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COMPACTNESS FOR COMMUTATORS OF MARCINKIEWICZ
INTEGRALS IN MORREY SPACES

Yanping Chen, Yong Ding* and Xinxia Wang

Abstract. In this paper the authors give a characterization of the compactness
for the commutator [b, 1] in the Morrey spaces LP-*(R™), where pq denotes
the Marcinkiewicz integral. More precisely, the authors prove that if b €
VMO(R™), the BMO(R™)-closure of C'2°(R™), then the commutators [b, uq)
is a compact operator in the Morrey spaces I *(R") for 1 < p < oo and
0 < A < n. Conversely, if b € BMO(R") and [b, 1] is @ compact operator
in LP-*(R™) for some p € (1,00) and A € (0,7n), then b € VMO(R"). In the
above results, the kernel function € of the operator ugq is assumed to satisfy
a very weak condition on S"~1.

1. INTRODUCTION

Let S™~! be the unit sphere in R™ equipped with the Lebesgue measure do. In
1958, Stein [14] defined the Marcinkiewicz integral of high dimension. Suppose
that 2 satisfies the following conditions:

(a) € is homogeneous function of degree zero on R*\{0}, i.e.
(1.1) Qtz) = Q(x) forany t >0and z € R"\{0}.
(b) € has mean zero on S™71, i.e.

(1.2) /S 0@ do(e!) =0,

(c) Q€ Lip(S™1), ie.

Received April 9, 2008, accepted September 22, 2009.

Communicated by Yongsheng Han.

2000 Mathematics Subject Classification: 42B30, 42B99.

Key words and phrases: Marcinkiewicz integrals, Commutators, Compactess, VMO, Morrey space.
The research was supported by NSF of China (Grants: 10931001 and 10901017) and SRFDP of
China (Grant: 20090003110018).

*Corresponding author.

633



634 Yanping Chen, Yong Ding and Xinxia Wang

(1.3) Q(z') = Q)| < [o" —y'| forany o,y € S"L

Then the Marcinkiewicz integral 1.q is defined by

uMﬁ@0=<AthA@P%>,

mﬂm:%° -9@%%¢@My

z—y|<t ‘(L‘ -y

where

The Marcinkiewicz integral juq is essentially a Littlewood-Paley g-function. In
fact, if taking

o(x) = Qa)]x] " xq <1y (2)
and ¢(x) =t "p(F) for t > 0, then

s = ([T sor) "

In 1958, Stein [14] gave the weak (1,1) boundedness and L? boundedness of pugq, for
1 < p < 2. In 1961, Benedeck, Calderon and Panzone [1] proved that if replacing
the Lipschitz condition (1.3) by Q € C*(S™~1), then uq is bounded operator in LP
for 1 < p < oco. In 2000, Ding, Fan and Pan [8] showed further that the smoothness
assumed on €2 is not necessary for the LP (1 < p < co) boundedness of uq.

Theorem A. ([8]). If Q@ € H'(S" 1) satisfies (1.1) and (1.2), then g is of
type (p, p) for 1 < p < oo, where H'(S"~!) denotes the Hardy space on S 1.
See [6] for the definition and properties of H'(S"~1).

Remark 1.1. There are the following including relationship on S™~!:
CH(S" Y cLip(S" ) c LY(S" ) (1<q<oo)C Llog™ L(S™ ) c H'(S" 1),

and all inclusions above are proper. On the other hand, In 1976, in their famous

paper [5], Coifman, Rochberg and Weiss gave an LP-boundedness characterization
of the commutator [b, T'] of the Calderon-Zygmund singular integral operator 7.

Theorem B. ([5]). Suppose that €2 satisfies (1.1), (1.2) and (1.3).

(i) If b € BMO(R"), then [b,T] is bounded in L?(R") for all 1 < p < occ.

(ii) If {[b, R;]}7_, are bounded in LP(R™) for some p, 1 < p < oo, then b €

BMO(R"™), where R; (j =1,---,n,) denotes the jth Reisz transform.
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In 1978, Uchiyama [18] and Janson [11] extended Theorem B independently.
The results in [18] and [11] show that the Reisz transform R ; in the conclusion (ii)
of Theorem B may be replaced by the Calderon-Zygmund singular integral operator
T.

In the same paper [18], Uchiyama considered also the characterization of the
commutator [b, T'] is a compact operator in the Lebesgue space LP(R™). Denote by
VMO(R"™) the BMO-closure of CS°(R™), where C2°(R™) is the set of C°°(R")
functions with compact support. Uchiyama proved the following conclusions:

Theorem C. ([18]). Suppose that Q2 satisfies (1.1), (1.2) and (1.3).
(i) If b € VMO(R™), then [b, T is compact in LP(R"™) for all 1 < p < oco.

(i) If [b,T7] is a compact operator in LP(R™) for some p, 1 < p < oo, then
b€ VMO(R").

Naturally, one may ask the question whether hold still the conclusions in The-
orems B and C if replacing [b, T'] by the commutator [b, uq] of the Marcinkiewicz
integral and the space LP(R™) by the Morrey space IP*(R"), respectively. In this
paper and the forthcoming paper, we will give a positive answer to this question.
In fact, we will get similar conclusions to those of Theorems B and C under more
weaker conditions than those in Theorems B and C.

