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HIGHER-ORDER GENERALIZED ADJACENT DERIVATIVE AND
APPLICATIONS TO DUALITY FOR SET-VALUED OPTIMIZATION

Q. L. Wang, S. J. Li* and C. R. Chen

Abstract. A new notion of the higher-order generalized adjacent derivative for
a set-valued map is defined. By virtue of the derivative, a higher-order Mond-
Weir type dual problem is introduced for a constrained set-valued optimization
problem. The weak duality, strong duality and converse duality theorems are
established.

1. INTRODUCTION

The duality theory has been shown to be useful in mathematical economics,
numerical analysis, engineering and other fields involve vector-valued maps (or set-
valued maps) as constraints and objectives (see [8]). So the theory of duality has
received many attentions (see 3-5, 7, 9-13, 17-26). In [25], Weir and Mond obtained
weak, strong and converse duality for weak minimal solutions of multiple objec-
tive optimization problems under different pseudo-convexity and quasi-convexity
assumptions. In [18], Preda and Koller introduced a Mond-Weir duality scheme
for optimization problems involving set functions and discussed the Mond-Weir
type duality under generalized pseudo-convexity and generalized quasi-convexity
assumptions. In [19], by virtue of the tangent derivative of set-valued maps in-
troduced in [1], Sach and Craven obtained Mond-Weir type duality theorems of
set-valued optimization under the condition that set-valued maps satisfy an invex
property. In [20], by using the codifferential of set-valued maps introduced in [2],
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Sach et al. discussed Mond-Weir type weak duality and strong duality of set-valued
optimization problems where set-valued maps satisfy generalized invex properties.

Since higher-order tangent sets introduced in [1], in general, are not cones and
convex sets, there are some difficulties in studying higher-order optimality condi-
tions and duality for general set-valued optimization problems. Until now, there are
only a few papers to deal with higher-order optimality conditions and duality of
set-valued optimization problems by virtue of the higher-order derivatives or epi-
derivatives introduced by the higher-order tangent sets. In [15], Li et al. studied
some properties of higher-order tangent sets and higher-order derivatives introduced
in [1], and then obtained higher-order Fritz John type necessary and sufficient opti-
mality conditions of (weak) maximal solutions for set-valued optimization problems
in terms of the higher-order derivatives under cone-concavity assumptions. By using
these concepts, they also discussed higher-order Mond-Weir duality for a set-valued
optimization problem in [16]. In [14], Li and Chen introduced higher-order general-
ized epiderivatives of set-valued maps, and established higher-order Fritz John type
necessary and sufficient conditions for Henig efficient solutions to a constrained
set-valued optimization problem.

Motivated by the work reported in [14, 15, 16], we introduce a notion of higher-
order generalized adjacent derivative for a set-valued map. Then, by virtue of the
derivative, we discuss higher-order Mond-Weir type duality for a constrained set-
valued optimization problem.

The rest of the paper is organized as follows. In Section 2, we collect some con-
cepts and some of their properties required for the paper. In Section 3, we introduce
the generalized higher-order adjacent set of a set and the higher-order generalized
adjacent derivative of a set-valued map, and study some of their properties. In Sec-
tion 4, by virtue of the derivative, we propose a higher-order Mond-Weir type dual
problem for a constrained set-valued optimization problem, and then establish the
weak duality, strong duality and inverse duality theorems, respectively.

2. PRELIMINARIES AND NOTATIONS

Throughout this paper, let X, Y and Z be three real normed spaces, where the
spaces Y and Z are partially ordered by nontrivial pointed closed convex cones
C ⊂ Y and D ⊂ Z with intC �= ∅ and intD �= ∅, respectively. We assume that
0X , 0Y , 0Z denote the origins of X, Y, Z, respectively, Y ∗ denotes the topological
dual space of Y and C∗ denotes the dual cone of C. Let M be a nonempty set
in Y . The cone hull of M is defined by cone(M) = {ty | t ≥ 0, y ∈ M}. Let
E be a nonempty subset of X , F : E → 2Y and G : E → 2Z be two set-valued
maps. The domain, the graph and the epigraph of F are defined respectively by
dom(F ) = {x ∈ E | F (x) �= ∅}, gph(F ) = {(x, y) ∈ X × Y | x ∈ E, y ∈ F (x)}
and epi(F ) = {(x, y) ∈ X × Y | x ∈ E, y ∈ F (x) + C}. The profile map
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F+ : E → 2Y is defined by F+(x) := F (x) + C, for every x ∈ dom(F ). Let
y0 ∈ Y . Denote F (E) =

⋃
x∈E F (x) and (F − y0)(x) = F (x) − y0.

Definition 2.1. Let F : E → 2Y be a set-valued map, (x0, y0) ∈ gph(F ).

