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INFINITESIMAL GENERATORS OF
RANDOM POSITIVE SEMIGROUPS∗

Hiroshi Kunita

Abstract. We first show the existence of a random infinitesimal gener-
ator of a given random positive semigroup under some conditions. Then
we represent it as a random second order integro-differential operator.

1. Introduction

In the previous paper Kifer-Kunita [1], we studied the random infinites-
imal generator of a random positive semigroup, or a positive semigroup in
random environments. There, the random semigroup with independent in-
crements is studied. Its random infinitesimal generator is represented as a
second order stochastic partial differential operator, where the first order co-
efficients and the potential part are Brownian motions with spatial parameter
but the second order (highest order) coefficients are deterministic ones. In this
paper, we will study a more general random positive semigroup, not necessar-
ily with independent increments. Its random infiniesimal generator will be a
semimartingale with values in intego-differential operators.

In the next section, we will show the existence and the uniqueness of the
random infinitesimal generator of a given random positive semigroup. As-
sumptions needed for the random positive semigroup are relaxed considerably
from those in [1]. See Theorem 2.1 and Theorem 2.3. Then we will represent
it as a random integro-differential operator: It will be represented as a sum
of a second order stochastic partial diffrential operator and a random integral
operator involving a Lévy measure and a counting measure. See Theorem 3.1.
In section 4, we discuss the asymptotic properties of coefficients of the random
infinitesimal generator.
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2. Ito’s Infinitesimal Generators of Random Positive Semigroups

Let C = C(Rd) be the totality of real continuous functions on Rd such
that limx→∞f(x) exists and equals 0. It is a real separable Banach space
with the supremum norm ‖ ‖. Let {Ts,t, 0 ≤ s ≤ t < ∞} be a family of
stochastic processes with values in linear operators on C, cadlag with respect
to t(≥ s), defined on a probability space (Ω,F , P ). It is called a random
positive semigroup if (i) f ≥ 0 implies Ts,tf ≥ 0 a.s. for any s, t, (ii) for
each s limt→s Ts,tf = f holds a.s. for f ∈ C, and (iii) for each s < t < u
Ts,tTt,uf = Ts,uf holds a.s. for f ∈ C. Further, if Tti,ti+1 , i = 0, . . . , n − 1 are
independent for any 0 ≤ t0 < t1 < . . . < tn <∞, it is said to have independent
increments.

We set Ft = σ(Ts,r; s, r ≤ t). Then {Ft}t>0 is an increasing family of sub
σ-fields of F .

We shall obtain the infinitesimal generator of a given random positive
semigroup under two different conditions. Results will be stated in Theorems
2.1 and 2.3. To make statements precisely, we introduce some function spaces.
For a multi-index α = (α1, . . . , αd) of nonnegative integers, we set |α| = α1 +
· · · + αd and Dα = (∂/∂x1)α1 · · · (∂/∂xd)αd . Let m be a positive integer.
Set ‖f‖m =

∑
|α|≤m ‖Dαf‖. Denote by Cm the totality of f ∈ C such that

‖f‖m <∞. We set C∞ = ∩mCm. A function f is said to belong to Cm
loc etc.

if fψ belongs to Cm for any C∞-function ψ with compact support.
Let A(t), t ≥ 0 be a family of random linear maps from C∞ to Cloc such

that A(t) f(x) is a semimartingale with respect to {Ft} for any f ∈ C∞ and
x ∈ Rd. It is called the random infinitesimal generator of {Ts,t}, if it satisfies

Ts,t(x)f(x) = f(x) +
∫ t

s

Ts,r−A(dr)f(x) a.s. ∀s < t,(2.1)

for any f ∈ C∞ and x ∈ Rd, where the right hand side is Itô’s stochastic
integral.

We introduce two assumptions for {Ts,t}. Set

Us,tf(x) = E [Ts,tf(x)|Fs].(2.2)

Then {Us,t} is a family of random popsitive linear operators on C. In gen-
eral, {Us,t} might not satisfy the semigroup property. However, if {Ts,t} has
independent increments, {Us,t} defines a deterministic positive semigroup.

(A.1). For each f ∈ C∞, the limit

L(t)f(x) = lim
h→0

Ut,t+hf(x)− f(x)
h

(2.3)

exists uniformly in x a.s. and it is a continuous function of (t, x) a.s.
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The family of operators {L(t)} is called the (random) infinitesimal gener-
ator of {Us,t}. Note that if {Ts,t} has independent increments, its infinitesimal
generator is deterministic.

(A.2)m. For any s < t, Ts,t maps Cm+2 to Cm
loc a.s. Furher, for any N > 0

there exists a positive constant cN such that

sup
|x|≤N

E[|DαTs,tf(x)−Dαf(x)|2] ≤ cN |t− s| ‖f‖2|α|+2, ∀f ∈ C|α|+2(2.4)

hold for any α with |α| ≤ m.

