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ON CERTAIN OPERATOR FAMILIES RELATED TO
COSINE OPERATOR FUNCTIONS∗

S. Piskarev and S.-Y. Shaw

Abstract. This paper is concerned with two cosine-function-related
functions which are called cosine step response and cosine cumulative
output. We study some of their properties, such as measurability, conti-
nuity, infinitesimal operator, compactness, positivity, almost periodicity,
and asymptotic behavior.

1. Introduction

Let X be a Banach space, and B(X) denote the algebra of all bounded
linear operators on X. Throughout this paper, {C(t); t ≥ 0} is a strongly
continuous cosine operator function on X. By definition, it is a family of
operators in B(X) satisfying

(a) C(0) = I;
(b) C(t+ s) + C(t− s) = 2C(t)C(s) for t, s ∈ (−∞,∞);
(c) the function C(·)x is continuous on (−∞,∞) for every x ∈ X.

There exist some M ≥ 1, ω ∈ R such that ‖C(t)‖ ≤ Meωt for all t ≥ 0.
The associated sine operator function S(·) is defined by the formula S(t) =∫ t
0 C(s)ds, t ∈ (−∞,∞). The second infinitesimal generator (or simply the

generator) A of C(·) is defined as Ax = limt→0+ 2t−2(C(t)− I)x, with natural
domain. A cosine operator function gives the solution of a well-posed Cauchy
problem

u′′(t) = Au(t), u(0) = x, u′(0) = y,(CP)
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in the form u(t) = C(t)x + S(t)y, −∞ < t < ∞. For the theory of cosine
operator function we refer to [5] and [16].

This paper is concerned with two cosine-function-related functions which
we define as follows.

Definition 1.1. Let C(·) be a cosine operator function. A family {F (t); t ∈
(−∞,∞)} of operators in B(X) is called a cosine step response for C(·) if
F (0) = 0 and

F (t+ s)− 2F (t) + F (t− s) = 2C(t)F (s) for t, s ∈ (−∞,∞).(1.1)

A family {G(t);−∞ < t < ∞} in B(X) is called a cosine cumulative output
for C(·) if G(0) = 0 and

G(t+ s)− 2G(t) +G(t− s) = 2G(s)C(t) for t, s ∈ (−∞,∞).(1.2)

Clearly, F (·) and G(·) are even functions. If these families are strongly contin-
uous at zero, we call them C0-cosine step response and C0-cosine cumulative
output, respectively.

The above terminologies are chosen in view that the two functions F (·)
and G(·) are related to the cosine function C(·) more or less the same way
that a step response U(·) and a cumulative output V (·) are related to a C0-
semigroup T (·), and it turns out that they have similar properties. We recall
that U(·) satisfies U(0) = 0 and U(t+s)−U(t) = T (t)U(s), t, s ≥ 0, and V (·)
satisfies V (0) = 0 and V (t + s) − V (t) = V (s)T (t), t, s ≥ 0. Step responses
and cumulative outputs for C0-semigroups have been investigated in [11], [12],
and [15].

C0-cosine step responses and C0-cosine cumulative outputs play interesting
roles in the perturbation of cosine operator functions and the Cauchy problem
(CP) (see [13]). For example, using C0-cosine step responses we are able to
consider the well-posedness of the perturbed Cauchy problem in the form

u′′(t) = A(1− λF̂ (λ))u(t) + λ3F̂ (λ)u(t), u(0) = x, u′(0) = y, t ≥ 0.

Our purpose in this paper is to study some properties of cosine step responses
and cosine cumulative outputs, such as, measurability and continuity, Laplace
transform and infinitesimal operator, compactness, positiveness, almost peri-
odicity, and asymptotic behavior; each subject will be discussed in a section.
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2. Measurability and Continuity

It is known that a cosine operator function which is strongly (resp. uni-
formly) measurable on (0,∞) has to be strongly (resp. uniformly) continuous
on (−∞,∞) (see [4] and [7]). The next theorem shows that cosine step re-
sponses and cosine cumulative outputs share the same property.

Theorem 2.1. If a cosine step response F (·) is strongly (resp. uniformly)
measurable on (0,∞), then F (·) is strongly (resp. uniformly) continuous on
(−∞,∞). If a cosine cumulative output G(·) is uniformly measurable on
(0,∞), then G(·) is uniformly continuous on (−∞,∞).

Proof. First of all the Lebesgue measurability of F (·)x on (0,∞) implies
the Lebesgue measurability of ‖F (·)x‖ on (0,∞) (see [6]). Next, we show
that ‖F (·)x‖ is bounded on any compact subinterval [a, b] of (0,∞) for every
x ∈ X. Suppose not. Then there are an x̃ ∈ X, a number τ > 0 and a
sequence τn ∈ [a, b] such that τn → τ and

‖F (τn)x̃‖ ≥ n as n→∞.

Because of the measurability of ‖F (·)x̃‖ there exist a constant c1 and a Lebesgue
measurable set Λ ⊂ [0, τ ] with measure m(Λ) > 3

4τ and

sup
t∈Λ
‖F (t)x̃‖ ≤ c1.(2.1)

Now following [2] we let

Ak :=
τk
2
− Λ ∩ [0, τk]

2
, Bk := Λ ∩ [0, τk/2].(2.2)

and

A =
τ

2
− Λ

2
, B = Λ ∩ [0, τ/2].

First we have m(A∩B) > 0. To prove this, assume that m(A∩B) = 0. Then
m(A) +m(B) ≤ τ/2. But m(A) = m(Λ)/2 by definition of set A. So it means
that m(Λ) + 2m(B) ≤ τ . Hence 3

4τ < m(Λ) ≤ τ − 2m(B), i.e.

m(B) ≤ τ/8.(2.3)

Now let us write

Λ = (Λ ∩ [0, τ/2]) ∪ (Λ ∩ [τ/2, τ ]) = B ∪ D,
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where m(Λ) = m(B) +m(D) with m(D) ≤ τ/2. But

3
4
τ < m(Λ) = m(B) +m(D) ≤ m(B) + τ/2

implies m(B) > τ/4, that is a contradiction to (2.3). We have proved that
m(A ∩ B) ≥ δ > 0.

