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EQUIVALENCY BETWEEN THE GENERALIZED CARLESON
MEASURE SPACES AND TRIEBEL-LIZORKIN-TYPE SPACES

Chin-Cheng Lin1 and Kunchuan Wang2

Abstract. In this note, we show that the homogeneous Triebel-Lizorkin-
type spaces Ḟ α,τ

p,q with four parameters defined in [7, 8] is essentially same
as the generalized Carleson measure space CMOα,q

r introduced in [6] with
equivalent norms.

A sequence {zn} of points on the upper half complex plane is called an inter-
polating sequence if, given any bounded sequence {cn}, there is a bounded analytic
function F defined on the upper half complex plane such that

F (zn) = cn, n = 1, 2, 3, · · · .

In order to answer a famous question whether it is possible to determine all inter-
polating sequences in terms of a simple geometric characterization, Carleson [1]
proved that the necessary and sufficient condition for {zn} to be an interpolating
sequence is the following condition∏

k �=n

∣∣∣zn − cn

zn − z̄k

∣∣∣ ≥ δ > 0.

This condition is equivalent to the measure dµ(z) =
∑

n(Im zn) dδzn(z) to be the
Carleson measure on the upper half plane, where dδz is the Dirac measure at the
point z. And µ is a Carleson measure if and only if, for all x ∈ R and all h > 0,

µ
(
(x, x + h) × (0, h)

) ≤ Ch

with a constant C independent of x and h.
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In 1972, Fefferman and Stein [3] proved the famous result that the dual of
the Hardy space H1 is the BMO space. Indeed, the key step to come out the
result is the characterization of BMO space in terms of the Carleson measure.
In 1990, Frazier and Jawerth [2] generalized the above duality to homogeneous
Triebel-Lizorkin spaces Ḟα,q

p .
We say that a cube Q ⊂ R

n is dyadic if Q = Qjk = {(x1, x2, · · · , xn) ∈
R

n : 2−jki ≤ xi < 2−j(ki + 1), i = 1, 2, · · · , n} for some j ∈ Z and k =
(k1, k2, · · · , kn) ∈ Z

n. Denote by �(Q) = 2−j the side length of Q and xQ = 2−jk
the “left lower corner” of Q when Q = Qjk. Also we use supP to express the
supremum taken over all dyadic cubes P , and denote the summation taken over all
dyadic cubes Q contained in a dyadic cube P by

∑
Q⊂P . For any dyadic cubes P

and Q, either P and Q are nonoverlapping or one contains the other.
Choose a fixed function ϕ in Schwartz class S = S(Rn), the collection of rapidly

decreasing C∞ functions on Rn, satisfying{ supp(ϕ̂) ⊂ {ξ ∈ R
n : 1/2 ≤ |ξ| ≤ 2};

|ϕ̂(ξ)| ≥ c > 0 if 3/5 ≤ |ξ| ≤ 5/3.
(1)

Frazier and Jawerth introduced the space Ḟα,q∞ , α ∈ R, q ∈ (0,∞], by the gen-
eralized Carleson measure, namely f ∈ S′/P (the tempered distribution modulo
polynomials) and satisfies

‖f‖Ḟα,q∞ := sup
P

{
|P |−1

∫
P

∑
Q⊂P

(
|Q|−α/n−1/2|〈f, ϕQ〉|χQ(x)

)q
dx

}1/q

< ∞,

where χQ denotes the characteristic function of Q and ϕQ(x) = |Q|−1/2ϕ((x −
xQ)/�(Q)). (In case q = ∞, the above norm is understood as supremum norms
and the same remark applies to similar places later on.) They showed [2, Theorem
5.13] that the dual of Ḟα,q

1 is Ḟ−α,q′∞ for α ∈ R and 0 < q < ∞, where q′ is the
conjugate index of q.

In 2006, Han and Lu [4] introduced the generalized multiparameter Carleson
measure space CMOp, p ≤ 1, which is, for one parameter case, f ∈ S′/P and
satisfies

‖f‖CMOp := sup
P

{
|P |1− 2

p

∫
P

∑
Q⊂P

(
|〈f, ϕQ〉|χQ(x)

)2
dx

}1/2

< ∞.

It was proved in [5] that the dual space of the multiparameter product Hardy space
Hp is the space CMOp.

