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ON CERTAIN OPERATOR FAMILIES RELATED TO
COSINE OPERATOR FUNCTIONS*

S. Piskarev and S.-Y. Shaw

Abstract. This paper is concerned with two cosine-function-related
functions which are called cosine step response and cosine cumulative
output. We study some of their properties, such as measurability, conti-
nuity, infinitesimal operator, compactness, positivity, almost periodicity,
and asymptotic behavior.

1. INTRODUCTION

Let X be a Banach space, and B(X) denote the algebra of all bounded
linear operators on X. Throughout this paper, {C(t);t > 0} is a strongly
continuous cosine operator function on X. By definition, it is a family of
operators in B(X) satisfying

(a) C(0) =I;
(b) C(t+s)+C(t—s)=2C(t)C(s) for t, s € (—o0,00);
(c) the function C(-)z is continuous on (—oo, 00) for every x € X.

There exist some M > 1, w € R such that ||C(t)|| < Me“! for all t > 0.
The associated sine operator function S(-) is defined by the formula S(t) =
f(f C(s)ds, t € (—o0,00). The second infinitesimal generator (or simply the
generator) A of C(-) is defined as Az = lim; o, 2t~ 2(C(t) — I )z, with natural
domain. A cosine operator function gives the solution of a well-posed Cauchy
problem

(CP) u”(t) = Au(t), u(0) = z,4'(0) =y,
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in the form u(t) = C(t)x + S(t)y, —oo < t < oo. For the theory of cosine
operator function we refer to [5] and [16].

This paper is concerned with two cosine-function-related functions which
we define as follows.

Definition 1.1. Let C(-) be a cosine operator function. A family {F(¢); t €
(—o00,00)} of operators in B(X) is called a cosine step response for C(-) if
F(0) =0 and

(1.L1) F(t+s)—2F(t)+ F(t—s) =2C(t)F(s) for t, s e (—o0,00).

A family {G(t); —oo < t < oo} in B(X) is called a cosine cumulative output
for C(-) if G(0) = 0 and

(1.2) G(t+s) —2G(t) + G(t — s) = 2G(s)C(t) for t, s € (—o0,00).

Clearly, F(-) and G(-) are even functions. If these families are strongly contin-
uous at zero, we call them Cy-cosine step response and Cy-cosine cumulative
output, respectively.

The above terminologies are chosen in view that the two functions F'(-)
and G(-) are related to the cosine function C(-) more or less the same way
that a step response U(-) and a cumulative output V(-) are related to a Cy-
semigroup T'(+), and it turns out that they have similar properties. We recall
that U(-) satisfies U(0) =0 and U(t+s)—U(t) =T (t)U(s), t, s > 0, and V()
satisfies V(0) = 0 and V(t +s) — V(t) = V(s)T(t), t, s > 0. Step responses
and cumulative outputs for Cp-semigroups have been investigated in [11], [12],
and [15].

Cy-cosine step responses and Cyp-cosine cumulative outputs play interesting
roles in the perturbation of cosine operator functions and the Cauchy problem
(CP) (see [13]). For example, using Cp-cosine step responses we are able to
consider the well-posedness of the perturbed Cauchy problem in the form

u(t) = A(1 = AE(\)u(t) + NP F(\u(t), u(0) = z,u/(0) =y, t > 0.

Our purpose in this paper is to study some properties of cosine step responses
and cosine cumulative outputs, such as, measurability and continuity, Laplace
transform and infinitesimal operator, compactness, positiveness, almost peri-
odicity, and asymptotic behavior; each subject will be discussed in a section.
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2. MEASURABILITY AND CONTINUITY

It is known that a cosine operator function which is strongly (resp. uni-
formly) measurable on (0, c0) has to be strongly (resp. uniformly) continuous
on (—oo,00) (see [4] and [7]). The next theorem shows that cosine step re-
sponses and cosine cumulative outputs share the same property.

Theorem 2.1. If a cosine step response F(-) is strongly (resp. uniformly)
measurable on (0,00), then F(-) is strongly (resp. uniformly) continuous on
(—00,00). If a cosine cumulative output G(-) is uniformly measurable on
(0,00), then G(-) is uniformly continuous on (—oo,00).

Proof. First of all the Lebesgue measurability of F'(-)z on (0,00) implies
the Lebesgue measurability of ||F(-)z|| on (0,00) (see [6]). Next, we show
that || F'(-)z| is bounded on any compact subinterval [a, b] of (0, 00) for every
x € X. Suppose not. Then there are an £ € X, a number 7 > 0 and a
sequence T, € [a,b] such that 7, — 7 and

|F'(1)Z|| > n as n — oc.