Now we introduce the sets E = A∩B, En = An∩Bn and Hn = {τn−η ; η ∈
En}. It is clear that En → E as n → ∞, so that m(Hn) > δ/2 for n large
enough. For such n, if η ∈ En, then η and τn − 2η both belong to Λ because
of (2.2). Using now (1.1) and (2.1) we get for η ∈ En

n≤ ‖F (τn)x̃‖

≤ 2‖F (τn − η)x̃‖+ ‖F (τn − 2η)x̃‖+ 2‖C(τn − η)‖ ‖F (η)x̃‖

≤ 2‖F (τn − η)x̃‖+ c1 + 2Meωbc1.

(2.4)

Hence

‖F (t)x̃‖ ≥ n− c1 − 2Mc1e
ωβ

2

for t ∈ Hn, and denoting limn→∞Hn = H∞ we have that ‖F (t)x̃‖ = ∞ for
t ∈ H∞ with m(H∞) ≥ δ/2 > 0. This is a contradiction to the fact that
‖F (t)x̃‖ is finite for all t.

Now we are going to prove that Lebesgue measurability together with
boundedness implies the continuity of F (·)x for each t > 0 and each x ∈ X.
For this purpose we choose four positive numbers α, β, ε and γ such that
β < t− ε and 0 < α < γ < β < t. From (1.1) we have

F (t)x = 2F (t− γ/2)x− F (t− γ)x+ 2C(t− γ/2)F (γ/2)x.

The left hand side being independent of γ is integrable with respect to γ and
we have

(β − α)(F (t± ε)x− F (t)x) =
∫ β

α
2(F (t± ε− γ/2)− F (t− γ/2)x)dγ

−
∫ β

α
(F (t± ε− γ)− F (t− γ))xdγ

+
∫ β

α
2(C(t± ε− γ/2)

−C(t− γ/2))F (γ/2)xdγ.
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Hence

‖(F (t± ε)− F (t))x‖≤ 1
β−α

[∫ t−α/2

t−β/2
‖(F (ζ ± ε)− F (ζ))x‖dζ

+
∫ t−α

t−β
‖(F (ζ ± ε)− F (ζ))x‖dζ

+2
∫ β

α
‖(C(t± ε− γ/2)− C(t− γ/2))F (γ/2)x‖dγ

]
.

By Theorem 3.8.3 of [6],
∫ t−α/2
t−β/2 → 0 and

∫ t−α
t−β → 0 as ε → 0. The last term

goes to zero because of the Lebesgue convergence theorem (see [6, Theorem
3.7.9 ]) . It follows now that F (t)x is continuous for t > 0. Replacing the t in
(1.1) by t+ s we have for all t, s > 0

F (t)x = 2C(t+ s)F (s)x− F (t+ 2s)x+ 2F (t+ s)x,

which converges to 2C(s)F (s)x − F (2s)x + 2F (s)x = F (0)x = 0 as t → 0+.
Therefore F (·) is strongly continuous on [0,∞), and hence on (−∞,∞), be-
cause F (·) is an even function. The proof for the case of uniform measurability
is similar.

To prove the assertion for G(·) one can use the following form of (1.2):

G(τn) = 2G(τn − η)−G(τn − 2η) + 2G(η)C(τn − η)

in an estimate analogous to (2.4). The proof then proceeds similarly.

Theorem 2.2. C0-cosine step responses and C0-cosine cumulative out-
puts for a cosine operator function C(·) are strongly continuous on [0,∞).
Moreover, uniform continuity at 0 implies uniform continuity on [0,∞).

Proof. Following [3] we suppose in contrary that the C0-cosine step re-
sponse F (·) is not strongly continuous at some point t0 > 0, i.e. there exists
x0 such that the nonincreasing sequence

Kn := sup
{
‖(F (t)− F (s))x0‖ ; |t− t0|, |s− t0| ≤

t0
8n

}
converges to some K > 0 as n → ∞. We can take sequences τn and σn such
that

|τn − t0| ≤
t0
8n

, |σn − t0| ≤
t0
8n

and
‖(F (τn)− F (σn))x0‖ ≥ Kn −

1
n
, n ∈ N.
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It is clear that |σn − τn| ≤ t0
4n and |2τ4n − σ4n − t0| ≤ t0

8n , n ∈ N . Therefore

‖(F (σ4n)− F (2τ4n − σ4n))x0‖ ≤ Kn, n ∈ N.

Now, using identity (1.1) in the form

2(F (t+ h)− F (t)) = (F (t+ h)− F (t− h)) + 2C(t)F (h)

and putting t0 + h = σ4n and t0 = τ4n we get

2‖(F (σ4n)− F (τ4n)x0‖ ≤ Kn + 2Meωt0‖F (σ4n − τ4n)x0‖.

Hence
2(K4n −

1
4n

) ≤ Kn + 2Meωt0‖F (σ4n − τ4n)x0‖

and so

K4n + (K4n −Kn) ≤ 1
2n

+ 2Meωt0‖F (h)x0‖.(2.5)

Because F (h)x0 → 0 as h→ 0 (we recall that h = σ4n−τ4n ) and K4n−Kn → 0
as n → ∞, we have that Kn → 0 as n → ∞, n ∈ N , which is a contradiction
to our assumption that Kn → K, K > 0.

