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REGULARITY CRITERIA FOR THE GENERALIZED
MAGNETOHYDRODYNAMIC EQUATIONS AND THE

QUASI-GEOSTROPHIC EQUATIONS

Jishan Fan, Hongjun Gao and Gen Nakamura

Abstract. In this paper we consider the Cauchy problem for the 3D general-
ized magnetohydrodynamic (MHD) equations and the quasi-geostrophic (QG)
equations. We prove some new regularity criteria for weak solutions.

1. INTRODUCTION

We shall consider the following 3D generalized MHD equations υ

ut + u · ∇u + ∇p − B · ∇B +
1
2
∇|B|2 + (−∆)αu = 0,(1.1)

Bt + u · ∇B − B · ∇u + (−∆)αB = 0,(1.2)

div u = div B = 0 in (0,∞)× R3,(1.3)

u(x, 0) = u0(x), B(x, 0) = B0(x) in R3,(1.4)

where u := (u1, u2, u3) is the velocity field, B := (B1, B2, B3) is the magnetic
field, p(x, t) is a scalar pressure, and u0(x), B0(x) with div u0 = div B0 = 0 in
the sense of distribution are the initial velocity and magnetic fields. α ≥ 1 and the
operator (−∆)α is defined by

̂(−∆)αf(ξ) = |ξ|2αf̂ ,

where f̂ denotes the Fourier transform of f . We will also denote Λ := (−∆)
1
2 .
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It is easy to prove that problem (1.1)-(1.4) is locally well-posed for any given
initial data u0, B0 ∈ Hs(R3), s ≥ 3. Moreover, it is proved by Wu [1] that (1.1)-
(1.4) has a weak solution for any u0, B0 ∈ L2(R3) with div u0 = div B0 = 0 in
R3. But whether the unique local solution can exist globally or the weak solution
is regular and unique is an outstanding open problem.

Note that if (u(x, t), B(x, t)) is a solution to (1.1)-(1.4), then (uλ, Bλ) with
any λ > 0 is also a solution, where uλ(x, t) = λ2α−1u(λx, λ2αt) and Bλ(x, t) =
λ2α−1B(λx, λ2αt). We will say that the norm ‖u‖Lp(0,∞;Lq(R3)) is scaling dimen-
sion zero for 2α

p + 3
q = 2α − 1 in the sense that ‖uλ‖Lp(0,∞;Lq) = ‖u‖Lp(0,∞;Lq)

holds for all λ > 0 if and only if 2α
p + 3

q = 2α − 1. Very recently, Y. Zhou [2]
proved that

Theorem 1.1. ([2]). Let 1 ≤ α ≤ 5
4 and assume that u0, B0 ∈ H3(R3). If one

of the following conditions is satisfied.

(1.5) (i) u ∈ Lp(0, T ; Lq(R3)), with
2α

p
+

3
q

=2α−1,
3

2α−1
< q ≤ ∞,

(1.6) (ii) Λαu ∈ Lp(0, T ; Lq(R3)), with
2α

p
+

3
q

=3α−1,
3

3α − 1
<q<

3
α−1

.

Then the solution remains smooth on (0, T ].

Remark 1.1. If α ≥ 5
4 and u0, B0 ∈ H3(R3), then all the global weak solutions

to (1.1)-(1.4) are actually strong and unique ([1],[2]).

Remark 1.2. When α = 1, Theorem 1.1 reduces to the results obtained by C.
He and Z. P. Xin [3] and Y. Zhou [4].

Remark 1.3. The global well-posedness and regularity conditions for the Navier-
Stokes and the related equations were considered in [15] and [20].

The pointwise multipliers between different spaces of differentiable functions
have been studied by Maz’ya and co-workers [5, 6, 7, 8]. They are a useful tool
for stating minimal regularity requirements on the coefficients of partial differential
operators for proving regularity or uniqueness of solutions.

More precisely, we define the space Ẋr,s(Rd) of pointwise multipliers which
map Ḣr into Ḣ−s. The norm in Ẋr,s is given by the operator norm of pointwise
multiplication:

(1.7) ‖f‖Ẋr,s
:= sup

{‖fg‖Ḣ−s

‖g‖Ḣr

, g �= 0
}

.