Because of the measurability of || F'(-)Z|| there exist a constant ¢; and a Lebesgue

measurable set A C [0, 7] with measure m(A) > 37 and
(2.1) sup ||[F(t)z] < e.

teA
Now following [2] we let

AN|o
(2.2) Ay = % - [27’“] By :=AN[0,7/2].
and A

-

First we have m(.ANB) > 0. To prove this, assume that m(ANB) = 0. Then
m(A) +m(B) < 7/2. But m(A) = m(A)/2 by definition of set A. So it means
that m(A) + 2m(B) < 7. Hence 37 < m(A) < 7 — 2m(B), i.e.

(2.3) m(B) < 7/8.

Now let us write
A=(AN[0,7/2]) U (AN|r/2,7]) =BUD,
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where m(A) = m(B) + m(D) with m(D) < 7/2. But

27 < m(A) = m(B) +m(D) < m(B) +7/2
implies m(B) > 7/4, that is a contradiction to (2.3). We have proved that
m(ANB) >4 > 0.

Now we introduce the sets E = ANB, E, = A,NB,, and H, = {1,—n; n €
E,}. Tt is clear that E,, — E as n — oo, so that m(H,) > ¢/2 for n large
enough. For such n, if n € E,, then n and 7,, — 2n both belong to A because
of (2.2). Using now (1.1) and (2.1) we get for n € E,

n< || F(7y) ]
(24)  <2F(rn —n)Zl| + [|[F(mn — 20)2[| + 2[|C (7 — )| |17 ()2
< 2||F (70 — )& + 1 + 2Me*cy.
Hence

n—cy —2Mciev?
2

[E(®)z]| =

for t € H,, and denoting lim,_,o H, = Hs we have that ||F(t)z| = oo for
t € Hy with m(Hs) > §/2 > 0. This is a contradiction to the fact that
||F'(t)Z|| is finite for all ¢.

Now we are going to prove that Lebesgue measurability together with
boundedness implies the continuity of F(-)z for each ¢ > 0 and each x € X.
For this purpose we choose four positive numbers «,3,e¢ and v such that
B<t—eand 0 <a<vy<f<t From (1.1) we have

Ft)x =2F(t—~/2)z — F(t —y)x +2C(t —v/2)F(v/2)x.

The left hand side being independent of « is integrable with respect to v and
we have

(B—M@ﬁidw—ﬂw@zﬂ%@ﬁie—wm—F@—W@@m

[Pty - Pl )iy

07

+/ﬂﬂC@ie—7ﬂ)

—C(t —/2)F(v/2)xdy.
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Hence

t—a/2

I(F(t+e) = F(t)all < 555 Vtm I(F(C + €) = F(C))x]|d¢

t—a
[ IFCE - FQO)eld
t—p

3
+2/a (C(t £ e—=7/2) = Ct = 7/2))F(v/2)x||dv| .

By Theorem 3.8.3 of [6], tt:g/f — 0 and ftt__ﬁo‘ — 0 as € — 0. The last term

goes to zero because of the Lebesgue convergence theorem (see [6, Theorem
3.7.9 ]) . It follows now that F(t)x is continuous for ¢ > 0. Replacing the ¢ in
(1.1) by t 4+ s we have for all ¢, s > 0

F(t)x =2C(t+ s)F(s)x — F(t + 2s)x + 2F(t + s)x,

which converges to 2C(s)F(s)r — F(2s)z + 2F(s)z = F(0)z =0 as t — 0F.
Therefore F(-) is strongly continuous on [0, 00), and hence on (—oo,o0), be-
cause F'(+) is an even function. The proof for the case of uniform measurability
is similar.

To prove the assertion for G(-) one can use the following form of (1.2):

G(ma) = 2G(1 — ) — G0 — 217) + 2G(n)C (70 — 1)
in an estimate analogous to (2.4). The proof then proceeds similarly.

Theorem 2.2. (Cy-cosine step responses and Cy-cosine cumulative out-
puts for a cosine operator function C(-) are strongly continuous on [0,00).
Moreover, uniform continuity at 0 implies uniform continuity on [0,00).

Proof. Following [3] we suppose in contrary that the Cp-cosine step re-
sponse F'(-) is not strongly continuous at some point ty > 0, i.e. there exists
xo such that the nonincreasing sequence

to

K= sup {[(F(0) = F(s))ooll 5 It tol s — ol < 22}

converges to some K > 0 as n — oo. We can take sequences 7,, and o,, such
that

to to
— tnl < — — ol < —
7 = tol < 8n’ lon —tof < 8n

and ,
I(E(7) = F(ow))aoll = Kn = —,m € N.
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It is clear that |0y, — 7| < i—% and 274y, — 04n — to] < é—%, n € N. Therefore
|(F(04n) — F (2740, — 04n))20|| < K, n € N.
Now, using identity (1.1) in the form
2(F(t+h)—F(t))=(F({t+h)—F(@{t—h))+2C(t)F(h)
and putting tg + h = o4, and tg = 74, we get

2(F(o4n) — F(1an)xo|| < Ky, + 2Me“}t°\|F(a4n — T4n)To||.