Theorem 2.1. (c.f. [1]) Let {Ts,t} be a random positive semigroup satis-
fying (A.1), (A.2)m for some m ≥ [d/2] + 1. Then it admits a unique random
infinitesimal generator A(t), which maps Cm+2 into Cm−[d/2]−1

loc .

Let ∆n = {0 < t
(n)
1 < · · · < t

(n)
l < · · ·} be a partition such that t(n)

l =
(l − 1)/2n. Set for f ∈ Cm+2,

A(n)(t)f(x) =
∑

i;t(n)
i+1≤t

{T
t
(n)
i
,t

(n)
i+1
f(x)− f(x)}.(2.5)

Then it holds

A(t)f(x) = lim
n→∞

A(n)(t)f(x)(2.6)

locally uniformly in (t, x) in probability.
In particular, if the random positive semigroup has independent incre-

ments, then its random infinitesimal generator has also independent incre-
ments, i.e., A(ti+1) − A(ti), i = 0, 1, . . . , n − 1 are independent for any 0 <
t0 < t1 < . . . < tn.

For the proof of the theorem we need a lemma.

Lemma 2.2. For f ∈ Cm+2, set

B(n)(t)f(x) =
∑

i;t(n)
i+1≤t

{
T
t
(n)
i
,t

(n)
i+1
f(x)− U

t
(n)
i
,t

(n)
i+1
f(x)

}
.(2.7)

Then for any N > 0 there exists a positive constant c′N not depending on
t, f, n such that

sup
|x|≤N

E[|DαB(n)(t)f(x)|2] ≤ c′N t‖f‖2|α|+2,(2.8)

holds for any α with |α| ≤ m.
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Proof. Set M (n)
t := DαB(n)(t)f(x). Then M

(n)
t , t ≥ 0 is a real valued

martingale. Set tj+1 = j/2n. Then we have E[|M (n)
t |2] =

∑[2nt]
j=1 E[|M (n)

tj+1
−

M
(n)
tj |2]. Note that

E[|DαUs,tf(x)−Dαf(x)|2] ≤ E[|DαTs,tf(x)−Dαf(x)|2].

Then we have

E

[∣∣∣M (n)
tj+1
−M (n)

tj

∣∣∣2] ≤ c′N2−n‖f‖2|α|+2(2.9)

by (A.2)m. Therefor we have E[|M (n)
t |2] ≤ c′N t‖f‖2|α|+2. The proof is complete.

Proof of Theorem 2.1. We shall apply Sobolev’s imbedding theorem. For
a positive integer m and positive number N , set

‖f‖m,2,N =

 ∑
α;|α|≤m

∫
|x|≤N

|Dαf(x)|2dx

1/2

,

where Dαf(x) is the distributional derivative of f . Denote by Hm,2,N the set
of all f such that ‖f‖m,2,N < ∞. Let X = X(x) be a Hm,2,N -valued random
variable. We set

‖X‖′m,2,N =

 ∑
α;|α|≤m

∫
|x|≤N

E[|DαX(x)|2]dx

1/2

.

We denote by Wm,2,N the set of all Hm,2,N -valued random variables X such
that the above norm is finite. It is a real separable Hilbert space.

In view of Lemma 2.2, we can regard that B(n)(t)f of (2.7) are Wm,2,N -
valued random variables for any N . For a fixed T > 0, they satisfy

‖B(n)(T )f‖′m,2,N ≤ c′′N‖f‖m+2, ∀n = 1, 2, . . .(2.10)

for any f ∈ Cm+2 in view of (2.8). Then {Bn(T )f, n = 1, 2, . . . , } is compact
with respect to the weak topology of Wm,2,N . Therefore for a countable dense
linear subspace D of Cm+2, we can choose a subsequence B(ni)(T )f, f ∈
D which converge with respect to the weak topology of Wm,2,N for any N .
Let B(T )f, f ∈ D be their weak limits. They admit the linear property
B(T )(α1f+α2f2) = α1B(T )f1 + α2B(T )f2 in D a.s. Further, they satisfy the
inequalities

‖B(T )f‖′m,2,N ≤ c′′N‖f‖m+2.(2.11)
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Consequently B(T )f can be extended to a random linear map from Cm+2 into
Hm,2,N for any N . Then B(T )f(x) is a Cm−[d/2]−1

loc -valued random variable by
Sobolev’s imbedding theorem.

Define a martingale by B(t)f(x) = E[B(T )f(x)|Ft] and set

A(t)f =
∫ t

0
L(s)fds+B(t)f.(2.12)

We shall prove that it is an infinitesimal generator of Ts,t. Associated with
the partition ∆m = {s = t

(m)
0 < · · · < t(m)

nm
= t}, set T (m)

s,r = T
s,t

(m)
k

if t(m)
k ≤

r < t
(m)
k+1. Set

Im,n =
∑
k

T
(m)

s,t
n)
k

(B(n)(t(n)
k+1)−B(n)(t(n)

k ))f(x).

