Vol. 15, No. 2, pp. 633-658, April 2011

This paper is available online at http://www.tjm.nsysu.edu.tw/

COMPACTNESS FOR COMMUTATORS OF MARCINKIEWICZ INTEGRALS IN MORREY SPACES

Yanping Chen, Yong Ding* and Xinxia Wang

Abstract. In this paper the authors give a characterization of the compactness for the commutator $[b,\mu_\Omega]$ in the Morrey spaces $L^{p,\,\lambda}(\mathbb{R}^n)$, where μ_Ω denotes the Marcinkiewicz integral. More precisely, the authors prove that if $b\in \mathrm{VMO}(\mathbb{R}^n)$, the $\mathrm{BMO}(\mathbb{R}^n)$ -closure of $C_c^\infty(\mathbb{R}^n)$, then the commutators $[b,\mu_\Omega]$ is a compact operator in the Morrey spaces $L^{p,\,\lambda}(\mathbb{R}^n)$ for $1< p<\infty$ and $0<\lambda< n$. Conversely, if $b\in \mathrm{BMO}(\mathbb{R}^n)$ and $[b,\mu_\Omega]$ is a compact operator in $L^{p,\,\lambda}(\mathbb{R}^n)$ for some $p\in(1,\infty)$ and $\lambda\in(0,n)$, then $b\in\mathrm{VMO}(\mathbb{R}^n)$. In the above results, the kernel function Ω of the operator μ_Ω is assumed to satisfy a very weak condition on S^{n-1} .

1. Introduction

Let S^{n-1} be the unit sphere in \mathbb{R}^n equipped with the Lebesgue measure $d\sigma$. In 1958, Stein [14] defined the Marcinkiewicz integral of high dimension. Suppose that Ω satisfies the following conditions:

(a) Ω is homogeneous function of degree zero on $\mathbb{R}^n \setminus \{0\}$, i.e.

(1.1)
$$\Omega(tx) = \Omega(x)$$
 for any $t > 0$ and $x \in \mathbb{R}^n \setminus \{0\}$.

(b) Ω has mean zero on S^{n-1} , i.e.

(1.2)
$$\int_{S^{n-1}} \Omega(x') d\sigma(x') = 0.$$

(c)
$$\Omega \in \text{Lip}(S^{n-1})$$
, i.e.

Received April 9, 2008, accepted September 22, 2009.

Communicated by Yongsheng Han.

2000 Mathematics Subject Classification: 42B30, 42B99.

Key words and phrases: Marcinkiewicz integrals, Commutators, Compactess, VMO, Morrey space. The research was supported by NSF of China (Grants: 10931001 and 10901017) and SRFDP of China (Grant: 20090003110018).

^{*}Corresponding author.

(1.3)
$$|\Omega(x') - \Omega(y')| \le |x' - y'|$$
 for any $x', y' \in S^{n-1}$.

Then the Marcinkiewicz integral μ_{Ω} is defined by

$$\mu_{\Omega}(f)(x) = \left(\int_0^\infty |F_{\Omega,t}(x)|^2 \frac{dt}{t^3}\right)^{\frac{1}{2}},$$

where

$$F_{\Omega,t}(x) = \int_{|x-y| < t} \frac{\Omega(x-y)}{|x-y|^{n-1}} f(y) \, dy.$$

The Marcinkiewicz integral μ_{Ω} is essentially a Littlewood-Paley g-function. In fact, if taking

$$\varphi(x) = \Omega(x)|x|^{-n+1}\chi_{\{|x| \le 1\}}(x)$$

and $\varphi_t(x) = t^{-n} \varphi(\frac{x}{t})$ for t > 0, then

$$\mu_{\Omega} f(x) = \left(\int_0^\infty |\varphi_t * f(x)|^2 \frac{dt}{t} \right)^{1/2}.$$

In 1958, Stein [14] gave the weak (1,1) boundedness and L^p boundedness of μ_Ω for $1 . In 1961, Benedeck, Calderón and Panzone [1] proved that if replacing the Lipschitz condition (1.3) by <math>\Omega \in C^1(S^{n-1})$, then μ_Ω is bounded operator in L^p for $1 . In 2000, Ding, Fan and Pan [8] showed further that the smoothness assumed on <math>\Omega$ is not necessary for the L^p $(1 boundedness of <math>\mu_\Omega$.

Theorem A. ([8]). If $\Omega \in H^1(S^{n-1})$ satisfies (1.1) and (1.2), then μ_{Ω} is of type (p, p) for $1 , where <math>H^1(S^{n-1})$ denotes the Hardy space on S^{n-1} . See [6] for the definition and properties of $H^1(S^{n-1})$.

Remark 1.1. There are the following including relationship on S^{n-1} :

$$C^1(S^{n-1}) \subset \operatorname{Lip}(S^{n-1}) \subset L^q(S^{n-1}) (1 < q < \infty) \subset L \log^+ L(S^{n-1}) \subset H^1(S^{n-1}),$$

and all inclusions above are proper. On the other hand, In 1976, in their famous paper [5], Coifman, Rochberg and Weiss gave an L^p -boundedness characterization of the commutator [b, T] of the Calderón-Zygmund singular integral operator T.

Theorem B. ([5]). Suppose that Ω satisfies (1.1), (1.2) and (1.3).

- (i) If $b \in BMO(\mathbb{R}^n)$, then [b, T] is bounded in $L^p(\mathbb{R}^n)$ for all 1 .
- (ii) If $\{[b, R_j]\}_{j=1}^n$ are bounded in $L^p(\mathbb{R}^n)$ for some $p, 1 , then <math>b \in BMO(\mathbb{R}^n)$, where R_j $(j = 1, \dots, n,)$ denotes the jth Reisz transform.

In 1978, Uchiyama [18] and Janson [11] extended Theorem B independently. The results in [18] and [11] show that the Reisz transform R_j in the conclusion (ii) of Theorem B may be replaced by the Calderón-Zygmund singular integral operator T.

In the same paper [18], Uchiyama considered also the characterization of the commutator [b,T] is a compact operator in the Lebesgue space $L^p(\mathbb{R}^n)$. Denote by $VMO(\mathbb{R}^n)$ the BMO-closure of $C_c^{\infty}(\mathbb{R}^n)$, where $C_c^{\infty}(\mathbb{R}^n)$ is the set of $C^{\infty}(\mathbb{R}^n)$ functions with compact support. Uchiyama proved the following conclusions:

Theorem C. ([18]). Suppose that Ω satisfies (1.1), (1.2) and (1.3).

- (i) If $b \in VMO(\mathbb{R}^n)$, then [b,T] is compact in $L^p(\mathbb{R}^n)$ for all 1 .
- (ii) If [b,T] is a compact operator in $L^p(\mathbb{R}^n)$ for some $p, 1 , then <math>b \in VMO(\mathbb{R}^n)$.

Naturally, one may ask the question whether hold still the conclusions in Theorems B and C if replacing [b,T] by the commutator $[b,\mu_{\Omega}]$ of the Marcinkiewicz integral and the space $L^p(\mathbb{R}^n)$ by the Morrey space $L^{p,\lambda}(\mathbb{R}^n)$, respectively. In this paper and the forthcoming paper, we will give a positive answer to this question. In fact, we will get similar conclusions to those of Theorems B and C under more weaker conditions than those in Theorems B and C.

Before stating some results, let us recall some definitions. For $b \in L_{loc}(\mathbb{R}^n)$, the commutator $[b, \mu_{\Omega}]$ formed by b and the Marcinkiewicz integral μ_{Ω} is defined by

$$[b, \mu_{\Omega}] f(x) = \left(\int_0^\infty \left| \int_{|x-y| \le t} \frac{\Omega(x-y)}{|x-y|^{n-1}} (b(x) - b(y)) f(y) \, dy \right|^2 \frac{dt}{t^3} \right)^{1/2}.$$

For $\Omega \in L^q(S^{n-1})$, $q \ge 1$, the integral modulus $\omega_q(\delta)$ of continuity of order q of Ω is defined by

$$\omega_q(\delta) = \sup_{\|\tau\| \le \delta} \left(\int_{S^{n-1}} |\Omega(\tau x') - \Omega(x')|^q d\sigma(x') \right)^{1/q},$$

where τ denotes the rotation in \mathbb{R}^n and $\|\tau\| = \sup_{x' \in S^{n-1}} |\tau x' - x'|$. The function Ω is said to satisfy the L^q -Dini condition if

$$\int_0^1 \frac{\omega_q(\delta)}{\delta} d\delta < \infty.$$

Recently, the first and second authors of this paper gave a characterization of the compactness of the commutators for μ_{Ω} in $L^p(\mathbb{R}^n)$ for 1 .

Theorem D. ([3]). Suppose that Ω satisfies (1.1) and (1.2).

(i) If there exist two constants $C_1 > 0$ and $\gamma > 1$ such that

$$(1.4) |\Omega(x') - \Omega(y')| \le \frac{C_1}{\left(\log \frac{2}{|x'-y'|}\right)^{\gamma}} \text{for any} x', y' \in S^{n-1},$$

and the commutator $[b, \mu_{\Omega}]$ is a compact operator in $L^p(\mathbb{R}^n)$ for some p $(1 , then <math>b \in VMO(\mathbb{R}^n)$.

(ii) If $\Omega \in L^q(S^{n-1})$ (q > 1) satisfying the following condition:

(1.5)
$$\int_0^1 \frac{\omega_q(\delta)}{\delta} (1 + |\log \delta|) \, d\delta < \infty,$$

then for $b \in VMO(\mathbb{R}^n)$, the commutator $[b, \mu_{\Omega}]$ is a compact operator in $L^p(\mathbb{R}^n)$ for 1 .

The purpose of this paper is to give a characterization of the compactness of the commutators $[b, \mu_{\Omega}]$ in the Morrey space $L^{p,\lambda}(\mathbb{R}^n)$. For $1 \leq p < \infty$ and $0 < \lambda < n$, the Morrey space $L^{p,\lambda}(\mathbb{R}^n)$ is defined by

$$L^{p,\lambda}(\mathbb{R}^n) = \{ f \in L^p_{loc} : ||f||_{p,\lambda} < \infty \},$$

where

$$||f||_{p,\lambda}^p = \sup_{\substack{y \in \mathbb{R}^n \\ r > 0}} \frac{1}{r^{\lambda}} \int_{B(y,r)} |f(x)|^p dx$$

and B(y,r) denotes the ball centered at y and with radius r>0. The spaces $L^{p,\lambda}(\mathbb{R}^n)$ becomes a Banach space with norm $\|\cdot\|_{p,\lambda}$. Moreover, if $\lambda=0$ and $\lambda=n$, then $L^{p,0}(\mathbb{R}^n)$ and $L^{p,n}(\mathbb{R}^n)$ coincide (with equality of norms) with the space $L^p(\mathbb{R}^n)$ and $L^{\infty}(\mathbb{R}^n)$, respectively.

The main results in this paper are as follows.