To prove the same statement for G(·) by a similar argument one can use
the identity

2(G(t+ h)−G(t)) = (G(t+ h)−G(t− h)) + 2G(t)(C(h)− I) + 2G(h),

which is obtained from (1.2) and Proposition 3.1 (i).

By a routine argument as in the proof of Proposition 2.6 of [11] one can
prove the following proposition.

Proposition 2.3. Suppose C0-cosine step response F (·) and cosine oper-
ator function C(·) commute, i.e. F (t)C(t) = C(t)F (t) for all t ≥ 0. Then F (·)
is a commutative family, i.e. F (t)F (s) = F (s)F (t) for s, t ≥ 0. The same is
true for C0-cosine cumulative outputs.

3. Laplace Transform and Infinitesimal Operators

In this section we collect some basic properties of the Laplace transforms
F̂ (·) and Ĝ(·) of C0-cosine step response F (·) and C0-cosine cumulative output
G(·).

Proposition 3.1. Let F (·) be a C0-cosine step response and G(·) be a C0-
cosine cumulative output for a cosine operator function C(·). The following
properties are satisfied:
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( i ) (C(t) − I)F (s) = (C(s) − I)F (t) and G(s)(C(t) − I) = G(t)(C(s) − I)
for t, s ≥ 0;

(ii) The functions F (·) and G(·) are exponentially bounded;

(iii) d2

dt2
[λ(λ2 −A)−1F (t)x] = C(t)λ2F̂ (λ)x and

d2

dt2
[G(t)λ(λ2 −A)−1x] = λ2Ĝ(λ)C(t)x for x ∈ X, λ > ω, and t > 0;

(iv) F (t)x = (λ2 −A)
∫ t
0 S(s)λF̂ (λ)x ds

=
∫ t

0 S(s)λ3F̂ (λ)x ds− (C(t)− I)λF̂ (λ)x for x ∈ X, t ≥ 0;

(v) G(t)x = λĜ(λ)(λ2 −A)
∫ t

0 S(s)x ds

= λ3Ĝ(λ)
∫ t

0 S(s)x ds− λĜ(λ)(C(t)− I)x for x ∈ X, t ≥ 0.

Proof. Property (i) is an easy consequence of (1.1) and (1.2). To show
that a C0-cosine step response F (·) is exponentially bounded, let us choose
L ≥ 1, τ > 0 such that ‖C(s)‖ ≤ L, ‖F (s)‖ ≤ L for 0 ≤ s ≤ τ. Using

F (kτ + s) = 2F (kτ)− F (kτ − s) + 2C(kτ)F (s),

we have for 0 ≤ s ≤ τ

‖F (τ + s)‖≤ ‖2F (τ)‖+ ‖F (τ − s)‖+ 2 Meτω‖F (s)‖

≤ 2L+ L+ 2MeτωL ≤Meτω5L ≤Me2τω1 ,

where 5L ≤ eτω1 and ω ≤ ω1, and by induction

‖F (kτ + s)‖≤ 2‖F (kτ)‖+ ‖F (kτ − s)‖+ 2‖C(kτ)‖ ‖F (s)‖

≤ 2Mekτω1 +Mekτω1 + 2LMekτω1 ≤ 5LMekτω1

≤Me(k+1)τω1

for all s ∈ [0, τ ]. Hence we have ‖F (t)‖ ≤ M1e
ω1t for M1 = Meτω1 and all

t ≥ 0.
To show (iii), let Θ(t, λ) = λ(λ2 − A)−1F (t) and Υ(t, λ) = G(t)λ(λ2 −

A)−1, λ > ω, t ≥ 0. From (1.1) and (1.2) one sees that

Θ′′t (t, λ) = C(t) lim
s→0

2s−2λ(λ2 −A)−1F (s) = C(t)Θ′′t (0, λ)

if Θ′′t (0, λ) exists, and

Υ′′t (t, λ) = lim
s→0

2s−2λ(λ2 −A)−1G(s)C(t) = Υ′′t (0, λ)C(t)

if Υ′′t (0, λ) exists. Hence it is enough to show Θ′′t (0, λ) = λ2F̂ (λ) and Υ′′t (0, λ) =
λ2Ĝ(λ).

533



534 S. Piskarev and S.-Y. Shaw

Taking the Laplace transform of (1.1) with respect to t we have

(eλs − 2 + e−λs)F̂ (λ)− eλs
∫ s

0
e−λτF (τ)dτ + e−λs

∫ s

0
eλτF (τ)dτ

= 2λ(λ2 −A)−1F (s) = 2Θ(s, λ).

Taking derivatives we obtain

2Θ′s(s, λ) = λ(eλs − e−λs)F̂ (λ)− λeλs
∫ s

0
e−λτF (τ)dτ − λe−λs

∫ s

0
eλτF (τ)dτ

and
2Θ′′s(s, λ) =λ2(eλs + e−λs)F̂ (λ)− λ2eλs

∫ s
0 e
−λτF (τ)dτ

+λ2e−λs
∫ s
0 e

λτF (τ)dτ − 2λF (s),

and so Θ
′
s(0, λ) = 0 and Θ

′′
s (0, λ) = λ2F̂ (λ). Similarly, one can show that

Υ′s(0, λ) = 0 and Υ′′s(0, λ) = λ2Ĝ(λ).
Integrating Θ′′t (t, λ) = C(t)λ2F̂ (λ) from 0 to t twice and using the fact

that F (0) = 0 and Θ′t(0, λ) = 0 we obtain

λ(λ2 −A)−1F (t)x = Θ(t, λ)x =
∫ t

0
S(s)λ2F̂ (λ)xds, x ∈ X,(3.1)

and hence (iv). Statement (v) is proved similarly.

Remark. If C(·) is uniformly continuous, then every C0-cosine step re-
sponse F (·) (resp. C0-cosine cumulative output) for C(·) is also uniformly
continuous. This is clear from formula (iv) (resp. (v)) of Proposition 3.1.

