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DECOMPOSITION OF CENTRO-AFFINE COVARIANTS OF
POLYNOMIAL DIFFERENTIAL SYSTEMS

Dahira Dali and Sui Sun Cheng

Abstract. Starting from a minimal system of the ideal of centro-affine covari-
ants of a polynomial differential system, we develop an algorithmic method to
reduce the polynomial decomposition of a given centro-affine covariant of this
system to a linear decomposition by constructing a matrix whose size depends
on the type of the given covariant. This method avoids the Aronhold symbolic
calculation and offers new means to calculate syzygies and can be used to
describe the algebra of the centro-affine covariants. We also give many exam-
ples in the case where the system is a planar polynomial quadratic differential
system.

1. MoTIVATION

Among the many tools that are used in the studies of equations, the theory of
algebraic invariants was among the important ones. This theory was developed by
many authors and in 1897, Hilbert [7] even gave an introductory course in the Uni-
versity of Gottingen. Almost 100 years later in 1982, Sibirskii [11] wrote a book on
the theory of invariants for differential equations. In particular, he explained how
invariants are important in the classification of differential systems. He also gave
necessary and sufficient conditions for the existence of centers, as well as many
other qualitative and geometric properties of systems of differential equations with
quadratic nonlinearities. These conditions are formulated in the form of certain
polynomials (of degree one, two and three) from the elements of a minimal polyno-
mial basis of the ‘centro-affine’ invariants. Thus the theory of invariant is proven
useful in the qualitative studies of polynomial differential systems. It also allows us
to characterize geometric properties of these systems by invariant conditions with

Received October 2, 2008, accepted February 17, 20009.

Communicated by Jen-Chih Yao.

2000 Mathematics Subject Classification: 34C14, 15A72.

Key words and phrases: Polynomial differential systems, Linear group, Invariant, Covariant, ldeal,
Algebra, Syzygies, Generating family.

1903



1904 Dahira Dali and Sui Sun Cheng

the help of algebraic or semi-algebraic relations depending on the coefficients of the
differential systems.

In the case where the algebra of invariants is of finite type, the Aronhold sym-
bolism calculation [11] based on the computation of determinants and the Grobner
basis approach (see e.g. [3]) based on the test of membership in an ideal give
us methods to describe invariant conditions in terms of polynomial combinations.
Such methods, however, are not easy. Indeed, even for planar quadratic differential
systems, the invariants are polynomials of 12 indeterminates and minimal generators
are of degrees 1, ..., or 7.

In this work, starting from a minimal system of generators (or simply from a
system of generators) of the ideal of algebraic invariants of a polynomial differential
system we will develop an algorithmic method to reduce the polynomial decompo-
sition of invariants to a linear one. We will apply this method to determine syzygies
between these invariants. We will also give many examples in the case of a planar
quadratic polynomial system. Our choice is motived by the existing knowledge
of these systems which are objects of numerous scientific investigations including
those by Poincare [10] and Liapunov [8].

2. PRELIMINARIES

Using Einstein’s notation (see e.g. [11]), the complete planar polynomial quadratic
differential system of finite dimension » and of degree at most & with coefficients
in a field k of characteristic zero can be written as

da?

@ e

Qa2

+ajo‘él...a7‘x0<1 cex jiag,ar € {1} 1< r <k,

where for j = 1,...,n and for 2 < r < k, the tensor a},...., (1 time contravariant
and r times covariant) is symmetric with respect to the lower subscripts.

Let S be the set of all coefficients on the right hand side and = = (!, ..., 2"
be the vector of the unknown variables of (1). Let G be a group of linear transfor-
mations on k™. A polynomial function C' : S x k™ — k is a covariant with respect
to the group G, or G-covariant if there exists a character A of the group G, such
that

Vg e G, Vae S, Cp(q)a,qz) = Nq)C(a, z),

where p is a representation of the considered group on S. If A = 1, the covariant is
said to be absolute, otherwise it is said to be relative. In the case of the linear group
GL(n), A(g) = det(q)~*, where > is an integer ([5] [11]), s is called the weight
of the covariant C(a, x). If the polynomial C(a, z) is independent of z, then it is
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said to be a G-invariant. Recall that the set of G-covariants of (1) is an algebra
over the field k.

A G-covariant C(a, x) is said to be reducible if it can be expressed as a polyno-
mial function of G-covariants of (the same or) lower degree. If C(a, z) is reducible,
we simply write C'(a, z) = 0 (modulo G-covariants of lower degree). A finite fam-
ily B of G-covariants of (1) is called a system of generators if any G-covariant
of (1) can be expressed as a sum of products of constants and elements in B. A
finite family B of G-covariants of the system (1) is a system of generators of the
G-covariants of the system if every G-covariant of (1) is reducible to zero modulo
B. A system B of generators is said to be minimal if none of them is generated by
the others.

Let K = {K)| A € A} be the set of all G-covariants of (1). Let Q(K) be
a polynomial in K. If the relation Q(K) = 0 is an identity with respect to the
variables from a and z, but not an identity with respect to the elements from K,
then the relation Q(K) = 0 is called a syzygy relation for the elements in K, and
Q(K) the corresponding syzygy for (1). A syzygy relation for the elements in a
subset of K is similarly defined. A finite family S of syzygies relation for the
elements in K is generating if the set of its corresponding syzygies is a system of
generators of all syzygies for (1) and is free if this set is minimal. It is a basis if it
is free and generating.

Let G be the linear group GL(n). The action of the group GL(n) on k™ :
(¢, x) — qx, induces a representation p : GL(n) — GL(S) defined by

n .
:Zqiaz}
aoq qu 061 317

lell

aala? Z Z Z q 0<2 J1J2’

= 1]1 1]2 1

p( aoq 047 Z Z Z Z qu o 0477 ;1 g

=1 j1=1jo=1 Jr=1

where j, a1, ..., € {1,...,n}, 7 =1,...,k, and ¢ is a matrix of GL(n) and p its
inverse.