When s = 0, we simply denote Ẋr ≡ Ẋr,0.
Now we are in a position to state the main result in this paper.



The Generalized MHD and QG Equations 1061

Theorem 1.2. Let 1 ≤ α ≤ 5
4 , 0 < r < α and assume that u0, B0 ∈ H3(R3).

If one of the following three conditions is satisfied

(i) u ∈ L
2α

α−r (0, T ; Ẋr,α−1),(1.8)

(ii) ∇u ∈ L
2α

2α−r (0, T ; Ẋr),(1.9)

(iii) ∇u ∈ L
2α

α−r (0, T ; Ẋr,α),(1.10)

(iv) ∇u ∈ L1(0, T ; Ḃ0
∞,∞).(1.11)

Then the solution (u, B) remains smooth on (0, T ].

Remark 1.4. Since L
d

r+s (Rd) ⊂ L
d

r+s
,∞(Rd) ⊂ Ẋr,s(Rd), our result improve

Theorem 1.1.

2. PRELIMINARIES

We first recall the definition of the homogeneous Littlewood-Paley decomposi-
tion which will be used to define function spaces. We follow [9]. Let S be the
Schwartz class of rapidly decreasing functions. Given f ∈ S , its Fourier transform
F (f) = f̂ is defined by

f̂(ξ) =
1

(2π)n/2

∫
Rn

f(x)e−ix·ξdx.

We consider ϕ ∈ S satisfying suppϕ̂ ⊂ {ξ ∈ Rn
∣∣1
2 ≤ |ξ| ≤ 2

}
, and ϕ̂ > 0 if

2
3 < |ξ| < 3

2 . Setting ϕ̂j = ϕ̂(2−jξ) (in other words, ϕj(x) = 2jnϕ(2jx)), we can
adjust the normalization constant in front of ϕ̂ so that∑

j∈Z

ϕ̂j(ξ) = 1 ∀ξ ∈ Rn \ {0}.

Given k ∈ Z, we define the function Sk ∈ S by its Fourier transform

Ŝk(ξ) = 1 −
∑

j≥k+1

ϕ̂j(ξ).

We observe

suppϕ̂j ∩ suppϕ̂j′ = empty set if |j − j ′| ≥ 2.

Let s ∈ R, (p, q) ∈ [0,∞) × [0,∞]. Given f ∈ S ′, we denote ∆jf = ϕj ∗ f ,
and then the homogeneous Triebel-Lizorkin semi-norm ‖f‖Ḟ s

p,q
is defined by

‖f‖Ḟ s
p,q

=



∥∥∥∥∥∥
(∑

j∈Z

2jqs|∆jf(·)|q
)1/q

∥∥∥∥∥∥
Lp

if q ∈ [1,∞),∥∥∥∥∥sup
j∈Z

(
2js|∆jf(·)|)∥∥∥∥∥ if q = ∞.
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The homogeneous Triebel-Lizorkin space Ḟ s
p,q is a quasi-normed space with the

quasi-norm given by ‖ · ‖Ḟ s
p,q

. For s > 0, (p, q) ∈ [1,∞)× [1,∞]. We define the
inhomogeneous Triebel-Lizorkin space norm ‖f‖F s

p,q
of f ∈ S′ as

‖f‖F s
p,q

= ‖f‖Lp + ‖f‖Ḟ s
p,q

.

The inhomogeneous Triebel-Lizorkin space is a Banach space equipped with the
norm, ‖ · ‖F s

p,q
. Similarly, for s ∈ R, (p, q) ∈ [0,∞]2, the homogeneous Besov norm

‖f‖Ḃs
p,q

is defined by

‖f‖Ḃs
p,q

=


(

+∞∑
−∞

2jqs‖ϕj ∗ f‖q
Lp

)
if q ∈ [1,∞),

sup
j

(2js‖ϕj ∗ f‖Lp) if q = ∞.

The homogeneous Besov space Ḃs
p,q is a quasi-normed space with the quasi-

norm given by ‖ · ‖Ḃs
p,q

. For s > 0 we define the inhomogeneous Besov space norm
‖f‖Bs

p,q
of f ∈ S′ as ‖f‖Bs

p,q
= ‖f‖Lp + ‖f‖Ḃs

p,q
.