Hence 1
2(K4n - E) < K,+ 2M€Wt0||F(U4n - 7'4n)$0||
and so
1
(2.5) Kin + (K4 — Kp) < ot 2Me“" || F(h)xo|.

Because F'(h)xg — 0as h — 0 (we recall that h = o4, — 74y, ) and Kyp— K,, — 0
as n — 0o, we have that K,, — 0 as n — oo,n € N, which is a contradiction
to our assumption that K,, — K, K > 0.

To prove the same statement for G(-) by a similar argument one can use
the identity

2(G(t+h)—G(t)) = (G(t+ h) — G(t — h)) + 2G(t)(C(h) — I) + 2G(h),
which is obtained from (1.2) and Proposition 3.1 (i).

By a routine argument as in the proof of Proposition 2.6 of [11] one can
prove the following proposition.

Proposition 2.3. Suppose Cy-cosine step response F(-) and cosine oper-
ator function C(-) commute, i.e. F(t)C(t) = C(t)F(t) for allt > 0. Then F(-)
is a commutative family, i.e. F(t)F(s) = F(s)F(t) for s,t > 0. The same is
true for Cy-cosine cumulative outputs.

3. LAPLACE TRANSFORM AND INFINITESIMAL OPERATORS

In this section we collect some basic properties of the Laplace transforms
F(-) and G(+) of Cy-cosine step response F'(-) and Cp-cosine cumulative output

Ge).

Proposition 3.1. Let F(-) be a Cy-cosine step response and G(-) be a Cy-
cosine cumulative output for a cosine operator function C(-). The following
properties are satisfied:
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(1) }C(? —>I)0F(s) = (C(s) = I)F(t) and G(s)(C(t) = I) = G()(C(s) — I)
(ii) The jfuncti;ns F(-) and G(-) are exponentially bounded;
(i) LA~ A)LF(t)z] = (A2 F(\)z and

LIGHAN — A) 2] = 2GNC(t)z for z € X, A >w, and t > 0;
(iv) F(t)z = (\> — A) [T S(s)AF(\)z ds

= JTS(s)NF(N)xds — (C(t) — DAF(N)z for z € X, t > 0;
(v) G(t)z = AGN) (N2 — A) 1 S(s)zds

= N3G I S(s)zds — AGN)(C(t) — Da for z € X, t > 0.

Proof. Property (i) is an easy consequence of (1.1) and (1.2). To show
that a Cy-cosine step response F'(-) is exponentially bounded, let us choose
L > 1,7 > 0 such that ||C(s)|| < L, || F(s)|| < L for 0 <s < 7. Using

F(kt + s) =2F(kt) — F(kT — s) + 2C(kT)F(s),
we have for 0 < s <7
IF(m+ s)| < [2F(D)[| + [|F(7 — s)[| + 2 Me™|[|F(s)]|
<2L+ L +2Me™L < Me™5L < Me?™1,
where 5L < ™! and w < wj, and by induction
[ F (kT + s)|| < 2[[F (k)| + |1F(kT = s)|| + 2|C(k7)[| [[F(s)]|
< 2MeFTr 4 MekFmer 4 9L MeF™1 < 5LM ek

< Me(k+1)7'o.)1

for all s € [0,7]. Hence we have ||F(t)|| < Mje¥'! for My = Me™! and all
t>0.

To show (iii), let O(¢t,\) = A(A\?2 — A)71F(t) and Y(t,)\) = G(t)A\(\2 —
A7 N> w,t>0. From (1.1) and (1.2) one sees that

o/(t,\) = C(t) lim 252A(\2 — A)7LF(s) = C(1)©7(0,))

if ©/(0, \) exists, and
T/ (t,\) = lim 252A(\2 — A)7IG(s)C(t) = Y70, \)C(t)

if Y7(0, A) exists. Hence it is enough to show ©/7(0,\) = A2F(\) and T/ (0,\) =
A2G(N).
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Taking the Laplace transform of (1.1) with respect to ¢ we have

(6)\8 -2+ e_’\s)F()\) — e / G_ATF(T)dT + e / 6)\TF(T)dT
0 0
=2)0(\? — A)7LF(s) = 20(s, \).
Taking derivatives we obtain
20/ (5, 1) = (€™ — e ) F(N) — A / e TE(r)dr — Ae / M F(7)dr
0 0

and
207(s5,\) =\2(eM + e M) F(X) — A2e?* I e ME(1)dr

+A%e™ [JeME(T)dT — 2AF (s),

and so ©,(0,A\) = 0 and ©/(0,\) = A2F()\). Similarly, one can show that
T.(0,)) = 0 and T7(0,A) = A2G()).

Integrating ©/(t,\) = C(t)A\2F(\) from 0 to t twice and using the fact
that F(0) = 0 and ©}(0,\) = 0 we obtain

t A

(31) AN —A)'Ft)z =01 Nz = / S(s)N2F(\)xds, z € X,
0

and hence (iv). Statement (v) is proved similarly.