Definition 3.2. Let F (·) be a C0-cosine step response for cosine op-
erator function C(·). The infinitesimal operator Ws of F (·) is defined as
Wsx = limh→0

2
h2F (h)x, with the natural domain. The infinitesimal op-

erator As of the pair (C(·), F (·)) is defined as Asx := limh→0
2
h2 (C(h) +

F (h) − I)x, with the natural domain. The infinitesimal operator Wc of a
C0-cosine cumulative output G(·) and the infinitesimal operator Ac of the
pair (G(·), C(·)) are defined in the same way as Wcx = limh→0

2
h2G(h)x and

Acx := limh→0
2
h2 (C(h) +G(h)− I)x, respectively.

Theorem 3.3. The above defined operators Ws and As are closed and

( i ) Ws = λ(λ2 −A)F̂ (λ), Reλ > ω;
(ii) As = A(I − λF̂ (λ)) + λ3F̂ (λ), Reλ > ω;

(iii) As = A(I− 2
t2

∫ t
0
∫ τ

0 F (s)dsdτ)+ 2
t2

(
λ2 ∫ t

0
∫ τ

0 C(s)dsdτ−(C(t)−I)
)
λF̂ (λ), t >

0, Reλ > ω.
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Proof. Let Ah = 2
h2 (C(h) + F (h)− I). By (iv) of Proposition 3.1 one can

write
2F (h)
h2 x =

2
h2

∫ h

0
S(s)λ3F̂ (λ)xds− 2

h2 (C(h)− I)λF̂ (λ)x,

Ahx = 2h−2
∫ h

0
S(s)λ3F̂ (λ)xds+ 2h−2(C(h)− I)(I − λF̂ (λ))x.

Since the first term on the right hand side of each equality converges to
λ3F̂ (λ)x as h→ 0, we have

D(Ws) = D(AF̂ (λ)) and Wsx = λ(λ2 −A)F̂ (λ)x for x ∈ D(Ws),

and also D(As) = D(A(I − λF̂ (λ))) and

Asx = λ3F̂ (λ)x+A(I − λF̂ (λ))x for x ∈ D(As).

Since A is closed and F̂ (λ) is bounded, it is easy to see that Ws and As are
closed. This shows (i) and (ii).

To show (iii) we use (1.1) to write for all x ∈ X and s ≥ 0

2
h2 (C(h) + F (h)− I)x

=
2
h2 (C(h)− I)x+

2
h2 [F (s+ h)− 2C(h)F (s) + F (s− h)]x

=
2
h2 (C(h)− I)(I − F (s))x+

1
h2 [F (s+ h)− 2F (s) + F (s− h)]x

=
2
h2 (C(h)− I)(I − F (s))x+

2
h2C(s)F (h)x.

Now integration twice yields that for any t > 0

2
h2 (C(h) + F (h)− I)x =

2
h2 (C(h)− I)

(
I − 2

t2

∫ t

0

∫ τ

0
F (s)dsdτ

)
x

+ 2
t2

(λ2 −A)
∫ t

0

∫ τ

0
C(s)dsdτ(λ2 −A)−1 2

t2
F (h)x.

Since the last term converges to 2
t2

(λ2 −A)
∫ t
0
∫ τ

0 C(s)dsdτλF̂ (λ)x as h→ 0+

for all x ∈ X (Proposition 3.1 (iii)), we also have the representation of As as
in (iii).

Remark. The definition of operator limh→0+ h
−1F (h) does not make

sense. Indeed, in this case using (3.1) we get it equals to 0 on the its domain.

In general, the domains of Ws and As are not necessarily dense. But, under
suitable condition on F (·) (see [13]), As not only has dense domain, but also
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generates a cosine operator function Cs(·). In contrast, D(Wc) and D(Ac)
always contain the dense set D(A). This is shown in the next theorem.

Theorem 3.4. The infinitesimal operators Wc and Ac have the following
properties for Reλ > ω :

( i ) D(A) ⊆ D(Wc) and Wcx = λĜ(λ)(λ2 −A)x for all x ∈ D(A);

(ii) D(A) ⊆ D(Ac) and for x ∈ D(A) Acx = Ax+Wcx = (I − λĜ(λ))Ax+
λ3Ĝ(λ)x;

(iii) D(A) ⊆ D(Ac) and for x ∈ D(A) and for t > 0

Acx =
(
I − 2

t2

∫ t

0

∫ τ

0
G(s)dsdτ

)
Ax

+λĜ(λ)
2
t2

(
λ2
∫ t

0

∫ τ

0
C(s)dsdτ − (C(t)− I)

)
x.

Moreover, if G(t) is uniformly continuous in t, then Ac is closed, D(Ac) =
D(A), and Ac = (I − λĜ(λ))A+ λ3Ĝ(λ) for large λ. If Ĝ(λ) is invertible for
some λ, then operator Wc is closed, D(Wc) = D(A), and Wc = Ac − A =
λĜ(λ)(λ2 −A).

Proof. Let ah = 2
h2 (C(h) +G(h)− I). By (v) of Proposition 3.1 we have

2G(h)
h2 x = λ3Ĝ(λ)

2
h2

∫ h

0
S(s)xds− λĜ(λ)

2
h2 (C(h)− I)x,

ahx = 2λ3Ĝ(λ)h−2
∫ h

0
S(s)xds+ 2(I − λĜ(λ))h−2(C(h)− I)x.

The first identity shows that D(A) ⊆ D(Wc) and Wcx = λĜ(λ)(λ2 − A)x
for x ∈ D(A). The second identity shows that D(A) ⊆ D(Ac) and Acx =
Ax + Wcx = (I − λĜ(λ))Ax + λ3Ĝ(λ)x for x ∈ D(A). The proof of (iii) is
similar to that of assertion (iii) of Theorem 3.3.

