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EMBEDDED WAVEFORM RELAXATION METHODS FOR PARABOLIC

PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS

Jun Liu, Yao-Lin Jiang1 and Hong-Kun Xu2,∗

Abstract. Waveform relaxation methods are decoupling or splitting methods

for large scale ordinary differential equations. In this paper, we apply the meth-

ods directly to semi-linear parabolic partial functional differential equations.

Taking into consideration of the complicated forms of these parabolic equa-

tions, we propose a kind of embedded waveform relaxation methods, which

are in fact two-level waveform relaxation methods and which can also be ap-

plied to some other systems. We provide explicit iterative expressions of the

embedded methods and exhibit the superlinear rate of convergence on finite

time intervals. We also apply the two-level idea to the functional differential

equations derived from semi-discretization of the original system. The win-

dowing technique is employed for the situation of long time intervals. Finally,

two numerical experiments are performed to confirm our theory.

1. INTRODUCTION

Waveform relaxations are a kind of dynamic iteration methods used to solve large

systems of time dependent equations in parallel. This kind of methods are totally

different from some classical numerical methods, such as Runge-Kutta method and

multi-step method. If we regard a waveform as an approximate curve of the original

system, the dynamic iteration method will produce a series of waveforms, each of

which is defined on the whole time interval.

Waveform relaxation methods were originally proposed in [11] to simulate large

circuits, and well developed in the past several years. Most of them are proposed for

ordinary differential equations [15, 13] and differential algebra equations [8, 9]. In
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these applications, systems are decoupled and subsystems can be solved numerically

in parallel with different time steps. Therefore, Waveform relaxation methods are

quite suitable for stiff systems. Another advantage of waveform relaxation methods

is to convert the originally complicated systems into a series of simpler systems

which are also more easily to be solved.

To apply waveform relaxations for solving partial differential equations (PDEs),

one traditionally discretizes the PDEs in space to get a large system of ODEs, and

then apply waveform relaxation methods to solve the resulted ODEs. There are

two concerns with this approach: firstly, information about relaxation processes

may be lost during the processes of discretization; secondly, the convergence results

derived in this fashion depend on the mesh parameters and convergence rates would

deteriorate when the meshes are refined. A kind of Schwarz waveform relaxation

methods is shown in [5].

In this paper we study approximate solutions to the initial boundary value prob-

lem of the following parabolic partial differential equation with a functional term,

(1)
∂

∂t
u(x, t) = a∆u + g(x, t, u(x, t), u(x,t)(τ)), x ∈ Ω,

where a > 0, τ ∈ [0, τ0], with initial boundary conditions
{

u(x, t) = ϕ(x, t), t ∈ [−τ0, 0], x ∈ Ω,

u(x, t) = φ(x, t), t ∈ [0, T ], x ∈ ∂Ω.

The function u(x,t)(·) is defined by

u(x,t)(τ) = u(x, t + τ), τ ∈ [−τ0, 0].

The nonlinear function g has different representations, which means that Eq. (1)
indeed covers many different kinds of equations. As shown in [12], if the function

g(x, t, u, v) = f(x, t, u, v(−τ0)),

then system (1) has the form

∂

∂t
u(x, t) = a∆u + f(x, t, u(x, t), u(x, t− τ0));

while if the function

g(x, t, u, v) = f

(
x, t, u,

∫ 0

−τ0

v(τ)dτ

)
,

system (1) becomes

∂

∂t
u(x, t) = a∆u + f

(
x, t, u(x, t),

∫ 0

−τ0

u(x, t + τ)dτ

)
.
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Functional equations like (1) are used to model cancer cells in human tumors

and heat conduction in materials with memory viscoelasticity. Problem (1) is also

popular in population dynamics. A set of examples which illustrate the wide range

of such models can be found in [16]. Several different methods have been used

to solve the problem, such as iterated pseudospectral method [12], traveling waves

[2], adaptive higher order method [4], and so on.

Waveform relaxation methods apply to similar systems as system (1) at the ODE

level [7, 17], where the nonlinear delay partial differential equations are spatially

discretized. We also want to apply waveform relaxation algorithms to system (1),

but at the PDE level directly. Differently from the Schwarz waveform relaxation

methods, we do not decompose the spatial domain into subdomains, but keep the

spatial domain in one piece, and construct an iteration scheme from the original

systems. Therefore, we do not need to consider the information transmission among

subdomains and the convergence under different transmission conditions.

The outline of our paper is as follows. In Section 2, we propose a kind of

embedded waveform relaxation methods for partial functional equations with fixed

delays, present the iteration expressions, and analyze the corresponding convergence

theory. In order to improve behavior of the approximate waveforms on long time

interval, we bring windowing technique into the embedded waveform relaxations.

In Section 3, we discuss applications of the idea in parabolic functional differential

equations with mixed delays. The convergence analysis of semi-discrete situations

is given in Section 4. Numerical experiments are carried out in Section 5.

2. EQUATIONS WITH FIXED DELAYS

In this section, we take a simple parabolic partial functional differential equation

in one dimensional space as follows to show the form of embedded waveform

relaxation methods and the corresponding convergence. Consider the system

(2)





∂u(x, t)
∂t

= a
∂2u(x, t)

∂x2
+ g(x, t, u(x, t), u(x, t− τ)),

0 < x < l, 0 < t < T,

u(0, t) = u(l, t) = 0, 0 ≤ t ≤ T,

u(x, t) = h(x, t), 0 ≤ x ≤ l, −τ0 ≤ t ≤ 0,

where g is a given nonlinear function. A natural kind of waveform relaxation

method for system (2) is to generate a sequence of approximate solutions {u(k)} by
the following algorithm:



832 Jun Liu, Yao-Lin Jiang and Hong-Kun Xu





∂u(k+1)(x, t)
∂t

= a
∂2u(k+1)(x, t)

∂x2

+G(x, t, u(k+1)(x, t), u(k)(x, t), u(k)(x, t − τ)),

u(k+1)(0, t) = u(k+1)(l, t) = 0, 0 ≤ t ≤ T,

u(k+1)(x, 0) = h(x, 0), 0 ≤ x ≤ l, k = 0, 1, · · · ,

where, for any fixed k, u(k)(x, t) = h(x, t), −τ0 ≤ t ≤ 0. We usually choose the
initial guess u(0)(x, t) = h(x, 0), 0 ≤ t ≤ T . For any fixed k, such system is a
nonlinear reaction diffusion equation without functional term.

In fact, what we care about is the limit of the series of the waveforms, rather

than every individual waveform in the series. Therefore, we would better make sure

that the waveforms in the series could be solved easily. Considering the nonlin-

ear reaction diffusion equations is still expensive to solve, we embed an internal

waveform relaxation to approximate the nonlinear reaction diffusion equations, just

like the two-level scheme. This idea leads to the following embedded waveform

relaxation process:

(3)





∂u(k+ i+1
m

)(x, t)
∂t

= a
∂2u(k+ i+1

m
)(x, t)

∂x2

+G(x, t, u(k+ i
m

)(x, t), u(k)(x, t), u(k)(x, t− τ)),

u(k+ i+1
m

)(0, t) = u(k+ i+1
m

)(l, t) = 0, 0 ≤ t ≤ T,

u(k+ i+1
m

)(x, 0)=h(x, 0), 0≤x≤ l, i=0, 1, · · · , m−1, k=0, 1, · · · .