(i) F is said to be C-convex on a convex set E , if epi(F ) is convex.

(ii) F is said to be generalized C-convex at (x0, y0) on a nonempty subset E , if
cone(epi(F )− (x0, y0)) is convex.

Remark 2.1. If F is C-convex on a convex set E , then F is generalized C-
convex at (x0, y0) on E . But the converse does not hold. For example, letX = Y =
R,E = [−1, 2], C = R+, F (x) = {y ∈ Y |y ≥ x

2
5}, (x0, y0) = (0, 0) ∈ gph(F ).

Then F is generalized C-convex at (x0, y0) on E , but F is not C-convex on E .

Suppose that m is a positive integer, X is a normed space supplied with a
distance d and K is a subset of X . We denote by d(x,K) = infy∈K d(x, y) the
distance from x to K, where we set d(x, ∅) = +∞. Now we recall the definitions
in [1], [16] and [14].

Definition 2.2. ([1]) Let x belong to a subset K of a normed space X and
v1, · · · , vm−1 be elements of X . We say that the set

T
�(m)
K (x, v1, · · · , vm−1)

= Liminfh→0+
K − x− hv1 − · · · − hm−1vm−1

hm

= {y ∈ X | lim
h→0+

d(y,
K − x− hv1 − · · · − hm−1vm−1

hm
) = 0}

is the mth-order adjacent set of K at (x, v1, · · · , vm−1).

From Proposition 3.2 in [15], we have the following result.

Proposition 2.1. If K is convex, x ∈ K , and vi ∈ X, i = 1, · · · , m− 1, then
T

�(m)
K (x, v1, · · · , vm−1) is convex.

Definition 2.3. ([1]) The mth-order adjacent derivative D �(m)F (x0, y0, u1, v1,
· · · , um−1, vm−1) of F at (x0, y0) ∈ gph(F ) with respect to (in short, w.r.t.)
(u1, v1), · · · , (um−1, vm−1) is the set-valued map from X to Y defined by

gph(D�(m)F (x0, y0, u1, v1, · · · , um−1, vm−1))

= T
�(m)
gph(F )

(x0, y0, u1, v1, · · · , um−1, vm−1).
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Definition 2.4. ([16]). The C-directedmth-order adjacent derivativeD �(m)
C F (x0,

y0, u1, v1, · · · , um−1, vm−1) of F at (x0, y0) ∈ gph(F ) w.r.t. (u1, v1), · · · , (um−1,

vm−1) is the mth-order adjacent derivative of set-valued map F+ at (x0, y0) ∈
gph(F ) w.r.t. (u1, v1), · · · , (um−1, vm−1).

Definition 2.5. Let M ⊂ Y . An element y ∈M is said to be a minimal point
of M if M

⋂
(y − C) = {y}. The set of all minimal points of M is denoted by

MinCM .

Definition 2.6. ([14]). The mth-order generalized adjacent epiderivative D �(m)
g

F (x0, y0, u1, v1, · · · , um−1, vm−1) of F at (x0, y0) ∈ gph(F ) w.r.t. (u1, v1), · · · ,
(um−1, vm−1) is the set-valued map from X to Y defined by

D�(m)
g F (x0, y0, u1, v1, · · · , um−1, vm−1)(x)

= MinC{y ∈ Y | (x, y) ∈ T
�(m)
epi(F )(x0, y0, u1, v1, · · · , um−1, vm−1)},

for any x ∈ dom[D�(m)F+(x0, y0, u1, v1, · · · , um−1, vm−1)].

However there are set-valued maps for which the mth-order adjacent deriva-
tives, the C-directed mth-order adjacent derivatives and the mth-order generalized
adjacent epiderivatives do not exist. The following example highlights one such a
set-valued map.

Example 2.1. Let X = Y = R, E = X, C = R+, n ∈ (1, 2), F (x) = {y ∈
R | y ≥ |x|n}, ∀x ∈ E , (x0, y0) = (0, 0) and (u, v) = (1, 0). Then, for any x ∈ E ,

T
�(2)
gph(F )

(x0, y0, u, v) = T
�(2)
epi(F )

(x0, y0, u, v) = ∅,
Therefore, for any x ∈ E , D�(2)F (x0, y0, u, v)(x−x0), D

�(2)
C F (x0, y0, u, v)(x−x0)

and D�(2)
g F (x0, y0, u, v)(x− x0) do not exist.

To deal with the situation where these derivatives do not exist, we introduce
higher-order generalized adjacent derivatives of set-valued maps in the following
section.

3. HIGHER-ORDER GENERALIZED ADJACENT DERIVATIVES

In this section, we first introduce higher-order generalized adjacent derivatives
of set-valued maps, and then investigate their some properties.