If ‖G(t)‖ → 0 as t → 0, then ‖λĜ(λ)‖ → 0 as λ → ∞ (Proposition 3.5
(ii)). Thus I − λĜ(λ) is invertible for large λ and we have D(Ac) ⊆ D(A). If
{xn} is a sequence in D(A) such that xn → x and (I − λĜ(λ))Axn → y, then
Axn → (I − λĜ(λ))−1y so that x ∈ D(A) and Ax = (I − λĜ(λ))−1y. Hence
(I − λĜ(λ))A is closed. The same is Ac. The conclusion about operator Wc

follows in the same way as for Ac.

It is clear from (1.1) that if ‖F (t)x‖ = o(t2) (t → 0+) for all x ∈ X, then
F ′′(t) = 0 for all t ≥ 0 so that F ′(·) ≡ F ′(0) = 0, and then F (·) ≡ F (0) = 0.
Similarly, by (1.2), ‖G(t)x‖ = o(t2) (t → 0+) for all x ∈ X implies G(·) ≡ 0.
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Hence the order of convergence at 0 of a non-trivial cosine step response or
cosine cumulative output can not exceed O(t2).

Proposition 3.5. The following statements about order of convergence
hold:

( i ) For n = 0, 1, if ‖F (t)x‖ = o(tn) (t→ 0+) for all x ∈ X, then ‖λnF̂ (λ)‖ =
o(1) (λ→∞) and ‖λn+1F̂ (λ)x‖ = o(1) (λ→∞) for all x ∈ X;

(ii) For n = 0, 1, if ‖G(t)x‖ = o(tn) (t→ 0+) for all x ∈ X, then ‖λnĜ(λ)‖ =
o(1) (λ→∞), ‖λn+1Ĝ(λ)x‖ = o(1) (λ→∞) for all x ∈ X, and
‖λ3Ĝ(λ)x− (Ac −A)x‖ = o(λ−n) for all x ∈ D(A);

(iii) For n = 0, 1, if ‖F (t)‖ = o(tn) (resp. ‖G(t)‖ = o(tn)) (t → 0+), then
‖λn+1F̂ (λ)‖ = o(1) (resp. ‖λn+1Ĝ(λ)‖ = o(1)) (λ→∞);

(iv) For n = 1, 2, if ‖F (t)‖ = O(tn) (t→ 0+), then ‖λn+1F̂ (λ)‖ = O(1) (λ→
∞);

(v) For n = 1, 2, if ‖G(t)‖ = O(tn) (t→ 0+), then ‖λn+1Ĝ(λ)‖ = O(1)) (λ→
∞), and ‖λ3Ĝ(λ)x− (Ac −A)x‖ = O(λ−n) for all x ∈ D(A).

Proof. We only show (ii); the proofs of (i), (iii), (iv) and (v) are similar.
For a given ε > 0 let δ > 0 be chosen so that ‖G(t)x‖ ≤ εtn for all t ∈ [0, δ].
Then we have

‖λn+1Ĝ(λ)x‖≤ λn+1
(∫ δ

0
+
∫ ∞
δ

)
e−λt‖G(t)x‖dt

≤ ελn+1
∫ ∞

0
e−λttn dt+ λn+1

∫ ∞
δ

e−λtMewtdt‖x‖

≤ ε/n! +M λn+1

λ−w e
−(λ−w)δ‖x‖.

This shows that ‖λn+1Ĝ(λ)x‖ = o(1)(λ→∞) for all x ∈ X. By the uniform
boundedness principle we have ‖λnĜ(λ)‖ = o(1)(λ→∞). By (ii) of Theorem
3.4 we have ‖λ3Ĝ(λ)x− (Ac −A)x‖ = o(λ−n) for all x ∈ D(A).

Remark. The behavior of λ3F̂ ∗(λ) as λ→∞ is given in [13].

4. Compactness

A C0-cosine step response F (·) (resp. C0-cosine cumulative output G(·))
is said to be compact if the operator F (t) (resp. G(t)) is compact for every
t ≥ 0. In this section we discuss conditions for compactness of F (·) and G(·)
and consequences.
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Proposition 4.1. If the sine operator function S(·) is compact and if the
C0-cosine step response F (·) is norm continuous at zero, then F (·) is compact.
The same is true for C0-cosine cumulative output.

Proof. We integrate (1.1) with respect to t from 0 to τ∫ τ+h

τ
F (η)dη −

∫ τ

τ−h
F (η)dη = 2S(τ)F (h).(4.1)

The compactness of S(·) implies that the left hand side of (4.1) is compact
for every τ, h ≥ 0. Because S(·) and F (·) are norm continuous, we can take in
(4.1) the derivative with respect to τ without lost of compactness property, so
the left hand side of (1.1) is a compact operator. Using condition F (0) = 0
and the uniform continuity of F (·) we get from (1.1) that F (h) is compact for
every h ≥ 0.

Proposition 4.2. If the C0-cosine step response F (·) is compact, then
F (·) is norm continuous on [0,∞).

Proof. Since F (·) is compact, its Laplace transform F̂ (·) is also compact
(see [17]). Then by the formula (iv) of Proposition 3.1 we are done because
the strong convergence becomes uniform convergence after multiplication by
a compact operator from the right.

Proposition 4.3. If there is a cosine operator-function C(·) on a Banach
space X such that each C0-cosine step response F (·) (or C0-cosine cumulative
output G(·)) for C(·) is compact, then X must be finite dimensional.