We take the same initial function on [0, l]× [−τ0, 0] and the same initial guess as
before. We assume that the splitting function G satisfies

G(x, t, u, u, v) = g(x, t, u, v), ∀u∈C([0, l]× [0, T ]), v∈C([0, l]× [−τ0, T ]).

It is easy to find that, for any fixed i and k, system (3) is a linear diffusion

equation. We also regard the corresponding solution as a “waveform”. In the

following discussion we will prove convergence of the relaxation process.

We know easily that the solution of equation (3) for any fixed k is

(4)

u(k+ i+1
m

)(x, t)

=
2
l

∞∑

n=1

∫ l

0
h(ξ, 0) sin

nπξ

l
dξe−a(nπ

l )2
t sin

nπx

l

+
∫ t

0

( ∞∑

n=1

2
l

∫ l

0

G(ξ, s, u(k+ i
m

)(ξ, s), u(k)(ξ, s), u(k)(ξ, s−τ)

)
sin

nπξ

l
dξ

× e−a(nπ
l

)2(t−s) sin nπx
l )ds.
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We define a function sequence

(5)

a
(k+ i+1

m
)

n (t) :=
2
l

∫ l

0

h(ξ, 0) sin
nπξ

l
dξe−a(nπ

l )2
t

+
∫ t

0

(
2
l

∫ l

0

G(ξ, s, u(k+ i
m

)(ξ, s), u(k)(ξ, s), u(k)(ξ, s−τ))

sin
nπξ

l
dξe−a(nπ

l
)2(t−s)

)
ds.

The solution of equation (3) has the expression

u(k+ i+1
m

)(x, t) =
∞∑

n=1

a
(k+ i+1

m
)

n (t) sin
nπx

l
.

We also define the function

(6)

an(t) :=
2
l

∫ l

0
h(ξ, 0) sin

nπξ

l
dξe−a(nπ

l )2
t

+
∫ t

0

(
2
l

∫ l

0
g(ξ, s, u(ξ, s), u(ξ, s−τ)) sin

nπξ

l
dξe−a(nπ

l
)2(t−s)

)
ds.

and it is not hard to verify that the function
∞∑

n=1
an(t) sin nπx

l satisfies equation (2).

Next, we show the convergence of the relaxation series (4) and the rate of

convergence.

Theorem 2.1. Assume that the partial derivative of nonlinear function G with

respect to its j-th argument is bounded by constantMj , where j = 3, 4, 5. Then the
approximate solution u(k+ i

m
)(x, t) of the embedded waveform relaxation method

(3) converges to the exact solution of system (2), and satisfies

max
0≤x≤l
0≤t≤T

∣∣∣∣∣u
(k)(x, t)−

∞∑

n=1

an(t) sin
nπx

l

∣∣∣∣∣

≤ (CT )k

k!
max
0≤x≤l
0≤t≤T

∣∣∣∣∣u
(0)(x, t)−

∞∑

n=1

an(t) sin
nπx

l

∣∣∣∣∣ ,

where m is a positive integer, i = 0, 1, · · · , m− 1, k = 1, 2, · · · , and

C =
(

2MM3

l

)m Tm−1

(m − 1)!
+

M4 + M5

M3

m−1∑

j=1

(
2MM3

l

)j T j

j!
+

2M(M4 + M5)
l

is a constant. Moreover, the rate of convergence of the embedded waveform relax-

ation method is superlinear.
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Proof. Define

ε(k+ i
m

)(x, t) := u(k+ i
m

)(x, t)−
∞∑

n=1

an(t) sin
nπx

l
, 0 ≤ x ≤ l, −τ0 ≤ t ≤ T,

where, for −τ0 ≤ t ≤ 0 and 0 ≤ x ≤ l, ε(k+ i
m

)(x, t) ≡ 0. From the expressions
(4) and (6), the error function ε(k+ i+1

m
)(x, t) can be written directly as

ε(k+ i+1
m

)(x, t)

=
∫ t

0

( +∞∑

j=1

2
l

∫ l

0

[
G(ξ, s, u(k+ i

m
)(ξ, s), u(k)(ξ, s), u(k)(ξ, s− τ))

−G(ξ, s, u(ξ, s), u(ξ, s), u(ξ, s− τ))
]
sin

jπξ

l
dξ · e−a( jπ

l
)2(t−s) sin

jπx

l

)
ds.

We notice that

G(ξ, s, u(k+ i
m

)(ξ, s), u(k)(ξ, s), u(k)(ξ, s−τ))−G(ξ, s, u(ξ, s), u(ξ, s), u(ξ, s−τ))

= G′
3ε

(k+ i
m

)(ξ, s) + G′
4ε

(k)(ξ, s) + G′
5ε

(k)(ξ, s− τ),

where

G′
j = G′

j

(
ξ, s, u

(k+ i
m

)
∗ (ξ, s), u(k)

∗ (ξ, s), u(k)
∗ (ξ, s− τ)

)

denotes the j-th partial derivative of the nonlinear function G with respect to its

j-th argument, j = 3, 4, 5, and

u
(k+ i

m
)

∗ (ξ, s) ∈
[
min(u(k+ i

m
)(ξ, s), u(ξ, s)),max(u(k+ i

m
)(ξ, s), u(ξ, s))

]
,

so do u
(k)
∗ (ξ, s) and u

(k)
∗ (ξ, s − τ)).

Then,

ε(k+ i+1
m

)(x, t)

=
∫ t

0

( +∞∑

j=1

2
l

∫ l

0

[
G′

3ε
(k+ i

m
)(ξ, s) + G′

4ε
(k)(ξ, s)+G′

5ε
(k)(ξ, s− τ)

]
sin

jπξ

l
dξ

×e−a( jπ
l

)2(t−s) sin
jπx

l

)
ds

=
∫ t

0

( +∞∑

j=1

2
l

[
G′

3(ξ̃, s)ε
(k+ i

m
)(ξ̃, s)+G′

4(ξ̃, s)ε
(k)(ξ̃, s)+G′

5(ξ̃, s)ε
(k)(ξ̃, s−τ)

]
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×
∫ l

0
sin

jπξ

l
dξ · e−a( jπ

l
)2(t−s) sin

jπx

l

)
ds

=
∫ t

0

( +∞∑

j=1

2
l

[
G′

3(ξ̃, s)ε
(k+ i

m
)(ξ̃, s)+G′

4(ξ̃, s)ε
(k)(ξ̃, s)+G′

5(ξ̃, s)ε
(k)(ξ̃, s−τ)

]

× l

jπ
[1 − (−1)j ]e−a( jπ

l
)2(t−s) sin

jπx

l

)
ds

=
∫ t

0

2
l

[
G′

3(ξ̃, s)ε
(k+ i

m
)(ξ̃, s)+G′

4(ξ̃, s)ε
(k)(ξ̃, s)+G′

5(ξ̃, s)ε
(k)(ξ̃, s−τ)

]

×




+∞∑

j=1

2l

(2j − 1)π
e−a( 2jπ−π

l
)2(t−s) sin

(2j − 1)πx

l


 ds,

where ξ̃ ∈ [0, l]. Let us take a look at the series of functions in the expression
above. For any 0 < x < l, we have

∣∣∣∣∣∣

N∑

j=1

sin
(2j − 1)πx

l

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1

sin πx
l

N∑

j=1

sin
(2j − 1)πx

l
sin

πx

l

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

sin πx
l

N∑

j=1

1
2

(
cos

(2j − 2)πx

l
− cos

2jπx

l

)∣∣∣∣∣∣

=
∣∣∣∣

1
sin πx

l

1
2

(
1 − cos

2Nπx

l

)∣∣∣∣

≤
∣∣∣∣

1
sin πx

l

∣∣∣∣ .