The GL(n)-covariants of (1) are called centro-affine covariants. If a centro-
affine covariant does not depend on z, then it is called a centro-affine invariant.
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For examples (see [11]), for the planar polynomial quadratic differential system

()

(that is, system (1) where k = R and n = 2), L =tr(a

Iy = ag), det(a; asa? (or det(a
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dxI .
= a] + a]
dt

) = aja3 —

a1 J
+ aoqozg

Iio=

Mz, joq, a0 € {1,2}

ZA‘)z‘,j:l,2 =
) 1.p.4q

a afcﬂa‘s ebd

B g pq TS
ala aﬁéa ePle

pqr a’)’aéu

B 6 U ~pq TS
apaqraﬁs aéa ETE

Ky = ala?—
invariants (see e.g. [11, pp. 143-144]) include I4, ..., Isg:
I =ag
I, = agag
I3 = agaﬁ amzqu
a,B

— Y P4
Is=a 20500 E

— B Y ~pq
Is = ajaj a5

— Bay pq
Ig = apa al, aﬁézs

_ B 6 ~pq.rs
17—%r%q%5a ePble

— 63 Pq TS
Iz = amaaqaésaﬁ ePble

_ o By pq
Iy = ap.ag,a7,a 0 sePaers

Iig = aﬁaﬁ a”
Iy = agagﬁcﬂ

P

— B4
Igl—aaﬁa a”alepg

_a B~ 6
Iso = g0, 507a

_a B . ~,6
I3 = ag, G507 a

_ o, By 4
Iy =a S 0s @y 30

- B 6 -pq
Iss aapavqaﬁéa €

_ B 8 ~pq
Iy = aapavqaﬁéa €

_ B I
ag,dy aaua ata

=a® aﬁ

B a7 g9 pq TS
apaqra éaaﬁaéle €

BaY H pq TS
apa al, %s%a%uf €

o B v 0 pq ~rs -kl

amaqkawa&aﬁ ay,etie"e
BaY H PqTs

apa aéaaqaﬁéawalwe 5

aaﬁaﬁ

ab a®alep,
B Iz
ag aéua a

a, B 1%
aQ, aaﬁaéua a

B S HoPq

apaaqaﬁéa ate
B 8 1pPq

%aaq%u%aa €

anB o7 @b ghePd
ap ag,al,,as sak'e

v

6 MV Pq
p aqaﬁya sata’e

B pq
apa ag, %M véa €

al + a3 (or
= 5arasepge’® Where e,g = ¢ —p
and ¢ = s —r), and K = (aj; + afy)z' + (aiy + a3y)z? (or K1 = azz®) and
a?zrl(or Koy = aPale,,) are centro-affine covariants of (2). Other

Ir7 = agamaﬁcﬂaq&pq I36 amafqagéamaéua ePaems
and covariants (see e.g. [11, 13, 2]) include K7, ..., K33:
Klzagﬁxﬁ Klgzagagvaglt i Kggzapaiﬁx“xﬁqu
Ky=abx®xle,, Kiz=al Bﬁagux i K24=apa3a§7xﬁx75pq
Kg—aﬁaﬁ 7 K14=apa§qa66a‘fmx“apq K25=a“aﬁaiﬁxqapq
Ki=a$ Bﬁyﬂ K15=a§a§qagua%x“apq Kggza“agéag7x6
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Ks=af ga®z’ze,, K= agagqagua%xﬂapq Ko7 =a®all,a};x’

Ke= agﬁagéaﬂx‘s Kiz= agyagvaéﬂx‘sx”x” Kog=a%a"a? Pal srlep,
K7:a§7a§6x7x6 Kig= aﬂpagqaﬁya‘s aha¥ePd Kggza“af wawx“
Kg:a“afazﬁx‘s Klgzagafagqamta%x”apq Kio=a agaguawx“
Kg—aapagqawx ePe Kgozal‘f,,afqa"’ a%vaéﬂx ePie™s K31 =a“al aﬁéalwxﬂx”
Klozagpafqamx‘sapq Ko =aPziep, Kggza“aﬁaaﬁaiuawx”
Kllzagagvaﬁyﬂxqapq Koo =aba%xley, K33=a" afaaqﬁafwaéﬂx eba

where ePl=¢,, =q — p.

Two basic facts about centro-affine covariants of (2) are known.

Theorem 1. ([6]). Any system of generators of centro-affine covariants of (1)
is made up of polynomial expressions of the coefficients of these systems and the
vector x obtained from the tensorial operations of alternation or total contraction.

For examples, I} = a% and K; = agﬁxo‘ are obtained from total contraction,

det Jf = 14Pq% ™ and Ko = aPxle,, are obtained from alternation, and
3 2 pq pq

Iy = agaaqagwgpq and Koz = aPal jz*2e,, are obtained from alternation and

total contraction.

Theorem 2. ([11, 13, 2]). The family B = {I1, ..., I3, K1, ..., K33} form a
minimal system of generators of the ideal of centro-affine invariants and covariants
of (2), and E = {I1,..., Iss} form a minimal system of generators of the ideal of
centro-affine invariants of planar polynomial quadratic differential systems (2).

3. ALGEBRA OF CENTRO-AFFINE COVARIANTS

An important question is how invariant conditions of differential systems (1)
can be expressed in convenient manners. We have already mentioned the Aronhold
symbolism method [11] and the method of Grobner basis. Here we describe an
alternate method.

Let B = {C1,...,Cs} be a minimal system of generators of the ideal of centro-
affine covariants (or centro-affine invariants) of (1). Since each element in the
family B is a homogeneous polynomial in a and z, in view of Theorem 1, each
centro-affine covariant C' (respectively centro-affine invariant) of (1) is of the form

C = Zcrpr(clv SE) Cs)v
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where each ¢, is a scalar in the field k and p,(Ci,...,Cs) = Ci\l - Os with
exponents Ay, ..., A\s € N, where N is the set of nonnegative integers.

This motivates the following definitions. A centro-affine covariant of (1) is said
to be of type (or of the multi-degree) (do, d1, do, ..., d,, ) if it is homogeneous of
degree dy in relation to a’, of degree d; in relation to al, of degree ds in relation
t0 al,as, ..., OF degree d,. in relation to a?, ..., and of degree ¢ in relation to the
contravariant vector x. The integer ¢ is called the order of the centro-affine covariant.
An invariant is a centro-affine covariant of order § = 0, hence it is conveniently
said to be of type (dy, d1, da, ..., d.).