Before stating some results, let us recall some definitions. For b € Lj,.(R"),
the commutator [b, o) formed by b and the Marcinkiewicz integral g is defined

by
dt>1/2

For Q € L(S"™1), ¢ > 1, the integral modulus w,(8) of continuity of order ¢ of
Q is defined by

b sl ( | 69 0) — by)) fly) dy

|lz—y|<t ‘(L‘ - y‘n—l

@)= s ([ 10 —owas@))

lImll<é
where 7 denotes the rotation in R™ and ||7|| = sup |72’ — 2/|. The function Q

z'eSn—1
is said to satisfy the L?-Dini condition if

/lwq—w)d(5<oo
o O '

Recently, the first and second authors of this paper gave a characterization of
the compactness of the commutators for g in LP(R™) for 1 < p < oc.

Theorem D. ([3]). Suppose that 2 satisfies (1.1) and (1.2).
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(i) If there exist two constants C'; > 0 and v > 1 such that

C
(L4 12@) -2 <
(tog )
& o=y _
and the commutator [b, 1] is a compact operator in LP(R™) for some p (1 <
p < 00), then b € VMO(R™).
(i) If Q € L9(S™ 1) (¢ > 1) satisfying the following condition:
1
(1.5) / qu@(l+\log(5\)d(5<oo,
0
then for b € VMO(R™), the commutator [b, uq] is @ compact operator in
LP(R™) for 1 < p < oc.

forany ',y € S"7,

The purpose of this paper is to give a characterization of the compactness of the
commutators [b, uq] in the Morrey space LP*(R™). For 1 <p < occand0 < A < n,
the Morrey space LP*(R") is defined by

LPAR™) = {f € L},,. : | fllpx < o0},

loc

where

P _ 1 p
ey NG
r>0

and B(y,r) denotes the ball centered at y and with radius » > 0. The spaces
LPA(R™) becomes a Banach space with norm || - ||, . Moreover, if A = 0 and
A = n, then LP°(R™) and LP"(R™) coincide (with equality of norms) with the
space LP(R™) and L*°(IR™), respectively.

The main results in this paper are as follows.

Theorem 1. Suppose that Q satisfies (1.1), (1.2) and (1.4). If 0 < A < m,

b € BMO(R™) and the commutator [b, ] is a compact operator from L?*(R"™)
to itself for some p (1 < p < 00), then b € VMO(R™).

Theorem 2. Suppose that 0 < A < n and 2 satisfies (1.1), (1.2) and (1.5)
with ¢ > n/(n — A). If b € VMO(R"), then the commutator [b, uq) is @ compact
operator in LA (R") for 1 < p < oo.

It is easy to see that the condition (1.4) implies (1.5), so we may get the following
corollary immediately.

Corollary 1. Suppose that 2 satisfies (1.1), (1.2) and (1.4). If 0 < A < n,
1 < p < ooandbe BMO(R™), then the commutator [b, 1] is a compact operator
in LPA(R™) if and only if b € VMO(R™).

Throughout, the letter “C'” will denote (possibly different) the constants that
are independent of the essential variables.
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2. PrROOF OF THEOREM 1
Let us begin with recalling some known conclusions.

Lemma 2.1. ([16]). If b € BMO(R"), ae > a1 > 2, @ is a cube centered at
x, and of diameter r, then exist positive constants a3, a4, a5 (depend on a;, as
and b), such that

Hair <|z—z,| < agr: |b(z) —bg| > v+ az}| < asa|Qle” " (0 < v < 00).

Lemma 2.2. ([17]). Suppose that f(x) is a measurable function on R ™. For

s> 0, let
Af(s) = !{x eR™:|f(x)] > s}|

and
fr(t) =inf{s : A¢(s) <t} for t>0.

Then for any measurable set £ and 1 < p < oo,
=
[1s@pras< [Tiropa
E 0

Lemma 2.3. ([18]). Let b € BMO(R™). Then b € VMO(R") if and only if b
satisfies the following three conditions:
(i) lim sup M(b, Q) = 0;
a=01Q|=a
(ii) lim sup M(b,Q) = 0;
470 Ql=a

(iii) lim M(b,Q+ x)=0 foreach Q.

|| —o0

Lemma 2.4. ([4]). Let 0 < A < n. Suppose that € satisfies (1.1), (1.2) and
Qe LIS 1Y) for ¢ >n/(n— ), T is a linear or sublinear operator satisfying

2z —y)|
7@ <0 [ S ) d
R |z =yl
(i) If the operator T' is bounded on LP(R™) for 1 < p < oo, then T is also
bounded on LP*(R™).

(ii) For b € BMO(R"), if the commutator [b, T] is bounded on LP(R"™) for
1 < p < oo, then [b, T is also bounded on LP*(R™).
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Lemma 2.5. (see [7]) If Q satisfies conditions (1.1), (1.2) and (1.4). Let
B > 0. Then for |z| > 2|y
Qz—y) Q=) C

o =yl” 27 17 |2)8(log {2y

Now let us return to the proof of Theorem 1. Suppose that b € BMO(R")
and [b, ug] is a compact operator in L»*(R"). By Lemma 2.3, to prove that
b € VMO(R™), it suffices to show that b must satisfy the conditions (i), (ii) and
(iif) in Lemma 2.3.