This means that the partial sum of the series
∑

sin (2m−1)πx
l is bounded. On

the other hand, for any fixed 0 ≤ s ≤ t, 2l
(2j−1)πe−a( 2jπ−π

l
)2(t−s) is a monotone

decreasing function with respect to index j on [0, t] uniformly. According to the
Dirichlet rule, the series

∞∑

j=1

2l

(2j − 1)π
e−a( 2jπ−π

l
)2(t−s) sin

(2j − 1)πx

l

converge uniformly on [0, t], and assume M is a uniform bound. Since we assume

that the three partial derivatives of the nonlinear function G are bounded by M3,

M4 and M5 respectively, we obtain that,

|ε(k+ i+1
m

)(x, t)|≤ 2M

l

∫ t

0

(
M3|ε(k+ i

m
)(ξ̃, s)|+M4|ε(k)(ξ̃, s)|+M5|ε(k)(ξ̃, s−τ)|

)
ds.
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Notice that, for −τ0 ≤ t ≤ 0, ε(k)(x, t) ≡ 0, and

∫ t

0
|ε(k)(ξ̃, s − τ)|ds =

∫ t−τ

−τ
|ε(k)(ξ̃, s)|ds ≤

∫ t

0
|ε(k)(ξ̃, s)|ds.

If we define the norm ‖ε(k)‖(t) = max
0≤x≤l

|ε(k)(x, t)|, then we obtain,

‖ε(k+ i+1
m

)‖(t) ≤ 2M

l

∫ t

0

[
M3‖ε(k+ i

m
)‖(s) + (M4 + M5)‖ε(k)‖(s)

]
ds.

By induction we get

‖ε(k+m−1
m

)‖(t) ≤
(

2MM3

l

)m−1 tm−1

(m − 1)!
max
0≤s≤t

‖ε(k)‖(s)

+
M4 + M5

M3




m−1∑

j=1

(
2MM3

l

)j tj

j!


 max

0≤s≤t
‖ε(k)‖(s)

and

‖ε(k+1)‖(t) ≤ 2M

l

∫ t

0

[
M3‖ε(k+m−1

m
)‖(s) + (M4 + M5)‖ε(k)‖(s)

]
ds

=
∫ t

0



(

2MM3

l

)m sm−1

(m − 1)!
+

M4 + M5

M3

m−1∑

j=1

(
2MM3

l

)j+1 sj

j!

+
2M(M4 + M5)

l

]
max

0≤µ≤s
‖ε(k)‖(µ)ds.

Set

C =
(

2MM3

l

)m Tm−1

(m− 1)!
+

M4 + M5

M3

m−1∑

j=1

(
2MM3

l

)j+1 T j

j!
+

2M(M4 + M5)
l

.

It then follows that

‖ε(k+1)‖(t) ≤ C

∫ t

0
max

0≤µ≤s
‖ε(k)‖(µ)ds ≤ C

∫ t

0
max
0≤s≤t

‖ε(k)‖(s)ds.

Suppose that the k-th error function has the estimation

(7) ‖ε(k)‖(t) ≤ (Ct)k

k!
max
0≤s≤t

‖ε(0)‖(s).



Embedded Waveform Relaxation Methods 837

Then the (k + 1)-th error function has the following estimation

‖ε(k+1)‖(t) ≤ C

∫ t

0
max

0≤µ≤s

(Cµ)k

k!
max

0≤r≤µ
‖ε(0)‖(r)ds

≤ C

∫ t

0

(Cs)k

k!
max
0≤r≤s

‖ε(0)‖(r)ds

≤ (Ct)k+1

(k + 1)!
max
0≤s≤t

‖ε(0)‖(s).

Therefore, we see by induction that the error estimation (7) is valid for all k.
Taking the maximum norm on both sides of (7) over the time interval [0, T ] yields
the estimation:

(8) ‖ε(k)‖T ≤ (CT )k

k!
‖ε(0)‖T .

Since as the iteration number k approaches to infinity, (CT )k

k! converges to 0 super-
linearly, the results stated in Theorem 2.1 follow.

Remark 2.2. In the special case where m = 1, the embedded waveform re-

laxation method (3) degenerates to a kind of general waveform relaxations, which

seems similar to the Jacobi waveform relaxation method. The corresponding error

estimation is then

‖ε(k)‖T ≤
(

2M(M3 + M4 + M5)T
l

)k 1
k!
‖ε(0)‖T .

The rate of convergence is also superlinear.

As far as we know, waveform relaxation methods have obvious disadvantage

when performing simulation for systems defined on long time intervals. For general

ODEs on finite time intervals, waveform relaxation methods have superlinear con-

vergence rate [15]. However, the waveform relaxation methods converge linearly

for linear ODEs on long time intervals if some dissipation condition on the splitting

is assumed [13]. Besides, divergent examples of the waveform relaxation methods

for nonlinear systems on long time intervals can be found in [15].

In this situation, we should turn to a windowing waveform relaxation method,

which is a modified waveform relaxation method, and also regarded as an accelerated

method. For system (2), we first divide the time domain into several windows

[Tj , Tj+1] with time points Tj (0 < T1 < . . .), and let all lengthes of windows
be identically H . For the windowing strategy, the series of relaxed systems are
separately and successively solved on windows [Tj, Tj+1]. The embedded waveform
relaxation method with windowing for (2) is
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(9)





∂u
(k+ i+1

m
)

j (x, t)
∂t

= a
∂2u

(k+ i+1
m

)

j (x, t)
∂x2

+G(x, t, u
(k+ i

m
)

j (x, t), u(k)
j (x, t), u(k)

j (x, t−τ)),

Tj < t < Tj+1, 0<x<l,

u
(k+ i+1

m
)

j (0, t) = u
(k+ i+1

m
)

j (l, t) = 0, Tj ≤ t ≤ Tj+1,

u
(k+ i+1

m
)

j (x, Tj)=u
(k0)
j−1(x, Tj),

0 ≤ x ≤ l, i=0, 1, · · · , m−1, k=0, 1, · · · , k0−1,

where u
(k+ i+1

m
)

j (x, t) denotes the waveform on the time window [Tj , Tj+1], and k0 is

a fixed iteration number on every window. When applying windowing technique, we

choose u
(k0)
−1 (x, 0) = h(x, 0), and for all j, the initial guess u(0)

j (x, t) ≡ u
(k0)
j−1(x, Tj),

Tj ≤ t ≤ Tj+1.

For the windowing waveform relaxation method for ODEs, the continuous it-

eration solution at any iteration can not, in general, be a semigroup [1, 10]. The

mappings between the approximations at the end points of all time windows generate

a discrete semigroup if the following three conditions are satisfied:

(a) the system is autonomous;

(b) all the windows have the same length;

(c) waveform relaxation is carried out same times on every window.

We know more from [1] that the discrete semigroup generated from windowing

waveform relaxation preserves a variety of invariant sets of the original ODEs on

long time intervals. We assume that the results still work for the windowing embed-

ded waveform relaxation (9) without derivation. We notice that k0-th waveform on

every time window provides a continuous connection among the end points of every

time window. Therefore, the windowing waveform relaxation method (9) preserves

the continuous behavior of system (2) on long time intervals.

In the next section, we will investigate the embedded waveform relaxation

method for another type of partial functional differential equations.