For examples, K1 = agz2® is of type (0,0,1,1), I1 = ag is of type (0,1,0),
I = agag is of type (0,2,0), If = (a3)* is of type (0,2,0), 17 = a®a is of
type (1,0,1), I3 = agagqagwepq is of type (0,1,2), L3 = (agag)(agagqagwgpq)
is of type (0,3,2) and Ky = aPaley, is of type (1,0,0,1). For later uses, let’s
record here the respective types 17, T5, ..., T3¢ Of centro-affine invariants I, ..., Isg
of F:

T1=(0,1,0),72=(0,2,0), T5=T4,=T5=(0,1,2),T6=(0,2,2), Ty =Ts =T5 = (0, 0, 4),
T10=(0,3,2), T11=T12=T13=(0,1,4), T14=(0,2,4), T15=(0,0,6), T16= (0, 3, 4),
T17=(1,0,1),T1s=(2,1,0), T19=Too=(1,1,1),T2:=(3,0,1), Too=T53=(2,0, 2),
Toy=(1,2,1),Tas=T6=(1,0,3), Tor=(3,1,1), Tog=Tog = (2, 1, 2),
T30=T31=T32=(1,1,3),T33=(3,0,3),T34=(2,0,4), T35=(1, 2,3), T36= (1,0, 5).

We will use Agy.d,.do.....d.,5) (A(do.di,da.....d,)) 10 denote the set of centro-
affine covariants (respectively invariants) of type (dy, d1, do, ..., d;, ) (respectively
(do, dy,da, ..., d;)).

The differential system (1) can be identified as the direct sum of tensorial sub-
spaces

TJole o - oTH1<r<k,

where for » = 1,..., k, 7,! denotes the space of tensors 1 time contravariant and
r times covariants. 7,! corresponds to the homogenous part of degree r of the
polynomials of the right hand side of system (1)). If A denotes the k-algebra of
centro-affine covariants (respectively invariants) of these systems, A is a direct sum
of the vectorial subspaces Ay, 4, do,....d,,s) (respectively A 4, 4,....4,)), Where
do, dy, do, ..., dr, 6 € N.

Note that the algebra A of the covariants is graded, that is,

77777777

and that the centro-affine invariants can be considered as particular centro-affine
covariants (by letting 6 = 0). We will therefore limit our study on the centro-affine
covariants.
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Each centro-affine covariant C' can be written as

C= > Cldosdds vy, Cldoidy ...y )
do,d1,dz,...,dr,0EN

where C(dg,dy ,da
as

-----

-----

) which can be written as (dg, d1, da, ..., d, 6) = M{TC1 + X\oTCo + - - -+ A\TCs
since C1, (s, ..., Cs are homogenous polynomials of multidegree TCy, T'Co, ..., TCy
respectively. It is easy to see that the vectorial subspace A, 4, ds,....d,,5) 1S 9eN-
erated by centro-affine covariants of the form: Cfl .- C2s where A\, Ao, ..., A,
are nonnegative integers such that (do, di, ds, ..., d;, §) = MiTCy + X\oTCo + - - -+
AT Cs.

Now, let us consider the vectorial subspace Ay d,.do,....d,,5)- A covariant
Cldo,dyda,....dr,5) TOr (1) of type (do, d1,ds, ..., dr, §) can be written as a finite sum
Cldouds o, drd) = 20 Crpn, Ot - C25, where Aq, ..., s are nonnegative inte-
gers such the homogenous centro-affine covariants Cfl ... C2s of (1) are of type
(do, d1, da, ..., d;, 6). For the vectorial subspace A g, 4, 4,), We have Cq, 4, ,d0) =
Zch...k%lfl - I§§6, where A1, ..., A3 are nonnegative integers such the ho-
mogenous centro-affine invariants Ifl o -I§§6 of (2) are of type (dy, d1,ds). Let’s
determine Ay, ..., A3g €N such that Ifl . IQgG is of type (do, d1, d2). Note that
Iy = a is of type 71 = (0,1,0) since it is of degree dy = 0 in relation to
a’, of degree d; = 1 in relation to a’, and of degree d, = 0 in relation to ajaﬂ.
Thus I3 = (a2)™ is homogenous of degree dy = 0 in relation to a/, of degree
di = A1 in relation to a&, and of degree d, = 0 in relation to aiﬂ. In other
words, it is of type (0,A1,0) = A1(0,1,0) = A\;73y. The same reasoning leads
us to: I52 is of type (0,2Xy,0) = A2(0,2,0) = AT, ..., and I35% is of type
(A36,0,5A36) = A36(1,0,5) = A36T36.

Consider ;" - - - I33°. It has degree dy in relation to o/ and is the sum of degrees
of I, ..., 12 in relation to a/; and has degree d; in relation to a?, which is the
sum of degrees of Ifl, - I§§6 in relation to a&. It has degree ds in relation to Giﬂ

and is the sum of degrees of Ifl, - I§§6 in relation to aiﬂ. Thus (dy, d1, ds) is the
sum of types (0, A1, 0), ..., (A36,0, 5As36):

(d07 d17 d2) == (07 )‘17 0) +---+ ()‘367 07 5)‘36) = )‘1(07 17 0) +---+ A36(17 07 5)

= MT1 + -+ A367T36.
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For example, let us determine the type of FIgIP.. I3 is of type 3(0,1,0) =
(0,3,0) (since Iy is of type (1,0,1)), Is is of type (0,0,4) and I}, is of type
5(1,0,1) = (5,0,5) (since I 7 is of type (1,0,1)). Hence L I3I?, is of type
(0,3,0) + (0,0,4) + (5,0,5) = (5,3,9) = 311 + Tg + 3Ty, I317 is of type
3T + 2111, and I317,13-13; is of type 3Ty + TTio + 2Ts5 + Thy, ..., €tc.

Let Fdy,dy do,....dy,5) = 115 - - -, [~} be afinite generating family of the vectorial
subspace A (4.4, d,....d,,5) Where (do,d1,da,...;dr,6) = MTCy + XNoTCoy + -+ - +
ATCs.

It is easy to see that the vectorial subspace A, 4, 4,
centro-affine covariants of the form:

-----

d,,5) 1S generated by

-----

f=CM .0 A,y A €N,
where

3) (do,dy,ds, ..., dr, 6) = MTCy 4+ XTCy + - - - + ATCs.

To determine the type of Cfl ---C2s, we need to determine A1, ..., As € N such
that
(do, dy,do, ..., d,, 5) =MTCL+ XTCy + -+ -+ NTCs.

For example, since (0,2,0) = 277 = T», we see that there are two generators 7
and I for A 2,0)- As another example, 1 1 1y = {l20, 19, I1 117} since (1,1,1) =
Too = Tig = T + Ty, ..., and F(113) = {Is, 31, Is0, Is 17, Iadvr, Islh7, 11 1o,
11[25} since

(1,1,3) = Tzo = T3y = T30 = Ts+T17 = Tu+Th7 = T3+Th7 = Ti+To6 = T1+Tos.