Almost at the same time, we [6] introduced the generalized Carleson measure
space CMOα,q

r by

‖f‖CMOα,∞
r

:= sup
P

|P |−r sup
Q⊂P

|Q|−α/n−1/2|〈f, ϕQ〉| < ∞
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and

‖f‖CMOα,q
r

:= sup
P

{
|P |−r

∫
P

∑
Q⊂P

(
|Q|−α/n−1/2|〈f, ϕQ〉|χQ(x)

)q
dx

}1/q

< ∞

for α, r ∈ R, q ∈ (0,∞) and f ∈ S′/P. We proved that, for α ∈ R and 0 < p ≤ 1,
the dual spaces of Ḟ

α,q
p for 1 < q < ∞ and 0 < q ≤ 1 can be characterized

by CMO−α,q′
q′
p
− q′

q

and CMO−α,∞
1
p
−1

, respectively. Our preprint [6] were requested by

several people in 2006, including the authors in [7].
In 2008, Yang and Yuan [7] (also in [8] later) introduced the so-called “unified

and generalized” Triebel-Lizorkin-type spaces Ḟα,τ
p,q with four parameters by

‖f‖Ḟα,τ
p,q

:= sup
P

|P |−τ

{ ∫
P

[ ∑
Q⊂P

(
|Q|−α/n−1/2|〈f, ϕQ〉|χQ(x)

)q
]p/q

dx

}1/p

< ∞,

for α, τ ∈ R, p ∈ (0,∞), q ∈ (0,∞] and f ∈ S′/P. Note that in [7] the space
Ḟα,τ

p,q was defined for τ ∈ [0,∞), p ∈ (1,∞) and q ∈ (1,∞].
It is clear that CMOα,q

r = Ḟ
α,r/q
q,q for 0 < q < ∞, and hence CMOα,q

r “looks
like” a special case of Ḟ

α,τ
p,q . In fact, in this note, we prove that basically, the space

Ḟα,τ
p,q is “same” as the space CMOα,q

r . This means that four parameters are totally
unnecessary. The following is the first main result of this note.

Theorem 1. Let α, τ ∈ R and p, q ∈ (0,∞). Then

‖f‖Ḟα,τ
p,q

≈ ‖f‖
Ḟ

α,τ+1/q−1/p
q,q

.

First, as in [2], we define the sequence space ḟ
α,τ
p,q by saying t = {tQ}Q ∈ ḟ

α,τ
p,q

with α, τ ∈ R, p ∈ (0,∞) and q ∈ (0,∞], if

‖t‖ḟ
α,τ
p,q

:= sup
P

|P |−τ

{∫
P

[ ∑
Q⊂P

(
|Q|−α/n−1/2|tQ|χQ

(x)
)q

]p/q

dx

}1/p

< ∞.

Note that the space ḟ
α,1/q
q,q coincides with ḟα,q∞ defined by Frazier and Jawerth in

[2] with the same norm. To show Theorem 1, as in [2], we only need to prove the
following

Theorem 2. Let α, τ ∈ R and p, q ∈ (0,∞). Then ‖t‖ḟα,τ
p,q

≈ ‖t‖
ḟ

α,τ+1/q−1/p
q,q

.

Assuming Theorem 2 for the moment, by the relationship between the Triebel-
Lizorkin spaces and the sequence spaces (see [2] for more details), we immediately
obtain ‖f‖Ḟα,τ

p,q
≈ ‖f‖

Ḟ
α,τ+1/q−1/p
q,q

. Therefore, it suffices to show Theorem 2. We
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would also like to point out that indeed [2, Corollary 5.7] shows ‖t‖
ḟ

α,1/p
p,q

≈
‖t‖

ḟ
α,1/q
q,q

. This means that [2, Corollary 5.7] shows Theorem 2 for the special case
τ = 1/p. To prove Theorem 2, we need the following two lemmas.

Lemma 3. Suppose α, τ ∈ R and p, q ∈ (0,∞). Let ε > 0 be fixed. For each
dyadic cube Q, if there is a set EQ ⊂ Q satisfying |EQ|/|Q| > ε, then

‖{tQ}Q‖ḟα,τ
q,q

≈ sup
P

|P |−τ

(∫
P

∑
Q⊂P

(
|Q|−α/n−1/2|tQ|χEQ

(x)
)q

dx

)1/q

.

Proof. The result immediately follows by

‖{tQ}Q‖ḟ
α,τ
q,q

= sup
P

|P |−τ

( ∑
Q⊂P

(
|Q|−α/n−1/2|tQ|

)q|Q|
)1/q

(2)

and the equivalence |EQ| ≈ |Q|.

Similar to [2], for a sequence s = {sQ}Q, we define

Gα,τ,q
P (s)(x) = |P |−τ+1/q

( ∑
Q⊂P

(
|Q|−α/n−1/2|sQ|χQ(x)

)q
)1/q

.