3. EQUATIONS WITH FIXED AND DISTRIBUTED DELAYS

We consider the following parabolic partial functional differential equations with

both fixed and distributed delays,

(10)





∂u(x, t)
∂t

= a
∂2u(x, t)

∂x2
+ g

(
x, t, u(x, t− τ),

∫ t

0

u(x, s)ds

)
,

0 < x < l, 0 < t < T,

u(0, t) = u(l, t) = 0, 0 ≤ t ≤ T,

u(x, t) = h(x, t), 0 ≤ x ≤ l, −τ0 ≤ t ≤ 0,
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where g is a given nonlinear function.

For simplicity, we construct the similar embedded waveform relaxation method

as before,

(11)





∂u(k+ i+1
m

)(x, t)
∂t

= a
∂2u(k+ i+1

m
)(x, t)

∂x2

+g
(
x, t, u(k+ i

m
)(x, t − τ),

∫ t
0 u(k)(x, s)ds

)
,

u(k+ i+1
m

)(0, t) = u(k+ i+1
m

)(l, t) = 0, 0 ≤ t ≤ T,

u(k+ i+1
m

)(x, 0)=h(x, 0), 0≤x≤ l, i=0, 1, · · · , m−1, k=0, 1, · · · .

We take the same initial function on [0, l]× [−τ0, 0] and the same initial guess as
before. Such a relaxation scheme is proposed to make sure that both fixed and

distributed delays are relaxed.

It is easy to find that, for any fixed i and k, system (11) is a linear diffusion
equation. Similarly to system (3), the solution of this system is

(12)

u(k+ i+1
m

)(x, t)

=
2
l

∞∑

n=1

∫ l

0
h(ξ, 0) sin

nπξ

l
dξe−a(nπ

l )2
t sin

nπx

l

+
∫ t

0

( ∞∑

n=1

2
l

∫ l

0
g(ξ, s, u(k+ i

m
)(ξ, s−τ),

∫ s

0
u(k)(ξ, θ)dθ) sin

nπξ

l
dξ

×e−a(nπ
l

)2(t−s) sin nπx
l

)
ds.

We define a function sequence by

(13)

b
(k+ i+1

m
)

n (t) :=
2
l

∫ l

0
h(ξ, 0) sin

nπξ

l
dξe−a(nπ

l )2
t

+
∫ t

0

(
2
l

∫ l

0

g(ξ, s, u(k+ i
m

)(ξ, s− τ),
∫ s

0

u(k)(ξ, θ)dθ) sin
nπξ

l
dξe−a(nπ

l
)2(t−s)

)
ds.

The solution of equation (11) has the expression

u(k+ i+1
m

)(x, t) =
∞∑

n=1

b
(k+ i+1

m
)

n (t) sin
nπx

l
.
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We also define the function

(14)

bn(t)

:=
2
l

∫ l

0
h(ξ, 0) sin

nπξ

l
dξe−a(nπ

l )2
t

+
∫ t

0

(
2
l

∫ l

0
g(ξ, s, u(ξ, s−τ),

∫ s

0
u(ξ, θ)dθ) sin

nπξ

l
dξe−a(nπ

l
)2(t−s)

)
ds.

It is not hard to verify that the function
∞∑

n=1
bn(t) sin nπx

l satisfies equation (10).

Next, we present convergence of the relaxation series (12) and the corresponding

rate of convergence.

Theorem 3.1. Assume that the partial derivative of the nonlinear function g with
respect to its j-th argument is bounded by constant M̃j , where j = 3, 4. Then the
approximation solution u(k+ i

m
)(x, t) of the embedded waveform relaxation method

(11) converges to the exact solution of system (10), and satisfies

max
0≤x≤l
0≤t≤T

∣∣∣∣∣u
(k)(x, t)−

∞∑

n=1

bn(t) sin
nπx

l

∣∣∣∣∣≤
(C̃T )k

k!
max
0≤x≤l
0≤t≤T

∣∣∣∣∣u
(0)(x, t)−

∞∑

n=1

bn(t) sin
nπx

l

∣∣∣∣∣,

where m (usually) is a small positive integer, i = 0, 1, · · · , m − 1, k = 1, 2, · · · ,
and

C̃ =

(
2MM̃3

l

)m
Tm−1

(m − 1)!
+

(
2MM̃4

l

)
m−1∑

j=0

(
2MM̃3

l

)j
T j+1

(j + 1)!

is a constant. The rate of convergence of this embedded waveform relaxation

method is superlinear.

Proof. Firstly, define the error function

ε(k+ i
m

)(x, t) := u(k+ i
m

)(x, t)−
∞∑

n=1

bn(t) sin
nπx

l
, 0 ≤ x ≤ l, −τ0 ≤ t ≤ T,

where, for −τ0 ≤ t ≤ 0 and 0 ≤ x ≤ l, ε(k+ i
m

)(x, t) ≡ 0. From the expressions
(12) and (14), the error function ε(k+ i+1

m
)(x, t) can be written directly as

ε(k+ i+1
m

)(x, t)

=
∫ t

0

( +∞∑

j=1

2
l

∫ l

0

[
g(ξ, s, u(k+ i

m
)(ξ, s− τ),

∫ s

0
u(k)(ξ, θ)dθ)

−g(ξ, s, u(ξ, s− τ),
∫ s

0
u(ξ, θ)dθ)

]
sin

jπξ

l
dξ · e−a( jπ

l
)2(t−s) sin

jπx

l

)
ds.
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Notice that

g

(
ξ, s, u(k+ i

m
)(ξ, s− τ),

∫ s

0
u(k)(ξ, θ)dθ)− g(ξ, s, u(ξ, s− τ),

∫ s

0
u(ξ, θ)dθ

)

= g′3ε
(k+ i

m
)(ξ, s− τ) + g′4

∫ s

0

ε(ξ, θ)dθ,

where

g′j = g′j

(
ξ, s, u

(k+ i
m

)
∗ (ξ, s− τ),

∫ s

0
u

(k)
∗ (ξ, θ)dθ

)
, j = 3, 4

denotes the j-th partial derivative of the nonlinear function g with respect to its j-th
argument (sometimes we denote the expression as g′i(ξ, s) for short), and

u
(k+ i

m
)

∗ (ξ, s) ∈
[
min{u(k+ i

m
)(ξ, s), u(ξ, s)}, max{u(k+ i

m
)(ξ, s), u(ξ, s)}

]
.

It then follows that

ε(k+ i+1
m

)(x, t)

=
∫ t

0




+∞∑

j=1

2
l

∫ l

0

[
g′3ε

(k+ i
m

)(ξ, s− τ)

+g′4

∫ s

0
ε(ξ, θ)dθ

]
sin

jπξ

l
dξe−a( jπ

l
)2(t−s) sin

jπx

l

)
ds

=
∫ t

0

( +∞∑

j=1

2
l

[
g′3(ξ̃, s)ε

(k+ i
m

)(ξ̃, s−τ)+g′4(ξ̃, s)
∫ s

0
ε(k)(ξ̃, θ)dθ

] ∫ l

0
sin

jπξ

l
dξ

×e−a( jπ
l

)2(t−s) sin
jπx

l

)
ds

=
∫ t

0

( +∞∑

j=1

2
l

[
g′3(ξ̃, s)ε

(k+ i
m

)(ξ̃, s−τ)+g′4(ξ̃, s)
∫ s

0
ε(k)(ξ̃, θ)dθ

] l

jπ
[1− (−1)j]

×e−a( jπ
l

)2(t−s) sin
jπx

l

)
ds

=
∫ t

0

2
l

[
g′3(ξ̃, s)ε

(k+ i
m

)(ξ̃, s − τ) + g′4(ξ̃, s)
∫ s

0
ε(k)(ξ̃, θ)dθ

]

×




+∞∑

j=1

2l

(2j − 1)π
e−a( 2jπ−π

l
)2(t−s) sin

(2j − 1)πx

l


 ds,
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where ξ̃ ∈ [0, l]. By the same argument as in the proof of Theorem 2.1, we find
that the series in the expression above is uniformly bounded by a constant M .