Proof. By assumption, the two particular C0-cosine step responses

F1(t) = C(t)− I and F2(t) =
∫ t

0
S(s)ds

are compact. Then as we know (see [10]), C(t) − I is compact for all t > 0
if and only if the generator A is compact. Hence C(·) is norm continuous on
[0,∞). Thus the operator C(0) = I, being the limit in norm of the compact
operators 2t−2F2(t) as t → 0, is compact. This can happen only when X is
finite dimensional.

5. Positivity

In case that X is a Banach lattice with positive cone X+, we say a function
L(·) on X is positive if for every t ≥ 0 the operator L(t) is positive (in notation,
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L(t) � 0) in the sense that L(t)X+ ⊆ X+. In case that X is a Hilbert space
with inner product (·, ·), we say L(·) is positive (in notation, L(t) ≥ 0) if for
every t ≥ 0 L(t) is positive in the sense that (L(t)x, x) ≥ 0 for all x ∈ X.

It is known [8] that a cosine operator function C(·) dominates I, i.e. C(·)−I
is positive, either in the sense of Banach lattice or in the sense of Hilbert space,
if and only if its generator A is bounded and positive.

The following propositions are just reformulations of this property in terms
of C0-cosine step response and C0-cosine cumulative output. Let FµB(·) and
GµB(·) be the functions defined by

FµB(t)x := (A− µ)
∫ t

0
S(s)Bxds, x ∈ X, t ≥ 0,(5.1)

GµB(t)x := B(A− µ)
∫ t

0
S(s)x ds, x ∈ X, t ≥ 0.

Then FµB(·) is a C0-cosine step response and GµB(·) is a C0-cosine cumulative
output.

Proposition 5.1. Let X be a Banach lattice. Each C0-cosine step esponse
FµB(·) for a cosine operator function C(·) on X defined by (5.1) with µ ≤ 0
and B � 0 is positive if and only if the generator A of C(·) is positive. The
same is true for C0-cosine cumulative output.

Proposition 5.2. Let X be a Hilbert space. Each C0-cosine step response
FµB(·) for a cosine operator function C(·) on X defined by (5.1) with µ ≤ 0
and B ≥ 0 and commuting with C(·) is positive if and only if the generator A
of C(·) is positive. The same is true for C0-cosine cumulative output.

6. Almost Periodicity

A function f(·) : [0,∞)→ X is said to be almost periodic if for every ε > 0
the set J(f, ε) = {τ ; ‖f(t + τ) − f(t)‖ ≤ ε for all t ≥ 0} is relatively dense in
[0,∞), i.e., there exists an l > 0 such that every subinterval of [0,∞) of length
l meets J(f, ε). An operator-valued function Q(·) : [0,∞) → B(X) is said to
be almost periodic if for each x ∈ X the function Q(·)x is almost periodic.

Lemma 6.1. If a continuous function f(·) : [0,∞) → X converges to
some ϕ ∈ X as t→∞, then

2t−2
∫ t

0
sf(s) ds → ϕ as t→∞.(6.1)
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Proof. Clearly, it is enough to consider the case ϕ = 0. Put t = τ + ζ and
write

2
t2

∫ t

0
sf(s) ds =

2
(τ + ζ)2

∫ τ

0
sf(s) ds+

2
(τ + ζ)2

∫ τ+ζ

τ
sf(s) ds.

Since ‖ 2
(τ+ζ)2

∫ τ+ζ
τ sf(s) ds‖ ≤ supt≥τ ‖f(t)‖ for all ζ and τ and f(t)→ 0 as

t → ∞, we can choose τ so large that the second term becomes smaller than
some given ε > 0. Then we can take large ζ such that the first term is also
smaller than ε. This shows (6.1) with ϕ = 0.

The next theorem gives a necessary and sufficient condition for every C0-
cosine step response (or every C0-cosine cumulative output) to be almost pe-
riodic.

Theorem 6.2. Every C0-cosine step response F (·) for C(·) is almost
periodic if and only if C(·) is almost periodic and 0 ∈ ρ(A). The same assertion
is true for C0-cosine cumulative outputs.

Proof. Let C(·) be almost periodic. Then the condition 0 ∈ ρ(A) implies
that

∫ t
0 S(s)ds =

∫ t
0 S(s)AA−1ds = (C(t) − I)A−1 is also almost periodic, so

that from Proposition 3.1(iv) we see the almost periodicity of F (·).
Conversely, if each C0-cosine step response is almost periodic, then the two

particular C0-cosine step responses C(t)− I and
∫ t
0 S(s)ds are almost periodic

functions. If x ∈ N(A), then x = C(s)x−
∫ s
0 S(u)Axdu = C(s)x for all s ≥ 0

and x = 2t−2 ∫ t
0 S(s)xds→ 0 as t→∞, because an almost periodic function is

bounded. Hence A is injective. Next, since an almost periodic function is mean
ergodic (see e.g. [1, p. 21]), the limit of 1

s

∫ s
0
∫ u

0 S(v)x dv du exists as s→∞
for every x ∈ X. By Lemma 6.1, the limit 2

t2

∫ t
0 s

1
s

∫ s
0
∫ u

0
∫ v

0 C(τ)x dτ dv du ds
exists as t → ∞ for any x ∈ X. Since C(·) is uniformly bounded, it follows
from Proposition 7.6 (ii) (i.e. [14, Theorem 3.7]) that R(A) = X. Therefore
we have 0 ∈ ρ(A).

Remark. The assumption that C(·) is almost periodic and 0 ∈ ρ(A) is
equivalent to the condition that (see [9]) each generalized solution of (CP) is
almost periodic.

From the above theorem one can deduce the next theorem.