Let 77, ..., T3¢ be the types of I, ..., Isg computed in the previous section. Given
T = (dy,d1,ds), we search A, ..., Ag¢ in N such that (do, d1,d2) = MT1 + -+ -+
A36T36. We first remark that for the vectorial subspace A(q, 4, ,d,), if (do, d1,d2) =
AMT1 + -+ A3gT36, then, 0 < Ay < dy since T = (0, 1,0); 0< g < [dl/Q]
since Ty, = (0,2,0); s 0 < Aog < [min(do/Q,dl,dg/Q)] since Tog = (2, 1,2); e
0 < Az < [min(do, d2/5)] since T3¢ = (1, 0, 5).

Thus if we let

d; ) .
Llj+1] = Toqe TG +1]#0
0 otherwise
fori=1,...,sand j =0,1,2; and let
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where [x] denotes the greatest integer part of x, then seeking Ay, ..., As in N such
that (do, d1, do, ..., dr, 6) = MMTC1+ X TCo+- - -+ AsTCy is the same as searching
A1, ..., As In N such that

0<<ag,....0< <y and (do, dy,do, ..., d,, (5) =MTC1HTCot - +NTCs.

For I, ..., I3, the integers ay, ..., agg are calculated as follows:

d1 d1
T, = 1 —t = - — —
1 (07 ) 0) tl <07 1—11 [2] ) 0) <07 1 ) 0) (07 d17 0)7

) = [kfznli’g’g(tl[k] £ 0)] = [min(dy)] = dy;

d1 d1
T, = 2 — ty = - —
2 (07 ) 0) to <07 T2 [2] ) 0) <07 2 0) )

~ [y (1K 7 0 = |min ()] = |2

do d1 d2 do d1 d2 do d2
Tog = (2,1,2) —tog= = = = Z == =
2 = (2,1,2) —tas <T28[1]’ Tog[2]’ T28[3]> ( 27172 ) (2 A, 2 ) ’

s = [y (taslk] £ 0)] = fmin (5,

d d
T36:<1,0,5)et36:< 00, >:<

Ts61]

(07

\}

s = [ min (tsslt] # 0)] = [min <_

&
&
l\'.)
\_/
N—

Let’s consider an example where (dy, d1, d2) =
tions, we see that

0 < M <ap=][min (t[k] #0)] = [mm

)] =»
)=+

0 < as < g = [ min (t2s[t] # 0)] = min (; —>] _1,

(?
0 < N <ar= [ min (0] 2 0] = |min (5

k=1,2,3

"2

0 < Ngo < ags = [, min (tslk] # 0)] = [mm ( §>]
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Given a type (dy, d1,do, ..., d,, §), we may now compute the finite generating
family
Fldosdisday.dy,8) = LI15 s fs}

of the vectorial subspace A4, 4, ds,....d,.s)-

Algorithm 1. Compute F (4, d, do,....d,,5) = 11, -+ fs} , the generating family
of the vectorial subspace A4, 4, ds.....d,.5))-

(1) Enter T'Ch, ..., TC, defined before. Enter a giventype T'C' = (dy, dy, da, ..., d;, 0)
and an index [ = 0.
(2) Fori=1,...,sand j =0,...,r,

ds . .
wlj+1) = TowE TTCGU+ 7
0 otherwise

(3) Fori=1,...,s,
;= [ min (t;[k] #0)]| .

k=1,r+1

(4) While A1 < a1, ..., A\s < ag, if (do, dy,do, ..., dy, 5) =MTCy+---+2TC,
thenl=1-+1and fi;; = C}---Cs.
(5) Return Fgy d do,....dy,5) = LS15 s fs) -

For the differential system (2), the elements fi, ..., fs are the products of ho-
mogenous polynomials of 12 indeterminates! For this reason, in the next section, we
will develope an alternate algorithmic method to express the centro-affine covariants
of (1) which avoids polynomial products and polynomial sums.

4. DeEVELOPMENT OF CENTRO-AFFINE COVARIANTS

In view of Theorem 1 a covariant C' of A, 4, ds,....a,.5) IS & tensor

(TH®% @ (T8 @ ... @ (TH @k, 1< r <k,

obtained from alternation or total contraction. This motivates the following defini-
tions.
Lett9, ..., t?o be the jy coefficients of the tensor a? (1 time contravariant and 0

time covariant), and for [ = 1,...,r where 1 <r <k, #, ..., ¢\ the j; coefficients
of the tensor a?,..;, 0 <1 <r <k (1 time contravariant and [ time covariants).
. . (1]

For po= (p{, ..., pY,) €N, we use (a/)P° to denote the product (t9)Pi. . (9 )P0,

) . 1
for p1 = (pi, ..., pj,) € N7" we use (ad,)"* to denote the product (thpi.. (t5, )P
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. . 1
for po = (p3, ..., p3,) € N7, we use (ah, a, )" to denote the product (tHpt.. (t5,)72,
etc. ,

For p. = (pf,...,p}) € N7, where 1 < 7 < k, we use (aa,..a,)"" to denote

the product (#7)P1- - -(t;r)p}r, and for a = (41, ..., 9,) € N™, we use (z)* to denote
the product (z1)"*- - -(2)"".
A monomial associated with (1) is a finite product of the form
(@ (@, )P (@0, (h 0, )7 (@), 1 <7 < R

aja fe R RERYe 7

In general, a monomial is not a centro-affine covariant of (1). If it is a mono-
mial of a centro-affine covariant of type (do, di, da, ..., d,, 6), where (pY, ..., p% ),
(01,5 03,)s (P1s s 5, oo s (Y55 P5), 1 <7 <k, and (01, ..., 0,) are respec-
tively the partitions! of the nonnegative integers do, dy, da, ...,d, and ¢, and j,. is
the number of coefficient of the tensor a, ..., where 1 < r < k, the monomial

(@))% (ad,) " (ah0) ™ (a0, ) (2)° L < 7 < Ky

102 ap-Op

will be called a monomial of type (dy, d1,do, ..., d,, d). For example, among the
monomials

iy ). alob.alad, (0}, adod, afod, (0P, . ()

monomials of type (0,2,0) are: (ai)?, ata2, ala? and (a2)?.