Therefore, we have the following estimation for the error,

|ε(k+ i+1
m

)(x, t)| ≤ 2M

l

∫ t

0

(
M̃3|ε(k+ i

m
)(ξ̃, s − τ)|+ M̃4

∫ s

0

|ε(k)(ξ̃, θ)|dθ

)
ds

≤ 2M

l

∫ t

0

(
M̃3|ε(k+ i

m
)(ξ̃, s)|+ M̃4|ε(k)(ξ̃, θ̃(s))|s

)
ds,

where 0 < θ̃(s) < s < t.
If we use the sup norm ‖ε(k)‖(t) := max

0≤x≤l
|ε(k)(x, t)|, then we obtain

‖ε(k+ i+1
m

)‖(t) ≤ 2M

l

∫ t

0

[
M̃3‖ε(k+ i

m
)‖(s) + M̃4s‖ε(k)‖(θ̃(s))

]
ds.

By induction we further get that

‖ε(k+ i
m

)‖(t)

≤



(

2MM̃3

l

)i
ti

i!
+

(
2MM̃4

l

)
i∑

j=1

(
2MM̃3

l

)j−1
tj+1

(j + 1)!


 max

0≤s≤t
‖ε(k)‖(s)

and

‖ε(k+1)‖(t) ≤ 2M

l

∫ t

0

M̃3‖ε(k+ m−1
m )‖(s)ds +

2M

l

∫ t

0

M̃4s‖ε(k)‖(θ̃(s))ds

=
∫ t

0



(

2MM̃3

l

)m
sm−1

(m − 1)!
+

(
2MM̃4

l

)
m−1∑

j=0

(
2MM̃3

l

)j
sj+1

(j + 1)!




× max
0≤µ≤s

‖ε(k)‖(µ)ds.

Introducing the constant

C̃ =

(
2MM̃3

l

)m
Tm−1

(m − 1)!
+

(
2MM̃4

l

)
m−1∑

j=0

(
2MM̃3

l

)j
T j+1

(j + 1)!
,

we then get

‖ε(k+1)‖(t) ≤ C̃

∫ t

0
max

0≤µ≤s
‖ε(k)‖(µ)ds ≤ C̃

∫ t

0
max
0≤s≤t

‖ε(k)‖(s)ds.

Consequently,

‖ε(k)‖(t) ≤ (C̃t)k

k!
max
0≤s≤t

‖ε(0)‖(s)

and the results stated in Theorem 3.1 follow.
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Remark 3.2. In the special case of m = 1, the error estimation for the corre-
sponding Jacobi waveform relaxation method is

‖ε(k)‖T ≤

(
2MT (M̃3 + M̃4T )

l

)k
1
k!
‖ε(0)‖T .

The rate of convergence is also superlinear.

We also divide the time domain into several windows with equal length, and

on the time window [Tj , Tj+1] the corresponding windowing embedded waveform
relaxation scheme for system (10) is designed as follows,





∂u
(k+ i+1

m )

j (x,t)

∂t = a
∂2u

(k+ i+1
m )

j (x,t)

∂x2

+g

(
x, t, u

(k+ i
m

)

j (x, t− τ),
∫ t
0 u

(k)
j (x, s)ds

)
, Tj <t<Tj+1, 0<x<l,

u
(k+ i+1

m
)

j (0, t) = u
(k+ i+1

m
)

j (l, t) = 0, Tj ≤ t ≤ Tj+1,

u
(k+ i+1

m
)

j (x, Tj) = u
(k0)
j−1(x, Tj),

0 ≤ x ≤ l, i = 0, 1, · · · , m− 1, k = 0, 1, · · · , k0 − 1.

where u
(k0)
−1 (x, 0) = h(x, 0), and for all j, the initial guess u

(0)
j (x, t) ≡ u

(k0)
j−1(x, Tj),

Tj ≤ t ≤ Tj+1.

In the next section, we will investigate the semi-discrete situation of the embed-

ded waveform relaxation method.

4. EQUATIONS AFTER SPATIAL DISCRETIZATION

Waveform relaxation methods are first carried out for ordinary differential equa-

tions of large scale. We will extend the embedded waveform relaxation methods to

the ordinary differential equations which are obtained from spatial discretization of

parabolic partial functional differential equations.

4.1. Fixed delays

We first investigate the parabolic partial functional differential equations (2).

We divide the space domain [0, l] into J segments with equal length ∆x, and take

Uj(t) as the approximations to the solution u(x, t), where j = 0, 1, . . . , J . One of
the most common approximation schemes is

dUj(t)
dt

= a
Uj+1(t) − 2Uj(t) + Uj−1(t)

∆x2
+ g(xj , t, Uj(t), Uj(t − τ)).
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If we set U(t) = [U1(t), U2(t), . . . , UJ−1(t)]T, we then obtain the functional dif-
ferential equations

(15)





dU(t)
dt

=
a

∆x2
AU(t) + g̃(t, U(t), U(t− τ)), 0 < t ≤ T,

U(t) = [u(x1, t), u(x2, t), . . . , u(xJ−1, t)]T, −τ0 ≤ t ≤ 0,

where,

(16) A =




−2 1 0 0

1 −2 1
. . .

0 1
. . .

. . . 0

. . .
. . .

. . . 1

0 0 1 −2




∈ R(J−1)×(J−1),

(17) g̃(t, U(t), U(t− τ)) =




g(x1, t, U1(t), U1(t − τ))

g(x2, t, U2(t), U2(t − τ))

...

g(xJ−1, t, UJ−1(t), UJ−1(t − τ))




∈ R(J−1).

When solving equations (15) with waveform relaxation methods, one usually

splits the matrix A into A1 and A2, where the matrix A1 has special structure,

such as diagonal or lower triangular, to make sure that each system in the relax-

ation series can be solved easily or in parallel. Such splitting methods lead to

Jacobi and Gauss-Seidel waveform relaxation methods. However, the correspond-

ing convergence results derived in these two fashions depend on mesh parameters

and convergence rates would deteriorate when the meshes are refined.

In order to reduce the dependence of the convergence on mesh parameters, we

take A1 = A and A2 = 0, which means that the matrix A is not split. We only relax
the nonlinear term and the functional term, which leads to the following relaxation

scheme,

(18)





dU (k+ i+1
m

)(t)
dt

=
a

∆x2
AU (k+ i+1

m
)(t)

+G̃(t, U (k+ i
m

)(t), U (k)(t), U (k)(t − τ)),

U (k+ i+1
m

)(0) = [u(x1, 0), u(x2, 0), . . . , u(xJ−1, 0)]T,
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where, the splitting function G̃ satisfies G̃(t, u1, u1, u2) = g̃(t, u1, u2), u1, u2 ∈
R(J−1). The initial guess is taken as

U (0)(t) =

{
[u(x1, t), u(x2, t), . . . , u(xJ−1, t)]T, −τ0 ≤ t ≤ 0,

[u(x1, 0), u(x2, 0), . . . , u(xJ−1, 0)]T, 0 < t ≤ T.