Definition 3.1. Let x belong to a subset K of X and v1, · · · , vm−1 be elements
of X . The subset
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G-T �(m)
K (x, v1, · · · , vm−1)

= Liminfh→0+
cone(K − x) − hv1 − · · · − hm−1vm−1

hm

= {y ∈ X | lim
h→0+

d(y,
cone(K − x)− hv1 − · · · − hm−1vm−1

hm
) = 0}

is said to be the generalized mth-order adjacent set of K at (x, v1, · · · , vm−1).

Definition 3.2. The mth-order generalized adjacent derivative D�(m)
G F (x0, y0,

u1, v1, · · · ,um−1, vm−1) of F at (x0, y0)∈gph(F ) w.r.t. (u1, v1), · · · , (um−1, vm−1)
is the set-valued map from X to Y defined by

D
�(m)
G F (x0, y0, u1, v1, · · · , um−1, vm−1)(x)

= MinC{y ∈ Y | (x, y) ∈ G-T �(m)
epi(F )(x0, y0, u1, v1, · · · , um−1, vm−1)}.

From properties of higher-order adjacent sets [1], we have the following result.

Proposition 3.1. If D�(m)
G F (x0, y0, u1, v1, · · · , um−1, vm−1)(x− x0) �= ∅ and

the set {y ∈ Y | (x− x0, y) ∈ G-T �(m)
epi(F )(x0, y0, u1, v1, · · · , um−1, vm−1)} fulfills

the domination property for all x ∈ E , then for all x ∈ E ,
(i) D�(m)F (x0, y0, u1, v1, · · · , um−1, vm−1)(x− x0) ⊆

D
�(m)
G F (x0, y0, u1, v1, · · · , um−1, vm−1)(x− x0) +C;

(ii) D�(m)
C F (x0, y0, u1, v1, · · · , um−1, vm−1)(x− x0) ⊆

D
�(m)
G F (x0, y0, u1, v1, · · · , um−1, vm−1)(x− x0) +C;

(iii) D�(m)
g F (x0, y0, u1, v1, · · · , um−1, vm−1)(x− x0) ⊆

D
�(m)
G F (x0, y0, u1, v1, · · · , um−1, vm−1)(x− x0) + C.

Remark 3.1. The reverse inclusions in Proposition 3.1 may not hold. The
following examples explain the case, where we only take m = 2.

Example 3.2. Let X , Y , E , C, F (·), R, (x0, y0), (u, v) be as in Example
2.1. From Example 2.1, we know that, for any x ∈ E , D�(2)F (x0, y0, u, v)(x−
x0), D

�(2)
C F (x0, y0, u, v)(x− x0), and D�(2)

g F (x0, y0, u, v)(x− x0) do not exist.
However, G-T �(2)

epi(F )(x0, y0, u, v) = {y | y ≥ 0}. Therefore, for any x ∈ E ,

D
�(2)
G F (x0, y0, u, v)(x− x0) = {0}.
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Example 3.3. Let X = E = R, Y = R2, E = X, C = R2
+, F (x) = {(y1, y2)

∈ R2 | y1 ≥ x
4
3 , y2 ≥ x2}, ∀x ∈ E , (x0, y0) = (0, (0, 0)) and (u, v) = (1, (0, 0)).

By direct calculation, we know, for any x ∈ E , D�(2)F (x0, y0, u, v)(x − x0),
D

�(2)
C F (x0, y0, u, v)(x− x0) and D�(2)

g F (x0, y0, u, v)(x− x0) do not exist.
However, G-T �(2)

epi(F )(x0, y0, u, v) = {(x, (y1, y2)) ∈ R × R2 | x ∈ R, y1 ≥
0, y2 ≥ 0}. Therefore, for any x ∈ E ,

D
�(2)
G F (x0, y0, u, v)(x− x0) = {(0, 0)}.

Definition 3.3. ([14]).

(i) The cone C is called Daniell, if any decreasing sequence in Y having a lower
bound converges to its infimum.

(ii) A subsetH of Y is said to be minorized, if there is a y ∈ Y so thatH ⊂ {y}+C.
(iii) The domination property is said to hold for a subsetH of Y ifH ⊂MinCH+C.

Now we give an existence theorem of D�(m)
G F .

Theorem 3.1. Let C be a closed convex pointed cone and let C be Daniell. Sup-
pose that the set P (x) := {y ∈ Y | (x, y) ∈ G-T �(m)

epi(F )
(x0, y0, u1, v1, · · · , um−1,

vm−1)} is minorized. Then D�(m)
G F (x0, y0, u1, v1, · · · , um−1, vm−1)(x) exists.