Remark. If C(-) is uniformly continuous, then every Cy-cosine step re-
sponse F'(-) (resp. Cp-cosine cumulative output) for C(-) is also uniformly
continuous. This is clear from formula (iv) (resp. (v)) of Proposition 3.1.

Definition 3.2. Let F(-) be a Cy-cosine step response for cosine op-
erator function C(-). The infinitesimal operator Wy of F(-) is defined as
Wsx = limy_g %F (h)xz, with the natural domain. The infinitesimal op-
erator As of the pair (C(-),F(-)) is defined as Asz := limp_o%(C(h) +
F(h) — Iz, with the natural domain. The infinitesimal operator W, of a
Coy-cosine cumulative output G(-) and the infinitesimal operator A. of the
pair (G(-),C(-)) are defined in the same way as Wz = limy,_,o %G(h)m and
Acx = limy_o 7% (C(h) + G(h) — I)z, respectively.

Theorem 3.3. The above defined operators Wy and As are closed and
(i) Wy =X\ —A)F(\), Re) > w;
(i) Ag = A = AF(N) + XF()\), ReX > w;
(i) Ay = AI-3 [1 [T F(s)dsdr)+ 3 ()\2 I C’(s)dsdr—(C’(t)—I)))\F()\), ‘>
0, Rel > w.
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Proof. Let Ay = %(C(h) + F(h) —I). By (iv) of Proposition 3.1 one can
write

2F (h)
h2

2
h?

h . A
= % /0 S()NE(Nads — —(C(h) — DAE(V)z,

Apz =272 /0 " S(s)N3F(N)ads + 2h~2(C(h) — I)(I — AE(\))z.

Since the first term on the right hand side of each equality converges to
NE(N)z as h — 0, we have

D(W,) = D(AEF()N)) and Wz = A(A2 — A)F(\)a for 2 € D(Wy),
and also D(A,) = D(A(I — AF()))) and
Az = NF(\z + A(I — \F(\)z for z € D(Ay).

Since A is closed and F'()) is bounded, it is easy to see that W, and A, are
closed. This shows (i) and (ii).
To show (iii) we use (1.1) to write for all x € X and s > 0

2 (C(h) + F(h) ~ D

— %(C(h) —Da+ %[F(s +h) —20(h)F(s) + F(s — h)|z

= 2O = 1)1~ F(s))a + 5 F(s+ h) ~2P(s) + (s — h)]z
= 2O~ DI~ Fls))r + SO F (R

Now integration twice yields that for any ¢ > 0

2 2 2 [t
(OB + F(h) ~ D =5 (C(h) ~ 1) (tI -2 /0 /0 F(s)dsd7> .
+202 - A)/O /O C/(s)dsdr(\* — A)_lt%F(h)x.

Since the last term converges to (A2 — A) J3 f7 C(s)dsdTAE(M)z as h — 0
for all z € X (Proposition 3.1 (iii)), we also have the representation of A as
in (ii).

Remark. The definition of operator limy_ o, h~'F(h) does not make
sense. Indeed, in this case using (3.1) we get it equals to 0 on the its domain.

In general, the domains of Wy and A, are not necessarily dense. But, under
suitable condition on F'(-) (see [13]), As not only has dense domain, but also
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generates a cosine operator function Cs(-). In contrast, D(W,) and D(A.)
always contain the dense set D(A). This is shown in the next theorem.

Theorem 3.4. The infinitesimal operators W, and A. have the following
properties for ReA > w :

(1)
(i)

D(A) € D(W,) and Wz = A\G(\)(N2 — A)zx for all x € D(A);
({1) D(A,) and for & € D(A) At = Az + W = (I — AG(\)) Az +
NG (N
(iii) D(A) € D(A;) and for = € D(A) and for t > 0
x—([—t2/ / dsd7>

GO (A2/0 /0 C(s)dsdr — (C(t) — 1)> ..

Moreover, if G(t) is uniformly continuous in t, then A. is closed, D(A.) =
D(A), and A, = (I = AG(\)A+ XN3G(N\) for large . If G(N) is invertible for
some A, then operator W, is closed, D(W.) = D(A), and W, = A, — A =
AG(N) (A2 — A).

Proof. Let aj, = %(C(h) + G(h) — I). By (v) of Proposition 3.1 we have

~ h A
Qi(zh)x _ )\SG()\)hQ?/Q S(s)xds — )\G(/\)%(C(h) — Iz,

h
anz = 28GR /0 S(s)ads +2(I — \GOV)h2(C(h) = D).

The first identity shows that D(A) € D(W,) and W,z = AG(\)(\2 — A)zx
for x € D(A). The second identity shows that D(A) C D(A.) and A.x =
Az + Woa = (I — A\G(\)Az + M3G(M\)x for & € D(A). The proof of (iii) is
similar to that of assertion (iii) of Theorem 3.3.