For any fixed k and i, the relaxed system (18) consists of linear ordinary differen-

tial equations with no functional terms, which is more easily dealt with numerically

or by other ways. Below is a convergence analysis of the embedded waveform

relaxation method (18).

Theorem 4.1. Assume that the Jacobian of the nonlinear splitting function G̃

with respect to its j-th argument is uniformly bounded by constantMj , j = 2, 3, 4.
Then the approximation solution U (k+ i

m
)(t) of the embedded waveform relaxation

method (18) converges to the solution of system (15), and satisfies

(19) max
0≤t≤T

‖U (k)(t)−U(t)‖ ≤ (M2C∆+M3+M4)kT k

k!
max

0≤t≤T
‖U (0)(t)−U(t)‖,

where k = 1, 2, · · · ,

C∆ = Mm−1
2 (− 1

λmax

∆x2

a
)m−1+

m−1∑

j=1

M j−1
2 (M3+M4)(−

1
λmax

∆x2

a
)j

is a constant, m is a positive integer, and λmax is a negative real number. The rate

of convergence of the embedded waveform relaxation method is superlinear.

Proof. First, we define the error function ε(k+ i
m

)(t) by

ε(k+ i
m

)(t) = U (k+ i
m

)(t) − U(t), −τ0 ≤ t ≤ T.

Obviously, ε(k+ i
m

)(t) ≡ 0 for −τ0 ≤ t ≤ 0. On the time interval [0, T ] we have,

dε(k+ i+1
m

)(t)
dt

=
a

∆x2
Aε(k+ i+1

m
)(t)

+G̃(t, U (k+ i
m

)(t), U (k)(t), U (k)(t − τ))− g̃(t, U(t), U(t− τ)).

Its solution can be written directly as

ε(k+ i+1
m

)(t) =
∫ t

0
e

a
∆x2 A(t−s)[G̃(s, U (k+ i

m
)(s), U (k)(s), U (k)(s − τ))

−G̃(s, U(s), U(s), U(s− τ))
]
ds.



846 Jun Liu, Yao-Lin Jiang and Hong-Kun Xu

We notice that

G̃(s, U (k+ i
m

)(s), U (k)(s), U (k)(s − τ))− G̃(s, U(s), U(s), U(s− τ))

= G̃′
2(s)ε

(k+ i
m

)(s) + G̃′
3(s)ε

(k)(s) + G̃′
4(s)ε

(k)(s − τ),

where G̃′
j(s) = G̃′

j(s, U
(k+ i

m
)

∗ (s), U (k)
∗ (s), U (k)

∗ (s − τ)) denotes the j-th Jacobian

of the function G̃ with respect to its j-th argument (j = 2, 3, 4), and

U
(k+ i

m
)

∗ (s) ∈
[
min{U (k+ i

m
)(s), U(s)}, max{U (k+ i

m
)(s), U(s)}

]
.

On the other hand, the matrix A is symmetrical and negative definite. Let λmax

be the maximum eigenvalue of the matrix A. We then obtain

‖e
a

∆x2 A(t−s)‖ ≤ e
a

∆x2 λmax(t−s)
,

where λmax < 0, and ‖ · ‖ is the 2-norm.
Then we have

∥∥∥ε(k+ i+1
m

)
∥∥∥(t) =

∥∥∥
∫ t

0
e

a
∆x2 A(t−s)[G̃′

2(s)ε
(k+ i

m
)(s) + G̃′

3(s)ε
(k)(s)

+G̃′
4(s)ε

(k)(s − τ)
]
ds
∥∥∥

≤
∫ t

0
e

a
∆x2 λmax(t−s)

[
‖G̃′

2(s)‖‖ε(k+ i
m

)(s)‖+ ‖G̃′
3(s)‖‖ε(k)(s)‖

+ ‖G̃′
4(s)‖‖ε(k)(s − τ)‖

]
ds

≤
∫ t

0
e

a
∆x2 λmax(t−s)

[
M2‖ε(k+ i

m
)(s)‖

+M3‖ε(k)(s)‖ + M4‖ε(k)(s − τ)‖
]
ds.

For convenience we define another norm ‖ · ‖t by ‖x‖t = max
0≤s≤t

‖x‖(s). Obviously

we have ‖ε(k)‖t−τ ≤ ‖ε(k)‖t. By induction we find that

‖ε(k+m−1
m

)‖(t) ≤
[
Mm−1

2 (− 1
λmax

∆x2

a
)m−1

+
m−1∑

j=1

M j−1
2 (M3 + M4)(−

1
λmax

∆x2

a
)j


 ‖ε(k)‖t.

Put

C∆ − Mm−1
2 (− 1

λmax

∆x2

a
)m−1 +

m−1∑

j=1

M j−1
2 (M3 + M4)(−

1
λmax

∆x2

a
)j ,



Embedded Waveform Relaxation Methods 847

where the subscript ∆ means that the constant C∆ depends on the mesh parameter.

Since λmax < 0, we have

(20)

‖ε(k+1)‖(t) ≤
∫ t

0
e

a
∆x2 λmax(t−s)

[
M2‖ε(k+m−1

m
)(s)‖

+M3‖ε(k)(s)‖+ M4‖ε(k)(s − τ)‖
]
ds

≤
∫ t

0
(M2C∆ + M3 + M4)‖ε(k)‖sds.

Similarly to the induction argument used in the proof of Theorem 2.1, we obtain

‖ε(k)‖(t) ≤ (M2C∆ + M3 + M4)k tk

k!
‖ε(0)‖t.

This implies that the rate of convergence is superlinear. Taking the maximum on

both sides of the inequality (20) with respect to t over [0, T ] gets the required result
(19).

To conclude this subsection, we point out that if we employ different inequalities

in the process of induction in the proof of Theorem 4.1, such as

‖ε(k+1)‖(t) ≤ (M2C∆ + M3 + M4)
∫ t

0
e

a
∆x2 λmax(t−s)ds max

0≤t≤T
‖ε(k)‖(t)

≤ (M2C∆ + M3 + M4)(−
1

λmax

∆x2

a
) max

0≤t≤T
‖ε(k)‖(t),

we will get another error bound which converges linearly. We notice that the con-

vergence factor is a quadratic function with respect to the mesh parameter; so the

convergence factor can usually be very small. Although such an error estimation

presents better convergence property of the embedded waveform relaxation methods

within finite iterations, the convergence results depend on the choice of mesh pa-

rameter, while the superlinear convergence results in Theorem 4.1 is unconditional.

4.2. Fixed and distributed delays

For the parabolic partial functional differential equations (10), the corresponding

equation after spatial discretization is

(21)





dU(t)
dt

=
a

∆x2
AU(t) + ḡ

(
t, U(t − τ),

∫ t

0
U(s)ds

)
, 0 < t ≤ T,

U(t) = [u(x1, t), u(x2, t), . . . , u(xJ−1, t)]T, −τ0 ≤ t ≤ 0,

where A is the same symmetrical and negative definite matrix as given in (16), and

ḡ is a vector of nonlinear functions.
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System (21) seems more suitable to be solved by the embedded waveform re-

laxation method. In fact, when solved numerically with Runge-Kutta or some other

methods, system (21) is troublesome to handle because of the distributed delay. Just

like the analysis in [3], the computation is much bigger than that of the system

without distributed delays.