Proof. It follows from the definition that G-T �(m)
epi(F )

(x0, y0, u1, v1, · · · , um−1,

vm−1) is closed. Then we can prove it as the proof of Theorem 2 in [6].

Now we discuss some crucial propositions of themth-order generalized adjacent
derivative.

Proposition 3.2. Let x, x0 ∈ E , y0 ∈ F (x0), (ui, vi) ∈ {0X} × C. If the set
P (x − x0) := {y ∈ Y | (x − x0, y) ∈ G-T �(m)

epi(F )
(x0, y0, u1, v1, · · · , um−1, vm−1)}

fulfills the domination property for all x ∈ E , then, for all x ∈ E ,

F (x) − y0 ⊂ D
�(m)
G F (x0, y0, u1, v1, · · · , um−1, vm−1)(x− x0) +C.

Proof. Take any x ∈ E, y ∈ F (x) and an arbitrary sequence {hn} with
hn → 0+. Since y0 ∈ F (x0), (x− x0, y − y0) ∈ epi(F ) − (x0, y0), and

hm
n (x− x0, y − y0) ∈ cone(epi(F )− (x0, y0)).

It follows from (ui, vi) ∈ {0X} × C, i = 1, · · · , m− 1, and C being a convex
cone that

hn(u1, v1) + · · ·+ hm−1
n (um−1, vm−1) ∈ {0X} ×C,
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and
(xn, yn) := hn(u1, v1) + · · ·+ hm−1

n (um−1, vm−1) + hm
n (x− x0, y − y0)

∈ cone(epi(F )− (x0, y0)).
So

(x− x0, y − y0) =
(xn, yn) − hn(u1, v1) − · · · − hm−1

n (um−1, vm−1)
hm

n

,

which implies that
(x− x0, y − y0) ∈ G-T �(m)

epi(F )
(x0, y0, u1, v1, · · · , um−1, vm−1),

i.e., y − y0 ∈ P (x − x0). By the definition of mth-order generalized adjacent
derivative and the domination property, we have

P (x − x0) ⊂ D
�(m)
G (x0, y0, u1, v1, · · · , um−1, vm−1)(x− x0) +C.

Thus F (x) − y0 ⊂ D
�(m)
G F (x0, y0, u1, v1, · · · , um−1, vm−1)(x− x0) +C.

Remark 3.2. Since the cone-convexity and cone-concavity assumptions are
omitted, Proposition 3.2 improves Theorem 4.1 in [15] and Proposition 3.1 in [14].

Proposition 3.3. Let E be a nonempty subset of X , x0 ∈ E , y0 ∈ F (x0).
Let F be generalized C-convex at (x0, y0) on E , ui ∈ E, vi ∈ F (ui) + C, i =
1, · · · , m−1. If the set q(x−x0) := {y ∈ Y | (x−x0, y) ∈ G-T �(m)

epi(F )
(x0, y0, u1−

x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0)} fulfills the domination property for all
x ∈ E , then for any x ∈ E ,

F (x)−y0 ⊂ D
�(m)
G F (x0, y0, u1−x0, v1−y0, · · · , um−1−x0, vm−1−y0)(x−x0)+C.

Proof. Take any x ∈ E and y ∈ F (x). Let {hn} be an arbitrary sequence
with hn → 0+. Since E is convex and F − y0 is convexlike on E , we get that
epi(F )− (x0, y0) is a convex subset and cone(epi(F )− (x0, y0)) is a convex cone.
Then

hn(u1 − x0, v1 − y0) + · · ·+ hm−1
n (um−1 − x0, vm−1 − y0)

= (hn + · · ·+ hm−1
n )(

hnu1 + · · ·+ hm−1
n um−1

hn + · · ·+ hm−1
n

−x0,
hnv1 + · · ·+ hm−1

n vm−1

hn + · · ·+ hm−1
n

− y0) ∈ cone(epiF − (x0, y0)).

It follows from hn > 0, E is convex and cone(epiF − (x0, y0)) is a convex cone
that

(xn, yn) := hn(u1 − x0, v1 − y0) + · · ·+ hm−1
n (um−1 − x0, vm−1 − y0)

+hm
n (x− x0, y − y0) ∈ cone(epiF − (x0, y0)).
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So

(x−x0, y−y0)=
(xn, yn)−hn(u1−x0, v1−y0)− · · · −hm−1

n (um−1−x0, vm−1−y0)
hm

n

,

and then

(x− x0, y− y0) ∈ G-T �(m)
epi(F )(x0, y0, u1 −x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0),

i.e., y − y0 ∈ q(x − x0). By the definition of mth-order generalized adjacent
derivative and the domination property, we have

q(x−x0) ⊂ D
�(m)
G (x0, y0, u1−x0, v1−y0, · · · , um−1−x0, vm−1−y0)(x−x0)+C.

