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A NOTE ON THE NORMALIZED LAPLACIAN SPECTRA

Honghai Li and Jiongsheng Li

Abstract. Let G be a connected graph and L be its normalized Laplacian

matrix. Let λ1 be the second smallest eigenvalue of L. In this paper we
studied the effect on the second smallest normalized Laplacian eigenvalue by

grafting some pendant paths.

1. INTRODUCTION

Throughout this paper it is assumed that all graphs are simple and all matrices

are real. We shall use the standard terminology of graph theory and matrix theory, as

introduced in most textbooks. The transpose of A is denoted by AT , and the identity

matrix is denoted by I . The vector e will always mean the vector (1, 1, . . . , 1)T ,

with n ones.
Let G be a graph with vertex set V = {v1, v2, . . . , vn} and edge set E. Let

dv denote the degree of the vertex v. We first define the Laplacian matrix of G,
denoted by L(G), as

Luv =





du if u = v,

−1 if uv ∈ E,

0 otherwise.

Let D denote the diagonal matrix of vertex degrees with the (u, u)−entries du

corresponding to the vertex u. The normalized Laplacian matrix of G is the matrix
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L(G) given by

Luv =





1 if u = v,

− 1√
dudv

if uv ∈ E,

0 otherwise.

We can write

L = D−1/2LD−1/2

= I − D−1/2AD−1/2

with the convention that D−1(u, u) = 0 if du = 0, where A is the adjacency matrix

of G. It is easy to see that L is a symmetric positive semidefinite matrix, so its

eigenvalues are all real and nonnegative, and we can use the variational description

of the eigenvalues of a real symmetric matrix. Let g denote an arbitrary real-valued
function on the vertex set of G. We can view g as a column vector. Then

(1.1)

〈g,Lg〉
〈g, g〉 =

〈g, D−1/2LD−1/2g〉
〈g, g〉 =

〈f, Lf〉
〈D1/2f, D1/2f〉

=

∑

u∼v

(f(u)− f(v))2

∑

v

f(v)2dv

where f = D−1/2g and
∑

u∼v denotes the sum over all unordered pairs {u, v} for
which u and v are adjacent. Here 〈f, g〉 =

∑
x f(x)g(x) denotes the standard inner

product in Rn.

From the definition L := D−1/2LD−1/2 we readily check that D1/2e is an

eigenfunction of L corresponding to 0. We denote the eigenvalues of L by 0 =
λ0 ≤ λ1 ≤ · · · ≤ λn−1. Furthermore,

(1.2) λ1 = inf
f⊥De

∑

u∼v

(f(u) − f(v))2

∑

v

f(v)2dv

.

We call the nonzero function f achieving (1.2) a harmonic eigenfunction of L(G).
The corresponding eigenfunction is g = D1/2f as in (1.1).

The normalized Laplacian eigenvalues of a graph were introduced by Fan Chung.

These eigenvalues relate well to many graph invariants for general graphs in a way

that other definitions (such as the eigenvalues of adjacency matrices) often fail to
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do. The advantages of this definition are perhaps due to the fact that it is consistent

with the eigenvalues in spectral geometry and in stochastic processes. We refer the

reader to [4] for the detail. More recent work on the normalized Laplacian can be

found in [1, 2, 3, 7, 10].

We will need the following two results. The first result is simply the eigenvector

equation of g, but expressed in terms of f .

Lemma 1.1. [4]. Let f be a harmonic eigenfunction corresponding to λ1. Then

for any v ∈ V , we have

1
dv

∑

u∼v

(f(v)− f(u)) = λ1f(v).

Lemma 1.2. [3]. Let G be a simple graph and let H = G − e be the graph

obtained from G with edge e removed. If λ0 ≤ λ1 ≤ · · · ≤ λn−1 and θ0 ≤ θ1 ≤
· · · ≤ θn−1 are the eigenvalues of L(G) and L(H) respectively, then

λi−1 ≤ θi ≤ λi+1, i = 0, 1, . . . , n − 1,

where λ−1 = 0 and λn = 2.

The Laplacian eigenvalues of a graph play an important role in spectral graph

theory, especially the second smallest eigenvalue of the Laplacian matrix, which

Fiedler referred to as the algebraic connectivity. The eigenvector associated with

the algebraic connectivity has often been called the Fiedler vector. Guo[8] in his

PhD thesis investigated how the algebraic connectivity behaves when the graph is

altered by grafting pendant paths. The definition of grafting is as follows: Let

u and v be two different vertices of the connected graph G and let Hk,l be the

graph obtained from G by appending two disjoint paths P : vvkvk−1 · · ·v1 and

Q : uulul−1 · · ·u1 at v and u,respectively. The graph H ′
k+l = Hk,l − vvk + u1vk

or H ′′
k+l = Hk,l − uul + v1ul is said to be obtained from Hk,l by grafting pendant

paths. He obtained the following result.