Then Im,n converges to Im =
∫ t
s T

(m)
s,r−B(dr)f(x) weakly in L2 as n→∞. Fur-

thermore, we have limm→∞Im =
∫ t
s Ts,r−B(dr)f(x). We claim limn→∞In,n =∫ t

s Ts,r−B(dr)f(x). Note that Ts,t is represented by a random positive kernel
Ts,t(x, dy), i.e.,

Ts,tf(x) =
∫
Rd
Ts,t(x, dy)f(y).

Then we have

E[|Im,n − In,n|2] =
∑
k

E[(T (m)

s,t
(n)
k

(x, dy)− T (n)

s,t
(n)
k

(x, dy))

(T (m)

s,t
(n)
k

(x, dy′)− T (n)

s,t
(n)
k

(x, dy′))

(B(n)(t(n)
k+1f(y)−B(n)(t(n)

k )f(y))

(B(n)(t(n)
k+1)f(y′)−B(n)(t(n)

k )f(y′))].

It converges to 0 as n→∞ and m→∞. Consequently,

Ts,tf − f = In,n +
∑
k

T
s,t

(n)
k

(
U
t
(n)
k
,t

(n)
(k+1)

f − f
)

→
∫ t

s

Ts,r−B(dr)f +
∫ t

s

Ts,r−L(r)f dr,

proving that A(t) is an infinitesimal generator of the random positive semi-
group {Ts,t}.

We shall next prove (2.6). Then the uniqueness of the random infinitesimal
generator A(t) follows. Note that

Ttk,tk+1f − f =
∫ tk+1

tk

Ttk,r−B(dr)f +
∫ tk+1

tk

Ttk,r−L(r)f dr.(2.13)

375



376 Hiroshi Kunita

It holds
lim
n→∞

∑
tk≤t

∫ tk+1

tk

Ttk,r−L(r)f dr =
∫ t

0
L(r)f dr,

lim
n→∞

∑
tk≤t

∫ tk+1

tk

Ttk,r−B(dr)f = B(t)f.

Then (2.6) follows.
The last statement of the theorem is immediate from (2.6). The proof is

complete.
We shall give an another sufficient condition for the existence of the in-

finitesimal generator of the random positive semigroup. Let 0 < δ ≤ 1. For a
function f of Cm, set

‖f‖m+δ := ‖f‖m +
∑
|α|=m

sup
x6=y

|Dαf(x)−Dαf(y)|
|x− y|δ

,

and denote by Cm+δ the totality of f ∈ Cm such that ‖f‖m+δ <∞.
(A.3)δ. For each s < t, Ts,t maps Cδ into Cδ

loc a.s. Further, for any
positive integers p and N , there exists a positive constant cp,N such that

sup
|x|≤N

E[|Ts,tf(x)− f(x)|2p|Fs] ≤ cp,N |t− s| ‖f‖2p2+δ a.s.,(2.14)

E[|Ts,tf(x)− f(x)− Ts,tf(y) + f(y)|2p|Fs]

≤ cp,N |t− s‖ |x− y|2pδ‖f‖2p2+δ a.s.
(2.15)

holds for all s < t, x, y ∈ BN and f ∈ C2+δ, where BN = {x; |x| ≤ N}.

Remark. (1) The above assumption is checked more easily than (A.2)m
in the case where the random positive semigroup has independent increments.
Indeed the conditional expectations of the right hand sides of (2.14) and (2.15)
can be replaced by the expectations, since Ts,t and Fs are independent for any
s < t.

(2) Inequality (2.15) is satisfied with δ = 1 if the following inequality holds.

sup
|x|≤N

E[ |DαTs,tf(x)−Dαf(x)|2p|Fs] ≤ cp,N |t− s| ‖f‖2p|α|+2, a.s.(2.16)

holds for any α with |α| = 1, and f ∈ C|α|+2.

Theorem 2.3. (c.f. [1]) Let {Ts,t} be a random positive semigroup satis-
fying (A.1), (A.3)δ for some δ > 0. Then it admits a unique random infinites-
imal generator A(t), which maps C2+δ into Cγ

loc for any 0 < γ < δ. Further,
the latter assertion of Theorem 2.1 is valid.
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For the proof of the theorem, we need a lemma.

Lemma 2.4. Let B(n)(t)f be as in Lemma 2.2. For any positive integers
p and N , there exists a positive constant c′p,N such that for any f ∈ C2+δ,

sup
|x|≤N

E[|B(n)(t)f(x)|2p] ≤ c′p,N t‖f‖
2p
2+δ,(2.17)

E[|B(n)(t)f(x)−B(n)(t)f(y)|2p] ≤ c′p,N t|x− y|2pδ‖f‖
2p
2+δ, ∀x, y ∈ BN(2.18)

holds for all n.