Thus F (x)−y0 ⊂ D
�(m)
G F (x0, y0, u1−x0, v1−y0, · · · , um−1−x0, vm−1−y0)(x−

x0) + C, and the proof is complete.

Remark 3.3. Since the cone-convexity assumptions are replaced by the gener-
alized cone-convexity assumptions, it follows from Remark 2.1 that Proposition 3.3
improves [14, Proposition 3.1].

4. HIGHER-ORDER DUALITY FOR SET-VALUED OPTIMIZATION

In this section, we introduce a class of higher-order Mond-Weir type dual prob-
lems for a constrained set-valued optimization problem by virtue of higher-order
generalized adjacent derivatives and discuss its weak duality, strong duality and
converse duality properties. Throughout this section, the notation (F,G)(x) is used
to denote F (x) ×G(x). Let (x0, y0) ∈ gph(F ). Firstly, we recall the definition of
interior tangent cone of a set and state a result regarding it in [9].

The interior tangent cone of K at x0 is defined as

ITK(x0) = {u ∈ X | ∃λ > 0, ∀t ∈ (0, λ), ∀u′ ∈ BX(u, λ), x0 + tu′ ∈ K},
where BX(u, λ) stands for the closed ball centered at u ∈ X and of radius λ.

Lemma 4.1. ([9]). If K ⊂ X is convex, x0 ∈ K and intK �= ∅, then

ITintK(x0) = intcone(K − x0).

Consider the following set-valued optimization problem:

(P )
{

min F (x)
s.t. G(x)

⋂
(−D) �= ∅, x ∈ E.

Set K̄ := {x ∈ E | G(x)
⋂

(−D) �= ∅}. A point (x0, y0) ∈ X × Y is called a
feasible solution of (P ) if x0 ∈ K̄ and y0 ∈ F (x0).
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Definition 4.1. A point (x0, y0) is said to be a weakly minimal solution of (P )
if (x0, y0) ∈ K̄ × F (K̄) satisfying y0 ∈ F (x0) and (F (K̄) − y0)

⋂
(−intC) = ∅.

Suppose that (ui, vi, wi) ∈ X × Y × Z, i = 1, · · · , m− 1, (x0, y0) ∈ gph(F ),
z0 ∈ G(x0)

⋂
(−D), and Ω = dom[D�(m)

G (F,G)(x0, y0, z0, u1, v1, w1 + z0, · · · ,
um−1, vm−1, wm−1 + z0)]

⋂
E . We introduce a higher-order dual problem (DP )

of (P ) as follows:

max y0

s.t. φ(y)+ψ(z)≥0, (y, z)∈D�(m)
G (F,G)(x0, y0, z0, u1, v1, w1+z0,· · · ,um−1, vm−1,

(1) wm−1 + z0)(x), x ∈ Ω,

(2) ψ(z0) ≥ 0,

(3) φ ∈ C∗ \ {0Y ∗},
(4) ψ ∈ D∗.

Let H = {y0 ∈ F (x0) | (x0, y0, z0, φ, ψ) satisfies conditions (1) − (4)}. A
point (x0, y0, z0, φ, ψ) satisfying (1)-(4) is called a feasible solution of (DP ). A
feasible solution (x0, y0, z0, φ, ψ) is called a weakly maximal solution of (DP ) if
(H − y0)

⋂
intC = ∅.

Theorem 4.1. (Weak duality). Suppose that (ui, vi, wi + z0) ∈ {0X} × C ×
D, i = 1, · · · , m−1 and the set {(y, z) ∈ Y ×Z | (x, y, z) ∈ G-T �(m)

epi(F,G)(x0, y0, z0,

u1, v1, w1 + z0, · · · , um−1, vm−1, wm−1 + z0)} fulfills the domination property for
all x ∈ Ω. If (x̄, ȳ) is a feasible solution of (P ) and (x 0, y0, z0, φ, ψ) is a feasible
solution of (DP ), then

φ(ȳ) ≥ φ(y0).

Proof. It follows from Proposition 3.2 and the assumptions that

(5)
(F,G)(x̄) − (y0, z0) ⊂ D

(m)
G (F,G)(x0, y0, z0, u1, v1, w1 + z0, · · · , um−1,

vm−1, wm−1 + z0)(x̄− x0) + C ×D.

Since (x̄, ȳ) is a feasible solution of (P ), G(x̄)
⋂

(−D) �= ∅. Take z̄ ∈
G(x̄)

⋂
(−D). It follows from (2) and (4) that

ψ(z̄ − z0) ≤ 0.(6)

By (1), (3), (4), (5) and (6), we have

φ(ȳ) ≥ φ(y0).