Theorem 1. Suppose that Ω satisfies (1.1), (1.2) and (1.4). If $0 < \lambda < n$, $b \in BMO(\mathbb{R}^n)$ and the commutator $[b, \mu_{\Omega}]$ is a compact operator from $L^{p,\lambda}(\mathbb{R}^n)$ to itself for some p $(1 , then <math>b \in VMO(\mathbb{R}^n)$.

Theorem 2. Suppose that $0 < \lambda < n$ and Ω satisfies (1.1), (1.2) and (1.5) with $q > n/(n-\lambda)$. If $b \in VMO(\mathbb{R}^n)$, then the commutator $[b, \mu_{\Omega}]$ is a compact operator in $L^{p,\lambda}(\mathbb{R}^n)$ for 1 .

It is easy to see that the condition (1.4) implies (1.5), so we may get the following corollary immediately.

Corollary 1. Suppose that Ω satisfies (1.1), (1.2) and (1.4). If $0 < \lambda < n$, $1 and <math>b \in BMO(\mathbb{R}^n)$, then the commutator $[b, \mu_{\Omega}]$ is a compact operator in $L^{p,\lambda}(\mathbb{R}^n)$ if and only if $b \in VMO(\mathbb{R}^n)$.

Throughout, the letter "C" will denote (possibly different) the constants that are independent of the essential variables.

2. Proof of Theorem 1

Let us begin with recalling some known conclusions.

Lemma 2.1. ([16]). If $b \in BMO(\mathbb{R}^n)$, $\alpha_2 > \alpha_1 > 2$, Q is a cube centered at x_0 and of diameter r, then exist positive constants α_3 , α_4 , α_5 (depend on α_1 , α_2 and b), such that

$$|\{\alpha_1 r < |x - x_0| < \alpha_2 r : |b(x) - b_Q| > v + \alpha_3\}| \le \alpha_4 |Q| e^{-\alpha_5 v} \quad (0 < v < \infty).$$

Lemma 2.2. ([17]). Suppose that f(x) is a measurable function on \mathbb{R}^n . For s > 0, let

$$\lambda_f(s) = \left| \left\{ x \in \mathbb{R}^n : |f(x)| > s \right\} \right|$$

and

$$f^*(t) = \inf\{s : \lambda_f(s) \le t\} \quad \text{for} \quad t > 0.$$

Then for any measurable set E and $1 \le p < \infty$,

$$\int_{E} |f(x)|^{p} dx \le \int_{0}^{|E|} |f^{*}(t)|^{p} dt.$$

Lemma 2.3. ([18]). Let $b \in BMO(\mathbb{R}^n)$. Then $b \in VMO(\mathbb{R}^n)$ if and only if b satisfies the following three conditions:

- (i) $\lim_{a \to 0} \sup_{|Q|=a} M(b, Q) = 0;$
- (ii) $\lim_{a\to\infty} \sup_{|Q|=a} M(b,Q) = 0;$
- (iii) $\lim_{|x|\to\infty} M(b,Q+x) = 0$ for each Q.

Lemma 2.4. ([4]). Let $0 < \lambda < n$. Suppose that Ω satisfies (1.1), (1.2) and $\Omega \in L^q(S^{n-1})$ for $q > n/(n-\lambda)$, T is a linear or sublinear operator satisfying

$$|Tf(x)| \le C \int_{\mathbb{R}^n} \frac{|\Omega(x-y)|}{|x-y|^n} |f(y)| \, dy.$$

- (i) If the operator T is bounded on $L^p(\mathbb{R}^n)$ for 1 , then <math>T is also bounded on $L^{p,\lambda}(\mathbb{R}^n)$.
- (ii) For $b \in BMO(\mathbb{R}^n)$, if the commutator [b,T] is bounded on $L^p(\mathbb{R}^n)$ for 1 , then <math>[b,T] is also bounded on $L^{p,\lambda}(\mathbb{R}^n)$.

Lemma 2.5. (see [7]) If Ω satisfies conditions (1.1), (1.2) and (1.4). Let $\beta > 0$. Then for |x| > 2|y|

$$\left| \frac{\Omega(x-y)}{|x-y|^{\beta}} - \frac{\Omega(x)}{|x|^{\beta}} \right| \le \frac{C}{|x|^{\beta} (\log \frac{|x|}{|y|})^{\gamma}}.$$

Now let us return to the proof of Theorem 1. Suppose that $b \in BMO(\mathbb{R}^n)$ and $[b, \mu_{\Omega}]$ is a compact operator in $L^{p,\lambda}(\mathbb{R}^n)$. By Lemma 2.3, to prove that $b \in VMO(\mathbb{R}^n)$, it suffices to show that b must satisfy the conditions (i), (ii) and (iii) in Lemma 2.3.

First, we show that if b does not satisfy the condition (i) of Lemma 2.3, then $[b,\mu_{\Omega}]$ is not a compact operator in $L^{p,\lambda}(\mathbb{R}^n)$. By the assumption, there exist a $\zeta>0$ and a sequence of cubes $\{Q_j(y_j,q_j)\}_{j=1}^{\infty}$ with $\lim_{j\to\infty}q_j=0$ such that for every j

(2.1)
$$M(b, Q_j) = |Q_j|^{-1} \int_{Q_j} |b(y) - b_{Q_j}| \, dy > \zeta.$$

Without loss of the generality, we may assume $||b||_* = 1$. Define the function sequence $\{f_j\}_{j=1}^{\infty}$ by

$$f_j(y) = |Q_j|^{-(n-\lambda)/(np)} \left[\operatorname{sgn}(b(y) - b_{Q_j}) - c_0 \right] \chi_{Q_j}(y), \qquad j = 1, 2, \cdots,$$

where $c_0=|Q_j|^{-1}\int_{Q_j}\mathrm{sgn}(b(y)-b_{Q_j})\,dy$. Since $\int_{Q_j}(b(y)-b_{Q_j})\,dy=0$, it is easy to check that $|c_0|<1$ and $\{f_j\}$ satisfies the following properties:

$$(2.2) supp f_j \subset Q_j,$$

(2.3)
$$f_j(y)(b(y) - b_{Q_j}) \ge 0,$$

(2.4)
$$\int_{\mathbb{R}^n} f_j(y) \, dy = 0,$$

(2.5)
$$|f_j(y)| \le 2|Q_j|^{-(n-\lambda)/(np)}, \text{ for } y \in Q_j.$$

Moreover, $\{\|f_j\|_{p,\lambda}\}_{j=1}^{\infty}$ is bounded uniformly. In fact, denote by B(t,r) any a ball in \mathbb{R}^n . If $0 < r \le q_j$, then

$$\left(\frac{1}{r^{\lambda}} \int_{B(t,r)} |f_j(x)|^p dx\right)^{\frac{1}{p}} \le C \left(\frac{r}{q_j}\right)^{(n-\lambda)/p} \le C.$$

If $r > q_i > 0$, then

$$\left(\frac{1}{r^{\lambda}} \int_{B(t,r)} |f_j(x)|^p dx\right)^{\frac{1}{p}} \le \left(\frac{1}{r^{\lambda}} \int_{Q_j} |f_j(x)|^p dx\right)^{\frac{1}{p}} \le C \left(\frac{q_j}{r}\right)^{\frac{\lambda}{p}} \le C.$$

Using the Minkowski inequality, it is easy to see that

$$|\mu_{\Omega}(f)(x)| \le C \int_{\mathbb{R}^n} \frac{|\Omega(x-y)|}{|x-y|^n} |f(y)| \, dy.$$

Moreover, μ_{Ω} and its commutator $[b, \mu_{\Omega}]$ are both bounded on L^p (1 by Theorem A and Theorem 1 in [10], respectively. Then, by Lemma 2.4, we obtain

(2.6)
$$\|\mu_{\Omega}(f)\|_{p,\lambda} \leq C\|f\|_{p,\lambda}$$

and

$$(2.7) $||[b, \mu_{\Omega}]f||_{p,\lambda} \le C||b||_*||f||_{p,\lambda}.$$$

Thus $\{[b,\mu_\Omega]f_j\}_{j=1}^\infty$ is also a bounded set in $L^{p,\lambda}(\mathbb{R}^n)$. Hence, if $\{[b,\mu_\Omega]f_j\}_{j=1}^\infty$ is not a pre-compact set in $L^{p,\lambda}(\mathbb{R}^n)$ then $[b,\mu_\Omega]$ is not compact operator in $L^{p,\lambda}(\mathbb{R}^n)$. (See [2] for the definition of the compact operator in Banach space.) To do this, it suffices to show that there exists a subsequence $\{[b,\mu_\Omega]f_{j_k}\}_{k=1}^\infty$, which has no any convergence subsequence in $L^{p,\lambda}(\mathbb{R}^n)$.

From now on, for $1 \leq i \leq 19$, A_i denotes the positive constant depending only on $\Omega, p, n, \lambda, \zeta$ and $A_k (1 \leq k < i)$. Since Ω satisfies (1.2), then there exists an A_1 such that $0 < A_1 < 1$ and

$$\sigma\left(\left\{x' \in S^{n-1}: \ \Omega(x') \ge \frac{2C_1}{\left(\log \frac{2}{A_1}\right)^{\gamma}}\right\}\right) > 0.$$

By the condition (1.4), it is easy to see that

$$\Lambda := \left\{ x' \in S^{n-1} : \ \Omega(x') \ge \frac{2C_1}{\left(\log \frac{2}{A_1}\right)^{\gamma}} \right\}$$

is a closed set. We now claim that

(2.8) if
$$x' \in \Lambda$$
 and $y' \in S^{n-1}$ satisfying $|x' - y'| \le A_1$, then $\Omega(y') \ge \frac{C_1}{(\log \frac{2}{A_1})^{\gamma}}$.