Proof. We shall prove (2.18) only, since the proof of (2.17) is done similarly.
We shall fix f ∈ C2+δ and x, y ∈ BN . Set M (n)

t := B(n)(t)f(x)− B(n)(t)f(y).
Then M

(n)
t , t ≥ 0 is a real valued martingale. By Burkholder’s inequality,

there exists a positive constant c1 (not depending on f, x, y, n) such that for
any t ∈ ∆n,

E[|M (n)
t |2p] ≤ c1E

 2nt∑
j=1

|M (n)
tj+1
−M (n)

tj |
2

p ,(2.19)

where tj+1 = j/2n. Set Nk =
∑

1≤j≤k |M
(n)
tj+1
−M (n)

tj |2. It holds

Np
j −N

p
j−1 =

p−1∑
l=0

(
p

l

)
N l
j−1(Nj −Nj−1)p−1.

Since

E[(Nj −Nj−1)p−l|Ftj−1 ] ≤ cp,N2−n|x− y|2(p−l)δ‖f‖2(p−l)
2+δ a.s.

holds for any l = 1, . . . , p− 1 by (A.3)δ, we have

E[Np
[2nt]]=

∑
1≤j≤[2nt]

E[Np
j −N

p
j−1]

≤ cp,N
∑

1≤j≤[2nt]

p−1∑
l=0

(
p

l

)
2−n|x− y|2(p−l)δ‖f‖2(p−l)

2+δ E[N l
j−1].

(2.20)

If p = 1, the above inequality implies

E[N[2nt]] ≤ c′1,N t|x− y|2δ‖f‖22+δ.

If p = 2, substituting the above to (2.20), we have

E[N2
[2nt]] ≤ c′2,N t|x− y|4δ‖f‖42+δ.
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Repeating this argument inductively, we arrive at

E[Np
[2nt]] ≤ c

′
p,N t|x− y|2pδ‖f‖

2p
2+δ.

We have thus proved the inequality (2.18). The proof is complete.

Proof of Theorem 2.3. Let T be an arbitrary positive constant. Let D
be a countable dense linear subspace of C2+δ. Then in view of the previ-
ous lemma, for any positive integer p we can choose a subsequence {ni} of
{n} such that B(ni)(T )f(x), f ∈ D, x ∈ Rd converge weakly in L2p. Let
B(T )f(x), f ∈ D, x ∈ Rd be their limits. They admit the linear property
B(T )(α1f+α2f2)(x) = α1B(T )f1(x)+α2B(T )f2(x) in D for all x a.s. Further,
it satisfies the inequality

E[|B(T )f(x)−B(T )f(y)|2p] ≤ c′p,NT |x− y|2δp‖f‖
2p
2+δ ∀x, y ∈ BN .(2.21)

Therefore, by Kolmogorov’s theorem, B(T )f can be extended as a random
linear map from C2+δ into Cγ

loc where 0 < γ < δ. See [3, p.31]. Define a
martingale by B(t)f(x) = E[B(T )f(x)|Ft] and define A(t) by (2.12). Then
this A(t) is the random infinitesimal generator of the given random positive
semigroup as is shown in the proof of Theorem 2.1.

3. Representations of Random Infinitesimal Generators

We shall represent the random infinitesimal generator A(t) of a random
positive semigroup {Ts,t}. We denote by V + the totality of positive bounded
linear operators T on C equipped with the strong topology, i.e. Tn → T in
V+ if and only if Tnf → T f in C for any f ∈ C.

Theorem 3.1. Assume (A.1) and (A.2)m, m ≥ [d/2] + 1 or (A.3)δ, 0 <
δ < 1. Then the random infinitesimal generator A(t) is represented as a
random integro-differential operator:

A(t)f(x) =
∫ t

0
L(s)f(x)ds+

∑
i

Fi(x, t)
∂f

∂xi
(x) +G(x, t)f(x)

+
∫
V +
{Tf(x)− f(x)}Ñ((0, t], dT ).

(3.1)

Here, each term of the above representation is interpreted as follows:
(i) L(t) is a second order integro-differential operator represented by

L(t)f(x) =
1
2

∑
i,j

aij(x, t)
∂2f

∂xi∂xj
(x) +

∑
i

bi(x, t)
∂f

∂xi
(x) + c(x, t)f(x)

+
∫
Rd

(f(y)− f(x)−
∑
i

yi − xi
1 + |y − x|2

∂f

∂xi
(x))nt(x, dy).

(3.2)
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Here aij(x, t), bi(x, t), c(x, t) are {Ft}-adapted and are continuous in (x, t) a.s.
The matrix (aij(x, t)) is symmetric and nonnegative definite a.s. nt(x, dy) is
an {Ft}-adapted Lévy measure such that nt(x, {x}) = 0 and

∫
Rd φx(y)nt(x, dy) <

∞ for any t, x a.s., where φx is a function of C2 such that φx(x) = 0, φx(y) > 0
if y 6= x, lim infy→∞ φx(y) > 0 and φx(y) = O (|x− y|2) near x.

