k,d−t−1|

=
n−1∑

k≡1 (mod2)

(
k + d − t − 2

k

)
,

and so

|Tn − Sd| =
d−1∑
t=1

|Bt| =
d−2∑
t=1

n−1∑
k≡1 (mod2)

(
k + d − t − 2

k

)

=
n−1∑

k≡1 (mod2)

d−2∑
t=1

(
k + d− t − 2

k

)

=
n−1∑

k≡1 (mod2)

(
k + d − 2

k + 1

)

=
n−1∑

k≡1 (mod2)

(
k + d − 2

d − 3

)
.

The last equality is obtained by using the combinatorial equality (2.12). The lemma
follows.



1110 Xirong Xu, Jun-Ming Xu and Yongchang Cao

3. BOUNDS ON FEEDBACK NUMBERS

In this section, we give the bounds on the feedback number f(d, n).

Lemma 3.1. (Beineke and Vandell [5]). For feedback vertex set F in a graph
G with υ vertices, ε edges and maximum degree �, it holds that

|F | ≥
⌈

ε − υ + 1
�− 1

⌉
.

Theorem 3.1. For any d ≥ 3 and n ≥ 1:⌈
dn+1−d− d(d−1)

2 −dn+1
2d−1

⌉
≤f(d, n)≤dn

(
1−
(

d

1+d

)d−1
)

+
(

n+d−2
d−2

)
.

Proof. Substituting υ = dn, ε = dn+1 − d − 1
2d(d − 1) and ∆ = 2d into

Lemma 3.1, we immediately have

f(d, n) ≥
⌈

dn+1 − d − d(d−1)
2 − dn + 1

2d − 1

⌉
.

We now show that

f(d, n) ≤ dn

(
1 −

(
d

1 + d

)d−1
)

+
(

n + d − 2
d − 2

)
.

By Theorem 2.1, we have f(d, n) ≤ |S|. To estimate the value of |S|, we consider
two cases according to the parity of n£¬ that is,

|S| = |T1| + |T3| + |T5|+ . . . +

{ |Tn−1| + |Tn − Sd| if n is even;

|Tn−2| + |Tn| if n is odd.

Noting from Lemma 2.4 and Lemma 2.5 that

|Tn − Sd| =
n−1∑

k≡1 (mod2)

(
k + d − 2

d − 3

)

<

n−1∑
k=1

(
k + d − 2

d− 3

)

<

(
n + d − 2

d− 2

)
= |Tn|,
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we only need to estimate the value of |S| when n is odd. From (2.8) we have that

n−2∑
k=1,k≡1 (mod 2)

|Tk| =
n−2∑

k=1,k≡1 (mod2)

d−1∑
t=1

(
k + d− t − 2

k − 1

)
(d− t) dn−k−1

=
n−2∑

k=1,k≡1 (mod2)

(d + k − 2)!(kd− k + 1)
(k + 1)!(d− 2)!

dn−k−1

≤
+∞∑

k=1,k≡1 (mod2)

(d + k − 2)!(kd− k + 1)
(k + 1)!(d− 2)!

dn−k−1

=
+∞∑

k=1,k≡1 (mod2)

(d + k − 2)!
k!(d− 2)!

dn−k

−
+∞∑

k=1,k≡1 (mod2)

(d + k − 1)!
(k + 1)!(d− 2)!

dn−k−1

=
+∞∑

k=1,k≡1 (mod2)

(d + k − 2)!
k!(d− 2)!

dn−k

−
+∞∑

t=2,t≡0 (mod2)

(d + t − 2)!
t!(d− 2)!

dn−t

= −
+∞∑
k=1

(d + k − 2)!
k!(d− 2)!

(−d)n−k

= dn

(
1 −

+∞∑
k=0

(d + k − 2)!
k!(d − 2)!

(−d)−k

)
.

Substituting z = − 1
d and t = d − 1 into the generating function

1
(1− z)t

=
+∞∑
k=0

(
k + t − 1

k

)
zk

immediately yields that

n−2∑
k=1,k≡1 (mod2)

|Tk| ≤ dn

(
1− dd−1

(1 + d)d−1

)
.

Thus,

|S| ≤ dn

(
1 − dd−1

(1 + d)d−1

)
+
(

n + d − 2
d− 2

)
.
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The proof of the theorem is complete.
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