In fact, since

$$|\Omega(x') - \Omega(y')| \le \frac{C_1}{(\log \frac{2}{|x'-y'|})^{\gamma}} \le \frac{C_1}{(\log \frac{2}{A_1})^{\gamma}},$$

and note that $\Omega(x') \geq 2\frac{C_1}{(\log\frac{2}{A_1})^{\gamma}}$, we therefore get $\Omega(y') \geq \frac{C_1}{(\log\frac{2}{A_1})^{\gamma}}$. Taking $A_2 > 2/A_1$, if $y \in Q_j$

$$|x - y_j| > A_2|y - y_j|$$
 for $x \in (A_2Q_j)^c \cap \{x : (x - y_j)' \in \Lambda\}.$

Thus by [16],

$$|(x-y_j)' - (x-y)'| \le \frac{2|y-y_j|}{|x-y_j|} \le \frac{2}{A_2} < A_1.$$

Applying (2.8), we get $\Omega((x-y)') \geq \frac{C_1}{(\log \frac{2}{A_1})^\gamma}$. Hence, for $x \in (A_2Q_j)^c \cap \{x: (x-y_j)' \in \Lambda\}$, by (2.1)-(2.3) and the Hölder inequality, and noting that $|x-y_j| \simeq |x-y|$, we have

$$|\mu_{\Omega}((b-b_{Q_{j}})f_{j})(x)|$$

$$\geq \frac{C_{1}}{\left(\log\frac{2}{A_{1}}\right)^{\gamma}} \left\{ \int_{0}^{\infty} \left(\int_{Q_{j}} \frac{(b(y)-b_{Q_{j}})f_{j}(y)}{|x-y|^{n-1}} \chi_{\{|x-y|\leq t\}} dy \right)^{2} \frac{dt}{t^{3}} \right\}^{1/2}$$

$$\geq C \left\{ \int_{|x-y_{j}|}^{\infty} \left(\int_{Q_{j}} \frac{(b(y)-b_{Q_{j}})f_{j}(y)}{|x-y|^{n-1}} \chi_{\{|x-y|\leq t\}} dy \right)^{2} \frac{dt}{t^{3}} \right\}^{1/2}$$

$$\geq C|x-y_{j}| \int_{Q_{j}} |x-y|^{1-n}(b(y)-b_{Q_{j}})f_{j}(y) \int_{\substack{|x-y_{j}|\leq t\\|x-y|\leq t}} \frac{dt}{t^{3}} dy$$

$$\geq C|x-y_{j}|^{-n} \int_{Q_{j}} (b(y)-b_{Q_{j}})f_{j}(y) dy$$

$$= C|x-y_{j}|^{-n}|Q_{j}|^{-1/p+\lambda/(np)} \int_{Q_{j}} |b(y)-b_{Q_{j}}| dy$$

$$\geq C\zeta|Q_{j}|^{1/p'+\lambda/(np)}|x-y_{j}|^{-n}.$$

On the other hand, for $x \in (A_2Q_j)^c$, by $\Omega \in L^{\infty}(S^{n-1})$, (2.2), (2.5), the Minkowski inequality and the Hölder inequality, we obtain

$$|\mu_{\Omega}((b-b_{Q_{j}})f_{j})(x)|$$

$$\leq \int_{Q_{j}} |b(y)-b_{Q_{j}}||f_{j}(y)| \frac{|\Omega(x-y)|}{|x-y|^{n}} dy$$

$$\leq C|Q_{j}|^{1/p'} \left(\frac{1}{|Q_{j}|} \int_{Q_{j}} |b(y)-b_{Q_{j}}|^{p'} dy\right)^{\frac{1}{p'}} \left(\int_{Q_{j}} \frac{|f_{j}(y)|^{p}}{|x-y|^{pn}} dy\right)^{\frac{1}{p}}$$

$$\leq C|Q_{j}|^{1/p'} \left(\int_{Q_{j}} |f_{j}(y)|^{p}|x-y|^{-pn} dy\right)^{1/p}$$

$$\leq C|Q_{j}|^{1/p'+\lambda/(np)} |x-y_{j}|^{-n}.$$

By (2.4) and Lemma 2.5, we have

$$\begin{aligned} |(b(x)-b_{Q_{j}})\mu_{\Omega}(f_{j})(x)| &= |b(x)-b_{Q_{j}}| \left\{ \int_{0}^{\infty} \left| \int_{\mathbb{R}^{n}} f_{j}(y) \left(\frac{\Omega(x-y)}{|x-y|^{n-1}} \chi_{\{|x-y| \leq t\}} \right) - \frac{\Omega(x-y_{j})}{|x-y_{j}|^{n-1}} \chi_{\{|x-y| \leq t\}} \right) dy \right|^{2} \frac{dt}{t^{3}} \right\}^{2} \\ &\leq |b(x)-b_{Q_{j}}| \left\{ \left(\int_{0}^{\infty} \left(\int_{|x-y| \leq t < |x-y_{j}|} \frac{|\Omega(x-y)|}{|x-y|^{n-1}} |f_{j}(y)| dy \right)^{2} \frac{dt}{t^{3}} \right)^{\frac{1}{2}} \right. \\ &+ \left(\int_{0}^{\infty} \left(\int_{|x-y_{j}| \leq t < |x-y|} \frac{|\Omega(x-y_{j})|}{|x-y|^{n-1}} |f_{j}(y)| dy \right)^{2} \frac{dt}{t^{3}} \right)^{\frac{1}{2}} \right. \\ &+ \left(\int_{0}^{\infty} \left(\int_{|x-y_{j}| \leq t < |x-y|} \frac{|\Omega(x-y)|}{|x-y|^{n-1}} |f_{j}(y)| dy \right)^{2} \frac{dt}{t^{3}} \right)^{\frac{1}{2}} \right. \\ &+ \left. \left(\int_{0}^{\infty} \left(\int_{|x-y_{j}| \leq t < |x-y|} \frac{|\Omega(x-y)|}{|x-y|^{n-1}} |f_{j}(y)| dy \right)^{2} \frac{dt}{t^{3}} \right)^{\frac{1}{2}} \right\} \\ &\leq |b(x)-b_{Q_{j}}| \int_{Q_{j}} \frac{|\Omega(x-y)|}{|x-y|^{n-1}} |f_{j}(y)| \left(\int_{|x-y| \leq t \atop |x-y_{j}| \leq t}} \frac{dt}{t^{3}} \right)^{1/2} dy \\ &+ |b(x)-b_{Q_{j}}| \int_{Q_{j}} \frac{|\Omega(x-y)|}{|x-y_{j}|^{n-1}} |f_{j}(y)| \left(\int_{|x-y| \leq t \atop |x-y_{j}| \leq t}} \frac{dt}{t^{3}} \right)^{1/2} dy \\ &\leq C|b(x)-b_{Q_{j}}| \left(\int_{Q_{j}} \frac{|f_{j}(y)|}{|x-y_{j}|^{n}(\log \frac{2|x-y_{j}|}{q_{j}})^{\gamma}} dy + q_{j}^{1/2} \int_{Q_{j}} \frac{dt}{|x-y_{j}|^{n+1/2}} dy \right) \\ &\leq C|Q_{j}|^{1/p'+\lambda/(np)} \frac{|b(x)-b_{Q_{j}}|}{|x-y_{j}|^{n}(\log \frac{2|x-y_{j}|}{q_{j}})^{\gamma}} . \end{aligned}$$

Since $|b_{2Q} - b_{Q}| \le C||b||_* = C$ by $||b||_* = 1$, we have

$$\left(\int_{2^s q_i < |x-y_i| < 2^{s+1}q_i} |b(x) - b_{Q_j}|^p dx\right)^{\frac{1}{p}} \le C2^{sn/p} s |Q_j|^{1/p}.$$

For $v > A_2$, using (2.11) and the above inequality, we obtain

$$\left(\int_{|x-y_{j}|>vq_{j}} |(b(x)-b_{Q_{j}})\mu_{\Omega}(f_{j})(x)|^{p} dx \right)^{\frac{1}{p}}$$

$$\leq C|Q_{j}|^{1/p'+\lambda/(np)} \left(\int_{|x-y_{j}|>vq_{j}} \frac{|b(x)-b_{Q_{j}}|^{p}}{|x-y_{j}|^{np} \left(\log \frac{2|x-y_{j}|}{q_{j}}\right)^{\gamma p}} dx \right)^{\frac{1}{p}}$$

$$\leq C|Q_{j}|^{1/p'+\lambda/(np)} \sum_{s=[\log_{2}v]}^{\infty} \left(\int_{2^{s}q_{j}<|x-y_{j}|\leq 2^{s+1}q_{j}} \frac{|b(x)-b_{Q_{j}}|^{p}}{|x-y_{j}|^{np} \left(\log \frac{2|x-y_{j}|}{q_{j}}\right)^{\gamma p}} dx \right)^{\frac{1}{p}}$$

$$\leq C|Q_{j}|^{\lambda/(np)} \sum_{s=[\log_{2}v]}^{\infty} 2^{-s(n-n/p)} s^{1-\gamma}$$

$$\leq C|Q_{j}|^{\lambda/(np)} (\log v)^{1-\gamma} v^{-n(1-1/p)} .$$

Then for $u > v > A_2$, using (2.9) and (2.12) we get

$$\left(\int_{\{vq_{j}<|x-y_{j}|\leq uq_{j}\}} |[b,\mu_{\Omega}]f_{j}(x)|^{p} dx\right)^{\frac{1}{p}} \\
\geq \left(\int_{\{vq_{j}<|x-y_{j}|\leq uq_{j}\}} |(b(x)-b_{Q_{j}})f_{j}(x)|^{p} dx\right)^{\frac{1}{p}} \\
-\left(\int_{|x-y_{j}|>vq_{j}} |(b(x)-b_{Q_{j}})\mu_{\Omega}(f_{j})(x)|^{p} dx\right)^{\frac{1}{p}} \\
\geq C\zeta|Q_{j}|^{1/p'+\lambda/(np)} \left(\int_{\{vq_{j}<|x-y_{j}|\leq uq_{j}\}\cap\{x:(x-y_{j})'\in\Lambda\}} \frac{1}{|x-y_{j}|^{pn}} dx\right)^{\frac{1}{p}} \\
-C|Q_{j}|^{\lambda/(np)} (\log v)^{1-\gamma} v^{-n(1-1/p)} \\
\geq A_{3}\zeta|Q_{j}|^{\lambda/(np)} (v^{-np+n}-u^{-np+n})^{1/p} - A_{4}|Q_{j}|^{\lambda/(np)} (\log v)^{1-\gamma} v^{-n+n/p}.$$

From (2.10) and (2.12), it follows that

$$\left(\int_{|x-y_{j}|>uq_{j}} |[b,\mu_{\Omega}]f_{j}(x)|^{p} dx\right)^{\frac{1}{p}} \\
\leq \left(\int_{|x-y_{j}|>uq_{j}} |\mu_{\Omega}((b-b_{Q_{j}})f_{j})(x)|^{p} dx\right)^{\frac{1}{p}} \\
+ \left(\int_{|x-y_{j}|>uq_{j}} |(b(x)-b_{Q_{j}})\mu_{\Omega}(f_{j})(x)|^{p} dx\right)^{\frac{1}{p}} \\
\leq A_{5}|Q_{j}|^{\lambda/(np)}u^{-n+n/p} + A_{6}|Q_{j}|^{\lambda/(np)}(\log u)^{1-\gamma}u^{-n+n/p}.$$

By (2.13) and (2.14), there exist A_7 , $B = B(\Omega, p, n, \lambda, \zeta, A_3, A_4, A_5, A_6) > 1$ and A_9 such that $A_2 < A_7$,

(2.15)
$$\left(\int_{A_7 q_j < |x - y_j| \le BA_7 q_j} |[b, \mu_{\Omega}] f_j(y)|^p dy \right)^{1/p} \ge A_9 |Q_j|^{\lambda/(np)}$$

and

(2.16)
$$\left(\int_{|x-y_j| > BA_7 q_j} |[b, \mu_{\Omega}] f_j(y)|^p dy \right)^{1/p} \le \frac{A_9}{4} |Q_j|^{\lambda/(np)}.$$