So the proof is complete.
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Remark 4.1. In Theorem 4.1, the cone-convexity assumptions used in Theorem
4.1 of [16] are not required.

By the similar proof method for Theorem 4.1, it follows from Proposition 3.3
that the following theorem holds.

Theorem 4.2. (Weak duality) Let (ui, vi, wi+z0) ∈ epi(F,G)−(x0, y0, z0), i =
1, · · · , m−1. Suppose that (F,G) is generalized C×D-convex at (x 0, y0, z0) on a
nonempty set E and the set {(y, z) ∈ Y ×Z | (x, y, z) ∈ G-T �(m)

epi(F,G)
(x0, y0, z0, u1,

v1, w1 + z0, · · · , um−1, vm−1, wm−1 + z0)} fulfills the domination property for all
x ∈ Ω. If (x̄, ȳ) is a feasible solution of (P ) and (x 0, y0, z0, φ, ψ) is a feasible
solution of (DP ), then

φ(ȳ) ≥ φ(y0).

Lemma 4.2. Let (ui, vi, wi) ∈ X × (−C) × (−D), i = 1, · · · , m − 1. If
(x0, y0) ∈ gph(F ) is a weakly minimal solution of (P ), then for any z 0 ∈
G(x0)

⋂
(−D),

(7)
[D�(m)

G (F,G)(x0, y0, z0, u1, v1, w1+z0,· · · ,um−1, vm−1, wm−1+z0)(x)

+C ×D + (0Y , z0)]
⋂

(−int(C ×D)) = ∅,
for all x ∈ Ω.

Proof. Since (x0, y0) is a weakly minimal solution of (P ), (F (K̄)−y0)
⋂−intC

= ∅. Then

(8) cone(F (K̄) +C − y0)
⋂

(−intC) = ∅.

Assume that the relation (7) does not hold. Then there exist c̄ ∈ C, d̄ ∈ D and
(x̄, ȳ, z̄) ∈ X × Y × Z with x̄ ∈ Ω such that

(9) (ȳ, z̄)∈D�(m)
G (F,G)(x0, y0, z0, u1, v1, w1+z0,· · · ,um−1, vm−1, wm−1+z0)(x̄),

and

(10) (ȳ, z̄) + (c̄, d̄) + (0Y , z0) ∈ −int(C ×D).

It follows from (9) and the definition of mth-order generalized adjacent deriva-
tive that, for arbitrary sequence {hn} with hn → 0+, there exists a sequence
{(xn, yn, zn)} ⊂ cone(epi(F,G)− (x0, y0, z0)) such that

(11)
(xn, yn, zn)−hn(u1, v1, w1+z0)−· · ·−hm−1

n (um−1, vm−1, wm−1+z0)
hm

n
→ (x̄, ȳ, z̄).
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From (10) and (11), there exists a sufficient large number N1 such that

(12) yn − hnv1 − · · · − hm−1
n vm−1 + hm

n c̄ ∈ −intC, for n > N1

and

(13)

z̃n : =
zn − hn(w1 + z0) − · · · − hm−1

n (wm−1 + z0)
hm

n

=
hn + · · ·+ hm−1

n

hm
n

(
zn − hnw1 − · · · − hm−1

n wm−1

hn + · · ·+ hm−1
n

− z0)

→ z̄ ∈ −(intD + z0 + d̄) ⊂ −intcone(D + z0).

Since v1, · · · , vm−1,−c̄ ∈ −C, hn > 0 and C is a convex cone,

(14) hnv1 + · · ·+ hm−1
n vm−1 − hm

n c̄ ∈ −C.
It follows from (12) and (14) that

(15) yn ∈ −intC, for all n > N1.

By (13) and Lemma 4.1, we have −z̄ ∈ ITintD(−z0). Then, it follows from the
definition of ITintD(−z0) that ∃λ > 0, ∀t ∈ (0, λ), ∀u′ ∈ BX(−z̄, λ),−z0 + tu′ ∈
intD. Since hn → 0+, there exists a sufficient large number N2 such that

hm
n

hn + · · ·+ hm−1
n

∈ (0, λ), for all n > N2.

Then, from (13), we have

−z0 +
hm

n

hn + · · ·+ hm−1
n

(−z̃n) ∈ intD, for all n > N2,

i.e.,
zn − hnw1 − · · · − hm−1

n wm−1

hn + · · ·+ hm−1
n

∈ −intD, for all n > N2.

It follows from hn > 0, w1, · · · , wm−1 ∈ −D and D is a convex cone that

(16) zn ∈ −intD, for all n > N2.