Lemma 2.1. (1) Let 1 < p < ∞, 1 < q < ∞ and let s > 0, α > 0, β > 0.
We take 1 < p1 < ∞, 1 < p2 ≤ ∞ and 1 < r1 ≤ ∞, 1 < r2 < ∞ so that
1/p = 1/p1 + 1/p2 = 1/r1 + 1/r2. Then there is a constant C such that for every
f ∈ Ḟ s+α

p1,q ∩ Ḟ−β
r1,∞ and g ∈ Ḟ−α

p2,∞∩ Ḟ s+β
r2,q there holds f · g ∈ Ḟ s

p,q with the estimate

(2.12) ‖f · g‖Ḟ s
p,q

≤ C
(
‖f‖Ḟ s+α

p1,q
‖g‖Ḟ−α

p2,∞ + ‖f‖
Ḟ−β

r1,∞
‖g‖

Ḟ s+β
r2,q

)
.

(2) Let 1 < p ≤ ∞ and let s > 0, α > 0, β > 0. We take 1 < p1, p2, r1, r2 ≤ ∞
so that 1/p = 1/p1 + 1/p2 = 1/r1 + 1/r2. Then there is a constant C such that
for every f ∈ Ḟ s+α

p1,∞ ∩ Ḟ−β
r1,∞ and g ∈ Ḟ−β

p2,∞ ∩ Ḟ s+α
r2,∞ there holds f · g ∈ Ḟ s

p,∞ with
the estimate

(2.13) ‖f · g‖Ḟ s
p,∞

≤ C
(
‖f‖Ḟ s+α

p1,∞‖g‖Ḟ−α
p2,∞ + ‖f‖

Ḟ
−β
r1,∞

‖g‖
Ḟ

s+β
r2,∞

)
.

For the proof see [10].

3. PROOF OF THEOREM 1.2

In order to prove Theorem 1.2, first we show

(3.1) u, B ∈ L∞(0, T ; H1) ∩ L2(0, T ; Hα+1).

Multiplying (1.1) by u and (1.2) by B, after integration by parts and taking the
divergence free property into account, and adding up the resulting equality give
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(3.2)
1
2
(‖u(t)‖2

L2 + ‖B(t)‖2
L2) +

∫ T

0

‖Λαu(t)‖2
L2 + ‖ΛαB(t)‖2

L2dt

≤ 1
2
(‖u0‖2

L2 + ‖B0‖2
L2).

Testing (1.1) by ∆u and using (1.3) yield

(3.3)

1
2

d

dt
‖∇u‖2

L2 + ‖Λα+1u‖2
L2

= −
∑
i,j,k

∫
∂iuk · ∂kuj · ∂iujdx +

∑
i,j,k

∫
∂iBk · ∂kBj · ∂iujdx

−
∑
i,j,k

∫
Bk · ∂i∂kuj · ∂iBjdx.

Similarly, testing (1.2) by ∆B, we get

(3.4)

1
2

d

dt
‖∇B‖2

L2 + ‖Λα+1B‖2
L2

= − ∑
i,j,k

∫
∂iuk · ∂kBj · ∂iBjdx +

∑
i,j,k

∫
∂iBk · ∂kuj · ∂iBjdx

+
∑
i,j,k

∫
Bk · ∂k∂iuj · ∂iBjdx.

Combining (3.3) and (3.4) gives

(3.5)

1
2

d

dt
(‖∇u‖2

L2 + ‖∇B‖2
L2) + ‖Λα+1u‖2

L2 + ‖Λα+1B‖2
L2

= −
∑
i,j,k

∫
∂iuk · ∂kuj · ∂iujdx +

∑
i,j,k

∫
∂iBk · ∂kBj · ∂iujdx

− ∑
i,j,k

∫
∂iuk · ∂kBj · ∂iBjdx +

∑
i,j,k

∫
∂iBk · ∂kuj · ∂iBjdx

= : I1 + I2 + I3 + I4.

Each term Ii can be bounded as follows.
Firstly we assume (1.8) holds true.