If |G(t)|| — 0 as t — 0, then |[AG(N\)|| — 0 as A — oo (Proposition 3.5
(ii)). Thus I — AG()) is invertible for large A and we have D(A.) C D(A). If
{x,} is a sequence in D(A) such that z, — 2 and (I — A\G()\))Az, — y, then
Az, — (I —XG(\) "'y so that € D(A) and Az = (I — AG(\))"'y. Hence
(I — AG(\)A is closed. The same is A.. The conclusion about operator W,
follows in the same way as for A..

It is clear from (1.1) that if ||F(t)z|| = o(t?) (t — 0%) for all z € X, then
F"(t) = 0 for all t > 0 so that F’'(-) = F'(0) = 0, and then F(-) = F(0) = 0.
Similarly, by (1.2), |G(t)z| = o(t?) (t — 0%) for all x € X implies G(-) = 0.
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Hence the order of convergence at 0 of a non-trivial cosine step response or
cosine cumulative output can not exceed O(t?).

Proposition 3.5. The following statements about order of convergence

hold:
(i) Forn = 0,1, if |F(t)z] = o(t") (t — 0%) for allz € X, then || \"E(\)|| =
0(1) (A = o0) and |N"T1E(N)z|| = o(1) (A — o) for all z € X;

(ii) Forn=0,1,if||G(t)z|| = o(t") (t — 0%) for allz € X, then |A\"G(N)|| =
o(1) (A — 00), INFLG(N)z]| = o(1) (A — o) for all z € X, and
MGz — (Ae — A)x|| = o(A™™) for all x € D(A);

(iii) Forn = 0,1, if [F()|| = o(t") (resp. [|G(t)]| = o(t")) (t — O%), then
INTEEQ = o(1) (resp. [A"TGAI = o(1)) (A — o0);

(iv) Fo)rn =12, if |[F#)|| = O@™) (t — 0F), then [|\"HLEN)| =O0(1) (A —

(v) Forn = 1,2, |G = O™ (t — 0%), then |X*1GON)] = O(1)) (A —
), and | N3G(N)x — (A. — A)z| = O(A™™) for all x € D(A).

Proof. We only show (ii); the proofs of (i), (iii), (iv) and (v) are similar.

For a given ¢ > 0 let § > 0 be chosen so that ||G(t)z|| < et™ for all t € [0, d].
Then we have

petegel < v ([ [T)e Mo
< e)\"H/ e M dt + )\"H/ e MMevtdt||z|
0 0
<e/n!+ M= em )l g,
This shows that [|A\"T1G(\)z|| = o(1)(A — oo) for all z € X. By the uniform
boundedness principle we have [[A"G(A)[| = o(1)(A — o0). By (ii) of Theorem
3.4 we have [ N3G (\)x — (A — A)z|| = o(A7") for all 2 € D(A).

Remark. The behavior of A>F*()\) as A — oo is given in [13].

4. COMPACTNESS

A Cy-cosine step response F'(-) (resp. Cp-cosine cumulative output G(-))
is said to be compact if the operator F(t) (resp. G(t)) is compact for every
t > 0. In this section we discuss conditions for compactness of F(-) and G(-)
and consequences.
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Proposition 4.1. If the sine operator function S(-) is compact and if the
Co-cosine step response F(-) is norm continuous at zero, then F(-) is compact.
The same is true for Cy-cosine cumulative output.

Proof. We integrate (1.1) with respect to ¢ from 0 to 7

T+h T
(4.) | Foyin= [ ey =28 Fh).

The compactness of S(-) implies that the left hand side of (4.1) is compact
for every 7, h > 0. Because S(-) and F'(-) are norm continuous, we can take in
(4.1) the derivative with respect to 7 without lost of compactness property, so
the left hand side of (1.1) is a compact operator. Using condition F'(0) = 0
and the uniform continuity of F(-) we get from (1.1) that F'(h) is compact for
every h > 0.

Proposition 4.2. If the Cy-cosine step response F(-) is compact, then
F(-) is norm continuous on [0, 00).

Proof. Since F(-) is compact, its Laplace transform F(-) is also compact
(see [17]). Then by the formula (iv) of Proposition 3.1 we are done because
the strong convergence becomes uniform convergence after multiplication by
a compact operator from the right.

Proposition 4.3. If there is a cosine operator-function C(-) on a Banach
space X such that each Cy-cosine step response F(-) (or Cy-cosine cumulative
output G(-)) for C(-) is compact, then X must be finite dimensional.

Proof. By assumption, the two particular Cy-cosine step responses
t
Fi(t) = C(t) — I and Fy(t) = / S(s)ds
0

are compact. Then as we know (see [10]), C(t) — I is compact for all ¢ > 0
if and only if the generator A is compact. Hence C(+) is norm continuous on
[0,00). Thus the operator C(0) = I, being the limit in norm of the compact
operators 2t 2Fy(t) as t — 0, is compact. This can happen only when X is
finite dimensional.