First, we show that if b does not satisfy the condition (i) of Lemma 2.3, then
[b, uo) is not a compact operator in LP*(R™). By the assumption, there exist a
¢ > 0 and a sequence of cubes {Q;(y;, ¢;)}52; with jli_)rgo ¢; = 0 such that for

every j
(2.1) M(b,Q;) = Q! / 1b(y) — bo, | dy > C.
Q;

Without loss of the generality, we may assume ||b||. = 1. Define the function
sequence {f;}52; by

Fi(y) = Qs VP [sgn(b(y) — ba,) —¢0) xo, (v),  G=1.2.---,

where ¢, = |Q;|! fQ]- sgn(b(y) — bg,) dy. Since fQj(b(y) —bg,)dy =0, itis
easy to check that |c,| < 1 and {f;} satisfies the following properties:

(2.2) suppf; C @,
(2.3) fity)(b(y) —by,) =0,
(2.4) fily)dy =0,
Rn
(2.5) 1£i(w)] < 20Q; |~/ for y € Q.

Moreover, {| f;llp,x}32; is bounded uniformly. In fact, denote by B(¢,r) any a ball
in R™. If 0 < r < gj, then

(5, wtrar) <e(2) <c
— ()P dx < — <C.
- B(t,r)‘fj( \ =y <

If r > gq; >0, then
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1 /1 L o
(), ) < (5[ ere) <o(%) <c

Using the Minkowski inequality, it is easy to see that

el < [ D)

Moreover, o and its commutator [b, ug] are both bounded on LP (1 < p < o) by
Theorem A and Theorem 1 in [10], respectively. Then, by Lemma 2.4, we obtain

(2.6) [ (Hllpr < Cllfllpa
and
(2.7) 16; ua] fllpx < ClBIf llpa-

Thus {[b, uol f;}32, is also a bounded set in LPA(R™). Hence, if {[b, pol fi 152, is
not a pre-compact set in P *(R™) then [b, uq] is not compact operator in LA (R™).
(See [2] for the definition of the compact operator in Banach space.) To do this, it
suffices to show that there exists a subsequence {[b, pu0] f;, }32,, which has no any
convergence subsequence in LP>*(R™).

From now on, for 1 < ¢ < 19, A; denotes the positive constant depending only
on Q,p,n, A, and Ai(1 < k < 7). Since Q satisfies (1.2), then there exists an A,
such that 0 < A; < 1 and

(;({x’ e s Q) > %}) > 0.

By the condition (1.4), it is easy to see that

2C
A= {x' e s Q) > %}
(log A_1)

is a closed set. We now claim that

(2.8) if 2’ €A and 3 € S"~1 satisfying |2’ —y/| <Ay, then Q(y) >

In fact, since
(o (o

2 S 2
(log m257)7 ~ (log 2 )7

92(2') — Q)| <

)

Ci

and note that Q(z') > 2————
(log £-)7

1
, we therefore get Q(y’) >

Ay > 2/A1, ify e Qj
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|z —y;| > Asly —y;| for z € (AQ;) N{z:(x —yj)' €A}

Thus by [16],

@) — (-] <>

Applying (2.8), we get Q((z — y)) > —< Hence, for z € (A42Q;)° N

= (log )7
{z: (x —y;) € A}, by (2.1) — (2.3) and the Holder inequality, and noting that
|z —y;| ~ |z — y|, we have

[na((b = bq;) fi)(x)]
- (10;)?{ /O°° (/Q (b(ﬁl_—ij;)—{j(y) X{Jo—y| <t} dyy%}m

J

~ (b(y) — bq,) f;(y) 2 g1 1/2
Z C{ /|a:—y]-| </Q ‘x _ y‘n_lj X{|l‘—y|§t} dy) t_3}

J
. dt
> Cle =yl [ e =00 b)) [,
J

lz—y|<t

(2.9)

> Cla =y [ ()~ ba,)0) dy

= Clr — |7 Q, /P o) /Q 1b(y) — bo, | dy
J
> CC|Q; [P+ — g,

On the other hand, for = € (A42Q;)¢, by Q € L*(S"1), (2.2), (2.5), the
Minkowski inequality and the Holder inequality, we obtain

e ((b = bg,) f)(2)]

x—yl"

< [ 1) vl T
Qj ‘

1
Y

(2.10) ,1//<; o )( @)l )
<010 (g | 100 —v an) " ([ Sy

1/p
< ClQ,|P ( /Q ()Pl — dy)
J
< C‘Qj‘l/p +X/(np) |z — yj‘—n_

By (2.4) and Lemma 2.5, we have
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|(b(2) = ba, e (f;)(x

= |b(z) — bg, | { ‘/ ( |ny)1 X{lz—y|<t}

Qz —y;) p 2 dt
|x— = 1 Xlz—ys|<t} | Y| 73

<0000 {( [ ([ g 0190) )

| ( Y5l > dt>
T n—1 d -
( ( |z—y;|<t<|z—y| |x Yj |n 1 |fJ( )| Y 3

=

641

Qz—y)  Qz-— 2 dr\
d _
+< ( ‘T y]K, ‘lx_yln 1 lz—y; |n 1 [fi W)l y> t3> }
dt 1/2
< o) — boy| / Pl [ %)
|z— yj\;t
1z — ;)] d\"?
+|b( _ng| | |n 1|fJ( | /\w—y\)i t_3 dy
lz—y;| <t
—y) Qe —y,) / d\'?
b(a)—b —~ d
i QJ'/ 50|~ G ey #)

\ f

|fJ( | 1/2 |fJ( |
< C|b(z)—b J|</ —— dy+q; 7@
“ e, |x—yj|"<1og2'1—q?ﬂ>v 7 Jo Ty

[b(x) — b, |

< C|Q,| /PN (np) .
’ o — ;| (log 2zl

Since |bag — bg| < C||b]|« = C by ||b]|« = 1, we have

1
25qj<|z—y;|<25F1g;

For v > Ay, using (2.11) and the above inequality, we obtain

(2.12)

( /| CCE ij)un(fj)(x)l”dx>p
T—Yj|>vq;
, b —bo.|P P
< Clay|'» +A/<np>< /| b(@) ‘j@l_yjl)w dx>
q;

z—y;|>vq; [T — yj|np(10g

< ClQ,|Mr ) $ (/ b(z) §|a|~y|)wd

s=[log, v]\V/25q;<|z—y;|<25+1q; |x yj|"p(10g

(o]
< C|Q;Mmw) S g-stnn/p) gl

s=[log, v]

< C|Qj|/\/(np)(10gU)l—vv—n(l—l/p).