Theorem 1.3. Let u and v be two different vertices of the connected graph G

and Hk,l the graph obtained from G by appending two paths P : vvkvk−1 · · ·v1

and Q : uulul−1 · · ·u1(k ≥ l ≥ 1) at u and v,respectively. Let X be a Fiedler

vector associated with algebraic connectivity α(Hk,l) of Hk,l and let

H ′
k+l = Hk,l − vvk + u1vk

H ′′
k+l = Hk,l − uul + v1ul.

If X(v1)X(u1) ≥ 0, we have

α(Hk,l) ≥ α(H ′
k+l) or α(Hk,l) ≥ α(H ′′

k+l).
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We are interested in a similar problem for the case of the normalized Laplacian

matrix. In [11], we studied the effect on the second smallest eigenvalue of the

normalized Laplacian of a graph by grafting pendant paths, in which the two paths

are appended to the same vertex. In this paper we treat the problem for the case

when the two paths are appended to different vertices.

2. MAIN RESULTS

First we give some preliminary results which can be found in [11].

Lemma 2.1. [11]. Let G be a non-complete connected graph and f be the

harmonic eigenfunction of L corresponding to the second smallest eigenvalue λ1.

Then for any α ≥ 0, the subgraph of G induced by M(α) is connected, where
M(α) = {v ∈ V |f(v) ≤ α}.

In particular, we have the following corollary.

Corollary 2.2. Let G be a non-complete connected graph, f a harmonic eigen-
function. Then the subgraph induced by the vertex set consisting of all vertices v

that satisfy f(v) ≤ 0 is connected. Moreover, the subgraph induced by the vertex
set consisting of all vertices v that satisfy f(v) ≥ 0 is also connected.

Since −f is a harmonic eigenfunction of L whenever f is, the second half of

the preceding corollary clearly follows from its first half.

Theorem 2.3. [11]. Let G = (V, E) be a connected graph and L be its

normalized Laplacian matrix. Let f be a harmonic eigenfunction of L. Let v be a

cut vertex of G such that G0, G1, . . . , Gr are all the connected components of the

graph G − v. Then:

(1) If f(v) > 0, then exactly one of the components Gi contains a vertex

negatively valuated by f . For all vertices u in the remaining components
f(u) > f(v).

(2) If f(v) = 0 and there exists a component Gi containing both positively and

negatively valuated vertices, then there is exactly one such component, all

remaining components being zero valuated.

(3) If f(v) = 0 and no component contains both positively and negatively valu-
ated vertices, then each component contains either only positively valuated,

or negatively valuated, or zero valuated vertices.

In the following we use the notation volG to denote the sum of degrees of all

vertices in G.
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Theorem 2.4. Let G be a connected graph, u, v be two different vertices in G,

and Hk,l be the graph obtained from G by appending two paths P : vvkvk−1 · · ·v1

andQ : uulul−1 · · ·u1 of length k and l at u and v respectively, where u1, u2, . . . , ul

and v1, v2, . . . , vk are distinct new vertices. Let f be a harmonic eigenfunction of
L(Hk,l) and let

H ′
k,l = Hk,l − vvk + u1vk ,

H ′′
k,l = Hk,l − uul + v1ul.

If f(v1)f(u1) ≥ 0, then we have

λ1(Hk,l) ≥ λ1(H ′
k,l) or λ1(Hk,l) ≥ λ1(H ′′

k,l).

Note that f(v1)f(u1) ≥ 0 is equivalent to g(v1)g(u1) ≥ 0.

Proof. Let V (G) = {u, v, w1, w2, . . . , wh}. Then the order of Hk,l is

n = k + l + h + 2. Let f ′ be the vector given by

{
f ′(vi) = f(vi) + f(u1)− f(v), i = 1, . . . , k,

f ′(w) = f(w), w 6= vi, i = 1, . . . , k.

By a straightforward calculation, we have

〈f ′, L(H ′
k,l)f

′〉 =
∑

xy∈E(H ′
k,l)

(f ′(x)− f ′(y))2

=
∑

xy∈E(Hk,l)

(f(x) − f(y))2 = 〈f, L(Hk,l)f〉.