(ii) (F1(x, t), . . . , Fd(x, t)) is a continuous martingale with values in Cγ
loc(Rd,

Rd) where γ = m− [d/2]− 1 under (A.2)m and 0 < γ < δ under (A.3)δ. It is
of mean 0 and the joint quadratic variation is written by

〈Fi(x, t), Fj(y, t)〉 =
∫ t

0
fij(x, y, s)ds,(3.3)

which are continuous in (x, y, t) and Cγ-functions of (x, y). Furthermore, the
matrices (aij(x, t))− (fij(x, x, t)) are nonnegative definite for any x a.e. t.

(iii) G(x, t) is a continuous martingale with values in Cγ
loc(Rd,R1) with

mean 0.
(iv) N(dtdT ) is a counting measure on V+ with an intensity measure of

the form dtµt(dT ). The meaures nt(x, ·) −
∫
V + µt(dT )T (x, dy) are positive

(nonnegative) for any x a.e. t, where T (x, dy) is the kernel such that Tf(x) =∫
T (x, dy)f(y) holds for f ∈ C.

Furthermore, under (A.2)m the intensity measure satisfies

E

[∫ t

0

∫
V +

sup
|x|≤N

|DαTf(x)−Dαf(x)|2µs(dT )ds

]
≤ cN‖f‖2m+2,(3.4)

for any α with |α| ≤ m− [d/2]− 1, and under (A.3)δ it satisfies

E

[∫ t

0

∫
V +
|Tf(x)− f(x)− Tf(y) + f(y)|2pµs(dT )ds

]
≤ cp,N |x− y|2pδ‖f‖2p2+δ,

(3.5)

for all x, y ∈ BN .
In particular, if the random positive semigroup has independent incre-

ments, all coefficients and Lévy measures of the operator L(t) of (3.2) are
deterministic. Furthermore, (F1(x, t), . . . , Fd(x, t), G(x, t)) is a Brownian mo-
tion with the spatial parameter x, and N(dtdT ) is a Poisson random measure
with the deterministic intensity measures µt.

Proof. We shall prove the theorem under conditions (A.1) and (A.2)m only.
The other case can be verified similarly. The representation of the operator
L(t) can be proved similarly as in Yosida [4] (XIII, Section 7) (cf. Kifer-Kunita
[1]). Set B(t)f = A(t)f −

∫ t
0 L(s)fds for f ∈ Cm+2. Then it is decomposed as

B(t)f = Bc(t)f +Bd(t)f , where Bc(t)f is a Cγ-valued continuous martingale
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and Bd(t)f is a Cγ-valued discontinuous martingale, where γ = m− [d/2]−1.
Define the counting measure N(dtdT ) on [0,∞)×V+ by

N((0, t]×A) = ]{s ∈ (0, t]; Ts,s+ ∈ E},(3.6)

where E is a Borel set in V+−{0}. Let µ(dtdT ) be its compensator. We show
later that the compensator is written as µ(dtdT ) = dtµt(dT ). Set Ñ(dtdT ) =
N(dtdT )− µ(dtdT ). Then Bd(t)f(x) is represented by

Bd(t)f(x) =
∫
V +
{Tf(x)− f(x)}Ñ((0, t], dT ).(3.7)

The bracket process of DαBd(t)f(x) is given by

〈DαBd(t)f(x)〉 =
∫ t

0

∫
V +

(DαTf(x)−Dαf(x))2µ(dtdT ).

It satisfies

‖〈DαBd(t)f〉‖′m,2,N = ‖DαBd(t)f‖′m,2,N ≤ c′′N‖f‖m+2

by (2.11). Then Sobolev’s inequality implies (3.4).
Now observe that

f(x+ y) =f(x) +
∑
i

(yi − xi)
∂f

∂xi
(x)

+
1
2

∑
i,j

(yi − xi)(yj − xj)
∂2f

∂xi∂xj
(x) + ϕx(y).

Let ψx be a Cm+2-function with the compact support such that ψx(y) = 1
on a certain neighborhood of x. Set gix(y) = ψx(y)(yi − xi) and A

(n)
ij (x, t) =

A(n)(t)(gixg
j
x)(x), whereA(n)(t) is defined by (2.5). Then the matrices (A(n)

ij (x, t))
are nonnegative definite and are increasing in t with respect to the order of
nonnegative definiteness for any x, n. Therfore (Aij(x, t)) ≡ (A(t)(gixg

j
x)(x))

is also nonnegative definite and increases with t for any x. This implies that
its continuous martingale part of mean 0 is identically 0. Therefore we have
Bc(t)(φxf)(x) = 0 for any f ∈ Cm+2 and φx(y) such that φx(y) = O(|x− y|2)
near x. Now set

Fi(x, t) = Bc(t)(gix)(x), G(x, t) = Bc(t)1(x).