)

)

1
P
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Then for u > v > As, using (2.9) and (2.12) we get
(/ (ool ) d )
{ve;<lz—y;l<ug;} N
jual(b = b0, )P )

>

N ( /{'qu<|x—yj|§qu} N{z:(xz—y;) €A}

2 /|| (06) b a0l dz )

ZCC|Qj|1/p’+>\/(np)/ 1 dx>;

{vg;<|z—y;|<ug;} N{z:(z—y;) €A} |$ - yjlpn
—C|Qj|A/("P)(1ogv)1_”Yu_" 1-1/p)
> A3C|Qj|k/(np)(v—np+n_u—np+n)1/p_A4|Qj|A/(np)(10gv)1—vv—n+n/p.

From (2.10) and (2.12), it follows that

( /|m—yj|>u%. |[b, uel f(z) P dx> ’

(2.14) = (/lm_yjbqu (b= bo, ) £;) (@) dx> v
+</|®‘—yj|>qu |(b() = bg,)pa(f;)(@)[? dx> E

< A5‘Qj‘>\/(np)u—n+n/p + A6‘Qj‘>\/(np)(logu)l—'yu—n+n/p'

By (2.13) and (2.14), there exist A7, B = B(Q), p,n, A, (, As, A4, A5, Ag) > 1 and
Ag such that A5 < A7,

1/p

(2.15) (/ Hb,un]fj(y)\pdy> > Ag| QM P)

A7qi<|r—y;|<BA7q;
and

1/p
p Ao\ o M)

e boral iy ) < S2 Qi

|z—y;|>BAzq;

Let Ags = BA7 and let E C {z : A7q; < |z — y;| < Agg;} be an arbitrary
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measurable set. Then by (2.10) and (2.11), we have

(/ ub,m}fj(x)\pdwf
< ([ (000 P as)’
+ ([ 106~ b0, nnt s a )

1
< iy o ([ oy mae)’
E
+C|Q,| VP A () ( / 1b() — ba,|? dw)

E |z — y;|"P(log —2|mq_jyj|)w

1/ 1
N ’ |Q;[1/P Qi1 /e !

Let hj(x) = b(x) — bg,, and for 0 < w < oo, denote by A, (w) the measure of the
following set:

-

(2.17)

S =

{A7q; < |z —yj| < Agqj : |hj(x)] > w}.

Then by Lemma 2.1, there exist positive constants A1, A1 and A;3, such that
Ay (w4 App) < A12| Qe3¢

Hence, Ay, (w) < A12|Qjle=4s@=40) For ¢ > 0, let h*(t) = inf{w : Ay, (w) <
t}. Then when 0 < t < A12|Q;],
1 AlQ5l

2.1 )< —1
(218) j(t) < 5= log =5

Recall E C {z : A7q; < |z — y;| < Asq;}, applying Lemma 2.2 and (2.18), if
|E| < A12|Qj|, we have

|E|
b(z) — bo [P dz < —— / P dt
\Qj/ el \@j\

arl (=)
og t
= el e A1 Q]

N |E|/(A12|Q;1) N 1 : by
= — —logt t
12/0 ( 11 Al g )

B ( Au\Qﬂ)“”“
1+ log .
1Qj] |E|

< Ajy——
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Combining (2.17) with (2.19), there exists a positive constant A5 < min{A%n, As},
such that

A
(220 ([ipslsmray)” < 5 ia;re

for every measurable set E satisfying £ C {z : A7q; < |z — y;| < Asgq;} and
|E]/]Qj] < Afs. Now we choose a subsequence {Q;, } satisfying

(2.21) qjk_»_1 /qjk < A15/A8.

For m > 0, we have

( / b, 0l s, — sl P dw>
B(yj, » As4;, )

1

> ([ 1bselsy, — sl P )
G1

> </c:1 Hb,MQ]fjk‘pdx> - </c:2 ‘[b,ug]fjk+nl‘pdx>57

Gi={z: Arqj, <lz—y; | <Asq; }\{@: lo—y;, [<Asq;, }C By, Asq;,)

B =

B =

where

and Gy = {z: |z — yj, .| > Asq;, . }- Let
G= {(L‘ : A7qjk < ‘(L‘ - yjk‘ < qujk}’
then G; = G — (G5 N G). Thus by (2.15) and (2.16), we get

( / b, ksl 5, — b ug]fjmlwpdw)
B(yj, » As4;, )

> ( J sl supda= [ bl \pdw> ([ epls, i)

2

rA
PN, |[A/n _ . _ 9 . A/ (np)
> <A9‘QJ;€‘ /GgmGW)’ MQ]fjk i dw) 4 ‘Q3k+m‘ P
Since (GSNG) C G and by (2.21), we have

AR g™
‘Gg N G‘ 8qjk+ A?S
< T < AG(=2)" < Al
Q| 9 A
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By (2.20), we get

Ag
L bonsls, e < (571Q5, P
G5NG i 4 i
So
1
P A
/ 0l fy, — b ol f,,, [P | > 22 1Q; 0P,
B(yj, » As4;, )
Then 1
1 P
DY Hbv MQ]f - [b7 MQ]f ‘p dx Z A16-
qj}\k B(yjk’qujk) I Ik+m
Therefore

I, ual £, — [0, mal fi,, Nlpx = Axr.