Let $A_8 = BA_7$ and let $E \subset \{x: A_7q_j < |x-y_j| < A_8q_j\}$ be an arbitrary

measurable set. Then by (2.10) and (2.11), we have

$$\left(\int_{E} |[b, \mu_{\Omega}] f_{j}(x)|^{p} dx\right)^{\frac{1}{p}} \\
\leq \left(\int_{E} |\mu_{\Omega}((b - b_{Q_{j}}) f_{j})(x)|^{p} dx\right)^{\frac{1}{p}} \\
+ \left(\int_{E} |(b(x) - b_{Q_{j}}) \mu_{\Omega}(f_{j})(x)|^{p} dx\right)^{\frac{1}{p}} \\
\leq C|Q_{j}|^{1/p' + \lambda/(np)} \left(\int_{E} |x - y_{j}|^{-pn} dx\right)^{\frac{1}{p}} \\
+ C|Q_{j}|^{1/p' + \lambda/(np)} \left(\int_{E} \frac{|b(x) - b_{Q_{j}}|^{p}}{|x - y_{j}|^{np} \left(\log \frac{2|x - y_{j}|}{q_{j}}\right)^{\gamma p}} dx\right)^{\frac{1}{p}} \\
\leq A_{10}|Q_{j}|^{\lambda/(np)} \left\{\frac{|E|^{1/p}}{|Q_{j}|^{1/p}} + \left(\frac{1}{|Q_{j}|} \int_{E} |b(x) - b_{Q_{j}}|^{p} dx\right)^{\frac{1}{p}}\right\}.$$

Let $h_j(x)=b(x)-b_{Q_j}$, and for $0<\omega<\infty$, denote by $\lambda_{h_j}(\omega)$ the measure of the following set:

$${A_7q_j < |x - y_j| < A_8q_j : |h_j(x)| > \omega}.$$

Then by Lemma 2.1, there exist positive constants A_{11} , A_{12} and A_{13} , such that

$$\lambda_{h_j}(\omega + A_{11}) \le A_{12}|Q_j|e^{-A_{13}\omega}.$$

Hence, $\lambda_{h_j}(\omega) \leq A_{12}|Q_j|e^{-A_{13}(\omega-A_{11})}$. For t>0, let $h_j^*(t)=\inf\{\omega:\ \lambda_{h_j}(\omega)\leq t\}$. Then when $0< t< A_{12}|Q_j|$,

(2.18)
$$h_j^*(t) \le \frac{1}{A_{13}} \log \frac{A_{12}|Q_j|}{t} + A_{11}.$$

Recall $E \subset \{x: A_7q_j < |x-y_j| < A_8q_j\}$, applying Lemma 2.2 and (2.18), if $|E| \ll A_{12}|Q_j|$, we have

$$\frac{1}{|Q_{j}|} \int_{E} |b(x) - b_{Q_{j}}|^{p} dx \leq \frac{1}{|Q_{j}|} \int_{0}^{|E|} |h_{j}^{*}(t)|^{p} dt
\leq \frac{1}{|Q_{j}|} \int_{0}^{|E|} \left(A_{11} - \frac{1}{A_{13}} \log \frac{t}{A_{12}|Q_{j}|} \right)^{p} dt
= A_{12} \int_{0}^{|E|/(A_{12}|Q_{j}|)} \left(A_{11} - \frac{1}{A_{13}} \log t \right)^{p} dt
\leq A_{14} \frac{|E|}{|Q_{j}|} \left(1 + \log \frac{A_{12}|Q_{j}|}{|E|} \right)^{[p]+1}.$$

Combining (2.17) with (2.19), there exists a positive constant $A_{15} < \min\{A_{12}^{1/n}, A_8\}$, such that

(2.20)
$$\left(\int_{E} |[b, \mu_{\Omega}] f_{j}(y)|^{p} dy \right)^{\frac{1}{p}} \leq \frac{A_{9}}{4} |Q_{j}|^{\lambda/(np)}$$

for every measurable set E satisfying $E \subset \{x: A_7q_j < |x-y_j| < A_8q_j\}$ and $|E|/|Q_j| < A_{15}^n$. Now we choose a subsequence $\{Q_{j_k}\}$ satisfying

$$(2.21) q_{j_{k+1}}/q_{j_k} < A_{15}/A_8.$$

For m > 0, we have

$$\left(\int_{B(y_{j_k}, A_8 q_{j_k})} |[b, \mu_{\Omega}] f_{j_k} - [b, \mu_{\Omega}] f_{j_{k+m}}|^p dx\right)^{\frac{1}{p}} \\
\geq \left(\int_{G_1} |[b, \mu_{\Omega}] f_{j_k} - [b, \mu_{\Omega}] f_{j_{k+m}}|^p dx\right)^{\frac{1}{p}} \\
\geq \left(\int_{G_1} |[b, \mu_{\Omega}] f_{j_k}|^p dx\right)^{\frac{1}{p}} - \left(\int_{G_2} |[b, \mu_{\Omega}] f_{j_{k+m}}|^p dx\right)^{\frac{1}{p}},$$

where

$$G_1 = \{x: A_7q_{j_k} < |x-y_{j_k}| < A_8q_{j_k}\} \setminus \{x: |x-y_{j_{k+m}}| \leq A_8q_{j_{k+m}}\} \subset B(y_{j_k}, A_8q_{j_k})$$
 and
$$G_2 = \{x: |x-y_{j_{k+m}}| > A_8q_{j_{k+m}}\}.$$
 Let

$$G = \{x : A_7 q_{j_k} < |x - y_{j_k}| < A_8 q_{j_k}\},\$$

then $G_1 = G - (G_2^c \cap G)$. Thus by (2.15) and (2.16), we get

$$\begin{split} &\left(\int_{B(y_{j_k},A_8q_{j_k})}|[b,\mu_{\Omega}]f_{j_k}-[b,\mu_{\Omega}]f_{j_{k+m}}|^p\,dx\right)^{\frac{1}{p}}\\ &\geq \left(\int_{G}|[b,\mu_{\Omega}]f_{j_k}|^p\,dx-\int_{G_2^c\cap G}|[b,\mu_{\Omega}]f_{j_k}|^p\,dx\right)^{\frac{1}{p}}-\left(\int_{G_2}|[b,\mu_{\Omega}]f_{j_{k+m}}|^p\,dx\right)^{\frac{1}{p}}\\ &\geq \left(A_9^p|Q_{j_k}|^{\lambda/n}-\int_{G_2^c\cap G}|[b,\mu_{\Omega}]f_{j_k}|^p\,dx\right)^{\frac{1}{p}}-\frac{A_9}{4}\,|Q_{j_{k+m}}|^{\lambda/(np)}. \end{split}$$

Since $(G_2^c \cap G) \subset G$ and by (2.21), we have

$$\frac{|G_2^c \cap G|}{|Q_{j_k}|} \leq \frac{A_8^n q_{j_{k+m}}^n}{q_{j_k}^n} < A_8^n (\frac{A_{15}^n}{A_8^n})^m < A_{15}^n.$$

By (2.20), we get

$$\int_{G_2^c \cap G} |[b, \mu_{\Omega}] f_{j_k}|^p dx \le \left(\frac{A_9}{4}\right)^p |Q_{j_k}|^{\lambda/n}.$$

So

$$\left(\int_{B(y_{j_k},\,A_8q_{j_k})} |[b,\mu_\Omega]f_{j_k} - [b,\mu_\Omega]f_{j_{k+m}}|^p \, dx\right)^{\frac{1}{p}} \ge \frac{A_9}{4} \, |Q_{j_k}|^{\lambda/(np)}.$$

Then

$$\left(\frac{1}{q_{j_k}^{\lambda}} \int_{B(y_{j_k}, A_8 q_{j_k})} |[b, \mu_{\Omega}] f_{j_k} - [b, \mu_{\Omega}] f_{j_{k+m}}|^p dx\right)^{\frac{1}{p}} \ge A_{16}.$$

Therefore

$$||[b, \mu_{\Omega}]f_{j_k} - [b, \mu_{\Omega}]f_{j_{k+m}}||_{p, \lambda} \ge A_{17}.$$

Thus the sequence $\{[b,\mu_{\Omega}]f_{j_k}\}_{k=1}^{\infty}$ has no any convergence subsequence in $L^{p,\lambda}(\mathbb{R}^n)$, i.e., $[b,\mu_{\Omega}]$ is not a compact operator in $L^{p,\lambda}(\mathbb{R}^n)$. This contradiction shows that b must satisfy the condition (i) of Lemma 2.3.

Similarly, we may show that if b does not satisfy the conditions (ii) or (iii) in Lemma 2.3, then $[b,\mu_{\Omega}]$ is also not a compact operator in $L^{p,\lambda}(\mathbb{R}^n)$. For simplicity, we give only the outline of the proofs. In fact, if b does not satisfy the condition (ii) of Lemma 2.3, we can select a sequence $\{Q_j\}$ such that (2.1) holds and $\lim_{j\to\infty}q_j=\infty$, where q_j is the diameters of Q_j , and y_j is the center of Q_j . Similarly, we select a sequence $\{f_j\}\subset L^{p,\lambda}(\mathbb{R}^n)$ such that (2.15), (2.16) and (2.20) hold. Hence, if we choose a subsequence $\{Q_{j_k}\}$ such that $q_{j_k}>1$ and

$$(2.22) q_{j_k}/q_{j_{k+1}} < A_{15}/A_8,$$

then for m > 0, we have

$$\left(\int_{B(y_{j_{k+m}}, A_8q_{j_{k+m}})} |[b, \mu_{\Omega}] f_{j_k} - [b, \mu_{\Omega}] f_{j_{k+m}}|^p dx\right)^{\frac{1}{p}} \\
\geq \left(\int_{G_1} |[b, \mu_{\Omega}] f_{j_k} - [b, \mu_{\Omega}] f_{j_{k+m}}|^p dx\right)^{\frac{1}{p}} \\
\geq \left(\int_{G_1} |[b, \mu_{\Omega}] f_{j_{k+m}}|^p dx\right)^{\frac{1}{p}} - \left(\int_{G_2} |[b, \mu_{\Omega}] f_{j_k}|^p dx\right)^{\frac{1}{p}},$$

where

$$G_1 = \{x : A_7 q_{j_{k+m}} < |x - y_{j_{k+m}}| < A_8 q_{j_{k+m}} \} \setminus \{x : |x - y_{j_k}| \le A_8 q_{j_k} \}$$

$$\subset B(y_{j_{k+m}}, A_8 q_{j_{k+m}})$$

and
$$G_2=\{x:|x-y_{j_k}|>A_8q_{j_k}\}.$$
 Set
$$G=\{x:A_7q_{j_{k+m}}<|x-y_{j_{k+m}}|< A_8q_{j_{k+m}}\},$$

then $G_1 = G - (G_2^c \cap G)$. Thus by (2.15) and (2.16) we get

$$\begin{split} &\left(\int_{B(y_{j_{k+m}},\,A_8q_{j_{k+m}})}|[b,\mu_\Omega]f_{j_k}-[b,\mu_\Omega]f_{j_{k+m}}|^p\,dx\right)^{\frac{1}{p}}\\ &\geq \left(\int_G|[b,\mu_\Omega]f_{j_{k+m}}|^p\,dx-\int_{G_2^c\cap\,G}|[b,\mu_\Omega]f_{j_{k+m}}|^p\,dx\right)^{\frac{1}{p}}-\left(\int_{G_2}|[b,\mu_\Omega]f_{j_k}|^p\,dx\right)^{\frac{1}{p}}\\ &\geq \left(A_9^p|Q_{j_{k+m}}|^{\lambda/n}-\int_{G_2^c\cap G}|[b,\mu_\Omega]f_{j_{k+m}}|^p\,dx\right)^{\frac{1}{p}}-\frac{A_9}{4}\,|Q_{j_k}|^{\lambda/(np)}. \end{split}$$