I1 = −
∑
i,j,k

∫
∂iuk · ∂kuj · ∂iujdx

=
∑
i,j,k

∫
uk · (∂i∂kuj · ∂iuj + ∂kuj · ∂i∂iuj)dx

=
∑
i,j,k

∫
uk · ∂kuj · ∂i∂iujdx

≤
∑
i,j,k

‖uk · ∂kuj‖Ḣ1−α‖∂i∂iuj‖Ḣα−1
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≤
∑
i,j,k

‖uk‖Ẋr,α−1
‖∂kuj‖Ḣr‖∂i∂iuj‖Ḣα−1

≤ C‖u‖Ẋr,α−1
‖∇u‖Ḣr‖∆u‖Ḣα−1

≤ C‖u‖Ẋr,α−1
‖∇u‖Ḣr‖Λα+1u‖L2

≤ C‖u‖Ẋr,α−1
‖∇u‖1− r

α

L2 ‖Λα+1u‖1+ r
α

L2 ,

by the interpolation inequality

(3.6) ‖w‖Ḣr ≤ C‖w‖1− r
α

L2 ‖w‖
r
α

Ḣα
,

and hence

(3.7) I1 ≤ ε‖Λα+1u‖2
L2 + C‖u‖

2α
α−r

Ẋr,α−1
‖∇u‖2

L2,

for any ε > 0 by the Young’s inequality.
Similarly, one can obtain

(3.8)

I2, I3, I4 ≤ C‖u‖Ẋr,α−1
‖∇B‖Ḣr‖∆B‖Ḣα−1

≤ C‖u‖Ẋr,α−1
‖∇B‖Ḣr‖Λα+1B‖L2

≤ C‖u‖Ẋr,α−1
‖∇B‖1− r

α

L2 ‖Λα+1B‖1+ r
α

L2 (by (3.6))

≤ ε‖Λα+1B‖2
L2 + C‖u‖

2α
α−r

Ẋr,α−1
‖∇B‖2

L2 ,

for any ε > 0.
Inserting (3.7) and (3.8) into (3.5) and taking ε small and then the Gronwall’s

inequality yield (3.1).
Next we assume (1.9) holds true.

(3.9)

I1 ≤
∑
i,j,k

‖∂iuk‖L2 · ‖∂kuj · ∂iuj‖L2

≤
∑
i,j,k

‖∂iuk‖L2 · ‖∂kuj‖Ẋr
‖∂iuj‖Ḣr

≤ C‖∇u‖L2‖∇u‖Ẋr
‖∇u‖Ḣr

≤ C‖∇u‖2− r
α

L2 ‖∇u‖Ẋr
‖∇u‖

r
α

Ḣα
(by (3.6))

≤ ε‖Λα+1u‖2
L2 + C‖∇u‖

2α
2α−r

Ẋr
‖∇u‖2

L2,

for any ε > 0 by the Young’s inequality.



The Generalized MHD and QG Equations 1065

Similarly, one can get

(3.10)

I2, I3, I4 ≤ C‖∇B‖L2‖∇u‖Ẋr
‖∇B‖Ḣr

≤ C‖∇B‖2− r
α

L2 ‖∇u‖Ẋr
‖Λα+1B‖

r
α

L2

≤ ε‖Λα+1B‖2
L2 + C‖∇u‖

2α
2α−r

Ẋr
‖∇B‖2

L2 ,

for any ε > 0.
Putting (3.9) and (3.10) into (3.5) and taking ε small enough and then the

Gronwall’s inequality give (3.1).
We assume that (1.10) holds true.

(3.11)

I1 ≤
∑
i,j,k

‖∂iuk‖Ḣα · ‖∂kuj · ∂iuj‖Ḣ−α

≤
∑
i,j,k

‖∂iuk‖Ḣα · ‖∂kuj‖Ẋr,α
‖∂iuj‖Ḣr

≤ C‖∇u‖Ḣα‖∇u‖Ẋr,α
‖∇u‖Ḣr

≤ C‖∇u‖Ẋr,α
‖∇u‖1− r

α

L2 ‖Λα+1u‖1+ r
α

L2 (by (3.6))