Theorem 6.3. Each C0-cosine step response F (·) for C(·) is periodic if
and only if C(·) is periodic and 0 ∈ ρ(A). In this case, F (·) and C(·) have the
same period. The same assertion is true for C0-cosine cumulative outputs.
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7. Asymptotic Behavior

This section is concerned with asymptotic behavior of a C0-cosine step
response F (t) and a C0-cosine cumulative output G(t) as t → ∞. First we
consider the problem under the assumption that there exist a real number λ0
and a nonzero bounded operator P ∈ B(X) such that

lim
t→∞

2e−λ0t C(t)x = Px for all x ∈ X.(7.1)

Clearly in this case there is a constant M1 ≥ 1 such that

‖C(t)‖ ≤M1e
λ0t for t ≥ 0.(7.2)

From the identity

2e−λ02t(C(2t) + I) = 2e−λ0tC(t)2e−λ0tC(t)(7.3)

it is seen that in case (7.1) λ0 cannot be negative. In case λ0 = 0, we have
from (7.3) P + 2I = P 2. On the other hand, by letting t → ∞ and then
s→∞ in the equation (b), one has 2P = P 2. Hence we have C(t)→ P/2 = I
as t → ∞. Letting t → ∞ in (b) then leads to C(s) = I for all s ∈ R. Then
it follows from (iv) of Proposition 3.1 that F (t)x = 2−1t2λ3F̂ (λ)x (for any
λ > ω), which does not converge as t → ∞ unless x ∈ N(F̂ (λ)). The same
situation is for G(·). Thus the case λ0 = 0 is not interesting, and we shall
assume λ0 > 0 from now on. From (7.3) it is clear that the operator P is now
a projection.

It is known [5, p. 92] that the generator A of the cosine operator function
C(·) generates also a C0-semigroup T (·) defined by

T (t)x =
1√
πt

∫ ∞
0

e−
s2
4tC(s)xds, x ∈ X.

As will be seen in the next theorem, the convergence of 2e−λ0t C(t) to P as
t→∞ implies the convergence of e−λ

2
0tT (t) to P in the same topology. When

P has finite rank and ‖e−λ2
0T (t)− P‖ as t→∞, Webb [18] says that the C0-

semigroup T (·) has asynchronous exponential growth with intrinsic growth
constant λ2

0. In this case, one has that λ2
0 > ωess(A), where ωess(A) is the

essential type or essential growth bound, the peripheral spectrum σ0(A) =
{λ2

0} and λ2
0 is a simple pole of the resolvent (λ−A)−1 (see [18]).

Theorem 7.1. Suppose that (7.1) holds with λ0 > 0. Then P is a pro-
jection with range R(P ) = N(λ2

0 − A) and null space N(P ) = R(λ2
0 −A).
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If, in addition, P has finite rank and ‖2e−λ0tC(t) − P‖ → 0 as t → ∞, then
λ2

0 > ωess(A), σ0(A) = {λ2
0} and λ2

0 is a simple pole of the resolvent (λ−A)−1.

Proof. We shall prove that the semigroup e−λ
2
0tT (t) converges to P strongly

as t→∞. Then it follows from the mean ergodic theorem for semigroup that
P is a projection with R(P ) = N(λ2

0 −A) and N(P ) = R(λ2
0 −A).

We write

e−λ
2
0tT (t)x =

e−λ
2
0t

2
√
πt

∫ ∞
0

e−
s2
4t eλ0s[2e−λ0sC(s)− P ]xds

+
e−λ

2
0t

2
√
πt

∫ ∞
0

e−
s2
4t eλ0sdsPx.

It suffices to show that the first term Q1(t) on the right hand side converges
to zero and the second term Q2(t) converges to Px as t → ∞. We first see
that

e−λ
2
0t

2
√
πt

∫ ∞
0

e−
s2
4t eλ0sds =

1
2
√
πt

∫ ∞
0

e−
(s−2λ0t)

2

4t ds =
1√
π

∫ ∞
−λ0
√
t
e−u

2
du

converges to 1√
π

∫∞
−∞ e

−u2
du = 1 as t → ∞. Therefore Q2(t) converges to

Px as t → ∞. Let ε > 0 be arbitrarily small and take τ > 0 so large that
‖2e−λ0sC(s)x− Px‖ ≤ ε for all s ≥ τ. Then

Q1(t) ≤ e−λ
2
0t

2
√
πt

∫ τ

0
e−

s2
4t eλ0s‖(2e−λ0sC(s)− P )x‖ds+ ε

e−λ
2
0t

2
√
πt

∫ ∞
0

e−
s2
4t eλ0sds,

and hence is bounded by 2ε as t→∞. This shows that Q1(t)→ 0 as t→∞.
When ‖2e−λ0tC(t)−P‖ → 0 as t→∞, a similar argument as above shows

that ‖e−λ2
0tT (t)− P‖ → 0 as t→∞. When P has finite rank, the semigroup

T (·) has asynchronous exponential growth with intrinsic growth constant λ2
0.

It follows from Theorem of [18] that λ2
0 > ωess(A), σ0(A) = {λ2

0}, and λ2
0 is a

simple pole of resolvent (λ−A)−1.

We shall need the following

Lemma 7.2. If a strongly continuous function f(·) : [0,∞)→ X is such
that limt→∞f(t) = ϕ, ϕ ∈ X, then for any λ with Reλ > 0 we have

e−λt
∫ t

0
eλsf(s) ds → ϕ/λ as t→∞.(7.4)
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Proof. To prove (7.4) it is enough to consider the case ϕ = 0, because of

λe−λt
∫ t

0
eλs(f(s)− ϕ)ds+ ϕ− e−λt ϕ = λe−λt

∫ t

0
eλsf(s)ds.

Now we put t = τ + ζ and write

e−λt
∫ t

0
eλsf(s)ds= e−λ(τ+ζ)

∫ τ+ζ

τ
eλsf(s)ds+ e−λ(τ+ζ)

∫ τ

0
eλsf(s)ds

= e−λ(τ+ζ)
∫ ζ

0
eλτeληf(τ + η)dη + e−λζe−λτ

∫ τ

0
eλsf(s)ds.