Let

mα,τ,q
P (s) := inf

{
ε :

∣∣{x ∈ P : Gα,τ,q
P (s)(x) > ε

}∣∣ <
1
4
|P |

}
(3)

and
mα,τ,q(s)(x) := sup

P
mα,τ,q

P (s)χP (x).

Lemma 4. Let α, τ ∈ R and q ∈ (0,∞). Then

‖s‖ḟα,τ
q,q

≈ ‖mα,τ,q(s)‖L∞.

Proof. By Tchebyshev’s inequality, we see that

(4)
∣∣{x∈P : Gα,τ,q

P (s)(x)>ε
}∣∣≤ 1

εq

∫
P

(
Gα,τ,q

P (s)(x)
)q

dx≤ |P |
εq

‖s‖q

ḟα,τ
q,q

<
1
4
|P |

if ε > 41/q‖s‖ḟα,τ
q,q

. Hence, ‖mα,τ,q(s)‖L∞ ≤ C‖s‖ḟα,τ
q,q

.
Following [2, Proposition 5.5], we define the extended integer-valued stopping

time v(x), x ∈ Rn, by

v(x) = inf
{
j ∈ Z : Gα,τ,q

P (s)(x) ≤ mα,τ,q(s)(x), �(P ) = 2−j
}
.(5)
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Also, set

EQ :=
{

x ∈ Q : 2−v(x) ≥ �(Q)
}

=
{
x ∈ Q : Gα,τ,q

Q (s)(x) ≤ mα,τ,q(s)(x)
}
,

for each Q. By (3), |EQ|/|Q| ≥ 3
4 , and

(6)
|P |−τ+1/q

( ∑
Q⊂P

(
|Q|−α/n−1/2|sQ|χEQ

(x)
)q

)1/q

≤ Gα,τ,q
P (s)(x) ≤ mα,τ,q(s)(x),

for each x ∈ R
n. Take q power of both sides of (6) and then integrate over P to

obtain

|P |−τq

∫
P

∑
Q⊂P

(
|Q|−α/n−1/2|sQ|χEQ

(x)
)q

dx ≤ ‖mα,τ,q(s)‖q
L∞.

The last inequality and Lemma 3 yield ‖s‖ḟα,τ
q,q

≤ C‖mα,τ,q(s)‖L∞.

The following corollary is similar to [2, Corollary 5.6].

Corollary 5. Let α, τ ∈ R and q ∈ (0,∞). Then s = {sQ}Q ∈ ḟα,τ
q,q if and

only if for each Q there is a subset EQ ⊂ Q with |EQ|/|Q| > 1
2 such that∥∥∥∥|P |−τ+1/q

[ ∑
Q⊂P

(
|Q|−α/n−1/2|sQ|χEQ

(x)
)q

]1/q∥∥∥∥
L∞

< ∞.(7)

Moreover, the infimum of this expression over all such collections {E Q}Q is equiv-
alent to ‖s‖ḟ

α,τ
q,q

.

Proof. If s ∈ ḟα,τ
q,q , the EQ chosen in the proof of Lemma 4 above yields (7).

The converse follows from Lemma 3.

We are ready to prove Theorem 2.

Proof of Theorem 2. By the definition, it is equivalent to prove

(8)

sup
P

|P |−τ

{ ∫
P

[ ∑
Q⊂P

(
|Q|−α/n−1/2|tQ|χQ(x)

)q
]p/q

dx

}1/p

≈ sup
P

|P |−τ−1/q+1/p

{ ∫
P

∑
Q⊂P

(
|Q|−α/n−1/2|tQ|χQ

(x)
)q

dx

}1/q

.
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Let us consider the case p > q first. By Hölder’s inequality,

|P |−τ−1/q+1/p

{ ∫
P

∑
Q⊂P

(
|Q|−α/n−1/2|tQ|χQ

(x)
)q

dx

}1/q

≤ |P |−τ−1/q+1/p

({∫
P

[ ∑
Q⊂P

(
|Q|−α/n−1/2|tQ|χQ(x)

)q
]p/q

dx

}q/p

|P |1−q/p

)1/q

= |P |−τ

{ ∫
P

[ ∑
Q⊂P

(
|Q|−α/n−1/2|tQ|χQ

(x)
)q

]p/q

dx

}1/p

.