These are Cγ
loc-valued continuous martingales. These do not depend on the

choice of the function ψx. In fact, let ψ̃x be another function with the same
property as that of ψx. Then Bc((ψx − ψx)f)(x) = 0, since ψx(y) − ψx(y) =
O(|x− y|2). Therefore Bc(t)f is represented by
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Bc(t)f(x) =
∑
i

Fi(x, t)
∂f

∂xi
(x) +G(x, t)f(x).(3.8)

We have thus shown a representation of the infinitesimal generator A(t).
We shall prove the latter assertion of (ii). Let ∆n = {0 = t0 < t

(n)
1 <

· · · t(n)
k < · · ·} be a sequence of partitions as before. We set tk = t

(n)
R =

(k − 1)/2n. Then we have

lim
n→∞

∑
s≤tk≤t

Utk,tk+1(gixg
j
x)(x)

=
∫ t

s

L(r)(gixg
j
x)(x)dr

=
∫ t

0
aij(x, r)dr +

∫ t

s

(∫
Rd
nr(x, dy)gix(y)gjx(y)

)
dr,

(3.9)

and
lim
n→∞

∑
s≤tk≤t

E[Ttk,tk+1g
i
x(x)Ttk,tk,1g

j
x(x)Ttk,tk+11(x)−1|Ftk ]

= lim
n→∞

∑
s≤tk≤t

E[Ttk,tk+1g
i
x(x)Ttk,tk+1g

j
x(x)|Ftk ]

= 〈(A(t)−A(s))gix, (A(t)−A(s))gjx〉

= 〈Fi(x, t), Fj(x, t)〉 − 〈Fi(x, s), Fj(x, s)〉

+
∫ t

0

∫
V +

Tgix(x)Tgjx(x)µ(drdT ).

(3.10)

Now, let ξ1, . . . , ξn be any real numbers. Then, by applying Schwarz’s inequal-
ity to the kernel Ttk,tk+1(x, dy), we have

E

[∣∣∣∑
i

Ttk,tk+1g
i
x(x)ξi

∣∣∣2Ttk,tk+11(x)−1
∣∣∣Ftk

]

≤ E
[
Ttk,tk+1

∣∣∣∑
i

gixξi
∣∣∣2∣∣∣Ftk

]
≤ Utk,tk+1

(∣∣∣∑
i

gixξi
∣∣∣2)

for any k. Take the summation of the each term of the above for k such that
s ≤ tk ≤ t and let n tend to infiinity. Then we have the inequality for two
matrices:

(〈Fi(x, t), Fj(x, t)〉 − 〈Fi(x, s), Fj(x, s)〉)

+
(∫ t

0

∫
V+

Tgix(x)Tgjx(x)µ(drdT )
)

≤
(∫ t

s

aij(x, r)dr
)

+
(∫ t

s

(∫
Rd
nr(x, dy)gix(y)gjx(y)

)
dr

)
,

(3.11)
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where “≤” represents the order of matrices with respect to the positive defi-
niteness. Now choose a sequence of functions ψ(n)

x (y) such that its supports is
included in Un(x) = {y : |y − x| ≤ 1/n} and set gi,(n)

x (y) = (yi − xi)ψ(n)
x (y).

Substitute them in place of gix. in equality (3.11). Then, as n → ∞, we find
that the second member of the left hand side of (3.11) involving the Lévy
measure nr(x, dy) and the second member of the right hand side involving the
compensating measure µ(drdT ) are both converging to 0. Consequently, we
obtain

(〈Fi(x, t), Fj(x, t)〉 − 〈Fi(x, s), Fj(x, s)〉) ≤
(∫ t

s

aij(x, r)dr
)

a.s. for any t, s. This proves that 〈Fi(x, t), Fj(x, t)〉 is absolutely continuous
with respect to dt and the density function (fij(x, x, t)) satisfies (fij(x, x, t)) ≤
(aij(x, t)) a.e. t. Finally the absolute continuity of 〈Fi(x, t), Fj(y, t)〉 with
respect to dt follows from that of 〈Fi(x, t), Fj(x, t)〉, because

|〈Fi(x, t), Fj(y, t)〉 − 〈Fi(x, s), Fj(y, s)〉|

≤ (〈Fi(x, t)〉 − 〈Fi(x, s)〉)1/2(〈Fj(y, t)〉 − 〈Fj(y, s)〉)1/2.

We shall next prove (iv). Let ε > 0 and τ (ε)
n , n = 1, 2, . . . be the sequence of

jumping times of the counting process N (ε)
t = N((s, t], {‖T − I‖ > ε}). Given

a random positive semigroup {Ts,t} with the random infinitesimal generator
A(t), define

T̂
(ε)
s,t = T

s,τ
(ε)
1 −
· · ·T

τ
(ε)
n−2,τ

(ε)
n−1−

T
τ

(ε)
n−1,t

, if τ
(ε)
n−1 ≤ t < τ (ε)

n .(3.12)

Then {T̂ (ε)
s,t } defines a random positive semigroup. It satisfies (A.1) and (A.2)m.

