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QUASILINEARITY OF THE CLASSICAL SETS OF
SEQUENCES OF FUZZY NUMBERS AND

SOME RELATED RESULTS

Özer Talo and Feyzi Başar

Abstract. In the present paper, we prove that the classical sets �∞(F ), c(F ),
c0(F ) and �p(F ) of sequences of fuzzy numbers are normed quasilinear spaces
and the β−, α−duals of the set �1(F ) is the set �∞(F ). Besides this, we show
that �∞(F ) and c(F ) are normed quasialgebras and an operator defined by
an infinite matrix belonging to the class (�∞(F ) : �∞(F )) is bounded and
quasilinear. Finally, as an application, we characterize the class (�1(F ) :
�p(F )) of infinite matrices of fuzzy numbers and establish the perfectness of
the spaces �∞(F ) and �1(F ).

1. INTRODUCTION

Zadeh introduced the concepts of fuzzy sets and fuzzy set operations, in his
significant article [16]. Subsequently several authors discussed various aspects of
the theory and applications of fuzzy sets such as fuzzy topological spaces, similarity
relations and fuzzy orderings, fuzzy measures of fuzzy events, fuzzy mathematical
programming. Especially, El Naschie [11] studied the E infinity theory which has
very important applications in quantum particle physics.

By w(F ), we denote the set of all sequences of fuzzy numbers. Throughout the
text, we suppose that 1 ≤ p < ∞ with p−1 + q−1 = 1. We define the classical
sets �∞(F ), c(F ), c0(F ) and �p(F ) consisting of the bounded, convergent, null and
absolutely p-summable sequences of fuzzy numbers, as follows:

�∞(F ) =
{

(xk) ∈ w(F ) : sup
k∈N

D(xk, 0) < ∞
}

,

c(F ) =
{

(xk) ∈ w(F ) : ∃l ∈ E1 � lim
k→∞

D(xk, l) = 0
}

,
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c0(F ) =
{

(xk) ∈ w(F ) : lim
k→∞

D(xk, 0) = 0
}

,

�p(F ) =

{
(xk) ∈ w(F ) :

∑
k

D(xk, 0)p < ∞
}

;

where the metric D is defined by (2.2) and E1 denotes the set of fuzzy numbers.
For simplicity in notation, here and in what follows, the summation without limits
runs from 0 to ∞. In [10], it was shown that c(F ) and �∞(F ) are complete metric
spaces with the Haussdorff metric D∞ defined by

D∞(x, y) = sup
k∈N

D(xk, yk),

where x = (xk), y = (yk) are elements of the sets c(F ) or �∞(F ). Of course,
c0(F ) is also a complete metric space with respect to the Haussdorff metric D∞.
Further, Nanda [10] has introduced and proved that the set �p(F ) is a complete
metric space with the Haussdorff metric Dp defined by

Dp(x, y) =

{∑
k

[D(xk, yk)]
p

}1/p

,

where x = (xk), y = (yk) are in �p(F ).
Let µ1(F ), µ2(F ) ⊂ w(F ) and A = (ank) be an infinite matrix of fuzzy

numbers. Then, we say that A defines a matrix mapping from µ1(F ) into µ2(F ), and
denote it by writing A : µ1(F ) → µ2(F ), if for every sequence u = (uk) ∈ µ1(F )
the sequence Au = {(Au)n}, the A-transform of u, exists and is in µ2(F ); where

(Au)n :=
∑

k

ankuk , (n ∈ N).(1.1)

By (µ1(F ) : µ2(F )), we denote the class of all matrices A such that A : µ1(F ) →
µ2(F ). Thus, A ∈ (µ1(F ) : µ2(F )) if and only if the series on the right side
of (1.1) converges for each n ∈ N and every u ∈ µ1(F ), and we have Au =
{(Au)n}n∈N ∈ µ2(F ) for all u ∈ µ1(F ). A sequence u is said to be A-summable
to α if Au converges to α which is called as the A-limit of u. We denote the nth

row of a matrix A = (ank) by An for all n ∈ N, i.e. An := {ank}∞k=0 for all
n ∈ N.

Mursaleen and Başarır [9] have recently introduced some new sets of sequences
of fuzzy numbers generated by a non-negative regular matrix A some of which
reduced to the Maddox spaces �∞(p, F ), c(p, F ), c0(p, F ) and �(p, F ) of sequences
of fuzzy numbers for the special cases of that matrix A. Quite recently; Talo and
Başar [13] have extended the main results of Başar and Altay [3] to the fuzzy
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numbers. Finally, Talo and Başar [14] have introduced the spaces �∞(F, f), c(F, f),
c0(F, f) and �p(F, f) of sequences of fuzzy numbers defined by a modulus function
and given some topological properties of the spaces together with some inclusion
relations.