≤ ε‖Λα+1u‖2
L2 + C‖∇u‖

2α
α−r

Ẋr,α
‖∇u‖2

L2,

for any ε > 0 by the Young’s inequality.
Similarly, we deduce

(3.12)

I2, I3, I4 ≤ C‖∇B‖Ḣα‖∇u‖Ẋr,α
· ‖∇B‖Ḣr

≤ C‖∇u‖Ẋr,α
‖∇B‖1− r

α

L2 ‖Λα+1B‖1+ r
α

L2 (by (3.6))

≤ ε‖Λα+1B‖2
L2 + C‖∇u‖

2α
α−r

Ẋr,α
‖∇B‖2

L2 ,

for any ε > 0.
Inserting (3.11) and (3.12) into (3.5) and taking ε small enough and then the

Gronwall’s inequality gives (3.1).
Finally we assume (1.11) holds true. Using the Littlewood-Paley decomposition,

we decompose ∂iuj as follows:

∂iuj =
+∞∑

�=−∞
∆�∂iuj =

∑
�<−N

∆�∂iuj +
N∑

�=−N

∆�∂iuj +
∑
j>N

∆�∂iuj,
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where N is a positive integer to be chosen later. Substituting this decomposition
into I1, we obtain

(3.13)

I1 =
∑
i,j,k

∑
�<−N

∫
∂iuk · ∂kuj · ∆�∂iujdx

+
∑
i,j,k

N∑
�=−N

∫
∂iuk · ∂kuj · ∆�∂iujdx

+
∑
i,j,k

∑
�>N

∫
∂iuk · ∂kuj · ∆�∂iujdx

= : J1(t) + J2(t) + J3(t).

Next, we estimate each Ji(i = 1, 2, 3). First, recalling

(3.14) ‖∆jf‖Lq ≤ C23j
(

1
p
− 1

q

)
‖∆jf‖Lp , 1 ≤ p ≤ q ≤ ∞,

with C being a positive constant independent of f and j, we apply Hölder’s in-
equality and (3.14) to infer that

J1(t) ≤ C‖∇u‖2
L2

∑
i,j

∑
�<−N

‖∆�∂iuj‖L∞

≤ C‖∇u‖2
L2

∑
i,j

∑
�<−N

2
3
2
�‖∆�∂iuj‖L2

≤ C2−
3
2
N‖∇u‖3

L2.

For J2(t), we use Hölder’s inequality and (3.14) to conclude that

J2(t) ≤ C‖∇u‖2
L2

∑
i,j

N∑
�=−N

‖∆�∂iuj‖L∞ ≤ CN‖∇u‖Ḃ0∞,∞
‖∇u‖2

L2.

For J3(t) we make use of Hölder’s inequality and (3.14) to deduce that

J3(t) ≤ C‖∇u‖2

L
6

3−α

∑
i,j

∑
�>N

‖∆�∂iuj‖
L

3
α

≤ C‖∇u‖2

L
6

3−α

∑
i,j

∑
�>N

23�( 1
2
−α

3 )‖∆�∂iuj‖L2

≤ C‖∇u‖2

L
6

3−α

∑
i,j

(∑
�>N

2−(4α−3)�

)1/2(∑
�>N

22α�‖∆�∂iuj‖2
L2

)1/2

≤ C‖∇u‖2

L
6

3−α
2−(4α−3)N‖Λ1+αu‖L2

≤ C2−(4α−3)N‖∇u‖L2‖Λ1+αu‖2
L2,
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due to the Gagliardo-Nirenberg inequality

(3.15) ‖∇u‖2

L
6

3−α
≤ C‖∇u‖L2‖Λ1+αu‖L2.

Now we choose N so that C2−(4α−3)N (‖∇u‖L2 + ‖∇B‖L2) ≤ 1
8 , i.e.,

N ≥ 1
4α − 3

log+(8C(‖∇u‖L2 + ‖∇B‖L2))
log 2

,

to conclude

(3.16)
I1 ≤ C‖∇u‖2

L2 + C‖∇u‖Ḃ0∞,∞
‖∇u‖2

L2 log+(‖∇u‖L2 + ‖∇B‖L2)

+
1
8
‖Λ1+αu‖2

L2.