Let Â(ε)(t) be its infinitesimal generator. Then it is represented by

Â(ε)(t)f(x) =
∫ t

0
L(s)f(x)ds+

∑
i

Fi(x, t)
∂f

∂xi
(x) +G(x, t)f(x)

+
∫
‖T−I‖≤ε

{Tf(x)− f(x)}Ñ((0, t], dT )

−
∫ t

0

∫
‖T−I‖>ε

{Tf(x)− f(x)}µ(dsdT ).

Further, ∫ t

0
L(s)fds−

∫
‖T−I‖>ε

{Tf(x)− f(x)}µ(dsdT )

is the infinitesimal generator of the conditional average Û (ε)
s,t f = E[T̂ (ε)

s,t f |Fs].
Its Lévy measure n̂(ε)(x, dy) satisfies

n̂
(ε)
t (x, dy)dt = nt(x, dy)dt−

∫
‖T−I‖>ε

T (x, dy)µ(dtdT ).
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It is a positive measure for any ε, x. This proves that µ(dtdT ) is absolutely
continuous with respect to dt and the density µt(dT ) satisfies nt(x, dy) ≥∫
T (x, dy)µt(dT ) a.e. t for any x. The proof is complete.

Now we shall consider a random positive semigroup {Ts,t} with additional
properties stated belows. It is Markovian if Ts,t1 ≡ 1 holds a.s. for any s < t.
It is a diffusion type if (i) Ts,tf is continuous in s, t a.s. for any f ∈ C
and (ii) it has a local property, i.e., for any x0 ∈ Rd and ϕx0 ∈ C such that
ϕx0(x) = o(|x − x0|2) near x0, Ts,tϕx0(x0)/(t − s) converges to 0 in L1(P ) as
t− s→ 0.

The following corollary can be verified easily.

Corollary 3.2. (1) {Ts,t} is Markovian if and only if c(x, t) ≡ 0 and
G(x, t) ≡ 0.

(2) {Ts,t} is of diffusion type if and only if its infinitesimal generator is a
differential operator, i.e., nt(x, ·) ≡ 0 and µt ≡ 0.

4. Asymptotic Properties of Coefficients of

Random Infinitesimal Generators

We shall discuss the intrinsic meaning of the coefficients of the infinitesimal
generator A(t) in the case of diffusion type. We assume that Ts,t has the second
order moment, i.e.,

∫
Ts,t(x, dy)|y − x|2 <∞ a.s. for any x. Set

(4.1) Gs,t(x) =
∫
Rd
Ts,t(x, dy)1− 1,

(4.2) M i
s,t(x) =

∫
Rd
Ts,t(x, dy)(yi − xi),

(4.3) V ij
s,t(x) =

∫
Rd
Ts,t(x, dy)(yi − xi)(yj − xj),

(4.4) W ij
s,t(x) =

∫
Rd
Ts,t(x, dy)(yi − xi −M i

s,t(x))(yj − xj −M j
s,t(x)).

Two random fields Φ(ε)
t (x) and Ψ(ε)

t (x) are called asymptotically equal at (x, t)
as ε→ 0 if

lim
ε→0

E[|Φ(ε)
t (x)−Ψ(ε)

t (x)|2] = 0.

We will denote the relation by Φ(ε)
t (x)^_Ψ(ε)

t (x).

Theorem 4.1. Let {Ts,t} be a random positive semigroup of diffusion
type satisfying (A.1) and (A.2)m, m ≥ [d/2] + 1 with the random infinitesimal
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generator represented by (3.1). Suppose that the coefficients of the random
infinitesimal generator are continuous in t. Then we have for any (x, t):

(4.5)
1
ε
Gt,t+ε(x) ^

_ c(x, t) +
1
ε

(G(x, t+ ε)−G(x, t)),

(4.6)
1
ε
M i

t,t+ε(x) ^
_ bi(x, t) +

1
ε

(Fi(x, t+ ε)− Fi(x, t)),

(4.7)
1
ε
V ij
t,t+ε(x) ^

_ aij(x, t),

(4.8)
1
ε
W ij
t,t+ε(x) ^

_ aij(x, t)− fij(x, x, t).