Now we use dx(respectively, d
′
x) to denote the degree of x in Hk,l(respectively,

H ′
k,l), unless specified otherwise. Let D′ denote the diagonal matrix of vertex

degrees of H ′
k,l. Then d′v = dv − 1, d′u1

= du1 + 1 and d′w = dw for w 6= v, u1, we

have

〈f ′, D′e〉

=
∑

x

f ′(x)d′x =
k∑

i=1

f ′(vi)d′vi
+ f ′(u1)d′u1

+ f ′(v)d′v +
∑

w 6=u1 ,v,v1 ,...,vk

f ′(w)d′w

=
k∑

i=1

(f(vi) + f(u1)− f(v))dvi + f(u1)(du1 + 1) + f(v)(dv − 1)
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+
∑

w 6=u1 ,v,v1,...,vk

f(w)dw

=
∑

x

f(x)dx + (f(u1) − f(v))(1 + 2(k − 1)) + (f(u1) − f(v))

= 〈f, De〉+ 2k(f(u1) − f(v)) = 2k(f(u1)− f(v)).

Let h = f ′ − ae, where a = 2k(f(u1)−f(v))
volHk,l

. Then

〈h, D′e〉 = 〈f ′, D′e〉 − 〈ae, D′e〉 = 2k(f(u1) − f(v))− avolHk,l = 0,

and

〈f, L(Hk,l)f〉 = 〈f ′, L(H ′
k,l)f

′〉 = 〈h + ae, L(H ′
k,l)(h + ae)〉

= 〈h, L(H ′
k,l)(h + ae)〉 + 〈ae, L(H ′

k,l)f
′〉 = 〈h, L(H ′

k,l)h〉

where the last equality holds as L(H ′
k,l)e = 0.

(2.1)

〈h, D′h〉 = 〈h, D′f ′〉 − a〈h, D′e〉 = 〈h, D′f ′〉 = 〈f ′, D′f ′〉 − a〈e, D′f ′〉

= 〈f ′, D′f ′〉 − a〈f ′, D′e〉

=
∑

x∈V (H ′
k,l)

d′xf ′2(x)− 4k2(f(u1)−f(v))2

volHk,l

=
∑

x∈V (Hk,l)

dxf2(x)+f2(u1)−f2(v)+
k∑

i=1

dvi((f(u1) − f(v))2

+2f(vi)(f(u1) − f(v)))− 4k2(f(u1) − f(v))2

volHk,l

= 〈f, Df〉+ (f(u1) − f(v))(f(u1) + f(v) + 2
k∑

i=1

f(vi)dvi)

+(2k − 4k2

volHk,l
− 1)(f(u1) − f(v))2.

Since volHk,l > 2k + 4, in the last line we always have 2k − 4k2

volHk,l
− 1 >

2k − 1 − 2k2

k+2 > 0.
Now in the same way we can construct a vector g corresponding to H ′′

k,l satis-

fying

〈g, D′′e〉 = 0, 〈f, L(Hk,l)f〉 = 〈g, L(H ′′
k,l)g〉
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where D′′ denotes the diagonal matrix of vertex degrees of H ′′
k,l, and

(2.2)

〈g, D′′g〉 = 〈f, Df〉+ (f(v1)− f(u))(f(v1) + f(u) + 2
l∑

i=1

f(ui)dui)

+(2l − 4l2

volHk,l
− 1)(f(v1) − f(u))2.

We may assume that f(u1) ≥ 0 and f(v1) ≥ 0, replacing f by −f , if necessary.
Note that the graph Hk,l is non-complete. By Corollary 2.2 the subgraph H induced

by subset of vertices w such that f(w) ≥ 0 is connected. But P and Q are pendant

paths of G at u and v respectively, so u, u1 . . . , ul, v, v1, . . . , vk are vertices of H .
Hence we have





f(ui) ≥ 0(i = 2, . . . , l), f(u) ≥ 0,

f(vi) ≥ 0(i = 2, . . . , k), f(v) ≥ 0.
(2.3)

If f(u) > 0 then by Theorem 2.3(1)(with the cut vertex taken to be u), f(uj) >

f(u) for j = 1, 2, . . . , l.
If f(u) = 0 then applying Theorem 2.3, again with u as the cut vertex, we can

conclude that either f(uj) = 0 for j = 1, 2, . . . , l or they are all positive.
Similar remarks can be said for what happens when f(v) > 0 or f(v) = 0.

Then we shall show that f(u1) > f(v) or f(v1) > f(u) if one of the following
happens:

(i) f(u) > 0 and f(v) > 0;
(ii) f(v) = 0 and f(uj) > 0 for j = 1, 2, . . . , l;
(iii) f(u) = 0 and f(vj) > 0 for j = 1, 2, . . . , k.

In case (i), apply Theorem 2.3 to Hk,l with u as the cut vertex. Since f(u) > 0,
u1, . . . , ul are the vertices of the same component of Hk,l − u and we have already

shown that f(ui) ≥ 0 for i = 1, . . . , l, by Theorem 2.3(1) we have f(u1) > f(u).
Similarly, we also obtain f(v1) > f(v). Hence, we have either f(u1) > f(v)
or f(v1) > f(u). In case (ii), obviously we have f(u1) > f(v). In case (iii),
f(v1) > f(u).