Thus the sequence {[b, pu0 f;, }72, has no any convergence subsequence in L AMR™),

i.e., [b, uq) is not a compact operator in L*(R™). This contradiction shows that b
must satisfy the condition (i) of Lemma 2.3.

Similarly, we may show that if b does not satisfy the conditions (ii) or (iii) in
Lemma 2.3, then [b, uq] is also not a compact operator in L *(R™). For simplicity,
we give only the outline of the proofs. In fact, if b does not satisfy the condition (ii)
of Lemma 2.3, we can select a sequence {Q;} such that (2.1) holds and lim ¢; =

J—00

oo, Where g; is the diameters of @;, and y; is the center of @;. Similarly, we select
a sequence {f;} C L»*(R") such that (2.15), (2.16) and (2.20) hold. Hence, if
we choose a subsequence {Q;, } such that ¢; > 1 and

(2.22) 45, /qjk_»_1 < A15/A8,

then for m > 0, we have

</B(yjk+m ’ qujk+nL )

= (/ b, nel fj, — [0, pelfj,,,. 1P dx)g
G1

> </01 b, el fj,, . \Pm)g B (/02 1B, ol fj, ‘pdw)?’

Gi={z:A7q;,  <lr—vy; | <Asq,, I\ {z:|z—y;|<Asq}
C B(yjlﬁ-m7 A8qjk+nL)

B =

Hbv MQ] fjk - [bv MQ] fjk+m ‘p d(L‘)

where
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and G = {x : ‘1‘ — yjk\ > qujk}' Set
G = {fI: : A7qjk+m < ‘{I; B yjk-&-m‘ < A8qjk+nL}7

then G; = G — (G5 G). Thus by (2.15) and (2.16) we get

<L(yjk+nL’ qujk+nL)
1 1
P »
> ( [ bpclsi,,, o= [ ub,m]fjkm\pdx) ([ 1oty as)
G GENG G
1

2

PoA
D)), An _ , P _ 290, 1M ()
> (Agw%mw [ dw) 21, V0.

1
P

Hbv MQ]fjk - [bv MQ]fjk+,,L ‘p d(L‘)

Since G5 G C G, by (2.22) we have

GsN G| A5g;, Al
0, 1S g <A <Al
Jktm qjk+,,L 8

Thus, by (2.20) we get

A9\"
~/GcmG Hb’ MQ] fjk‘”" ‘p o= <I> ‘ijﬁ-m ‘k/n
2

Hence

(/

and

S =

p Ay M (np)
b, pal £y, = b, molfy,,, [Pde | = —=1Qj,, | :

(yjk+nL ’ qujk+nL )

16, nalfs, —[b,palfs,,, llpa = As.

Thus {[b, uol fj, 72, has no any convergence subsequence in IP>A(R™). But this
is contrary to the assumption that [b, uq] is a compact operator in LP*(R™). Hence,
b should satisfy the condition (ii) of Lemma 2.3.

Finally, if b does not satisfy the condition (iii) of Lemma 2.3, then there exist
a cube @ and sequence {y;} with jli_)rgo lyj| = oo such that (2.1) holds for {Q,; =

Q—i—yj}. Let
E;j={z eR": |z —y;| < Asq'},

where ¢’ is the diameter of . We select a sequence {f;} C LP*(R"™) such that
(2.15) and (2.16) hold. Now, we choose a subsequence {E} } such that
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E; (\E;, =0 for 1#F.

Then for m > 0, we have

T =

b, ual i — b, ol fi. [P da
( /| SN Y R T )

1

> ([ 1bosslss, - sty )
G1

1

> ([ wair,ar) = ([ esis,, i)

Gr={r: A7q" <|z—y;, | < Asq'P\{z: [x —y;, )| < Asq"} € By;,, Asq’)

where

and Go = {z: |z —y;, | > Asq'}. Let
G={r:4A7¢" < \x—yjk\ < Agq'},

then G; = G — G§ = G. Thus by (2.15) and (2.16) we get

P

b, . —|b, ; Pdx
( /| o ry B 6158 = ol )

> ([1msslspae) = ([ st i)

AQ Ag
> AQ\Q\’\/(W’) - ‘Q‘)\/(np) > - \Q\’\/(”p).

Hence
H[bv MQ]fjk - [b7 MQ]fj]H_m Hp,)x > A19-

This is inconsistent with the compactness of [b, ] in LP»»*(R"). So, b satisfies
also the condition (iii) of Lemma 2.3.
3. PROOF OF THEOREM 2

First we give some lemmas, which will be used in the proof of Theorem 2.

Lemma 3.1. ([4]). Suppose that 1 < p < co and 0 < A < n. If the subset G
in LP*(R™) satisfies the following conditions:

(3.1) sup [| f{|p,x < oo,
feaq
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(3.2) lim NfC+y) = F()llp,r =0 uniformly in f € G,
y—)
(3.3) lim ||fxg, llp,x =0 uniformlyin fecG,

where E, = {z € R" : |z| > a}, then G is strongly pre-compact set in L?*(R").