5. PosiTiviTy

In case that X is a Banach lattice with positive cone X, we say a function
L(+) on X is positive if for every t > 0 the operator £(t) is positive (in notation,
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L(t) > 0) in the sense that £(¢t)X; C X,. In case that X is a Hilbert space
with inner product (-,-), we say L£(-) is positive (in notation, £(¢) > 0) if for
every t > 0 L(t) is positive in the sense that (L(t)x,z) > 0 for all z € X.

It is known [8] that a cosine operator function C(-) dominates I, i.e. C(-)—I
is positive, either in the sense of Banach lattice or in the sense of Hilbert space,
if and only if its generator A is bounded and positive.

The following propositions are just reformulations of this property in terms
of Cy-cosine step response and Cp-cosine cumulative output. Let Fj(-) and
G'5() be the functions defined by

(5.1) FE(t)x := (A—,u)/OtS(s)B:Eds,xeX,tZO,

¢
Gs(t)z :== B(A —/,L)/ S(s)xds, x € X, t > 0.
0

Then Fj(-) is a Co-cosine step response and G';(+) is a Cop-cosine cumulative
output.

Proposition 5.1. Let X be a Banach lattice. Each Cy-cosine step esponse
FE() for a cosine operator function C(-) on X defined by (5.1) with p < 0
and B = 0 is positive if and only if the generator A of C(-) is positive. The
same is true for Cy-cosine cumulative output.

Proposition 5.2. Let X be a Hilbert space. Each Cy-cosine step response
FE(-) for a cosine operator function C(-) on X defined by (5.1) with p <0
and B > 0 and commuting with C(-) is positive if and only if the generator A
of C(-) is positive. The same is true for Cy-cosine cumulative output.

6. ALMOST PERIODICITY

A function f(-) : [0,00) — X is said to be almost periodic if for every € > 0
the set J(f,e) = {7;||f(t+7) — f(t)]] < € for all ¢ > 0} is relatively dense in
[0, 00), i.e., there exists an [ > 0 such that every subinterval of [0, 00) of length
[ meets J(f,€). An operator-valued function Q(-) : [0,00) — B(X) is said to
be almost periodic if for each z € X the function Q(-)z is almost periodic.

Lemma 6.1. If a continuous function f(-) : [0,00) — X converges to
some v € X ast — oo, then

t
(6.1) 2t*2/ sf(s)ds — ¢ ast— oo.
0
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Proof. Clearly, it is enough to consider the case ¢ = 0. Put t =7+ ¢ and
write

2 [t 2 T 2 T+¢
7572/0 sf(s) ds_(T—i-C)Q/o sf(s) ds+(7_+02/7 sf(s) ds.

Since || =2 [T sf(s) ds|| < supy= [ f(8)]] for all ¢ and 7 and f(t) — 0 as
t — 00, we can choose 7 so large that the second term becomes smaller than
some given € > 0. Then we can take large ¢ such that the first term is also
smaller than e. This shows (6.1) with ¢ = 0.

The next theorem gives a necessary and sufficient condition for every Cp-
cosine step response (or every Cy-cosine cumulative output) to be almost pe-
riodic.

Theorem 6.2. FEvery Cy-cosine step response F(-) for C(-) is almost
periodic if and only if C(+) is almost periodic and 0 € p(A). The same assertion
is true for Cp-cosine cumulative outputs.

Proof. Let C(-) be almost periodic. Then the condition 0 € p(A) implies
that [j S(s)ds = [3 S(s)AA~ ds = (C(t) — I)A™" is also almost periodic, so
that from Proposition 3.1(iv) we see the almost periodicity of F(-).

Conversely, if each Cy-cosine step response is almost periodic, then the two
particular Cop-cosine step responses C(t) — I and [; S(s)ds are almost periodic
functions. If z € N(A), then z = C(s)x — [§ S(u)Azdu = C(s)x for all s >0
and 2 = 2t2 [T S(s)xds — 0 as t — 0o, because an almost periodic function is
bounded. Hence A is injective. Next, since an almost periodic function is mean
ergodic (see e.g. [1, p. 21]), the limit of < [5 [3' S(v)z dv du exists as s — oo
for every = € X. By Lemma 6.1, the limit 2 fj s1 [ [o' [ C(7)z d7 dv du ds
exists as t — oo for any x € X. Since C(-) is uniformly bounded, it follows
from Proposition 7.6 (ii) (i.e. [14, Theorem 3.7]) that R(A) = X. Therefore
we have 0 € p(A).

Remark. The assumption that C(-) is almost periodic and 0 € p(A) is
equivalent to the condition that (see [9]) each generalized solution of (CP) is
almost periodic.