Monomials are cumbersome to write. To simplify matters, let us first order the
tensorial coefficients a’, aly,, ahyags o) Ghya, Where 1. < r < k, j,aq, ..., €
{1,...,n} of (1) and the components z!,...,z" of the contravariant vector z in
the following manner: o/ < af . < 2’ for all i,5,¢ € {1,...,n}; o/ < a’ if

11...1s
jg<tforallije{l,..n}andaj ; <aj , ifs <s0r(s1=s
and the first non null component of the vector (j, j1,...,7s,) — (4,41, ..., ls,) =

(j—4,j1—101,...,Js; — Ls,) 1S Negative).
For the planar quadratic differential system (2), one has

(4)  a'<a®<al<ad<a?<dd<al<al,<ady <a? <ad, <a3, <zt <2

The set of all monomials will be denoted by M, while the set of all monomials
of type (do, d1, da, ..., dr, §) will be denoted by M 4, 4, d,.....a.,5)- | we define

()P (ah, )P (@, 0,72 (@0, )P (2)°

X (a9)0 (ad, ) (ad, ) (o, ) ()
 po+ . + . + . +
_ (aj)po a0 (ajal)m tn( jalag)m a2 ( jalmar)pr ar (x)é—l—u

(a1, ...,am) is a partition of the nonnegative integer 3 if «, ..., ., are nonnegative integers such
that 3=a1+az+ -+ am.
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fori=1,...,r,and p;, ¢; € N» (1 < r < k), then M is a monoid with the identity
1.
Since the number of partitions of the nonnegative integers do, di, da, ..., dr, (1 <
r < k), and ¢ are finite, M4, 4, ds,....d,,5) iS @ finite set and hence can be written
as {ma, ..., Mn,} , Where ng is the number of elements of M 4, 4, ds,....d, 5)- FOr
example,
Mo20) = {(a})?, ala3 ada. (a3)%} and g = 4.

Recall that a monomial order for a monoid is a binary relation that is (i) total,
(ii) compatible with the product, and (iii) well ordered (so that any nonempty subset
of the monoid has a smallest element). By treating the tensorial coefficients as
‘alphabets’, the total ordering defined by (4) can be extended to a total lexicographic
ordering for the set M in the usual manner (see e.g. [12, pp. 373-375]):

(@) (aly, P! (02 - (@, )7 (2)°
=< ()™ (@], )" (aly,0,) " - (a0, )" ()"

< the first nonzero component of the vector

(Po — G0sP1 — q1, P2 — 2, -y Pr — @r, @ — p) IS POSitive.

This ordering is a monomial order, since it suffices and is easy to check that if m
and mo, are two monomials such that m; < ms then for any monomial m, one has
mmi < mms.

Let us consider some examples of centro-affine invariants of planar quadratic
differential system (2): I; = a is a sum of a! and a3. Since a} < a2, we may
write I; as a sum of terms ordered in an increasing manner:

I = a% + a%.
We may do the same for I, = agag, Ii; = ao‘agﬂ and K; = agﬂxo‘:

I = (a1)? + 2a3a} + (a3)?,

1.1 1.2 2 1 2 2
117 = aa11+a a11+a a12—|—a a99,

1,1 2 .1 1,2 2 .2
Kl - a’llx +a111‘ +a121‘ +a221‘ .

In general, let < be a monomial order for the monoid M, the lexicographic order
for example. Then any centro-affine covariant C' can be written as

C=aimi+- -+ ayymp,

where m; < mg < --- < my,. Such a sum is called a sum arranged in increasing
order.
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Theorem 3. A centro-affine covariant C of A 4, 4, ds.....d,.5) (1 <7 < k) can
be represented by a unique vector v of R™ where ng is the number of elements of

M (do,dy da,....dr.5)-

The proof is based on the fact that a covariant C' of type (dy, d1, ds, ..., d, ),
(1 <r < k) can be written as a sum arranged in increasing order as C' = a;m; +
* Qg My, Where ng is the number of elements of M 4, 4, 4s.....4,,5)- The choice
v =(ai,...,an,) implies that v is unique because m < --- < Mmy,.

We will say that v is the vector representing the covariant C4, 4, ds,....d,,s)- FOr
example, 17 and I € Mg and Mg20) = {(a1)?, aja3, a3ai, (a3)*}, and
since

I} = (ag)* = (a1)* + 24105 + (a3)?,
Iy = afa] = (ai)* + 2a3a? + (a3)*,

we see that 17 is represented by (1,2,0,1) and I by (1,0,2,1).

A covariant of A 4, ds,....d,,5) 1S @ tensor of rank N = do + 2dy + 3d2 + dp +
oo+ (r = 1)d, + 0. We represent each monomial m in Mg, d, do,....d,,5) DY its
corresponding list of its IV indices taking into account contractions and alternations.
The idea is to construct all lists that correspond to our monomials without permu-
tations (in computation, permutations and polynomial operations are not interesting
because of complexity). It is known that the number of permutations of N numbers
taken from {1,2,...,n} is nV = npdo+2di+3datdo++(r—1)dr+4_The lists of indices
of monomials in M4, 4, ds,....d,,5) OF N numbers taken from {1,2,...,n} can be
regarded as rows of a matrix denoted by M.

We illustrate our ideas by means of examples. Let us first compute M for the
vectorial subspace A 2 o) that is generated by F o2y = {If, 2} .

We have to determine the associated vectors v; and v of IZ and I respectively.
First, we determine the set M (g 5 o) of the monomials of invariants of type (0, 2,0)

(but avoiding polynomial product 7?7 and polynomial sum): I? = (a%)? = agag

(0%
and I, = agaa since «, f = 1,2 and since a monomial of type (0,2,0) may be
(a})? = alal, ata?, ala?, or (a2)? = a2a3. Then each monomial can be identified
as a member among a list of permutations of four numbers taken from {1, 2}. For
example, (al)? = alai can be identified as 1111 and ala? as 1221.

Let us represent each monomial m in M4, 4, 4,) Y its corresponding list of its
indices. The idea is to construct all lists that correspond to our monomials without
permutations. Since the number of indices is N = dg + 2d; + 3ds, the number of
all possibilities is 27V = 2do+2d1+3dz

The lists of permutations of N numbers taken from {1,2} can be regarded as
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rows of the matrix

I S S
T S S
I S S
N N
— =N N
N = DN = DN =

If we identify the numbers 1 and 2 as the binary digits 0 and 1 respectively, then
we can see that the NV-word 111---111 can be identified as the binary N-word
000 - - -000, the N-word 111 - - - 112 as the binary N-word 000---001, etc. Since the
set of all binary N-words can be generated by starting with the V-word 000 - - - 000,
and then adding the binary N-word 000 - - -001 successively to it, we see that the
matrix A can be mechanically generated easily.

For I? and I, N = 4 and 2V = 2% = 16. Thus the rows of A are

1111,1112,1121, 1122, 1211,1212, 1221, 1222,
2111, 2112,2121,2122, 2211, 2212, 2221, 2222.