Lemma 3.2. ([9]) Suppose that 0 < 8 < n, Q satisfies (1.1) and the L 9-Dini

condition )
)
/ wq( ) dbd < oo
0o 0

for ¢ > 1. If there exists a positive constant 0 < 6 < 1/2 such that |z| < 0R, then
we have the following inequality
q 1/q
dy>

</R<|y|<2R

z|/R
S CRn/q—(n—ﬂ) m—k/' / —wq(é) do s
R Juaer 0

where the constant C' > 0 is independent of R and .

Qy-2) Q)
ly —z|n=F  |y|n=F

(3.4)

Lemma 3.3. ([12]). Suppose that 1 < p < co and 1 < r < p < oo, then the
maximal operator M, and Calderén-Zygmund singular integral operator T' are
bounded operators on LP*(R"), where M, f(z) = {M(|f|")(x)}"/" and M is
the Hardy-Littlewood maximal operator.

Now let us return to the proof of Theorem 2. Suppose that F' is an arbitrary
bounded set in L?A(R™), that is, there exists a constant D > 0 such that || ||, » <
D forevery f € F. Let G = {[bualf : f e F}ifbe C®R") and G =
{lbyualf : f € F} if b € VMO(R™). For b € VMO(R"), by (2.7), we can
easily get [b, ugq] is continuous in LP*(R™). So, by the definition of the compact
operator (see [2], for example), it suffices to prove that for any bounded set F' in
LPA(R™), G is strongly pre-compact in L-*(R™). We first show that if (3.1)-(3.3)
hold uniformly in G, then (3.1)-(3.3) hold also uniformly in G and thus [b, nq] is
a compact operator in LA (R™).

In fact, suppose that b € VMO(R"), then for any ¢ > 0 there exists b° €
C2°(R™) such that [|b — b°||« < e. By

U

/| U =9) 10y 1) () — (b — ) (w)] £ (v) dy

z—y|<t ‘(L‘ - y‘n—l
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and (2.7), we obtain

(3.5) 116; o] = [6% polll Lo s —ppx < I[b = 6% polll Lo r—ppr < Ce

For any f € F, by (3.1) and (3.5) we get

sup [|[b, el fllp A < sup [[b%, pol fllp A + CDe < oo
fer fer

On the other hand, by (3.2) and (3.5), for any f € F

lim ||[b, pol f(- +y) — [0, pal f()llpa

ly|—0

< lim |65, pol f(- +y) — b5, ual £ llp.a + 2010 — V%, pa] fllp A

ly|—0

< 2CDe.
Therefore (3.2) holds uniformly for G. Similarly, by (3.3) and (3.5), we see that

im[[1b, o] Fxg, o < lim (57, il fx, by s lb = B, el fllp » < CDe.

Thus (3.3) holds also for G uniformly. Therefore, by Lemma 3.1, we know G is
a strongly pre-compact set in L *(R™) and then [b, 0] is a compact operator in
LPA(R™).

Thus, it suffices to prove that (3.1)-(3.3) hold uniformly in G. Recalling
| fllp.x < D for every f € F, and noticing that b € C°(R"), by (2.7), we
have

(3.6) sup [|[b, el fllp,x < Clbll« sup [|f]lp,x < CD[b]l« < oo.
fer fer

Suppose that supp b C {z : |z| < §}. Forany 0 < € < 1, we take o > max{1, 5}
such that (v — 3)"(1=9) < £9. If ¢ < p, then for any z satisfying || > « and every
f € F, we have

2 7.8 1/2
pslso) ={ [7] [ 2 v s | )
b@)lI — ) an
e FOES \f(y)\{ /lm_ylgttg} dy
cof - ”\f( )l dy

wi<g |7 — y\”

<ol B )
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For every s € R" and » > 0, by the Minkowski inequality and the choice of «, we

get
1/p
1

1/q
9] q
(3.7) <CHprA</y|>a ‘@fﬁ}q‘ dy>

dr 1/q
<clfloa ([~ [ 10010 o)

S CDHQHLQ(Sn—l)g S CD€

If ¢ > p, we choose g, such that 1 < ¢, < p < ¢q. Notice that Q € L% (S"~!) and
191 90 (sn-1) < C||Q Lagsn-1, by (3.7), for every s € R* and r > 0, we still get

1/p
1
(3.8) (7"_’\/3( )\[b, /m]f(x)\pXEa (z) dw) < CDHQHLqO(Sn—1)€ < CDe.

The estimates (3.7) and (3.8) show that (3.3) holds for the commutator [b, uq] in G
uniformly. Finally, to finish the proof of Theorem 2, it remains to show (3.2) holds
for the commutator [b, 0] in G uniformly. We need to prove that for any ¢ > 0, if
|z| is sufficiently small depended only on ¢, then for every f € F,

(3.9) 116, pel £ (- + 2) = [b, pol FC)llpa < Ce.

Then for z € R™, we write

|[b, pol f(x + 2) = [b; pal f(2))]

{ ' e—yl<t 1T — y\ny)l(b(x) —b(y))f(y) dy
. Qz+ 2 — 2 1y 1/2
! /' eyl <t ﬁ(b(”ﬁ +2) = b(y))f(y) dy %}

~{ [ e >\2dt}m.