With the help of ideas of this paper, we propose the embedded waveform relax-

ation method for system (21) as follows,

(22)





dU (k+ i+1
m )(t)

dt
=

a

∆x2
AU (k+ i+1

m )(t) + ḡ

(
t, U (k+ i

m )(t − τ ),
∫ t

0

U (k)(s)ds

)
,

U (k+ i+1
m )(0) = [u(x1, 0), u(x2, 0), . . . , u(xJ−1, 0)]T,

with the same initial guess as given for the case of fixed delays. Note that we

no longer need to concentrate on the approximation of the distributed delay after

relaxation.

We also define the error function

ε(k+ i
m

)(t) := U (k+ i
m

)(t) − U(t), −τ0 ≤ t ≤ T.

The following theorem shows the convergence results of the embedded waveform

relaxation methods (22).

Theorem 4.2. Assume that the Jacobian of the nonlinear splitting function ḡ
with respect to its j-th argument is uniformly bounded by constant M̄j , where

j = 2, 3. Then the approximate solution U (k+ i
m

)(t) of the embedded waveform
relaxation method (22) converges to the solution of system (21), and satisfies

max
0≤t≤T

‖U (k)(t) − U(t)‖ ≤ min

{
T k

k!
,

(
− 1

λmax

∆x2

a

)k
}

×(M2C̄∆ + M3T )k max
0≤t≤T

‖U (0)(t) − U(t)‖,

where k = 1, 2, · · · , and the constant

C̄∆ = M̄m−1
2 (− 1

λmax

∆x2

a
)m−1 +

m−1∑

j=1

M̄
j−1
2 (− 1

λmax

∆x2

a
)jM̄3T,

m is a positive integer, and λmax is the maximum eigenvalue of the negative definite

matrix A. The rate of convergence of the embedded waveform relaxation method

is superlinear.
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Proof. We only investigate the series of the error functions ε(k+ i
m

)(t) on the
time interval [0, T ]. Similar to the case of fixed delays, the error function can be
written as

ε(k+ i+1
m

)(t) =
∫ t

0
e

a
∆x2 A(t−s)

[
ḡ(s, U (k+ i

m
)(s − τ),

∫ s

0
U (k)(θ)dθ) − ḡ(s, U(s − τ),

∫ s

0
U(θ)dθ)

]
ds,

and

‖ε(k+ i+1
m

)‖(t) = ‖
∫ t

0

e
a

∆x2 A(t−s)

[
ḡ′2(s)ε

(k+ i
m

)(s − τ) + ḡ′3(s)
∫ s

0

ε(k)(θ)dθ

]
ds‖

≤
∫ t

0
e

a
∆x2 λmax(t−s)

[
M̄2‖ε(k+ i

m
)(s − τ)‖+ M̄3‖ε(k)(θ̄)‖s

]
ds,

where 0 < θ̄ < s.

By induction we get

‖ε(k+m−1
m

)‖(t)≤
[
M̄m−1

2 (− 1
λmax

∆x2

a
)m−1+

m−1∑

j=1

M̄
j−1
2 (− 1

λmax

∆x2

a
)jM̄3t

]
‖ε(k)‖t.

Set

C̄∆ = M̄m−1
2 (− 1

λmax

∆x2

a
)m−1 +

m−1∑

j=1

M̄ j−1
2 (− 1

λmax

∆x2

a
)jM̄3T.

Firstly, noticing the inequality e
a

∆x2 λmax(t−s) ≤ 1, we obtain the estimation

‖ε(k+1)‖(t) ≤
∫ t

0

[
M̄2‖ε(k+m−1

m
)(s − τ)‖ + M̄3‖ε(k)(θ̄)‖s

]
ds

≤ (M̄2C̄∆ + M̄3T )
∫ t

0
‖ε(k)‖sds.

Similar to the induction technique used in the proof of Theorem 2.1, we have

‖ε(k)‖(t) ≤ (M2C̄∆ + M3T )ktk

k!
max
0≤s≤t

‖ε(0)‖(s).

This clearly says that the rate of convergence is superlinear.

However, the constant M3 is independent of mesh parameter when the mesh is

refined. This error estimation seems not sharp enough, at least for the first several
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iterations. Therefore, we resort another error estimation,

‖ε(k+1)‖(t) ≤
∫ t

0
e

a
∆x2 λmax(t−s)

[
M̄2‖ε(k+m−1

m
)(s − τ)‖ + M̄3‖ε(k)(θ̄)‖s

]
ds

≤ (M̄2C̄∆ + M̄3t)(−
1

λmax

∆x2

a
)‖ε(k)‖t.

Therefore,

max
0≤t≤T

‖ε(k)‖(t) ≤ (M̄2C̄∆ + M̄3T )k(− 1
λmax

∆x2

a
)k max

0≤t≤T
‖ε(0)‖(t).

The mesh parameter could be taken small enough, to make sure that the convergence

factor is also small enough. The convergence results stated in the theorem follow.

5. NUMERICAL EXPERIMENTS

In this section we present two numerical examples to show the behavior of the

embedded waveform relaxations.

Example 5.1. Consider the normalized Hutchinson’s equation in one-space di-

mension with Neumann boundary conditions:

(23)





∂

∂t
u(x, t)

= d
∂2

∂x2
u(x, t)−(

π

2
+µ)u(x, t−1)[1+u(x, t)], 0<x<π, t>0

∂

∂x
u(x, t) = 0, x = 0, π,

where the constants d = 0.01 and µ = 0.2. In this example, we choose the initial
function u(x, t) = 0.5 cos2(x), 0 ≤ x ≤ π, −1 ≤ t ≤ 0.

The Hutchinson equation is used to be a rough model for the evolution of

population in mathematical ecology. Some derivations of the equation are able to

describe an assemblage of particles, e.g., cells, chemicals, bacteria and so on. More

details can be found in [14].

As is well known, the waveform relaxation method has its inherent disadvantages

when processing time-dependent systems which are defined on long time intervals.

In order to overcome such disadvantages, we first investigate the behavior of the

iteration method on short time interval [0, 2]. The following kind of embedded
waveform relaxation methods is employed,
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



∂

∂t
u(k+ i+1

m
)(x, t) = d

∂2

∂x2
u(k+ i+1

m
)(x, t)

−(
π

2
+ µ)u(k)(x, t− 1)[1 + u(k+ i

m
)(x, t)], 0 < x < π,

∂

∂x
u(k+ i+1

m
)(x, t) = 0, x = 0, π,

and the initial guess is u(0)(x, t) ≡ 0.5 cos2(x) for t ∈ [−1, 2] and x ∈ [0, π].
When carrying out in computer, we assume the numerical solution with space step

∆x = π/100 and time step ∆t = 0.01 to be the true solution. The computing error
is shown in Table 1.

Table 1. Error of the embedded waveform relaxation method for the system in Ex-

ample 5.1 on short time interval [0, 2], and k is the number of iterations

k k=1 k=2 k=3 k=4

m=2 5.04e-001 2.82e-002 1.01e-003 1.40e-005

m=3 7.69e-001 6.05e-003 9.85e-006 4.83e-009

k k=5 k=6 k=7 k=8

m=2 1.08e-007 5.35e-010 1.81e-012 4.72e-015

m=3 9.84e-013 1.67e-016 - -

As for the behavior of the Hutchinson’s equation (23) on a long time interval,

e.g., [0, 100], which maybe receive more concern, we employ the windowing tech-
nique to handle it. In fact, carrying out embedded waveform relaxation method on

the long time interval directly will usually make the error blow up, while windowing

technique will change the situation into several systems on short time intervals. We

divide the time interval [0, 100] into 100 time windows. The error functions of the
windowing embedded waveform relaxation method with respect to time and space

variables are shown in Figure 1 and the maximums of the error functions can be

found in Table 2.