Since ‖e−λζ
∫ ζ

0 e
ληf(τ + η) dη‖ is less than λ−1(1− e−λζ) supt≥τ ‖f(t)‖ for all

ζ and τ , we can choose τ so large that the first term becomes smaller than
ε. Then we can take large ζ such that the second term is also smaller than ε.
This shows (7.4) with ϕ = 0.

Proposition 7.3. Suppose the cosine operator function C(·) satisfies (7.1)
with λ0 > 0. Then 2e−λ0tS(t) → P/λ0 and 2e−λ0t

∫ t
0 S(s)ds → P/λ2

0 strongly
as t→∞.

Proof. We can write

2e−λ0tS(t) = e−λ0t
∫ t

0
eλ0s2e−λ0sC(s)ds

and

2e−λ0t
∫ t

0
S(s)ds = e−λ0t

∫ t

0
eλ0se−λ0s

∫ s

0
eλ0η2e−λ0ηC(η) dη ds.

The conclusion now follows by applying Lemma 7.2.

Theorem 7.4. Suppose the cosine operator function C(·) satisfies (7.1)
with λ0 > 0. Then for every λ > λ0 and x ∈ X we have

lim
t→∞

2e−λ0tF (t)x = λ(λ2/λ2
0 − 1)PF̂ (λ)x,

which is equal to 1
λ2

0
(As − A)x if x ∈ D(A) and F̂ (λ)x ∈ N(λ2

0 − A) simulta-

neously, and is equal to zero if F̂ (λ)x ∈ R(λ2
0 −A).

Proof. For λ0 > 0 we write

2e−λ0tF (t)x = 2e−λ0t
∫ t

0
S(s)λ3F̂ (λ)xds− 2e−λ0t(C(t)− I)λF̂ (λ)x.
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Then applying Proposition 7.3, Theorem 3.3 and taking λ→∞ we obtain the
asserted limit.

A similar argument using Proposition 7.3 and Theorem 3.4 shows the next
theorem.

Theorem 7.5. Suppose the cosine operator function C(·) satisfies (7.1)
with λ0 > 0. Then for every λ > λ0 and x ∈ X we have the limit

lim
t→∞

2e−λ0tG(t)x = Ĝ(λ)λ(λ2/λ2
0 − 1)Px,

which is equal to 1
λ2

0
(Ac − A)x if x ∈ N(λ2

0 − A), and is equal to zero if

x ∈ R(λ2
0 −A).

As mentioned previously, if C(t) converges strongly as t→∞, then C(·) ≡
I, and both F (t) and G(t) diverge. In the rest of this section we shall consider
the behavior of F (·) and G(·) under the assumption:

sup
t>0
‖t−2

∫ t

0

∫ s

0
C(u) du ds‖ <∞ and t−2C(t)→ 0 strongly as t→∞.(7.5)

We need the following Proposition (see [14, Theorems 3.5 and 3.7]).

Proposition 7.6. Under the assumption (7.5) we have:
(i) The mapping P : x→ limt→∞ 2t−2 ∫ t

0
∫ s

0 C(u)x du ds is a linear projec-
tion with R(P ) = N(A), N(P ) = R(A) and D(P ) = N(A)⊕R(A);

(ii) x := − limt→∞ 2t−2 ∫ t
0
∫ s
0
∫ u
0
∫ v

0 C(τ)y dτ dv du ds exists if and only
if y ∈ A(D(A) ∩ R(A)) (= R(A) in case C(·) is (C,2) mean ergodic, i.e.
D(P ) = X). Moreover, this element x is the unique solution of the equation
Ax = y in R(A), i.e. x = Ã−1y where Ã = A|

R(A).

Using Proposition 3.1 (iv) and the above proposition we obtain

Theorem 7.7. Under the assumption (7.5) the following assertions hold:
(i) The limit y = limt→∞ 2t−2F (t)x exists if and only if F̂ (λ)x ∈ N(A)⊕

R(A) for some (and all) λ > ω. When the limit exists, y = λ3PF̂ (λ)x, which
is independent of λ;

(ii) When F̂ (λ)x ∈ N(A)⊕R(A), z = limt→∞ 2t−2 ∫ t
0
∫ s

0 F (τ)x dτds exists
if and only if F̂ (λ)x ∈ A(D(A) ∩ R(A)) for some (and all) λ > ω. In this
case, z = −λ(λ2 −A)Ã−1F̂ (λ)x, which is independent of λ.

Proof. By (iv) of Proposition 3.1, we have

2t−2F (t)x = 2t−2(I − C(t))λF̂ (λ)x+ 2t−2
∫ t

0

∫ s

0
C(τ)λ3F̂ (λ)xdτds
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and

2t−2
∫ t

0

∫ s

0
F (τ)xdτds =2t−2

∫ t

0

∫ s

0

∫ u

0

∫ v

0
C(τ)λ3F̂ (λ)xdτdvduds

−2t−2
∫ t

0

∫ s

0
C(τ)λF̂ (λ)xdτds+ λF̂ (λ)x.

Then, as consequences of Proposition 7.6, assertions (i) and (ii) follow from
(7.6) and (7.7), respectively.

Similarly, using Proposition 3.1 (v), Proposition 7.6, and Proposition 3.5
(ii) we have the next theorem.

Theorem 7.8. Under the assumption (7.5) the following assertions hold:
(i) If x ∈ N(A)⊕R(A), then limt→∞ 2t−2G(t)x = AcPx;
(ii) If x ∈ A(D(A) ∩R(A)), then limt→∞ 2t−2 ∫ t

0
∫ s
0 G(τ)x dτds = −(Ac −

A)Ã−1x = x−AcÃ−1x.
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