Since I? = agag can be identified as aa35 and I, = agag can be written as

afBfa, we take only lists that satisfy Afi, 1] = A[s, 2] and A[i, 3] = A[i, 4], or,
Ali, 1] = Ali, 4] and A[i, 2] = Al 3]. This gives us, after simplification, a modified
A made up of

Iy = 1111, Iy = 1122, I3 = 1221, Iy = 2112 = I3, I5 = 2211 = [o, [g = 2222.

Now we have all monomials of type (0,2, 0), although they are not ordered.
After ordering the monomials of type (0, 2, 0) obtained above, we have

mi = ll = 1111, mo = l2 = 1122, ms = lg = 1221, my = l6 = 2222,

i.e., we have M2 0) and ng = 4. We may now construct the matrix M with
columns v;. Take I? for example, we compute its associated vector v;.

Enter v; = [0,0,0,0] and A.

Fora=1,2do

for 6 =1,2do

fori=1,4doif [o, o, 3, 8] = [A[s, 1], A3, 2], A4, 3], A4, 4]]
then vi[i + 1] :== vy[i] + 1

return vy.
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By means of the above algorithm, we may see that the vectors associated with
I? and I, are respectively
V1 = (17 27 07 1)7

and
Vo = (17 07 27 1)7

which can also be seen from 112 = mq + 2mo + my4 and Iy = mq + 2ms + my.
In this example, the tensorial alternation is not involved. When alternation is also
involved, we may construct the matrix A in the same manner without taking into
account epq- - e (€P9- - -, €7%) but we delete all lists correspondingtop = gorr = s
since e, = 0 (respectively ¢ = 0), and taking into account that ¢, - -€,s = 1
or —1 (respectively P4 --¢™ = 1 or —1) when we compute the matrix M. For
example, the vectorial subspace Ao,1,2) is generated by Fo1,2) = {I3, 14, I5} . Let
us show how we may determine the vector w; associated with I3 = agagqagwgpq.
Here N = do+2d1 +3dy = 2+6 = 8. Construct A in the same manner for F(0,2,0)
without taking into account £P? but delete all lists corresponding to p = ¢ since
511 — 522 = 0.

We construct A in the same manner as that in the case of Fy o). A is the
matrix of the lists of permutations of N = dy + 2d; + 3ds = 2+ 6 = 8 numbers
taken from {1,2}. We delete all lists which do not correspond to monomials of
Mo,1,2) of elements of Fg 1 oy = {I3, I4, I5} and delete all lists that correspond to
pP=gq

As an example, note that I3 = agagqagwgpq can be written as apfBaqyGy (we
do not take P4 in the list), lists of the form a18alvy G~ are deleted from A because
p = g = 1 the same thing for lists of the form a23a2~v08~, but the coefficient
of monomials af‘a,faa,g7 (or a,g‘a,fda,g7 ) that correspond to the lists of the form
alpBa2vy By (or a2BalvyBy) are 1 (respectively —1).

We determine the vectors wq, w9 and w3 in a manner similar to the case of 1'12
and I, but we take into account that coefficientsare 1 if p=1 and —1 if p = 2.

Enter w; = [0,0,0,0] and A.

Fora=1,2do

forg =1,2do

ory=1,2do

forp=1,2do

org=1,2do

for i = 1,8 do if [a, p, B, 0, q, 7, B, ] = [Ali, 1], A[i, 2], Al4, 3], Ali, 4], A[i, 5],
Ali, 6], Al4, 7], Alz, 8]]

then

if p=1then (wyi[i + 1] := w1 [i] + 1) else (w1]i + 1] := wq[i] — 1)

return ws.
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Let us consider the vectorial subspace .4(0,2,0). It’s generated by centro-
affine invariants of the form I} ... 1335 where \i,..., 3¢ € N satisfying (3)
for (do, d1,d2) = (0,2,0) which is possible for A\; =2 and Ay = 0, 0r, Ay =0
and \o = 1. A(0,2,0) is then generated by I? and I, whose associated vectors
v = (1,2,0,1) and v = (1,0, 2, 1) are linearly independent.

Let’s summarize step by step how a given contravariant for .A(0,2,0) can be
developed

(1) We search all invariants 1] - - - 133, where Ay, .. ., A3¢ € N, of type (0, 2, 0)
satisfying (3) for (do, d1,ds) = (0,2,0). We get I? and I.

(2) We determine Mg 2 ) the set of monomials of centro-affine invariants of
type (do, d1, d2) while developing monomials of the form agag and agag.
We get M g0y = {(a1)?, ata3, azai, (a3)?} and ng = 4.

3) Order M 5.y by @ monomial order. We get Mg 5 oy = {m1, ma, ms, my}.
(0,2,0) (0,2,0)

(4) Decompose I7 and I in M g 2.0) = {m1, ma, ms, ms} . We get I{ = m; +
2ma + my and Iy = mq + 2ms + ma.

(5) Calculate v; and vo the vectors associated respectively to 112 and I,. We get
v1,v2 € R™ = R* such that v; = coefficients of I? and ve = coefficients
of Ir. We get v; = (1,2,0,1) and v = (1,0,2,1).

(6) Return M.

Now, let us give an algorithm to develop a given centro-affine contravariant of
type (do, d1, da, ..., d,, §) Of the differential system (1).

Algorithm 2. Enter (dg, d1, ds, ...,d,, ) and TCh, ..., TCs.

Step 1. Compute the finite generating family 74, 4, ds.....a,,5) = {1 f1, f2, - - -, fs}
of elements of the form C’fl -~ Cs, where Ay, ..., \s € N, such that (dg, dy, do, ...,
dy, 5) =MTC1 +---+ X\TC,.

Step 2. Determine M 4, d, ds,....d,,s) the set of monomials of f1, fo,. .., fs , of

type (do, di, da, ..., dy, &) (they are of the form (/)70 (al, P! (ady, 0y )P2- - (@, )"
(z)*) and its size ny.

Step 3. Order M 4,4, ,d.....d,,5) By monomial order.

-----

Step 4. Fori=1,...,s, decompose f; in Mgy d, dy,....dr,5) = {7 - Ming }
Ji = Bimu + -+ Bhyma,.
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Step 5. For i = 1,...,s, calculate v; in R™ _v; = coefficients f; in

Step 6. Construct the matrix M formed by the vectors v;, i =1, ..., s, that is,
M = (v, ..., v5).

Step 7. Return M.