Similarly, we can get

(3.17)

I2, I3, I4

≤ C(‖∇u‖2
L2 + ‖∇B‖2

L2) +
1
8
(‖Λ1+αu‖2

L2 + ‖Λ1+αB‖2
L2)

+C‖∇u‖Ḃ0∞,∞
(‖∇u‖2

L2+‖∇B‖2
L2) log+(‖∇u‖L2+‖∇B‖L2).

Putting (3.16) and (3.17) into (3.5) and we apply the Gronwall’s inequality to
get (3.1).

After we have (3.1), the estimates for higher order derivatives can be obtained
by an inductive procedure.

This completes the proof of Theorem 1.2.

4. THE QG EQUATIONS

In this section we use the similar method to the previous section to study the
regularity of the dissipative quasi-geostrophic equations:

(4.1) ∂tθ + υ · ∇θ = −κΛαθ,

(4.2) υ(x, t) = −∇⊥(−∆)−
1
2 θ = −

∫
R2

∇⊥θ(x + y, t)
|y| dy,

(4.3) θ(x, 0) = θ0(x), x ∈ R2,

where θ(x, t) is a scalar function representing temperature, υ(x, t) is the velocity
field of the fluid, κ ≥ 0 is the diffusion coefficient, Λα := (−∆)

α
2 , and ∇⊥ :=

(−∂x2, ∂x1). (4.1)-(4.3) is an important model in geophysical fluid dynamics, they
are special cases of the general quasi-geostrophic approximations for atmospheric
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and oceanic fluid flow with small Rossby and Ekman numbers. See, e.g., [11, 12, 13,
14] for the instructive discussions and the physical and mathematical motivations
of the study of (4.1)-(4.3), in particular of the inviscid case (k = 0). The case
α > 1 is called the subcritical case, the case α = 1 is critical, the case 0 ≤ α < 1
is supercritical. For α > 1, the global regularity of the solution of (4.1)-(4.3) is
well-known [16]. For α = 1, the global regularity of the solution of (4.1)-(4.3)
has been proved very recently in [17, 18]. On the other hand, for 0 < α < 1,
the question of global regularity/finite time singularity is still a challenging open
question. In particular, the critical dissipation case (α = 1) has similar features
to the 3-D Navier-Stokes equations and could be considered as its model problem.
In order to see the similarities to the 3-D Navier-Stokes equations (with fractional
powers of Laplacian) more apparently we apply the operator ∇⊥ to (4.1) to get

(4.4) ∂t∇⊥θ + (υ · ∇)∇⊥θ = (∇⊥θ · ∇)υ − kΛα∇⊥θ.

Then we observe that ∇⊥θ has the role of vorticist, and (4.2) corresponds to
the Biot-Savart law for the 3-D Navier-Stokes equations. In this mote we are
concerned with the sufficient conditions to guarantee regularity of solutions to the
quasi-geostrophic equations. Constantin, Majda, and Tabak [13] proved that:

(4.5) lim
t→T

sup ‖θ(t)‖Hm < ∞ if and only if
∫ T

0
‖∇⊥θ(t)‖L∞dt < ∞,

where m > 2, which holds for solutions of both viscous and inviscid (k = 0) equa-
tions. Very recently, Chae [19] generalizes (4.5) to obtain the following theorem:

Theorem 4.1. Let θ(x, t) be a solution of the quasi-geostrophic equation (4.1)-
(4.3) with α ∈ (0, 1], k > 0, and its derivative ∇⊥θ satisfies

(4.6) ∇⊥θ ∈ Lr(0, T ; Lp(R2)) for some (r, p) with
2
p

+
α

r
≤ α,

2
α

< p < ∞,

then there is no singularity up to T .

Our theorem generalizes this as follows.

Theorem 4.2. Let θ(x, t) be a solution of (4.1)-(4.3) with α ∈ (0, 1], k > 0,
and its derivative ∇⊥θ satisfies one of the following conditions:

(4.7) (i) ∇⊥θ ∈ L
α

α−r (0, T ; Ẋr),

(4.8) (ii) ∇⊥θ ∈ L
2α

α−2r (0, T ; Ẋr,α/2),

(4.9) (iii) 0 < s < α/2,∇⊥θ ∈ L
α

α−s (0, T ; Ḟ−s
∞,∞)

then there is no singularity up to T .
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Remark 4.1. Very recently, J.Yuan [21] refines (4.6) as

(4.10) ∇⊥θ ∈ Lr(0, T ; Ḃ0
p,∞) with

2
p

+
α

r
≤ α,

2
α

< p ≤ ∞.