Since $G_2^c \cap G \subset G$, by (2.22) we have

$$\frac{|G_2^c \cap G|}{|Q_{j_{k+m}}|} \le \frac{A_8^n q_{j_k}^n}{q_{j_{k+m}}^n} < A_8^n \left(\frac{A_{15}^n}{A_8^n}\right)^m < A_{15}^n.$$

Thus, by (2.20) we get

$$\int_{G_2^c \cap G} |[b, \mu_{\Omega}] f_{j_{k+m}}|^p \, dx \le \left(\frac{A_9}{4}\right)^p |Q_{j_{k+m}}|^{\lambda/n}.$$

Hence

$$\left(\int_{B(y_{j_{k+m}},\,A_8q_{j_{k+m}})} |[b,\mu_\Omega]f_{j_k} - [b,\mu_\Omega]f_{j_{k+m}}|^p \, dx\right)^{\frac{1}{p}} \geq \frac{A_9}{4} \, |Q_{j_{k+m}}|^{\lambda/(np)}.$$

and

$$||[b, \mu_{\Omega}]f_{j_k} - [b, \mu_{\Omega}]f_{j_{k+m}}||_{p,\lambda} \ge A_{18}.$$

Thus $\{[b,\mu_{\Omega}]f_{j_k}\}_{k=1}^{\infty}$ has no any convergence subsequence in $L^{p,\lambda}(\mathbb{R}^n)$. But this is contrary to the assumption that $[b,\mu_{\Omega}]$ is a compact operator in $L^{p,\lambda}(\mathbb{R}^n)$. Hence, b should satisfy the condition (ii) of Lemma 2.3.

Finally, if b does not satisfy the condition (iii) of Lemma 2.3, then there exist a cube Q and sequence $\{y_j\}$ with $\lim_{j\to\infty}|y_j|=\infty$ such that (2.1) holds for $\{Q_j=Q+y_j\}$. Let

$$E_j = \{ x \in \mathbb{R}^n : |x - y_j| < A_8 q' \},$$

where q' is the diameter of Q. We select a sequence $\{f_j\} \subset L^{p,\lambda}(\mathbb{R}^n)$ such that (2.15) and (2.16) hold. Now, we choose a subsequence $\{E_{j_k}\}$ such that

$$E_{j_k} \bigcap E_{j_l} = \emptyset$$
 for $l \neq k$.

Then for m > 0, we have

$$\begin{split} &\left(\int_{B(y_{j_k},\,A_8q')}|[b,\mu_{\Omega}]f_{j_k}-[b,\mu_{\Omega}]f_{j_{k+m}}|^p\,dx\right)^{\frac{1}{p}}\\ &\geq \left(\int_{G_1}|[b,\mu_{\Omega}]f_{j_k}-[b,\mu_{\Omega}]f_{j_{k+m}}|^p\,dx\right)^{\frac{1}{p}}\\ &\geq \left(\int_{G_1}|[b,\mu_{\Omega}]f_{j_k}|^p\,dx\right)^{\frac{1}{p}}-\left(\int_{G_2}|[b,\mu_{\Omega}]f_{j_{k+m}}|^p\,dx\right)^{\frac{1}{p}}, \end{split}$$

where

$$G_1 = \{x: A_7q' < |x-y_{j_k}| < A_8q'\} \setminus \{x: |x-y_{j_{k+m}})| \le A_8q'\} \subset B(y_{j_k}, A_8q')$$
 and $G_2 = \{x: |x-y_{j_{k+m}}| > A_8q'\}$. Let

$$G = \{x : A_7 q' < |x - y_{j_k}| < A_8 q'\},\$$

then $G_1 = G - G_2^c = G$. Thus by (2.15) and (2.16) we get

$$\begin{split} &\left(\int_{B(y_{j_k},\,A_8q')} |[b,\mu_\Omega] f_{j_k} - [b,\mu_\Omega] f_{j_{k+m}}|^p \, dx\right)^{\frac{1}{p}} \\ &\geq \left(\int_G |[b,\mu_\Omega] f_{j_k}|^p \, dx\right)^{\frac{1}{p}} - \left(\int_{G_2} |[b,\mu_\Omega] f_{j_{k+m}}|^p \, dx\right)^{\frac{1}{p}} \\ &\geq A_9 |Q|^{\lambda/(np)} - \frac{A_9}{4} \, |Q|^{\lambda/(np)} \geq \frac{A_9}{4} \, |Q|^{\lambda/(np)}. \end{split}$$

Hence

$$||[b, \mu_{\Omega}]f_{j_k} - [b, \mu_{\Omega}]f_{j_{k+m}}||_{p, \lambda} \ge A_{19}.$$

This is inconsistent with the compactness of $[b, \mu_{\Omega}]$ in $L^{p, \lambda}(\mathbb{R}^n)$. So, b satisfies also the condition (iii) of Lemma 2.3.

3. Proof of Theorem 2

First we give some lemmas, which will be used in the proof of Theorem 2.

Lemma 3.1. ([4]). Suppose that $1 \le p < \infty$ and $0 < \lambda < n$. If the subset G in $L^{p,\lambda}(\mathbb{R}^n)$ satisfies the following conditions:

$$\sup_{f \in G} \|f\|_{p,\lambda} < \infty,$$

(3.2)
$$\lim_{y\to 0} \|f(\cdot+y) - f(\cdot)\|_{p,\lambda} = 0 \quad \text{uniformly in } f \in G,$$

(3.3)
$$\lim_{\alpha \to \infty} \|f\chi_{E_{\alpha}}\|_{p,\lambda} = 0 \quad \text{uniformly in} \quad f \in G,$$

where $E_{\alpha} = \{x \in \mathbb{R}^n : |x| > \alpha\}$, then G is strongly pre-compact set in $L^{p,\lambda}(\mathbb{R}^n)$.

Lemma 3.2. ([9]) Suppose that $0 \le \beta < n$, Ω satisfies (1.1) and the L^q -Dini condition

$$\int_0^1 \frac{\omega_q(\delta)}{\delta} \, d\delta < \infty$$

for $q \ge 1$. If there exists a positive constant $0 < \theta < 1/2$ such that $|x| < \theta R$, then we have the following inequality

(3.4)
$$\left(\int_{R < |y| < 2R} \left| \frac{\Omega(y-x)}{|y-x|^{n-\beta}} - \frac{\Omega(y)}{|y|^{n-\beta}} \right|^q dy \right)^{1/q}$$

$$\leq CR^{n/q - (n-\beta)} \left\{ \frac{|x|}{R} + \int_{|x|/2R}^{|x|/R} \frac{\omega_q(\delta)}{\delta} d\delta \right\},$$

where the constant C > 0 is independent of R and x.

Lemma 3.3. ([12]). Suppose that $1 and <math>1 \le r , then the maximal operator <math>\mathcal{M}_r$ and Calderón-Zygmund singular integral operator T are bounded operators on $L^{p,\lambda}(\mathbb{R}^n)$, where $\mathcal{M}_r f(x) = {\mathcal{M}(|f|^r)(x)}^{1/r}$ and \mathcal{M} is the Hardy-Littlewood maximal operator.

Now let us return to the proof of Theorem 2. Suppose that F is an arbitrary bounded set in $L^{p,\lambda}(\mathbb{R}^n)$, that is, there exists a constant D>0 such that $\|f\|_{p,\lambda}\leq D$ for every $f\in F$. Let $G=\{[b,\mu_\Omega]f: f\in F\}$ if $b\in C_c^\infty(\mathbb{R}^n)$ and $\widetilde{G}=\{[b,\mu_\Omega]f: f\in F\}$ if $b\in \mathrm{VMO}(\mathbb{R}^n)$. For $b\in \mathrm{VMO}(\mathbb{R}^n)$, by (2.7), we can easily get $[b,\mu_\Omega]$ is continuous in $L^{p,\lambda}(\mathbb{R}^n)$. So, by the definition of the compact operator (see [2], for example), it suffices to prove that for any bounded set F in $L^{p,\lambda}(\mathbb{R}^n)$, \widetilde{G} is strongly pre-compact in $L^{p,\lambda}(\mathbb{R}^n)$. We first show that if (3.1)-(3.3) hold uniformly in G, then (3.1)-(3.3) hold also uniformly in \widetilde{G} and thus $[b,\mu_\Omega]$ is a compact operator in $L^{p,\lambda}(\mathbb{R}^n)$.

In fact, suppose that $b \in \mathrm{VMO}(\mathbb{R}^n)$, then for any $\varepsilon > 0$ there exists $b^{\varepsilon} \in C_c^{\infty}(\mathbb{R}^n)$ such that $\|b - b^{\varepsilon}\|_* < \varepsilon$. By

$$\begin{aligned} &|[b,\mu_{\Omega}]f(x) - [b^{\varepsilon},\mu_{\Omega}]f(x)|\\ &\leq \left\{ \int_{0}^{\infty} \left| \int_{|x-y| \leq t} \frac{\Omega(x-y)}{|x-y|^{n-1}} [(b-b^{\varepsilon})(x) - (b-b^{\varepsilon})(y)]f(y) \ dy \right|^{2} \frac{dt}{t^{3}} \right\}^{1/2} \end{aligned}$$

and (2.7), we obtain

$$(3.5) ||[b,\mu_{\Omega}] - [b^{\varepsilon},\mu_{\Omega}]||_{L^{p,\lambda} \to L^{p,\lambda}} \le ||[b-b^{\varepsilon},\mu_{\Omega}]||_{L^{p,\lambda} \to L^{p,\lambda}} \le C\varepsilon.$$

For any $f \in F$, by (3.1) and (3.5) we get

$$\sup_{f \in F} \|[b, \mu_{\Omega}]f\|_{p,\lambda} \le \sup_{f \in F} \|[b^{\varepsilon}, \mu_{\Omega}]f\|_{p,\lambda} + CD\varepsilon < \infty.$$

On the other hand, by (3.2) and (3.5), for any $f \in F$

$$\lim_{|y|\to 0} \|[b,\mu_{\Omega}]f(\cdot+y) - [b,\mu_{\Omega}]f(\cdot)\|_{p,\lambda}$$

$$\leq \lim_{|y|\to 0} \|[b^{\varepsilon},\mu_{\Omega}]f(\cdot+y) - [b^{\varepsilon},\mu_{\Omega}]f(\cdot)\|_{p,\lambda} + 2\|[b-b^{\varepsilon},\mu_{\Omega}]f\|_{p,\lambda}$$

$$< 2CD\varepsilon.$$

Therefore (3.2) holds uniformly for \widetilde{G} . Similarly, by (3.3) and (3.5), we see that

$$\lim_{\alpha \to +\infty} \|[b, \mu_{\Omega}] f \chi_{E_{\alpha}} \|_{p,\lambda} \leq \lim_{\alpha \to +\infty} \|[b^{\varepsilon}, \mu_{\Omega}] f \chi_{E_{\alpha}} \|_{p,\lambda} + \|[b - b^{\varepsilon}, \mu_{\Omega}] f \|_{p,\lambda} \leq CD\varepsilon.$$

Thus (3.3) holds also for \widetilde{G} uniformly. Therefore, by Lemma 3.1, we know \widetilde{G} is a strongly pre-compact set in $L^{p,\lambda}(\mathbb{R}^n)$ and then $[b,\mu_{\Omega}]$ is a compact operator in $L^{p,\lambda}(\mathbb{R}^n)$.