Since zn ∈ cone(G(xn) + D − z0), there exist λn ≥ 0, z̄n ∈ G(xn) and dn ∈ D

such that zn = λn(z̄n + dn − z0). It follows from (16) that z̄n ∈ G(xn)
⋂

(−D),
for n > N2. Then, for any n > N2, xn ∈ K̄. It follows from (15) that

yn ∈ cone(F (K̄) +C − y0)
⋂

−intC, for n > max{N1, N2},
which contradicts (8). So (7) holds and the proof is complete.
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Theorem 4.3. (Strong duality). Suppose that the following conditions are sat-
isfied:

(i) (ui, vi, wi + z0) ∈ epi(F,G) − (x0, y0, z0) and (ui, vi, wi) ∈ X × (−C) ×
(−D), i = 1, · · · , m− 1;

(ii) (F,G) is generalized C ×D-convex at (x0, y0, z0) on E ;
(iii) The pair (x0, y0) is a weakly minimal solution of (P );

(iv) P (x) := {(y, z) ∈ Y × Z | (x, y, z) ∈ G-T (m)
epi(F,G)(x0, y0, z0, u1, v1, w1 +

z0, · · · , um−1, vm−1, wm−1 + z0)} fulfills the domination property for all
x ∈ E , and (0Y , 0Z) ∈ P (0X);

(v) There exists x′ ∈ E such that G(x′)
⋂

(−intD) �= ∅.

Then there exists (φ, ψ) ∈ (C∗\{0Y ∗})×D∗ such that (x0, y0, z0, φ, ψ) is a weakly
maximal solution of (DP ).

Proof. Define

M =
⋃
x∈Ω

D
�(m)
G (F,G)(x0, y0, z0, u1, v1, w1 + z0, · · · , um−1, vm−1, wm−1 + z0)(x)

+C ×D + (0Y , z0).

By the similar proof method for the convexity of M in Theorem 5.1 of [14], just
replacing mth-order generalized adjacent epiderivative by mth-order generalized
adjacent derivative, we have that M is a convex set. It follows from Lemma 4.2
that

M
⋂

(−int(C ×D)) = ∅.
By the separation theorem of convex sets, there exist φ ∈ Y∗ and ψ ∈ Z∗, not

both zero functionals, such that

(17) φ(ȳ) + ψ(z̄) ≥ φ(y) + ψ(z), for all (ȳ, z̄) ∈M, (y, z) ∈ −int(C ×D).

It follows from (17) that

φ(y) ≤ ψ(z), for all (y, z) ∈ (−intC) × intD.(18)

and

φ(ȳ) + ψ(z̄) ≥ 0, for all (ȳ, z̄) ∈M.(19)

From (18), we obtain that ψ(z) ≥ 0, for all z ∈ intD. Thus, ψ ∈ D∗. Similarly,
we get φ ∈ C∗.
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Now we show that φ �= 0Y ∗ . Suppose that φ = 0Y ∗ . Then ψ ∈ D∗ \ {0Z∗}.
By Proposition 3.3 and condition (v), there exists (y′, z′) ∈ (F,G)(x′) such that
z′ ∈ −intD and

(y′, z′) − (y0, z0) ∈ D
�(m)
G (F,G)(x0, y0, z0, u1, v1, w1 + z0, · · · ,

um−1, vm−1, wm−1 + z0)(x′ − x0) +C ×D.

Thus it follows from (19) that ψ(z ′) ≥ 0. Since z′ ∈ −intD and ψ ∈ D∗ \ {0Z∗},
we have ψ(z′) < 0, which leads to a contradiction. Therefore φ �= 0Y ∗ .

From (19) and condition (iv), we have ψ(z0) ≥ 0. Since z0 ∈ −D and ψ ∈ D∗,
ψ(z0) ≤ 0. Therefore,

ψ(z0) = 0.(20)

It follows from (19), (20), φ ∈ C∗ \ {0Y ∗} and ψ ∈ D∗ that, for all (y, z) ∈
D

�(m)
G (F,G)(x0, y0, z0, u1, v1, w1 + z0, · · · , um−1, vm−1, wm−1 + z0)(x), φ(y) +

ψ(z) ≥ 0. So (x0, y0, z0, φ, ψ) is a feasible solution of (DP ).
Finally, we prove that (x0, y0, z0, φ, ψ) is a weakly maximal solution of (DP ).
Suppose that (x0, y0, z0, φ, ψ) is not a weakly maximal solution of (DP ). Then

there exists a feasible solution (x̃, ỹ, z̃, φ̃, ψ̃) of (DP ) such that ỹ − y0 ∈ intC. It
follows from φ ∈ C∗ \ {0Y ∗} that

φ(ỹ) > φ(y0).(21)

Since (x0, y0) is a weakly minimal solution of (P ), by Theorem 4.2, we have
φ(ỹ) ≤ φ(y0), which contradicts (21). Thus the conclusion holds and the proof is
complete.