Remark 4.2. Since Ḃ0
p,∞ ⊂ Ḟ−s∞,∞ with 2

p = s our condition (4.9) generalizes
(4.10).

Proof of Theorem 4.2. We plan to show that our integrability condition for
∇⊥θ in Theorem 4.2 implies

(4.11)
∫ T

0
‖∇⊥θ(t)‖L∞dt < ∞,

thus guaranteeing the desived regularity until T by (4.5). Multiplying (4.4) by
∆∇⊥θ and integrating by parts, we see that

(4.12)

1
2

d

dt
‖Λ2θ(t)‖2

L2 + k‖Λ2+α
2 θ‖2

L2

=
∫

(υ · ∇)∇⊥θ · ∆∇⊥θdx −
∫

(∇⊥θ · ∇)υ · ∆∇⊥θdx =: I + J.

Integrating by parts, we have

(4.13)

I = −
∫

∇[(υ · ∇)∇⊥θ] · ∇∇⊥θdx

= −
∫

(∇υ) · (∇∇⊥θ) · ∇∇⊥θdx −
∫

(υ · ∇)∇∇⊥θ · ∇∇⊥θdx

= : I1 + I2.

Integrating by parts again, and using the fact that div υ = 0, we get

I2 = −1
2

∫
(υ · ∇)|∇∇⊥θ|2dx =

1
2

∫
|∇∇⊥θ|2div υdx = 0.

Now we assume that (4.7) holds true. Then

(4.14)

I1 ≤
∫

|∇υ||∇∇⊥θ|2dx ≤ ‖∇∇⊥θ‖L2‖|∇υ| · ∇∇⊥θ‖L2

≤ C‖∇∇⊥θ‖L2‖∇υ‖Ẋr
‖∇∇⊥θ‖Ḣr

≤ C‖∇υ‖Ẋr
‖∇∇⊥θ‖2− 2r

α

L2 ‖∇∇⊥θ‖
2r
α

Ḣα
(by (3.6))

≤ k

4
‖Λ2+α

2 θ‖2
L2 + C‖∇⊥θ‖

α
α−r

Ẋr
‖Λ2θ‖2

L2
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In order to estimate J we first integrate by parts:

J =
∫

∇[(∇⊥θ · ∇)υ] · ∇∇⊥θdx

=
∫

∇∇⊥θ · ∇υ · ∇∇⊥θdx +
∫

(∇⊥θ · ∇)∇υ · ∇∇⊥θdx,

since ‖∇∇υ‖Lq ≤ C‖∇∇⊥θ‖Lq , 1 < q < ∞, due to the Calderon-Zygmund
inequality, we observe that the estimate of J is the same as the estimate of I1, and
we have

(4.15) J ≤ k

4
‖Λ2+α

2 θ‖2
L2 + C‖∇⊥θ‖

α
α−r

Ẋr
‖Λ2θ‖2

L2.

Combining the estimates (4.14)-(4.15) and absorbing the diffusion term into the
left hand side, we obtain

(4.16)
d

dt
‖Λ2θ‖2

L2 + k‖Λ2+α
2 θ‖2

L2 ≤ C‖∇⊥θ‖
α

α−r

Ẋr
‖Λ2θ‖2

L2 .

By Gronwall’s lemma,

‖Λ2θ(t)‖L2 ≤ ‖Λ2θ0‖L2 exp
[
C

∫ t

0

‖∇⊥θ‖
α

α−r

Ẋr
dt

]
, ∀t ∈ [0, T ].