Thus, it suffices to prove that (3.1)-(3.3) hold uniformly in G. Recalling $||f||_{p,\lambda} \leq D$ for every $f \in F$, and noticing that $b \in C_c^{\infty}(\mathbb{R}^n)$, by (2.7), we have

(3.6)
$$\sup_{f \in F} \|[b, \mu_{\Omega}]f\|_{p,\lambda} \le C\|b\|_* \sup_{f \in F} \|f\|_{p,\lambda} \le CD\|b\|_* < \infty.$$

Suppose that supp $b \subset \{x : |x| \leq \beta\}$. For any $0 < \varepsilon < 1$, we take $\alpha > \max\{1, \beta\}$ such that $(\alpha - \beta)^{n(1-q)} < \varepsilon^q$. If $q \leq p$, then for any x satisfying $|x| > \alpha$ and every $f \in F$, we have

$$|[b, \mu_{\Omega}]f(x)| = \left\{ \int_{0}^{\infty} \left| \int_{|x-y| \le t} \frac{\Omega(x-y)}{|x-y|^{n-1}} \left(b(x) - b(y) \right) f(y) \, dy \right|^{2} \frac{dt}{t^{3}} \right\}^{1/2}$$

$$\leq C \int_{|y| \le \beta} \frac{|b(y)| |\Omega(x-y)|}{|x-y|^{n-1}} |f(y)| \left\{ \int_{|x-y| \le t} \frac{dt}{t^{3}} \right\}^{1/2} \, dy$$

$$\leq C \int_{|y| \le \beta} \frac{|\Omega(x-y)|}{|x-y|^{n}} |f(y)| \, dy$$

$$\leq C \left(\int_{|y| \le \beta} \frac{|\Omega(x-y)|^{q}}{|x-y|^{qn}} |f(y)|^{q} \, dy \right)^{1/q}.$$

For every $s \in \mathbb{R}^n$ and r > 0, by the Minkowski inequality and the choice of α , we get

$$\left(\frac{1}{r^{\lambda}} \int_{B(s,r)} |[b,\mu_{\Omega}] f(x)|^{p} \chi_{E_{\alpha}}(x) dx\right)^{1/p} \\
\leq C \|f\|_{p,\lambda} \left(\int_{|y| > \alpha - \beta} \frac{|\Omega(y)|^{q}}{|y|^{nq}} dy\right)^{1/q} \\
\leq C \|f\|_{p,\lambda} \left(\int_{\alpha - \beta}^{\infty} \int_{S^{n-1}} |\Omega(y')|^{q} d\sigma(y') \frac{dr}{r^{nq-n+1}}\right)^{1/q} \\
\leq C D \|\Omega\|_{L^{q}(S^{n-1})} \varepsilon \leq C D \varepsilon.$$

If q > p, we choose q_0 such that $1 < q_0 \le p < q$. Notice that $\Omega \in L^{q_0}(S^{n-1})$ and $\|\Omega\|_{L^{q_0}(S^{n-1})} \le C\|\Omega\|_{L^{q}(S^{n-1})}$, by (3.7), for every $s \in \mathbb{R}^n$ and r > 0, we still get

$$(3.8) \quad \left(\frac{1}{r^{\lambda}} \int_{B(s,r)} |[b,\mu_{\Omega}] f(x)|^p \chi_{E_{\alpha}}(x) \, dx\right)^{1/p} \leq CD \|\Omega\|_{L^{q_0}(S^{n-1})} \varepsilon \leq CD \varepsilon.$$

The estimates (3.7) and (3.8) show that (3.3) holds for the commutator $[b, \mu_{\Omega}]$ in G uniformly. Finally, to finish the proof of Theorem 2, it remains to show (3.2) holds for the commutator $[b, \mu_{\Omega}]$ in G uniformly. We need to prove that for any $\varepsilon > 0$, if |z| is sufficiently small depended only on ε , then for every $f \in F$,

(3.9)
$$||[b, \mu_{\Omega}]f(\cdot + z) - [b, \mu_{\Omega}]f(\cdot)||_{p,\lambda} \le C\varepsilon.$$

Then for $z \in \mathbb{R}^n$, we write

$$(3.10) \qquad |[b, \mu_{\Omega}]f(x+z) - [b, \mu_{\Omega}]f(x)|$$

$$\leq \left\{ \int_{0}^{\infty} \left| \int_{|x-y| \leq t} \frac{\Omega(x-y)}{|x-y|^{n-1}} (b(x) - b(y)) f(y) \, dy \right|^{2} dt \right\}^{1/2}$$

$$- \int_{|x+z-y| \leq t} \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(x+z) - b(y)) f(y) \, dy \right|^{2} \frac{dt}{t^{3}} \right\}^{1/2}$$

$$:= \left\{ \int_{0}^{\infty} |I(x,t)|^{2} \frac{dt}{t^{3}} \right\}^{1/2}.$$

We take ε such that $0 < \varepsilon < \frac{1}{2}$. Then for $z \in \mathbb{R}^n$, decompose I(x,t) as

$$(3.11) I(x,t) = \int_{|x-y| > e^{\frac{1}{\varepsilon}}|z|, |x-y| \le t} \frac{\Omega(x-y)}{|x-y|^{n-1}} (b(x+z) - b(y)) f(y) dy + \int_{|x+z-y| \le t} \frac{\Omega(x+z-y)}{|x+z-y| \le t} (b(y) - b(x+z)) f(y) dy + \int_{|x+z-y| \le t} \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(y) - b(x+z)) f(y) dy + \int_{|x-y| > e^{\frac{1}{\varepsilon}}|z|, |x-y| \le t} \frac{\Omega(x-y)}{|x-y|^{n-1}} - \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(x) - b(x+z)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|, |x-y| \le t} \frac{\Omega(x-y)}{|x-y|^{n-1}} (b(x) - b(x+z)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|, |x-y| \le t} \frac{\Omega(x-y)}{|x-y|^{n-1}} (b(x) - b(y)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|} \frac{\Omega(x+z-y)}{|x+z-y| \le t} (b(y) - b(x+z)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|} \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(y) - b(x+z)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|} \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(y) - b(x+z)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|} \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(y) - b(x+z)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|} \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(y) - b(x+z)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|} \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(y) - b(x+z)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|} \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(y) - b(x+z)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|} \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(y) - b(x+z)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|} \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(y) - b(x+z)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|} \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(y) - b(x+z)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|} \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(y) - b(x+z)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|} \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(y) - b(x+z)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|} \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(y) - b(x+z)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|} \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(y) - b(x+z)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|} \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(y) - b(x+z)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|} \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(y) - b(x+z)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|} \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(y) - b(y)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|} \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(y) - b(y)) f(y) dy + \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|} \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} (b(y) - b(y)) f(y) dy + \int_{|x$$

By |b(x+z)-b(y)| < C and the Minkowski inequality, we have

$$(3.12) \begin{pmatrix} \int_{0}^{\infty} |J_{1}(x,t)|^{2} \frac{dt}{t^{3}} \end{pmatrix}^{1/2} \\ = \left(\int_{0}^{\infty} \left| \int_{\substack{|x-y| > e^{\frac{1}{\varepsilon}}|z| \\ |x-y| \le t, |x+z-y| \ge t}} \frac{\Omega(x-y)}{|x-y|^{n-1}} (b(x+z) - b(y)) f(y) dy \right|^{2} \frac{dt}{t^{3}} \right)^{1/2} \\ \leq C \int_{|x-y| > e^{\frac{1}{\varepsilon}}|z|} \frac{|f(y)||\Omega(x-y)|}{|x-y|^{n-1}} \left\{ \int_{\substack{|x-y| \le t \\ |x+z-y| \ge t}} \frac{dt}{t^{3}} \right\}^{1/2} dy \\ \leq C \int_{|x-y| > e^{\frac{1}{\varepsilon}}|z|} \frac{|z|^{1/2} |\Omega(x-y)|}{|x-y|^{n+1/2}} |f(y)| dy. \end{pmatrix}$$

Since $\Omega \in L^1(S^{n-1})$, for every $s \in \mathbb{R}^n$ and r > 0 we get

$$\begin{split} &\left\{\frac{1}{r^{\lambda}}\int_{B(s,r)} \left(\int_{0}^{\infty} |J_{1}(x,t)|^{2} \frac{dt}{t^{3}}\right)^{p/2} dx\right\}^{\frac{1}{p}} \\ &\leq C \left\{\frac{1}{r^{\lambda}}\int_{B(s,r)} \left(\int_{|y|>e^{\frac{1}{\varepsilon}}|z|} \frac{|z|^{1/2}|\Omega(y)|}{|y|^{n+1/2}} |f(x-y)| \, dy\right)^{p} \, dx\right\}^{1/p} \\ &\leq C \|f\|_{p,\lambda} \int_{|y|>e^{\frac{1}{\varepsilon}}|z|} \frac{|z|^{1/2}|\Omega(y)|}{|y|^{n+1/2}} dy \\ &= C \|f\|_{p,\lambda} |z|^{1/2} \int_{e^{\frac{1}{\varepsilon}}|z|}^{\infty} \frac{dr}{r^{1+1/2}} \int_{S^{n-1}} |\Omega(y')| \, d\sigma(y') \\ &\leq C e^{-\frac{1}{2\varepsilon}} \|f\|_{p,\lambda} \\ &\leq C D\varepsilon. \end{split}$$

Hence

(3.13)
$$\left\| \left\{ \int_0^\infty |J_1(\cdot,t)|^2 \frac{dt}{t^3} \right\}^{1/2} \right\|_{p,\lambda} \le CD\varepsilon.$$

Similar to the estimate of $J_1(x,t)$, we can get

$$\left\{ \int_0^\infty |J_2(x,t)|^2 \frac{dt}{t^3} \right\}^{1/2} \le C \int_{|x-y| > e^{\frac{1}{\varepsilon}}|z|} \frac{|z|^{1/2} |\Omega(x+z-y)|}{|x+z-y|^{n+1/2}} |f(y)| \, dy.$$