Proof. Note that

Gt,t+ε(x)=
∫ t+ε

t

Tt,rA(dr)1(x)

=
∫ t+ε

t

∫
Rd
Tt,rc(r)(x)dr +

∫ t+ε

t

∫
Rd
Tt,r(x, dy)G(y, dr),

where c(r)(x) = c(x, r). Then we have

E

[∣∣∣∣Gt,t+ε(x)−
(∫ t+ε

t

c(x, r)dr +G(x, t+ ε)−G(x, t)
)∣∣∣∣2
]

≤ 2

{
E

[∣∣∣∣∫ t+ε

t

(Tt,r − I)c(r)(x)dr
∣∣∣∣2
]

+2

{
E

[∣∣∣∣∫ t+ε

t

∫ ∫
Rd×Rd

(Tt,r − I)(x, dy)(Tt,r − I)(x, dy′)g(y, y′, dr)
∣∣∣∣2
]

= o(ε2),

where g(y, y′, t) = 〈G(y, t), G(y′, t)〉. This proves (4.5). Similarly, we have

E

[∣∣∣∣Mt,t+ε(x)−
∫ t+ε

t

b(x, r)dr − F (x, t+ ε) + F (x, t)
∣∣∣∣2
]

≤ 2E

[∣∣∣∣∣
(∫ t+ε

t

(Tt,r − I)b(r)(x)dr
∣∣∣∣2
]

+2E
[∫ t+ε

t

(∫ ∫
Rd×Rd

(Tt,r − I)(x, dy)(Tt,r − I)(x, dy′)fij(y, y′, r)
)
dr

]
= o(ε2),
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proving (4.6), and

E

[∣∣∣∣V ij
t,t+ε(x)−

∫ t+ε

t

aij(x, r)dr
∣∣∣∣2
]

= E

[∣∣∣∣∫ t+ε

t

Tt,r(aij(r))(x)dr −
∫ t+ε

t

aij(x, r)dr
∣∣∣∣2
]

= o(ε2),

proving (4.7).
Now set ϕix(y) = yi − xi. Note that

W ij
t,t+ε(x) =

∫ t+ε

t

Tt,rA(dr)(ϕixϕ
j
x)(x)−M i

t,t+ε(x)M j
t,t+ε(x).

We have∫ t+ε

t

Tt,rA(dr)(ϕixϕ
j
x)(x)

=
∫ t+ε

t

Tt,r(aij(r))(x)dr

+
∫ t+ε

t

Tt,r{(bidr + Fi(dr))ϕjx + (bjdr + Fj(dr))ϕix)}(x)

= J1 + J2.

(4.9)

It holds E[|J2|2] = o(ε2) because Tt,r|ϕjx|2(x) = O(ε2) if |r − t| ≤ ε by (4.7).
We have further,

M i
t,t+ε(x)M j

t,t+ε(x) =
∫ t+ε

t

M j
t,r(x)Tt,r{bi(r)dr + Fi(dr)}(x)

+
∫ t+ε

t

M i
t,r(x)Tt,r{bj(r)dr + Fj(dr)}(x)

+
∫ t+ε

t

(∫ ∫
Rd×Rd

Tt,r(x, dy)Tt,r(x, dy′)fij(y, y′, r)
)
dr

=K1 +K2 +K3.

(4.10)

It holds E[|K1|2] = o(ε2) and E[|K2|2] = o(ε2), because M i
t,r(x) = O(ε) if

|r − t| < ε by (4.6). Further,

E

[∣∣∣∣J1 −K3 −
∫ t+ε

t

(aij(x, r)− fij(x, x, r))dr
∣∣∣∣2
]

= o(ε2).

Therefore (4.8) is verified.
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The above theorem can be extended to a more general random positive
semigroup.

Theorem 4.2. Let {Ts,t} be a random positive semigroup satisfying (A.1)
and (A.2)m, m ≥ [d/2] + 1 with the infinitesimal generator represented by
(3.1). Suppose that the coefficients of the random infinitesimal generator and
their characteristics are continuous in t. Then we have for any (x, t):

(4.11)
1
ε
Gt,t+ε(x) ^

_ c(x, t) +
1
ε

(G(x, t+ ε)−G(x, t))

+
1
ε

∫
V +
{T1(x)− 1}Ñ((t, t+ ε], dT )

(4.12)
1
ε
M i

t,t+ε(x) ^
_ bi(x, t) +

1
ε

(Fi(x, t+ ε)− Fi(x, t))

+
1
ε

∫
V +

Tϕix(x)Ñ((t, t+ ε], dT ),

(4.13)
1
ε
W ij
t,t+ε(x) ^

_ aij(x, t) +
∫
Rd
nt(x, dy)(yi − xi)(yj − xj),

(4.14)
1
ε
W ij
t,t+ε(x) ^

_ aij(x, t) +
∫
Rd
nt(x, dy)(yi − xi)(yj − xj),

−
(
fij(x, x, t) +

∫
V +

T (ϕixϕ
j
x)(x)µt(dT )

)
,

where ϕix(y) = yi − xi. Furthermore, for any (x, t)

1
ε
Tt,t+εf(x) ^

_

∫
Rd
nt(x, dy)f(y)−

∫
V +

Tf(x)µt(dT )

+
1
ε

∫
V +

Tf(x)N((t, t+ ε], dT ),
(4.15)

holds for any f ∈ C2 such that f(x) = 0 and f(x) = o(|x− y|2) near x.

The proof is omitted. It is left to the reader.
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