Example 5.2. Consider the single-species population models:

(24)





∂

∂t
u(x, t) = d

∂2

∂x2
u(x, t)

+ru(x, t)
(
1 −

∫ 0
−τ u(x, t + s)ds

)
, 0 < x < π, t > 0,

u(x, t) = 0.3 sin(x), −τ ≤ t ≤ 0, 0 ≤ x ≤ π,

u(0, t) = 0, u(π, t) = 0, t ≥ 0.

where the constants d = 0.01, r = 0.2 and τ = 1.
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Fig. 1. The error functions of the embedded waveform relaxation method at different

iterations.

Table 2. Error of the windowing embedded waveform relaxation method for the

system in Example 5.1 on long time interval [0, 100]

k k=1 k=2 k=3 k=4

m=2 1.945 2.133 5.04e-001 2.31e-002

m=3 inf 5.04e-001 4.10e-003 1.32e-005

m=4 2.1329 2.31e-002 1.32e-005 2.06e-009

k k=5 k=6 k=7 k=8

m=2 6.65e-004 1.32e-005 1.91e-007 2.06e-009

m=3 2.05e-008 1.70e-011 1.07e-014 1.11e-016

m=4 1.10e-013 1.11e-016 - -

System (24) is proposed by Green and Stech [6] for a class of single species

population models with diffusion. We take the relaxation scheme





∂

∂t
u(k+ i+1

m
)(x, t)=d

∂2

∂x2
u(k+ i+1

m
)(x, t)+ru(k+ i

m
)(x, t)

(
1−
∫ 0

−τ
u(k)(x, t+s)ds

)
,

u(k+ i+1
m

)(x, t) = 0.3 sin(x), −τ ≤ t ≤ 0, 0 ≤ x ≤ π,

u(k+ i+1
m

)(0, t) = 0, u(k+ i+1
m

)(π, t) = 0, t ≥ 0.

We first consider the short time interval [0, 5] and take the same discrete time
step and space step as Example 5.1. The maximum of the errors of some waveforms

are shown in Table 3.
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Table 3. Error of the embedded waveform relaxation method for the system in Ex-

ample 5.2 on short time interval [0, 5]

k k=1 k=2 k=3 k=4

m=1 4.62e-002 8.22e-003 1.30e-003 1.82e-004

m=2 3.02e-002 2.44e-003 1.13e-004 3.20e-006

k k=5 k=6 k=7 k=8

m=1 2.23e-005 2.44e-006 2.40e-007 2.14e-008

m=2 5.90e-008 7.41e-010 6.66e-012 4.50e-014

Table 4. Error of the windowing embedded waveform relaxation method for the

system in Example 5.2 on long time interval [0, 100]

k k=1 k=2 k=3 k=4

m=1 2.26e-002 9.26e-004 3.20e-005 9.23e-007

m=2 6.62e-003 4.24e-005 1.45e-007 3.15e-010

k k=5 k=6 k=7 k=8

m=1 2.27e-008 4.82e-010 9.06e-012 1.52e-013

m=2 4.68e-013 1.89e-015 - -

The windowing technique is also applied to deal with system (24) on the long

time interval [0, 100] which is divided into 100 windows with the same length. The
corresponding error functions of the windowing embedded waveform relaxation are

shown in Figure 2 and the maximums of the error functions can be found inTable 4.

Fig. 2. The error functions of the embedded waveform relaxation method at different

iterations.



854 Jun Liu, Yao-Lin Jiang and Hong-Kun Xu

REFERENCES

1. M. Bjφrhus and A. M. Stuart, Waveform relaxation as a dynamical system, Mathe-
matics of Computation, 66(219) (1997), 1101-1117.

2. N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential

reaction-diffusion population model, SIAM Journal of Applied Mathematics, 50(6)

(1990), 1663-1688.

3. W. H. Enright and M. Hu, Continuous Runge-Kutta methods for neutral Volterra

integro-differential equations with delay, Applied Numerical Mathematics, 24 (1997),

175-190.

4. J. Frochte, An adaptive higher order method in time for partial integro-differential

equations, Numerical Analysis and Applied Mathematics, 1048 (2008), 213-216.

5. M. J. Gander, A waveform relaxation algorithm with overlapping splitting for reaction

diffusion equations, Numerical Linear Algebra with Applications, 6 (1999), 125-145.

6. D. Green and H. W. Stech, Diffusion and Hereditary Effects in a Class of Popu-

lation Models. Differential equations and applications in ecology, epidemics, and

population problems, 19-28, Academic Press, New York-London, 1981.

7. Z. Jackiewicz and B. Zubik-Kowal, Spectral collocation and waveform relaxation

methods for nonlinear delay partial differential equations, Applied Numerical Math-

ematics, 56 (2006), 433-443.

8. Y. L. Jiang, On time-domain simulation of lossless transmission lines with nonlinear

terminations, SIAM Journal on Numerical Analysis, 42(3) (2004), 1018-1031.

9. Y. L. Jiang and O. Wing, On monotone waveform relaxation for systems of nonlinear

differential-algebraic equations, SIAM Journal on Numerical Analysis, 38(1) (2000),

170-185.

10. Y. L. Jiang, On Windowing waveform relaxation of initial value problems, Acta

Mathematicae Applicatae Sinica, English Series, 22(4) (2006), 543-556.

11. E. Lelarasmee, A. E. Ruehli and A. L. Sangiovanni-Vincentelli, The waveform re-

laxation method for time-domain analysis of large scale integrated circuits, TIEEE

Transactions on Computer-Aided Design, 1(3) (1982), 131-145.

12. J. Mead and B. Zubik-Kowal, An iterated pseudospectral method for delay partial

differential equations, Applied Numerical Mathematics, 55 (2005), 227-250.

13. U. Miekkala and O. Nevanlinna, Convergence of dynamic iteration methods for initial

value problems, SIAM Journal on Scientific and Statistical Computing, 8 (1987),

459-482.

14. J. D. Murray, Mathemeatical Biology I: An Introduction (3rd ed.), Springer, New

York, 2002.

15. S. Vandewalle, Parallel Multigrid Waveform Relaxation for Parabolic Problems,

Stuttgart: B. G. Teubner, 1993.



Embedded Waveform Relaxation Methods 855

16. J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer,

New York, 1996.

17. B. Zubik-Kowal, Error bounds for spatial discretization and waveform relaxation ap-

plied to parabolic functional differential equations, Journal of Mathematical Analysis

and Applications, 293 (2004), 496-510.

Jun Liu and Yao-Lin Jiang

Department of Mathematical Sciences

Xi’an Jiaotong University

Xi’an, Shaanxi 710049

P. R. China

E-mail: xjtuliujun@stu.xjtu.edu.cn

yljiang@mail.xjtu.edu.cn

Hong-Kun Xu

Department of Applied Mathematics

National Sun Yat-sen University

Kaohsiung 80424, Taiwan

and

Department of Mathematics

College of Science

King Saud University

P. O. Box 2455

Riyadh 11451, Saudi Arabia

E-mail: xuhk@math.nsysu.edu.tw