From the above theorem one can deduce the next theorem.
Theorem 6.3. Each Cy-cosine step response F(-) for C(-) is periodic if

and only if C(+) is periodic and 0 € p(A). In this case, F(-) and C(-) have the
same period. The same assertion is true for Cy-cosine cumulative outputs.
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7. ASYMPTOTIC BEHAVIOR

This section is concerned with asymptotic behavior of a Cy-cosine step
response F'(t) and a Cp-cosine cumulative output G(t) as t — oo. First we
consider the problem under the assumption that there exist a real number Ay
and a nonzero bounded operator P € B(X) such that

(7.1) lim 2e 2! C(t)x = Pz for all z € X.

t—o0

Clearly in this case there is a constant M; > 1 such that

(7.2) |C )| < Myet for t > 0.
From the identity

(7.3) 27 20(C(2t) + 1) = 2¢O (1) 2e MO (1)

it is seen that in case (7.1) A9 cannot be negative. In case \g = 0, we have
from (7.3) P + 21 = P2, On the other hand, by letting t — oo and then
s — 0o in the equation (b), one has 2P = P2. Hence we have C(t) — P/2 =1
as t — o0o. Letting t — oo in (b) then leads to C(s) = I for all s € R. Then
it follows from (iv) of Proposition 3.1 that F(t)z = 2~ %#2A3F(\)z (for any
A > w), which does not converge as t — oo unless € N(F())). The same
situation is for G(-). Thus the case \p = 0 is not interesting, and we shall
assume g > 0 from now on. From (7.3) it is clear that the operator P is now

a projection.

It is known [5, p. 92] that the generator A of the cosine operator function
C'(+) generates also a Cy-semigroup 7'(-) defined by

2
T(t)x e w(C(s)xds, v € X.

1 o0
- V7t /0
As will be seen in the next theorem, the convergence of 2e~*! C(t) to P as
t — oo implies the convergence of e‘AgtT(t) to P in the same topology. When
P has finite rank and ||e =T (t) — P|| as t — oo, Webb [18] says that the Co-
semigroup 7'(-) has asynchronous exponential growth with intrinsic growth
constant A3. In this case, one has that A3 > wess(A), where wess(A) is the

essential type or essential growth bound, the peripheral spectrum og(A) =
{A2} and A3 is a simple pole of the resolvent (A — A)~! (see [18]).

Theorem 7.1. Suppose that (7.1) holds with A\g > 0. Then P is a pro-
jection with range R(P) = N(\3 — A) and null space N(P) = R(\3 — A).
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If, in addition, P has finite rank and ||2e=*'C(t) — P|| — 0 as t — oo, then
A > wess(A), 09(A) = {A\3} and A3 is a simple pole of the resolvent (A\— A)~1

Proof. We shall prove that the semigroup e*AgtT(t) converges to P strongly
as t — oo. Then it follows from the mean ergodic theorem for semigroup that
P is a projection with R(P) = N(A\3 — A) and N(P) = R(\% — A).

We write

—)\2t

2Vt Jo

—)\t

Q\F/

e N ()2 = e~ ers[ e 50 (s) — Plxds

2
_ 5
e~ weM%dsPy.

It suffices to show that the first term @1(¢) on the right hand side converges
to zero and the second term Q2(t) converges to Px as t — oo. We first see
that

2
e~ Nt oo 2 s (s— 2/\Ot)2
e e s = ds

1 o0
= s, ==/

)
e “du

converges to ﬁ 120 e "’ du = 1 as t — oo. Therefore Q2(t) converges to

Px as t — oo. Let ¢ > 0 be arbitrarily small and take 7 > 0 so large that
|2e=05C(s)z — Px| < ¢ for all s > 7. Then

e~ Aot \ \ =2t 2 )
t) < e 4te°S ~05C(s) — P)x||ds + € —— e~ e 0%(s,
Qi) < S [T emom e c(s) - Prafds +e S [

and hence is bounded by 2¢ as t — oo. This shows that Q1(t) — 0 as t — oc.

When ||2e=2!C(t) — P|| — 0 as t — oo, a similar argument as above shows
that ||e=!T(t) — P|| — 0 as t — co. When P has finite rank, the semigroup
T(-) has asynchronous exponential growth with intrinsic growth constant \3.
It follows from Theorem of [18] that A3 > wess(A), do(A) = {N\2}, and )2 is a
simple pole of resolvent (A — A)~!