We will say that M obtained from Algorithm 2 is the matrix associated with the
vectorial subspace A, 4, ,ds.....d,.5)-

Now we are able to develop a given centro-affine covariant C' of type (d, dj,
da, ...,d,, 0) while constructing its associated vector v and therefore it suffices to
solve in R* the equation M\ = v after reducing M with the help of an appropriate
software in linear algebra. Let us return to the vectorial subspace A ¢ for
illustration. It is generated by 112 and I, and its associated matrix formed from
its corresponding vectors v; = (1,2,0,1) and v, = (1,0,2,1) is of rank 2. Thus
I? and I, form an algebraic basis for the vectorial subspace A0,2,0- Recall that
det(aj);=1,2 is a centro-affine invariant. Using Aronhold symbolic calculation we
find det(a%);=1,2 = 3(If — Iz). On the other hand, we can apply Algorithm 2 to
compute its associated vector v (det(a}) ;=12 = aja3 —ajai,v = (0,1,-1,0)) and
to decompose it in v; and v, to obtain v = %(vl — vy). That is, det(a?)j:172 =
1(I# — I). This method does not need the Aronhold symbolic calculation and can
be used to describe the algebra of centro-affine covariants of (1) and to decompose
any given invariant of these systems.

We can construct centro-affine covariants of these differential systems by using
the fundamental theorem of Gurevich and apply the Algorithm 2 to determine the
matrix associated with each corresponding vectorial subspace and to reduce this
matrix or to determine its syzygies for obtaining its algebraic basis.

5. SyzvyGIEs

In this section we will apply our algorithms to compute syzygy relations between
centro-affine covariants of polynomial differential systems of the form (1).

For the subset {I1, ..., I16, K1, ..., K20}, @ minimal system of generators for the
ideal of syzygies relating its elements is known (see e.g., [11, Theorem 17.1], [4]).
For instance, one such generator is Iy K5 — K¢ K10+ K? K9, and the corresponding
syzygy relation is

IhyKs — KgKq9+ K%Kg =0.

The question then arises as to how any syzygy between elements of the expanded
set B = {Iy,..., Isg, K1, ..., K33} can be determined. In the following, starting from
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the basis £ = {I, ..., Iss} of the centro-affine invariants of system (1), we will
develop an algorithmic method that permits us to calculate a syzygy as a linear
combination of centro-affine covariants.

A syzygy S for K (or for (1)) is said to be homogeneous of type (dy,d1,ds, ..., d;,d)
if it is a linear combination of homogeneous centro-affine covariants in the vectorial
subspace A (qq.d; do,....d.5)-

For example: S = I313—21% — I3+ 121y — I712 is a homogenous syzygy of type
(0,0, 12) since it is a linear combination of homogenous invariants 1315, I3, I3, 121
and 112, all of type (0,0,12).

Lemma 1. If asyzygy S for (1) can be written as a finite real linear combina-
tion of homogenous invariants Sy, ..., Ss, for (1) such that their types are mutually
different, then Sy, ..., S5, are necessarily syzygies.

Proof. Suppose S = A1S1 + -+ - + AsSs, such that their types are mutually
different. Since S is syzygy, we have 0 = NS; + -+ + AsSs,. If there exist
19 € {1, 2, ..., S} such that Sio 7& 0, then )\z‘oSz‘o = —)\jISjl — e )\jrsjr which is
impossible.

This lemma implies that each syzygy can be decomposed in the direct sum

and it is sufficient to determine syzygy relation of a given type.

A homogenous syzygy S for (2) can be written as a real linear combination of
homogenous syzygies S; of type (di, d:, d3, §¢) which is a real linear combination
of homogenous centro-affine invariants of the form I - 339 of the same type
(dh, d5, dj, o).

Let us consider the vectorial subspace A(do, d1,dz2). A syzygy S for (2) of
type (do, d1, d2) can be written as a finite sum S; = >°%_, ¢; f;, where fi, ..., fs €
F(do, d1, ds).

Lemma 2. If hy,ho, ... hsy € Ay do,....d,5) &N v1,02,. .., 05, their
respective associated vectors then there exists a vanishing linear combination of
the vectors vy, ..., vs, € R" such that 31v1 + Bava + - - -+ B5,vs, = 0, if, and only
if, S = B1h1 + Baha + ...+ Bs, hs, IS @ syzygy of type (do, di, do, ..., dy, 9).

Proof. Leth; = afmy+... 4+ mn,, vi = (af,... 0ok ) whereod, ... ol €

R, i=1,...,80. Then

50 50
Z ﬂzhz = Zﬁz(aﬁml + ...+ aﬁwmno)
i=1 =1

S0 S0
= <Z /BZOCZI> mi+...+ <Z ﬁio‘%) My, =0
=1 =1

i
no



Decomposition of Centro-Affine Covariants of Polynomial Differential Systems 1921

if, and only if,
S0 S0
Y Biai == Bial, =0
=1 =1

if, and only if
Brv1 + Bavz + -+ - + Bsvsy = 0.

Let S be a syzygy for (1) of type (doy,d1,do,...,d,,0). If M is the matrix
associated with the corresponding vectorial subspace Ay, 4, ds.....d,,5) and 3 =
(B1, B2, -+, Bs) in k* such M3 = 0, then B1f1 + Bofo + -+ Bsfs = 0 is a
corresponding relation syzygy.

If we reduce the matrix M, the equation M (3 = 0 gives as a basis of syzygies
of the vectorial subspace A4, 4, ds,....d,,5)- 1herefore, this algorithm can be used to
determine syzygies relating elements of any subset Q = {g1, ..., g, } Of centro-affine
covariants of (1). We write 2 as Q2 = U2z, of subsets of elements of €2 that has the
same type 7;. Since a syzygy can be written as a linear combination of homogenous
syzygies, it suffices to apply our algorithm for each subset Q7.

An application of relation syzygies is to deduce an algebraic basis from a given
generating family of invariants. Let us give some examples.