Thus for any $s \in \mathbb{R}^n$ and r > 0, we have

$$\left\{ \frac{1}{r^{\lambda}} \int_{B(s,r)} \left(\int_{0}^{\infty} |J_{2}(x,t)|^{2} \frac{dt}{t^{3}} \right)^{p/2} dx \right\}^{\frac{1}{p}} \\
\leq C \left\{ \frac{1}{r^{\lambda}} \int_{B(s,r)} \left(\int_{|y| > (e^{\frac{1}{\varepsilon}} - 1)|z|} \frac{|z|^{1/2} |\Omega(y)|}{|y|^{n+1/2}} |f(x+z-y)| dy \right)^{p} dx \right\}^{1/p} \\
\leq C \|f\|_{p,\lambda} |z|^{1/2} \int_{|y| > (e^{\frac{1}{\varepsilon}} - 1)|z|} \frac{|\Omega(y)|}{|y|^{n+1/2}} dy \\
\leq C (e^{\frac{1}{\varepsilon}} - 1)^{-1/2} \|f\|_{p,\lambda} \\
\leq CD\varepsilon.$$

Therefore

(3.14)
$$\left\| \left\{ \int_0^\infty |J_2(\cdot,t)|^2 \frac{dt}{t^3} \right\}^{1/2} \right\|_{p,\lambda} \le CD\varepsilon.$$

About J_3 . By the Minkowski inequality and |b(x+z) - b(y)| < C, we have

$$\begin{cases}
\int_{0}^{\infty} |J_{3}(x,t)|^{2} \frac{dt}{t^{3}} \\
= \begin{cases}
\int_{0}^{\infty} \left| \int_{|x-y| > e^{\frac{1}{\varepsilon}}|z|, |x-y| \le t} \left(\frac{\Omega(x-y)}{|x-y|^{n-1}} - \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} \right) \\
(b(x+z) - b(y))f(y) dy \right|^{2} \frac{dt}{t^{3}} \\
\le C \int_{|x-y| > e^{\frac{1}{\varepsilon}}|z|} \left| \frac{\Omega(x-y)}{|x-y|^{n-1}} - \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} \right| |f(y)| \left\{ \int_{\substack{|x-y| \le t \\ |x+z-y| \le t}} \frac{dt}{t^{3}} \right\}^{1/2} dy \\
\le C \int_{|x-y| > e^{\frac{1}{\varepsilon}}|z|} \left| \frac{\Omega(x-y)}{|x-y|^{n-1}} - \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} \right| \frac{|f(y)|}{|x-y|} dy.
\end{cases}$$

Using Lemma 3.2, we get

$$\left\{ \frac{1}{r^{\lambda}} \int_{B(s,r)} \left(\int_{0}^{\infty} |J_{3}(x,t)|^{2} \frac{dt}{t^{3}} \right)^{p/2} dx \right\}^{\frac{1}{p}}$$

$$\leq C \left\{ \frac{1}{r^{\lambda}} \int_{B(s,r)} \left(\int_{|x-y| > e^{\frac{1}{\varepsilon}}|z|} \left| \frac{\Omega(x-y)}{|x-y|^{n-1}} - \frac{\Omega(x+z-y)}{|x+z-y|^{n-1}} \right| \frac{|f(y)|}{|x-y|} dy \right)^{p} dx \right\}^{1/p}$$

$$\leq C \|f\|_{p,\lambda} \int_{|y| > e^{\frac{1}{\varepsilon}}|z|} \left| \frac{\Omega(y)}{|y|^{n-1}} - \frac{\Omega(y+z)}{|y+z|^{n-1}} \right| \frac{1}{|y|} dy$$

$$\leq C \|f\|_{p,\lambda} \sum_{k=0}^{\infty} \int_{2^{k}e^{\frac{1}{\varepsilon}}|z| \leq |y| < 2^{k+1}e^{\frac{1}{\varepsilon}}|z|} \left| \frac{\Omega(y)}{|y|^{n-1}} - \frac{\Omega(y+z)}{|y+z|^{n-1}} \right| \frac{1}{|y|} dy$$

$$\leq C \|f\|_{p,\lambda} \sum_{k=0}^{\infty} \left\{ \frac{|z|}{2^{k}e^{\frac{1}{\varepsilon}}|z|} + \int_{\frac{|z|}{2^{k+1}e^{\frac{1}{\varepsilon}}|z|}}^{\frac{|z|}{2^{k+1}e^{\frac{1}{\varepsilon}}}} \frac{\omega(\delta)}{\delta} d\delta \right\}$$

$$\leq C \|f\|_{p,\lambda} \sum_{k=0}^{\infty} \left\{ \frac{1}{2^{k}e^{\frac{1}{\varepsilon}}} + \frac{1}{1+k+1/\varepsilon} \int_{\frac{1}{2^{k+1}e^{\frac{1}{\varepsilon}}}}^{\frac{1}{2^{k+1}e^{\frac{1}{\varepsilon}}}} \frac{\omega(\delta)}{\delta} (1+|\log\delta|) d\delta \right\}$$

$$\leq C(e^{-\frac{1}{\varepsilon}} + \varepsilon) \|f\|_{p,\lambda}$$

$$\leq CD\varepsilon.$$

Thus

(3.15)
$$\left\| \left\{ \int_0^\infty |J_3(\cdot,t)|^2 \frac{dt}{t^3} \right\}^{1/2} \right\|_{p,\lambda} \le CD\varepsilon.$$

Now we give the estimate of J_4 . Since $b \in C_c^{\infty}(\mathbb{R}^n)$, we have $|b(x) - b(x+z)| \le C|z|$. If set $\eta = e^{\frac{1}{\varepsilon}}|z|$ and

$$\mu_{\Omega,\eta}(f)(x) = \bigg\{ \int_0^\infty \bigg| \int_{\substack{|x-y| > \eta \\ |x-y| \le t}} \frac{\Omega(x-y)}{|x-y|^{n-1}} f(y) \, dy \bigg|^2 \, \frac{dt}{t^3} \bigg\}^{1/2},$$

then

$$\left(\int_{0}^{\infty} |J_{4}(x,t)|^{2} \frac{dt}{t^{3}}\right)^{1/2} \leq C|z|\mu_{\Omega,\eta}(f)(x).$$

We now claim that

(3.16)
$$\|\mu_{\Omega,\eta}(f)\|_{p,\lambda} \le C\|f\|_{p,\lambda} , \quad 1$$

where C is independent of η and f. In fact, if B is a ball center at $x \in \mathbb{R}^n$ and of radius $\eta/2$. Let $f_1(y) = f_{\chi_{2B}}(y)$ and $f_2(y) = f(y) - f_1(y)$, then

(3.17)
$$\mu_{\Omega,\eta}(f)(x) \leq \frac{1}{|B|} \int_{B} |\mu_{\Omega}(f)(\xi)| \, d\xi + \frac{1}{|B|} \int_{B} |\mu_{\Omega}(f_{1})(\xi)| \, d\xi + \frac{1}{|B|} \int_{B} |\mu_{\Omega}(f_{2})(\xi) - \mu_{\Omega,\eta}f(x)| \, d\xi \leq \mathcal{M}(\mu_{\Omega}(f))(x) + I(f)(x) + II(f)(x).$$

By (2.6) and Lemma 3.3, we can get

$$\|\mathcal{M}(\mu_{\Omega}(f))\|_{p,\lambda} \le C \|\mu_{\Omega}(f)\|_{p,\lambda} \le C \|f\|_{p,\lambda}.$$

Applying Theorem A, for any $1 < u < \infty$

$$I(f)(x) \le \frac{C}{|B|^{1/u}} \|\mu_{\Omega}(f_1)\|_u \le \frac{C}{|B|^{1/u}} \|f_1\|_u \le C(\mathcal{M}(|f|^u)(x))^{1/u}.$$

Taking 1 < u < p and using Lemma 3.3 again, we have

$$||I(f)||_{p,\lambda} \leq C||f||_{p,\lambda}.$$

Regarding II(f)(x), let $\xi \in B$. By the Minkowski inequality, we have

$$|\mu_{\Omega}(f_2)(\xi) - \mu_{\Omega,\eta}(f)(x)|$$

$$\leq \left\{ \int_{0}^{\infty} \left| \int_{\substack{|\xi-y| \geq t \\ |x-y| \leq t}} \frac{\Omega(x-y)}{|x-y|^{n-1}} f_{2}(y) dy \right|^{2} \frac{dt}{t^{3}} \right\}^{1/2} \\
+ \left\{ \int_{0}^{\infty} \left| \int_{\substack{|\xi-y| \leq t \\ |x-y| \geq t}} \frac{\Omega(\xi-y)}{|\xi-y|^{n-1}} f_{2}(y) dy \right|^{2} \frac{dt}{t^{3}} \right\}^{1/2} \\
+ \left\{ \int_{0}^{\infty} \left| \int_{\substack{|\xi-y| \leq t \\ |x-y| \leq t}} \left(\frac{\Omega(\xi-y)}{|\xi-y|^{n-1}} - \frac{\Omega(x-y)}{|x-y|^{n-1}} \right) f_{2}(y) dy \right|^{2} \frac{dt}{t^{3}} \right\}^{1/2} \\
:= H_{1}(\xi, x) + H_{2}(\xi, x) + H_{3}(\xi, x).$$

Since $\xi \in B$, $y \in (2B)^c$, similar to the estimate of (3.12), we may get

$$\frac{1}{|B|} \int_B H_1(\xi, x) \, d\xi \le C \eta^{1/2} \int_{(2B)^c} \frac{|f(y)| |\Omega(x - y)|}{|x - y|^{n + 1/2}} \, dy.$$

By the Minkowski inequality, for $s \in \mathbb{R}^n$ and r > 0, we have

$$\left\{ \frac{1}{r^{\lambda}} \int_{B(s,r)} \left| \frac{1}{|B|} \int_{B} H_{1}(\xi, x) d\xi \right|^{p} dx \right\}^{\frac{1}{p}} \\
\leq C \eta^{1/2} \left\{ \frac{1}{r^{\lambda}} \int_{B(s,r)} \left(\int_{|y| > \eta} \frac{|f(x - y)| |\Omega(y)|}{|y|^{n+1/2}} dy \right)^{p} dx \right\}^{\frac{1}{p}} \\
\leq C \eta^{1/2} ||f||_{p,\lambda} \int_{|y| > \eta} \frac{|\Omega(y)|}{|y|^{n+1/2}} dy \\
\leq C ||f||_{p,\lambda}.$$

Thus

$$\left\| \frac{1}{|B|} \int_B H_1(\xi, \cdot) d\xi \right\|_{p,\lambda} \le C \|f\|_{p,\lambda}.$$

For $H_2(\xi, x)$, we can get

$$H_2(\xi, x) \le C\eta^{1/2} \int_{(2B)^c} \frac{|f(y)||\Omega(\xi - y)|}{|\xi - y|^{n+1/2}} dy.$$