We shall need the following

Lemma 7.2. If a strongly continuous function f(-):[0,00) — X is such
that limi—oo f(t) = @, @ € X, then for any X\ with Re\ > 0 we have

t
(7.4) e*’\t/ M f(s) ds — /N as t — oco.
0
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Proof. To prove (7.4) it is enough to consider the case ¢ = 0, because of

t t
)\e*)‘t/o M (f(s) —p)ds+p—e M p= )\e*)‘t/o e f(s)ds

Now we put t = 7 + ¢ and write

6_/\t/ )\Sf( ) S_e—)\(T-FC)/ )‘sf )ds—}—@_)\(q——i_o/ eAsf(S)dS
0 0

= e A0 / TN f(T 4+ n)dn 4+ e e / e f(s)ds
0 0

Since |le=*¢ fOC e f(r +n) dn|| is less than A~1(1 — e=2%) sup,~, || £(¢)]| for all
¢ and 7, we can choose T so large that the first term becomes smaller than
€. Then we can take large ¢ such that the second term is also smaller than e.
This shows (7.4) with ¢ = 0.

Proposition 7.3. Suppose the cosine operator function C(-) satisfies (7.1)
with g > 0. Then 2e™20tS(t) — P/Xg and 2e=*! [} S(s)ds — P/)\3 strongly

as t — oo.

Proof. We can write
t
Qe_AOtS(t) = e_>‘°t/ e>‘°52e_)‘°SC(s)ds
0
and
t t s
26_)‘0t/ S(s)ds = e_’\ot/ e)‘ose_AOS/ e’\0"26_’\°’70(77) dn ds.
0 0 0
The conclusion now follows by applying Lemma 7.2.

Theorem 7.4. Suppose the cosine operator function C(-) satisfies (7.1)
with A\g > 0. Then for every A > Ao and x € X we have

Jlim 2e M Pt = AN /A2 — 1) PE(\)a,

which is equal to (A — Az if x € D(A) and F(\)z € N(A\3 — A) simulta-
neously, and is equal to zero if F(\)x € RO\ — A).

Proof. For A\g > 0 we write

2Nl ({1 = 2ot / S(s)NF(N)xds — 269HC(t) — DAF(N)a.
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Then applying Proposition 7.3, Theorem 3.3 and taking A — oo we obtain the
asserted limit.

A similar argument using Proposition 7.3 and Theorem 3.4 shows the next
theorem.

Theorem 7.5. Suppose the cosine operator function C(-) satisfies (7.1)
with Ao > 0. Then for every A\ > X\g and x € X we have the limit

Jlim 2e7 M G () = GANAANZ /A2 — 1) Pz,

which is equal to %(AC — A)x if x € N(A3 — A), and is equal to zero if
0
z € RO\ — A).

As mentioned previously, if C'(t) converges strongly as t — oo, then C(+) =
I, and both F(t) and G(t) diverge. In the rest of this section we shall consider
the behavior of F'(-) and G(-) under the assumption:

t rs
(7.5) sup ||t_2/ / C(u) duds|| < oo and t2C(t) — 0 strongly as t — oo.
t>0 00

We need the following Proposition (see [14, Theorems 3.5 and 3.7)).

Proposition 7.6. Under the assumption (7.5) we have:

(i) The mapping P : x — limy_o 272 [¢ [* C(u)z duds is a linear projec-
tion with R(P) = N(A), N(P) = R(A) and D(P) = N(A) ® R(A);

(i) = == —limy_oo 2672 3 [5 [ [ C(T)y dT dv du ds exists if and only
if y € A(D(A) N R(A)) (= R(A) in case C(-) is (C,2) mean ergodic, i.e.
D(P) = X ). Moreover, this element x is the unique solution of the equation

Az =y in R(A), i.e. x = A"y where A = A\m.

Using Proposition 3.1 (iv) and the above proposition we obtain

Theorem 7.7. Under the assumption (7.5) the following assertions hold:

(i) The limit y = lim;_,oo 267 2F (t)x exists if and only if F(\)z € N(A) @
R(A) for some (and all) X > w. When the limit exists, y = N> PEF(\)z, which
1s independent of A;

(i) When F(\)z € N(A) @ R(A), 2 = limy_o 262 [1 [ F(7)x drds exists
if and only if F(\)x € A(D(A) N R(A)) for some (and all) X\ > w. In this

~

case, z = —A(\2 — A)A"LF(\)x, which is independent of \.

Proof. By (iv) of Proposition 3.1, we have

. t s .
22 F(t)z = 2~ 2(I — C(t))AE(\)x + 22 /O /0 C(F)NE(\)adrds
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and

t rs t rs ru v ~
22 / / F(r)zdrds =2t2 / / / / C(r)N*F(N)adrdududs
0 /0 079 -0 /0
9y / / C(MNE(Nadrds + AP(\)z.
0J0

Then, as consequences of Proposition 7.6, assertions (i) and (ii) follow from
(7.6) and (7.7), respectively.

Similarly, using Proposition 3.1 (v), Proposition 7.6, and Proposition 3.5
(ii) we have the next theorem.

Theorem 7.8. Under the assumption (7.5) the following assertions hold:
@ R(A), then limy_.o, 2t 2G(t)x = A.Puz;

ii) If z € A(D(A) N R(A)), then lim;_o 2t72 [§ [* G(1)x drds = —(A, —

1

x.
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