Hence, ‖Λ2θ‖L2 ∈ L∞(0, T ). Integrating (4.16) over [0, T ], we have

‖Λ2θ(t)‖+k

∫ T

0
‖Λ2+α

2 θ(t)‖2
L2dt≤C

∫ T

0
‖∇⊥θ‖

α
α−r

Ẋr
dt sup

0≤t≤T
‖Λ2θ(t)‖2

L2+‖Λ2θ0‖2
L2,

which implies
∫ T
0 ‖Λ2+α

2 θ(t)‖2
L2dt < ∞. Applying the Gagliardo-Nirenberg in-

equality,

‖∇θ‖L∞ ≤ C‖θ‖
α

4+α

L2 ‖Λ2+α
2 θ‖

4
4+α

L2 ,

in R2, we have (4.11).
We assume that (4.8) holds true. Then

(4.17)

I1 ≤ ‖∇∇⊥θ‖Ḣα/2‖|∇υ| · ∇∇⊥θ‖Ḣ−α/2

≤ ‖∇υ‖Ẋr,α/2
‖∇∇⊥θ‖Ḣα/2‖∇∇⊥θ‖Ḣr

≤ C‖∇⊥θ‖Ẋr,α/2
‖∇∇⊥θ‖1− 2r

α

L2 ‖∇∇⊥θ‖1+ 2r
α

Ḣα/2 (by (3.6))

≤ k

4
‖Λ2+α

2 θ‖2
L2 + C‖∇⊥θ‖

2α
α−2r

Ẋr,α/2
‖Λ2θ‖2

L2 .

Since ‖∇∇υ‖Ḣr ≤ C‖∇∇⊥θ‖Ḣr , due to the Calderon-Zygmund inequality, we
observe that the estimate of J is the same as that of I1, and we have
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(4.18) J ≤ k

4
‖Λ2+α

2 θ‖2
L2 + C‖∇⊥θ‖

2α
α−2r

Ẋr,α/2
‖Λ2θ‖2

L2 ,

and hence we similarly get (4.11).
Finally, we assume that (4.9) holds true. Using Lemma 2.1 and the interpolation

inequality (3.6), we bound J as follows.

(4.19)

J =
∫

(∇⊥θ · ∇)v · Λ2∇⊥θdx =
∫

Λ1−s(∇⊥θ · ∇v) · Λ1+s∇⊥θdx

≤ ‖Λ1−s(∇⊥θ · ∇v)‖L2 · ‖Λ1+s∇⊥θ‖L2

≤ C‖∇⊥θ · ∇v‖Ḟ 1−s
2,2

‖Λ1+s∇⊥θ‖L2

≤ C
(
‖∇⊥θ‖Ḟ−s∞,∞‖∇v‖Ḟ 1

2,2
+‖∇⊥θ‖Ḟ 1

2,2
‖∇v‖Ḟ−s∞,∞

)
‖Λ1+s∇⊥θ‖L2

≤ C‖∇⊥θ‖Ḟ−s∞,∞‖Λ2θ‖L2‖Λ2+sθ‖L2

≤ C‖∇⊥θ‖Ḟ−s∞,∞‖Λ2θ‖2− 2s
α

L2 ‖Λ2+α
2 θ‖

2s
α

L2

≤ 1
4
‖Λ2+α

2 θ‖2
L2 + C‖∇⊥θ‖

α
α−s

Ḟ−s∞,∞
‖Λ2θ‖2

L2 ,

where we have used the following inequalities [22]:

‖∇v‖Ḟ 1
2,2

≤ C‖∇⊥θ‖Ḟ 1
2,2

,

and
‖∇v‖Ḟ−s∞,∞ ≤ C‖∇⊥θ‖Ḟ−s∞,∞ .

On the other hand,

I =
∑

i

∫
vi∂i∇⊥θ · ∆∇⊥θdx = −

∑
i,k

∫
vi∇⊥θ · ∂2

k∂i∇⊥θdx

=
∑
i,k

∫
∂kvi · ∇⊥θ · ∂k∂i∇⊥θdx

and now I can be bounded by the same method as that of J , we obtain

(4.20) I ≤ 1
4
‖Λ2+α

2 θ‖2
L2 + C‖∇⊥θ‖

α
α−s

Ḟ−s∞,∞
‖Λ2θ‖2

L2 .

Inserting (4.19) and (4.20) into (4.12) and using the Gronwall’s inequality gives∫ T

0

‖Λ2+α
2 θ‖2

L2dt ≤ C,

which implies (4.11).
This completes the proof.
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