Then

$$\begin{split} \frac{1}{|B|} \int_{B} H_{2}(\xi, x) \, d\xi &\leq C \eta^{1/2} \frac{1}{|B|} \int_{B} \int_{(2B)^{c}} \frac{|f(y)| |\Omega(\xi - y)|}{|\xi - y|^{n+1/2}} \, dy \, d\xi \\ &= C \eta^{1/2} \sum_{k=1}^{\infty} \frac{1}{|B|} \int_{B} \int_{2^{k+1} B \setminus 2^{k} B} \frac{|f(y)| |\Omega(\xi - y)|}{|\xi - y|^{n+1/2}} \, dy \, d\xi \\ &\leq C \mathcal{M}(|f|)(x). \end{split}$$

Thus, by Lemma 3.3, we have

$$\left\| \frac{1}{|B|} \int_B H_2(\xi, \cdot) d\xi \right\|_{p,\lambda} \le C \|f\|_{p,\lambda}.$$

Since $\xi \in B$, we get

$$\begin{split} &\frac{1}{|B|} \int_{B} H_{3}(\xi, x) \, d\xi \\ &\leq \frac{1}{|B|} \int_{B} \int_{\mathbb{R}^{n}} \left| \frac{\Omega(\xi - y)}{|\xi - y|^{n-1}} - \frac{\Omega(x - y)}{|x - y|^{n-1}} \right| \frac{|f_{2}(y)|}{|x - y|} \, dy \, d\xi \\ &= \frac{1}{|B(0, \eta/2)|} \int_{B(0, \eta/2)} \int_{|y - x| > \eta} \left| \frac{\Omega(x - \xi - y)}{|x - \xi - y|^{n-1}} - \frac{\Omega(x - y)}{|x - y|^{n-1}} \right| \frac{|f(y)|}{|x - y|} \, dy \, d\xi \\ &= \frac{1}{|B(0, \eta/2)|} \int_{B(0, \eta/2)} \int_{|y| > \eta} \left| \frac{\Omega(y - \xi)}{|y - \xi|^{n-1}} - \frac{\Omega(y)}{|y|^{n-1}} \right| \frac{|f(x - y)|}{|y|} \, dy \, d\xi. \end{split}$$

By the Minkowski inequality and Lemma 3.2, for every $s \in \mathbb{R}^n$ and r > 0, we get

$$\begin{split} &\left\{\frac{1}{r^{\lambda}}\int_{B(s,r)}\left|\frac{1}{|B|}\int_{B}H_{3}(\xi,x)\,d\xi\right|^{p}\,dx\right\}^{\frac{1}{p}}\\ &\leq C\|f\|_{p,\lambda}\frac{1}{|B(0,\eta/2)|}\int_{B(0,\eta/2)}\int_{|y|>\eta}\left|\frac{\Omega(y-\xi)}{|y-\xi|^{n-1}}-\frac{\Omega(y)}{|y|^{n-1}}\right|\frac{1}{|y|}\,dy\,d\xi\\ &=C\|f\|_{p,\lambda}\frac{1}{|B(0,\eta/2)|}\int_{B(0,\eta/2)}\sum_{k=1}^{\infty}\int_{2^{k-1}\eta<|y|<2^{k}\eta}\left|\frac{\Omega(y-\xi)}{|y-\xi|^{n-1}}-\frac{\Omega(y)}{|y|^{n-1}}\right|\frac{1}{|y|}\,dy\,d\xi \end{split}$$

$$\leq C \|f\|_{p,\lambda} \frac{1}{|B(0,\eta/2)|} \int_{B(0,\eta/2)} \sum_{k=1}^{\infty} \left(\frac{|\xi|}{2^{k-1}\eta} + \int_{\frac{|\xi|}{2^{k-1}\eta}}^{\frac{|\xi|}{2^{k-1}\eta}} \frac{\omega(\delta)}{\delta} d\delta \right) d\xi
\leq C \|f\|_{p,\lambda} \frac{1}{|B(0,\eta/2)|} \int_{B(0,\eta/2)} \left(1 + \int_{0}^{1} \frac{\omega(\delta)}{\delta} d\delta \right) d\xi
\leq C \|f\|_{p,\lambda}.$$

Thus

$$\left\| \frac{1}{|B|} \int_B H_3(\xi, \cdot) d\xi \right\|_{p,\lambda} \le C \|f\|_{p,\lambda}.$$

Therefore

$$||II(f)||_{p,\lambda} \le C||f||_{p,\lambda}.$$

Summing up $||M(\mu_{\Omega}f)||_{p,\lambda}$, $||I(f)||_{p,\lambda}$, and $||II(f)||_{p,\lambda}$, by (3.17), we get (3.16). Then

(3.18)
$$\left\| \left\{ \int_0^\infty |J_4(\cdot,t)|^2 \frac{dt}{t^3} \right\}^{1/2} \right\|_{p,\lambda} \le C|z| \|f\|_{p,\lambda} \le CD|z|.$$

About J_5 , since $|b(x) - b(y)| \le C|x - y|$, by the Minkowski inequality, we get

$$\left\{ \int_{0}^{\infty} |J_{5}(x,t)|^{2} \frac{dt}{t^{3}} \right\}^{1/2} \\
\leq C \int_{|x-y| \leq e^{\frac{1}{\varepsilon}}|z|} \frac{|\Omega(x-y)|}{|x-y|^{n-1}} |b(x) - b(y)| |f(y)| \left\{ \int_{|x-y| \leq t} \frac{dt}{t^{3}} \right\}^{1/2} dy \\
\leq C \int_{|x-y| \leq e^{\frac{1}{\varepsilon}}|z|} \frac{|f(y)| |\Omega(x-y)|}{|x-y|^{n-1}} dy.$$

Then by the Minkowski inequality and $\Omega \in L^1(S^{n-1})$, for every $s \in \mathbb{R}^n$ and r > 0, we get

$$\left\{\frac{1}{r^{\lambda}}\int_{B(s,r)} \left(\int_0^{\infty} |J_5(x,t)|^2 \frac{dt}{t^3}\right)^{p/2} dx\right\}^{\frac{1}{p}} \le CDe^{\frac{1}{\varepsilon}}|z|.$$

Thus

(3.19)
$$\left\| \left\{ \int_0^\infty |J_5(\cdot,t)|^2 \frac{dt}{t^3} \right\}^{1/2} \right\|_{p,\lambda} \le C D e^{\frac{1}{\varepsilon}} |z|.$$

Similarly, using the estimate $|b(x+z) - b(y)| \le C|x+z-y|$, we have

$$\left\{ \int_0^\infty |J_6(x,t)|^2 \frac{dt}{t^3} \right\}^{1/2} \le C \int_{|x-y| \le e^{\frac{1}{\varepsilon}}|z|} \frac{|f(y)||\Omega(x+z-y)|}{|x+z-y|^{n-1}} dy.$$

Then

(3.20)
$$\left\| \left\{ \int_0^\infty |J_6(\cdot,t)|^2 \frac{dt}{t^3} \right\}^{1/2} \right\|_{p,\lambda} \le CD(e^{\frac{1}{\varepsilon}}|z| + |z|).$$

Hence, for any $\varepsilon > 0$, we may take |z| to be small sufficiently, then by (3.10), (3.11), (3.13)-(3.15) and (3.18)-(3.20), we have

$$||[b, \mu_{\Omega}]f(\cdot + z) - [b, \mu_{\Omega}]f(\cdot)||_{p,\lambda} \le C\varepsilon.$$

Therefore, we show that (3.2) holds for the commutator $[b, \mu_{\Omega}]$ in G uniformly and complete the proof of Theorem 2.

REFERENCES

- 1. A. Benedeck, A. P. Calderón and R. Panzone, Convolution operators on Banach space valued functions, *Proc. Nat. Acad. Sci. USA*, **48** (1962), 356-365.
- 2. M. S. Berger, *Nonlinearity and Functional Ananysis*, New York, Academic Press, 1977, pp. 64-107.
- 3. Y. Chen and Y. Ding, Compactnesss of commutators for Littlewood-Paley operators, *Kodai Math. J.*, **32** (2009), 256-323.
- 4. Y. Chen, Y. Ding and X. Wang, Compactness characterization of commutators for singular integrals on Morrey spaces, Preprint.
- 5. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, *Ann. Math.*, **103** (1976), 611-635.
- 6. L. Colzani, *Hardy spaces on sphaere*, Ph.D. Thesis, Washington University, St. Louis, MO, 1982.
- 7. Y. Ding, A note on end properties of Marcinkiewicz integral, *J. Korean Math. Soc.*, **42** (2005), 1087-1100.
- 8. Y. Ding, D. Fan and Y. Pan., L^p boundedness of Marcinkiewicz integrals with Hardy space function kernels, *Acta Math. Sin. Ser. B* (*English*), **16** (2000), 593-600.
- 9. Y. Ding and S. Lu, Homogeneous fractional integrals on Hardy spaces, *Tohoku Math. J.*, **52** (2000), 153-162.
- 10. Y. Ding, S. Lu and K. Yabuta, On commutator of Marcinkiewicz integrals with rough kernel, *J. Math. Anal. Appl.*, **275** (2002), 60-68.
- 11. S. Janson, Mean oscillation and commutators of singular integral operators, *Ark. Mat.*, **16** (1978), 263-270.

- 12. T. Mizuhara, *Boundedness of some classical operators on generalized Morrey spaces*, Harmonic Analysis, ICM-90 Satellite Conf. Proc., S. Igari (ed.), Springer-Verlag, Tokyo, 1991, pp. 183-189.
- 13. C. Morrey, Sur quelques intégrales du type de Dini, *Ann. Soc. Poloa. Math.*, **17** (1938), 42-50.
- 14. E. M. Stein, On the function of Littlewood-paley, Lusin and Marcinkiewicz, *Trans. Amer. Math. Soc.*, **88** (1958), 430-466.
- 15. E. M. Stein, *Singular Integrals and Differentiability Properties of Functions*, Princeton Univ. Press. Princeton, N.J. 1970.
- 16. E. M. Stein, *Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals*, Princeton Univ. Press, Princeton, 1993.
- 17. E. M. Stein and G. Weiss, *Introdution to Fourier analysis on Euclidean spaces*, Princeton University Press, Princeton, 1971.
- 18. A. Uchiyama, On the compactness of operators of Hankel type, *Tohoku Math.*, **30** (1976), 163-171.

Yanping Chen
Department of Mathematics and Mechanics
Applied Science School
University of Science and Technology Beijing
Beijing 100083
P. R. China

E-mail: yanpingch@126.com

Yong Ding School of Mathematical Sciences Laboratory of Mathematics and Complex Systems (BNU) Minstry of Education of China Beijing Normal University Beijing 100875 P. R. China E-mail: dingy@bnu.edu.cn

Xinxia Wang The College of Mathematics and System Science Xinjiang University Urumqi, Xinjiang, 830046 P. R. China

E-mail: wxxa@xju.edu.cn