We take € such that 0 < e < % Then for z € R™, decompose I(x,t) as
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I(x,t)
Qx —
= S y\>ee = oy <t | (— y|"y)1 (b(w +2) = b(y)) f(y) dy
z+z—y|>
Qlr+ 2z —
+/T y‘\>:+6z‘z1‘J‘T y|>t, |x :— ,:_— ylny)l (b(y) - b(x + Z))f(y) dy
Qx — Qr+z—
+/ : 72 : +_ ,;”_)1 (b(z+2)=b(y)) f(y) dy
(3.11) oz se (= ey
* / L_y_)l (b(x) = bz + 2))f(y) dy
jo—y[>e? 2], [a—y|<t |£(—_| |
v/ Y (bla) — b)) ) dy
|x— y|<ee| l,|lz—y|<t |$ |
+ lo—y|<et |2 | f;_zyinyl (b(y) — bz + 2)) f(y) dy

|otz—y|<t

= Ji(x,t) + Jox, t) + J3(z, t) + Ja(z, t) + J5(x, t) + Jg(z, t).
By |b(x + =

(
{

—b(y)| < C and the Minkowski inequality, we have

dt 1/2
|J1 X t)th—3>

o0
/OO

le—y|<t,|ztz—y|>t 1/2
/ |f(W)]|Qz — y) / dt p
omyisetz o=yt S s #3 Y

latz—y[>t
ERE G [P
o y|>65|| |x_y|n+1/2 y)|ay.

Since 2 € L'(S™~1), for every s € R” and » > 0 we get

1 fe%e] p/2 %
7/ (/ (2, 8) |2dt> do
T JB(s,r) 0
1/p
1 |2210()] ’
<C —/ / ———|f(z —y)|dy | dx
{“ B(s,m( etz Y"1 =)

(z,
/ N M(b(ac +2) = b(y)) f(y)dy

lo—yl>e® |z |z —y|?7!

(3.12)

I /\

|21'%19(y)|
<Cliflon [, oy
P2 Jyisetiz) lylntt/2
1/2 > dr / /
:CHpr7)\|Z| Ll | 7"1+1/2 5 |Q(y)|d0'(y)
ec|z n—1
< Ce = || fllp 2

< CDe.

Hence
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(3.13) H{ PAGHIE dt}m

Similar to the estimate of .J;(z,t), we can get

S ar) " 2120 + 2 y)|
Jo(z,t)|>— <C d
{/o 2t 2 tg} Y N e e e 1F(w) dy-

< CDe.
DA

Thus for any s € R™ and » > 0, we have

P2 ¥
, dt
{M . (/ a0 t3> dw}
1/p
1 |211/21Q(y)] .
<cis) ] B e+ 2 —y)ldy | do
{ g B(sr)( (et -1 Y™

Q
< Ol al= [ Ty

lyl>(eX—1)J2| [y /2
< Cler = 1) fllpa

< CDe.

Therefore

(3.14) H{ | Ja (-, j;}m

About Js3. By the Minkowski inequality and |b(z + z) — b(y)| < C, we have

{/ e

{ I/ (Q(w—y) Q(w+z—y)>
- xr— e% z xr— —_ _1 o —_ _1
o [ JlemvieSibvise \ [z —y[PTt o fo 42 —y|"

dt}1/2

< CDe.
DA

(b(x +2) = b(y)) f(y) dy

Qx —vy Qx+ 2 dt) /2
<C | (_ ‘n)l | (_|_ ‘n)l |f(y )‘{/ﬁ_ < t_g} dy
lo—y|>ez o] [T — Y rtrEzmy ot 2yl
Qz — Q —
e =) Otz |16,
|x— y|>es z| ‘(L‘ - ‘n ‘(L‘ +2z - y‘ ‘(L‘ - y‘
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Using Lemma 3.2, we get

1 L AP %
{r_An/B(s,r) <~/0 ‘J3(x t)‘ t3> dx}
Oz —y) Qztr—
SC{%/ (/ 1 (z—y) Qzt+z-y)
T JB(s,r) \J|z—y|>e® 2|

2 1/p
If ()] ) 4
n—1 n—1 Yy X
|z —y| |z+2—y[" | [z -y
Qy) Qy+2)| 1
<Cllflpa [, |l -
etz | 1Yl ly + 2| |y

<c Z Qy)  Qy+2)
Hf”p A ‘ ‘n 1 ‘ + ‘n—l
ket |z|<|y|<2k+1es |z | 1Y Yyr=z

1

|yl

[
= | e 1= w(9)
<l 35 4 =5+ [ S
k=0 | 2kez|z| =l
2k+les |z

0 1 1 w(d
R /k U(ng(s)d(s}

2ke= 1+k+1/€ )

2ktlee

<Cle = + &) fllpa
< CDe.