On the other hand, if P is a fixed dyadic cube and EQ’s are the subsets chosen in
Corollary 5, then, by the facts χQ(x) ≤ CM(χEQ

)(x) and p > q,

|P |−τp

∫
P

[ ∑
Q⊂P

(
|Q|−α/n−1/2|tQ|χQ(x)

)q
]p/q

dx

≤ C|P |−τp

∫
Rn

[
M

∑
Q⊂P

(
|Q|−α/n−1/2|tQ|χEQ

(·)
)q

(x)
]p/q

dx

≤ C|P |−τp

∫
P

[ ∑
Q⊂P

(
|Q|−α/n−1/2|tQ|χEQ

(x)
)q

]p/q

dx

= C|P |−1

∫
P

{
|P |−τ+1/p

[ ∑
Q⊂P

(
|Q|−α/n−1/2|tQ|χEQ

(x)
)q

]1/q}p

dx,

where M is the Hardy-Littlewood maximal function. Now by (6) the right-hand
side of the last inequality is clearly less than or equal to

C‖mα,τ+1/q−1/p,q(t)‖p
L∞,

and by Lemma 4 this is dominated by ‖t‖p

ḟ
α,τ+1/q−1/p
q,q

.
If p ≤ q, using Hölder’s inequality again, we have

|P |−τ

{∫
P

[ ∑
Q⊂P

(
|Q|−α/n−1/2|tQ|χQ

(x)
)q

]p/q

dx

}1/p

≤ |P |−τ

({ ∫
P

∑
Q⊂P

(
|Q|−α/n−1/2|tQ|χQ(x)

)q
dx

}p/q

|P |1−p/q

)1/p

= |P |−τ−1/q+1/p

{ ∫
P

∑
Q⊂P

(
|Q|−α/n−1/2|tQ|χQ

(x)
)q

dx

}1/q

,
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which shows ‖t‖ḟα,τ
p,q

≤ ‖t‖
ḟ

α,τ+1/q−1/p
q,q

and ḟ
α,τ+1/q−1/p
q,q ⊂ ḟα,τ

p,q . To verify the

converse inequality, let H(x) =
∑

Q⊂P

(|Q|−α/n−1/2|tQ|χEQ
(x)

)q. By (5) and
Lemma 4,

H(x) ≤ |P |τq−q/p‖mα,τ+1/q−1/p,q(t)‖q
L∞ ≤ C|P |τq−q/p‖t‖q

ḟ
α,τ+1/q−1/p
q,q

,

and we have

H(x) ≤ C[H(x)]p/q
(|P |τ−1/p‖t‖

ḟ
α,τ+1/q−1/p
q,q

)q−p
.

This has already yielded the result when t ∈ ḟ
α,τ+1/q−1/p
q,q . In fact, if t ∈

ḟ
α,τ+1/q−1/p
q,q , then

|P |−τq−1+q/p

∫
P

H(x)dx ≤ C|P |−τp

(∫
P

[H(x)]p/qdx

)
‖t‖q−p

ḟ
α,τ+1/q−1/p
q,q

≤ C‖t‖p

ḟα,τ
p,q

‖t‖q−p

ḟ
α,τ+1/q−1/p
q,q

,

which gives ‖t‖
ḟ

α,τ+1/q−1/p
q,q

≤ C‖t‖ḟα,τ
p,q

. The general case is followed by using

the monotone convergence theorem. That is, given t = {tQ}Q ∈ ḟα,τ
p,q , let Q(t)

denote the collection of all dyadic cubes Q so that tQ 
= 0. Since the collection of
all dyadic cubes in R

n is countable, the set Q(t) is countable and enumerated as
{P1, P2, P3, · · · }. For n ∈ N, define tn = {(tn)Q}Q by

(tn)Q =

{
tQ if Q ∈ {P1, P2, · · · , Pn}
0 otherwise

.

Clearly, tn converges to t in ḟα,τ
p,q as n tends to infinity. Moreover, tn ∈ ḟ

α,τ+1/q−1/p
q,q

and ‖tn‖ḟ
α,τ+1/q−1/p
q,q

is a monotone sequence uniformly bounded by a multiple of
‖t‖ḟα,τ

p,q
. Therefore, ‖t‖

ḟ
α,τ+1/q−1/p
q,q

≤ C‖t‖ḟα,τ
p,q

.

The proof of Theorem 2 is completed, and hence Theorem 1 follows. As a
consequence of Theorem 1, we obtain

Corollary 6. Let α, τ ∈ R and p, q ∈ (0,∞). Then

‖f‖Ḟα,τ
p,q

≈ ‖f‖CMO
α,q
τq+1−q/p

.
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