Let S(dy,a,,4,) D€ the algebraic basis of syzygies of the vectorial subspace
Aldo,dy,d,)- The generating family 7,0 = {If, I2} is an algebraic basis for
A(o,2,0)- By the methods described in the previous section, we may compute the
generating family F; 5 5):

Fa,25 ={hshy, [ihaliz, iz, Iido Iz, Inlolhg, I1Is 20, I1Is o,
L I7150, I1I7 g, I 15106, I1 I5 125, Iy 14106, 1114125, 111315,
L I3Io5, I 136, 1T IoIy7, 1T IsTvy, ITIr1h7, IoIsg, InIolvr, IoIsTyz, InI71v7 },

and the algebraic basis S(; 5 5):

Sa25) = {I1lohg — I 13l + I IiaTi7 — I 13126 — 1119 120;
25 Iglyg + It 1Ty — 21 IisTyr + 21 Iudog — 111917}

A(1’2’5) is generated by f(1’2’5) but its elements 11[9119, 11[13[17, 11[12[17,
11131267 11[9120 are Iinearly dependent because 11[9119 — 11[13[17 + 11[12[17 —
I1 13156 — I1IgIsg = 0. Then one of them can be expressed by the others, for
example, LiIglsy = I1Iglig — I1 13117 + 1 19117 — 1113156, SO We delete it from
the generating family 71 5 5). The same holds for I, 797y, 21147, 211113147,
21114156, I3 19117 but we must choose a different one from the element we deleted
before. For example, if we choose to delete I; IgI 9 (or 11113177 ) using one relation
syzygy, we must delete another element using necessarily a second relation syzygy
and this element must be different from the first element deleted.
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By means of our methods described above, a list of some other generating
families can be given:

Fo,1,0)
Fo,1,2):
F0,2,0)
: Iﬁ, 11]5, 11]4, 11]3

F(0.2,2)

F0,3,2):
}11,04)5
F1,03)
]QL1J)5
F0,3,0)
Fa,1,3):
}11,11)5
F,2,3):

Faza):
Fa,3,3)

}QQALQ)i
F,1,0):
F2,3,0):
}QQ,LQ)i
F2,2,0):
}12,12)5

F23,2)

F3,1,0) ¢
F3,0,3)
Fe
F3,1,3) ¢

F3,2,)
F(3,2,3) :

F3,3,1)
F(3,3,3) :

I
15,14, I3
I, I?

Lo, I I5, LIy, I I3, I Ig, I 15, 1314, I3 15

Ii7

16, I25

10, Ing, I1 117

LI, I}

I32, I31, I30, IsI17, 14117, 13117, 11126, 11125

Loy, I Ih7, I Ing, I I1g, I T17

I35, Ie 117, Is 20, Is 19, I4d20, 14119, I3120, 13119, 12126, 12125,

D39, [ 131, 1130, 1 Is Ing, I I g, I I3 1h, I3 dog, I3 125

Iylog, Inhg, I Ioa, [ 12 Iy, I3 120, I Thg, I3 117

Iiol17, 16120, Is119, 15124, Is12y, 13124, 12132, 12131, 12130, I2I5 117, I 14117
Is13117, I I35, I1 Ie L1 7, 1115120, InIs Ihg, I1 14 d2g, It 14119, It 13120, I1 13119,
Lz Los, 1 I Dos, 17132, I 151, I3 130, I35 Ivg, I3 Iy d1g, I I3 1h7, I3 Iog, I Ios

Ing, Ino, I3,

I1g

L, I{11s

Isg, Ins, I17120, I17 1o, I1 1oz, I Ioo, 11 17,

Ii11g

12y, Liolao, Iy, Ii7lay, IsTis, Inlhs, I3I1s, IoIag, Iolao,

Iy}, I Ing, It Ing, It Iy7 120, I I17 119, I3 Ia3, I3 190, I3 13,

Inoloy, Iiglaa, IsTis, Iolag, IoIos, IoT17120, IoI17119, 1115y, I1 I19120,
LIy, 1 Iy71ag, I Is Iyg, Iy Iy, Iy, 1 I31hs, 1 1o Doz, Iy I Qoo I I T3,
Py, I3 1og, I 117120, I 117 1ho, I3 Ios, I3 1o, I3 13,

Iy

I3s, L1713, Iy 1o, I3,

Iz7, In7lhg, I1 I3

Inolos, Inola2, IoIos, TigI2o, I1s 16, s Ios, I17129, I171as, Ii7 120,

13 5o, IsIo1, Indor, I3 Qo1 I I3z, I 17 Io3, I 17 Ioo, I 13,

Lisloo, IisT1g, InIa1, I1 o7, I1 17118, I1 121

Insloy, Inalog, Inglng, InoIos, T19129, I9Ios, I1s 132, I1sl31, IisI30, 1713,

Lirhglao, i1y, Iiploa, Iolor, Isloz, Ishr Ivs, Indoa, InTh7Iis, IsTor, IsTi7 s,
Iols3, InIy71o3, Inli7Iag, I T3, Iy IogIng, Iy Iag oo, I1 19123, I1 19 2o,

I IigIss, Iy I1sIos, I1 17199, Iy Iy7 Do, Iy T30 D00, Iy 137 1hg, I IsIoy, Iy 141y,

L3001, I 133, I Ti7 123, I Ti7 oo, 11 T,

Disloy, IoIo7, InIi7Iis, I IisIao, I IisThg, 11 1o Ion, 1117, I3 17 1hs, 13 o7, I3 1oy
Lyalsg, Inalos, I3y, 19130, 1310, I3y, Iis I35, I17120124, Ii7T19 154, I10I21, I o7,
IsIi7lis, IsTigl20, IsT1s I19, 1118120, 1118119, I3 118120, 3118119, 12120123, 12120 I22,
Iniglas, Inligloz, InTisIng, InI1sIos, IoI17129, IoI1712s, 12177120, I I37 19, Io15 Io1,
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Iy 1ylo1, 113001, 11123104, 11120104, I IogI2g, 11 I2g 28, 11119129, I1 119128, I1 1158132,

I hslse, I s Is1, I Is Iso, It 117 13y, It Ti7Thglo0, I Ii7 11y, I 117 Ioa, I Ig Io1

LiIslar, IWIshizlis, It Iado7, I1 Iy h71hs, 1113107, 11317118, In 12133, I T2 117123,

Lo I7lae, W oI5, I3 1o Ios, 17120 Ioo, I3 Tiglas, I T19 120, I 1s Io6, 11 T1s o5, 1711719,
B lirles, IR 13,000, 1T 17 1o, I 05 1oy, I3 0400y, T2 300y, I3 D33, I3 Ty o3, I TipDoe, , I T3,

We remark that the algorithms described above can be generalized for algebraic
covariants in relation to a linear group of transformations of polynomial differential
systems with coefficients in a field k of characteristic zero in n variables of degree
k.

A consequence of the work of Vulpe on semi-invariants is that the polynomial
relations between the covariants are equivalent to the same relations between their
leading terms. One can improve the efficiency of these algorithms by replacing the
elements of the minimal system of the centro-affine covariants of the differential
systems by the set of their leading terms.
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