Thus

1/2
0 , dt
(3.15) sl 8) P25 < CDe.
0 pA

Now we give the estimate of J,. Since b € C°(R™), we have |b(z) — b(x + z)| <
Clz|. If setn = e%\z\ and

2 g4\ 1/2

o

Ho (1) { ‘/ S ﬁf(y) dy

(/OOO | a(x, ) jgt) - < Clzlugy (f)(@).

then

We now claim that

(3.16) g, (Dllpx < Cllfllpas 1 <p<oo,

where C is independent of  and f. In fact, if B is a ball center at z € R™ and of

radius n/2. Let f1(y) = fy,, (y) and fa(y) = f(y) — fi(y), then
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oS ‘B‘/\m \dfﬂB‘/mQ IGIES

3.17
(3.17) T / 1 (f2)(€) = o f(x)] de

< M(pa(f)) (= )+I(f)(w)+H(f)(w)-
By (2.6) and Lemma 3.3, we can get

M (pe()llpr < Clipa(Hllpa < Cllfllp a-
Applying Theorem A, for any 1 < u < oo
C u u
1@ < gl < \B\l/uufluu < CM( ) @)

Regarding I1(f)(z), let £ € B. By the Minkowski inequality, we have
+ /OO / i —y) f2(y) dy
o |Jlewist [€—y[nt
2 1/2
3
= Hl(gv .’L’) + H2(£7 .’L’) + H3(£7 .’L’)

Taking 1 < u < p and using Lemma 3.3 again, we have
[ua(f2)(€) — oy (f)(@)]
1/2
= Qz —y) ® dt
< S
: {/0 Jecs ey B0 0] 5 }
—y|<t
2
lza—y|>t
> Q€ —y) Qz —y)
+{A /£—y<t <‘£_y‘n—1 ‘x_y‘n 1 f2( )
Since £ € B, y € (2B)¢, similar to the estimate of (3.12), we may get
1 Oz —
_/ Hl(f,.%') df S Cn1/2/ ‘f(y)H (1‘ y)‘ dy.
‘B‘ B (2B)c

IL(H)llpx < Cllfllp A
|
lz—y|<t
o =y

By the Minkowski inequality, for s € R™ and r > 0, we have

1 1 p L
{r_/\/B(s,r) E/BHI(&JC) dg dx}
L fe-yplewl  \" 7
C 1/2 ) . ]
< n { ’r‘>\ L(s,r) <\/|y|>77 ‘y‘n—f—l/Q y> (I,'}

12(y)|
< Cn'?|f ,/\/ ——— dy
H HP yl>n \y\”“/Q
<l fllp -
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Thus

< Cllfllp -
DA

1
WELHﬁ”%

For Hy(&, ), we can get

LF()]UE —v)l
Hﬁ@gwméw‘&wwﬂdy

Then

FWloeE - )]
/
\B\/ Ha (8, @) de <C"”\B\/ /23 e gz WE

[F W)€ - )
—on'/2 %)

- k= 1‘3‘//2k+13\2k3 & — y|nt1/2 dy dg
< CM(|fD ().

Thus, by Lemma 3.3, we have

L [n d <C
5 [ e ae <Ol
P,
Since £ € B, we get
1
E/max@
Qz —y) | [f2(y)]
dyd
\B\//n 1€ — y\” 1 =yl [z —y yat
Qz—-E&—y) Qz—y) | [f(y)
- dyd
B(0 n/2 \/B(on/z /y m|>n \w f T eyt ey Y :
Qy) | 1f(z—y)|
dy dE.
~ [B(0 n/2 \/B(on/z /|>n ly — f\” 1 |yt |y yat

By the Minkowski inequality and Lemma 3.2, for every s € R” and r > 0, we get

1 1 Rk
e E/ R
y-9 9y
C dyd
= Hpr /\ B(0 77/2 ‘/B(O n/2) /y|>77 ly — ¢! ‘y‘n ' \y\ ‘
1 Qy-¢) 2y
BTN Y gy
Hf”p«\‘B(O,n/Q)\/B(O,n/g);/Zk—1n<|y|<2kn ly=¢n=t Jy|™? \y\ ¢
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() €]

1 €] /Qk_ln w(9)
< wA9)
= Wl A5 /2] n/2)\ B(sz e a5 ) de
<C —(5
- Hpr/\\ B(0, 77/2‘ B(0,7/2) 0 4
< Ol flp A

Thus
1
o [ Ha€ ) d| < Cllla
1Bl JB A

Therefore

LI px < CllFllpa-

summing up [ M (o f)llp s [1(F)]lp . and [T1(f)]p.x, by (3.17), we get (3.16).
Then

- 1/2
(3.18) ll{ / \J4<-,t>\2§}

About J5, since |b(x) — b(y)| < Clz — y|, by the Minkowski inequality, we get

1/2
{/ s, )2 dt}
0

< CE2[[[fllp » < CDIz].

DA

1/2
9~ y)| dt
C = Y p(x - d
sof L b <y>uf<y>\{/|x_y|§tt3} y
e SRyl
|m—y|§elg|z| ‘(L‘ - y‘n

Then by the Minkowski inequality and Q € L'(S™~!), for every s € R* and r > 0,

we get
1
1 o] dt p/2 P .
2 1
{rj/l?(s,r) </0 ‘JS(xjt)‘ t_3> dw} SCD@E‘Z"
Thus

(19 Il{/ooo ‘J5<-,t)\2ﬁ}1/2 < CDe?|2].

DA

t3

Similarly, using the estimate |b(z + z) — b(y)| < C|z + z — y|, we have
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1/2
> di Sz + 2 — y)|
Jo(z, 1) — <C — dy.
{/0 ‘ ( ‘ t3 } |m—y|§e%|z| ‘(L‘ +2z— y‘n !

Then

(3.20) H{ /OOO \J6(.7t)\2%}1/2

Hence, for any ¢ > 0, we may take |z| to be small sufficiently, then by (3.10),
(3.11), (3.13)-(3.15) and (3.18)-(3.20), we have

b, pal (- + 2) = [by pal f()]lp,a < Ce.

Therefore, we show that (3.2) holds for the commutator [b, 1] in G uniformly and
complete the proof of Theorem 2.

< CD(ex 2| + |z]).
p,A
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