If f(u1) > f(v), applying (2.1), we obtain 〈h, D′h〉 > 〈f, Df〉 and conse-
quently

λ1(Hk,l) =
〈f, L(Hk,l)f〉

〈f, Df〉 >
〈h, L(H ′

k,l)h〉
〈h, D′h〉 ≥ λ1(H ′

k,l),

in view of the fact 〈h, D′e〉 = 0 and 〈f, L(Hk,l)f〉 = 〈h, L(H ′
k,l)h〉.

Similarly, in the case f(v1) > f(u), using (2.2) we get λ1(Hk,l) > λ1(H ′′
k,l).

What remains to consider is the case:
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(iv) f(u) = f(v) = f(u1) = . . . = f(ul) = f(v1) = . . . = f(vk) = 0.

In this case, in view of (2.1),〈f, Df〉 = 〈h, D′h〉. So we have

λ1(Hk,l) =
〈f, L(Hk,l)f〉

〈f, Df〉 =
〈h, L(H ′

k,l)h〉
〈h, D′h〉 ≥ λ1(H ′

k,l).

By symmetry, we also obtain λ1(Hk,l) ≥ λ1(H ′′
k,l).

Based on newGRAPH and Matlab, we generate some graphs which are given

in Fig. 1. The real numbers attached to vertices in each graphs are the valuations

by the harmonic eigenfuction of the graph. In graph G1, g denotes the harmonic

eigenfunction of the graph G = G1 − {v1, u1, u2, u3}.
From the proof of Theorem 2.4, one can find that if f(v1)f(u1) > 0 then

λ1(Hk,l) is strictly greater than λ1(H ′
k,l) or λ1(H ′′

k,l). The graph G1 serves to

illustrate that in Theorem 2.4 if f(v1)f(u1) = 0, it is possible that both inequalities
become equalities. Here we take Hk,l to be G1(with G = G1 − {v1, u1, u2, u3}),
λ1(G1 − {v1, u1, u2, u3}) = λ1(G) = λ1(G1) = λ1(G1 − vv1 + u1v1) = λ1(G1 −
uu3 + v1u3). More information can be found in our next proposition.

The graph G2(alsoG3) serves to illustrate that when the condition f(v1)f(u1) ≥
0 is not met it is still possible that we have λ1(Hk,l) > λ1(H ′

k,l) and λ1(Hk,l) >

λ1(H ′′
k,l). This leads us to suspect that the conclusion of Theorem 2.4 always holds

and the “or” in the conclusion may be replaced by “and”.

Proposition 2.5. Let G be a graph and v be a vertex of G. Let H be the

graph obtained from G by adding a pendant edge e = vu at v and let f be a

harmonic eigenfunction of H . If f(v) = f(u) = 0, then the restriction of f to G
is a harmonic eigenfuction of G and so λ1(H) = λ1(G).

Proof. Set λ1 = λ1(H). Define a function g on V (G) as follows: g(w) =
f(w), for any w ∈ V (G). Then for any w ∈ V (G)− v,

(1− λ1)d′wg(w) = (1− λ1)dwf(w) =
∑

x∼w

f(x) =
∑

x∼w

g(x);

(Here and in the following d′x stands for the degree of the vertex x in G) and

(1− λ1)d′vg(v) = 0 = (1 − λ1)dvf(v) =
∑

vj∼v

f(vj) =
∑

vj∼v,vj 6=u

f(vj) + f(u)

=
∑

vj∼v,vj 6=u

f(vj) =
∑

vj∼v,vj∈V (G)

g(vj).
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Fig. 1.
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So we conclude that for any w ∈ V (G), (1−λ1)d′wg(w) =
∑

vi∼w g(vi). That
is, D−1Lg = λ1g, whereD and L denote the diagonal matrix and Laplacian matrix
of G, respectively. Thus λ1 is an eigenvalue of D−1L and so an eigenvalue of

L(G). By Lemma 1.2, we have that

λ1(H) ≤ λ2(H − e) = λ1(G).

So λ1(H) = λ1(G) and g is a harmonic eigenfunction of G with g(v) = 0 as
desired.

If case (iv) happens, i.e., if f(u) = f(v) = f(u1) = . . . = f(ul) = f(v1) = . . .
= f(vk) = 0, then by applying Proposition 2.5 repeatedly we can conclude that
λ1(Hk,l)=λ1(G) and the harmonic eigenfunction g of G satisfies g(u)=g(v)=0.
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