Remark 4.2. Since the cone-convexity assumptions are replaced by the gener-
alized cone-convexity assumptions, Theorem 4.3 improves Theorem 4.2 in [16].

Theorem 4.4. (Converse duality). Suppose that the following conditions are
satisfied:

(i) (ui, vi, wi + z0) ∈ {0X} × C ×D, i = 1, · · · , m− 1;
(ii) There exists (φ, ψ) ∈ (C∗ \ {0Y ∗}) × D∗ such that (x0, y0, z0, φ, ψ) is a

weakly maximal solution of (DP );

(iii) P (x) := {(y, z) ∈ Y × Z | (x, y, z) ∈ G-T �(m)
epi(F,G)

(x0, y0, z0, u1, v1, w1 +
z0, · · · , um−1, vm−1, wm−1 + z0)} fulfills the domination property for all
x ∈ K̄, and (0Y , 0Z) ∈ P (0X).

Then the pair (x0, y0) is a weakly minimal solution of (P ).
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Proof. It follows from assumptions (i), (iii) and Proposition 3.2 that

(y − y0, z − z0) ∈ D
�(m)
G (F,G)(x0, y0, z0, u1, v1, w1 + z0, · · · ,

um−1, vm−1, wm−1 + z0)(x− x0) +C ×D,

for all x ∈ K̄, y ∈ F (x) and z ∈ G(x). Then

φ(y − y0) + ψ(z − z0) ≥ 0, for all x ∈ K̄, y ∈ F (x), z ∈ G(x).(22)

It follows from x ∈ K̄ that there exists z̄ ∈ G(x) such that z̄ ∈ −D. So ψ(z̄) ≤ 0.
Then, from (2) and (22), we have

φ(y) ≥ φ(y0), for all x ∈ K̄, y ∈ F (x).(23)

We now show that (x0, y0) is a weakly minimal solution of (P ). Assume that
(x0, y0) is not a weakly minimal solution of (P ). Then there exists y1 ∈ F (K̄)
such that y1 − y0 ∈ −intC. It follows from φ ∈ C∗ \ {0Y ∗} that φ(y1) < φ(y0),
which contradicts (23). So (x0, y0) is a weakly minimal solution of (P ) and the
proof is complete.

Remark 4.3. In Theorem 4.4, the cone-convexity assumptions used in Theorem
4.3 of [16] are omitted.

ACKNOWLEDGMENTS

The authors thank Professor Jen-Chih Yao and anonymous referees for their
valuable comments and suggestions, which helped to improve the paper.

REFERENCES

1. J. P. Aubin and H. Frankowska, Set-Valued Analysis, Biekhäuser, Boston, 1990.
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17. W. Oettli and D. Schláger, Conjugate functions for convex and nonconvex duality, J.
Global Optim., 13 (1998), 337-347.

18. V. Preda and K. Koller, General Mond-Weir duality for multiobjective programming
with generalized (F, ρ, θ) convex set functions, Romanian J. Pure and Appl. Math.,
45 (2000), 1005-1018.

19. P. H. Sach and B. D. Craven, Invex multifunctions and duality, Numer. Funct. Anal.
Optim., 12 (1991), 575-591.

20. P. H. Sach, N. D. Yen and B. D. Craven, Generalized invexity and duality theorems
with multifunctions, Numer. Funct. Anal. Optim., 15 (1994), 131-153.

21. W. Song, A generalization of Fenchel duality in set-valued vector optimization, Math.
Meth. Oper. Res., 48 (1998), 259-272.

22. W. Song, Duality for vector optimization of set-valued functions, J. Math. Anal.
Appl., 201 (1996), 212-225.

23. T. Tanino and Y. Sawaragi, Duality theory in multiobjective programming, J. Optim.
Theory Appl., 27 (1979), 509-529.

24. T. Tanino and Y. Sawaragi, Conjugate maps and duality in multiobjective optimiza-
tion, J. Optim. Theory Appl., 31 (1980), 473-499.



1036 Q. L. Wang and S. J. Li and C. R. Chen

25. T. Weir and B. Mond, Generalized convexity and duality in multiple objective pro-
gramming, Bull. Austral. Math. Soc., 39 (1989), 287-299.

26. X. M. Yang, X. Q. Yang and K. L. Teo, Non-differentiable second order symmetric
duality in mathematical programming with F-convexity, European J. Oper. Res., 144
(2003), 554-559.

Q. L. Wanga,b, S. J. Lia and C. R. Chena

a College of Mathematics and Science
Chongqing University
Chongqing 400044
P. R. China
E-mail: Wangql97@126.com

lisj@cqu.edu.cn
chencr1981@163.com

b College of Sciences
Chongqing Jiaotong University
Chongqing 400074
P. R. China