In [2], Aseev introduced the concepts of quasilinear spaces and quasilinear
operators which enable us to consider both linear and nonlinear spaces of subsets
and multivalued mappings from a single point of view. Following Aseev [2], Rojas-
Medar et al. have recently extended some results of linear functional analysis to the
fuzzy context, in [8]. Their work has motivated us to study the quasilinearity of the
classical sets of sequences of fuzzy numbers. The main emphasis of this paper is
to study the quasilinearity of the classical sets �∞(F ), c(F ), c0(F ) and �p(F ) of
sequences of fuzzy numbers and to obtain the β−, α−duals of the set �1(F ), and
to characterize the class of infinite matrices of fuzzy numbers from �1(F ) to �p(F ).
Additionally, it is proved that �∞(F ) and c(F ) are normed quasialgebras and an
operator defined by an infinite matrix belonging to the class (�∞(F ) : �∞(F )) is
bounded and quasilinear.

The rest of this paper is organized, as follows:
Section 2 comprises some required definitions and results related with the quasi-

linear spaces, fuzzy numbers, and sequences and series of fuzzy numbers. Section
3 is devoted to the normed quasilinearity of the classical sets of sequences of fuzzy
numbers. Furthermore, it is also proved in Section 3 that the normed quasilinear
spaces �∞(F ) and c(F ) are normed quasialgebras and an operator defined by an
infinite matrix belonging to the class (�∞(F ) : �∞(F )) is bounded and quasilinear.
In Section 4, the β−, α−duals of the set �1(F ) are determined and the perfect-
ness of the spaces �∞(F ), �1(F ) is showed, and the characterization of the class
(�1(F ) : �p(F )) of infinite matrices of fuzzy numbers is obtained. In the final
section of the paper, the results are summarized, open problems and further sugges-
tions are recorded. In order to give a full knowledge to the readers on the sets of
sequences of fuzzy numbers, in addition to the references some new documents are
listed at the end of the paper.

2. PRELIMINARIES, BACKGROUND AND NOTATION

Following Aseev [2], we begin with defining the concepts of quasilinear space,
normed quasilinear space and quasilinear operator:

Definition 2.1. A set X is called a quasilinear space if a partial order rela-
tion �, an algebraic sum operation (+) and an operation of multiplication by real
numbers (·) are defined on it and satisfy the following properties for any elements
x, y, z, v ∈ X and any real numbers α, β:
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(q.1) x � x.
(q.2) x � y, y � z ⇒ x � z.
(q.3) x � y, y � x ⇒ x = y.
(q.4) x + y = y + x.
(q.5) x + (y + z) = (x + y) + z.
(q.6) There exists an element θ ∈ X , called neutral element, such that x + θ = x.
(q.7) α · (β · x) = (α · β) · x.
(q.8) α · (x + y) = α · x + α · y.
(q.9) 1 · x = x.

(q.10) 0 · x = θ.
(q.11) (α + β) · x � α · x + β · x.
(q.12) x � y and z � v ⇒ x + z � y + v.
(q.13) x � y ⇒ α · x � α · y.

An element x′ ∈ X is called an inverse of x ∈ X , if x + x′ = θ. Obviously, if
an element x has an inverse x′, then it is unique. If any element x in the quasilinear
space X has an inverse element x′ ∈ X , then the partial order on X is determined
by equality and consequently X is a linear space with scalars in R.

Definition 2.2. Let X be a quasilinear space. A real function ‖ · ‖X : X → R

is called a norm if the following conditions hold for any x, y ∈ X and any α ∈ R:

(n.1) ‖x‖X > 0 if x �= θ.
(n.2) ‖x + y‖X ≤ ‖x‖X + ‖y‖X .
(n.3) ‖α · x‖X = |α| · ‖x‖X .
(n.4) If x � y, then ‖x‖X ≤ ‖y‖X .
(n.5) If for any ε > 0 there exists an element xε ∈ X such that x � y + xε and

‖xε‖X ≤ ε then x � y.

A quasilinear space X with a norm defined on it, is called a normed quasi-
linear space.

If any x ∈ X has an inverse element x′ ∈ X , then the concept of a normed
quasilinear space coincides with the concept of a real normed linear space.

The Haussdorff metric H on a normed quasilinear space X is defined by

H(x, y) = inf {r ≥ 0 : x � y + ar
1, y � x + ar

2, ar
i ∈ X, ‖ar

i ‖ ≤ r, i = 1, 2} .
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Lemma 2.3. The operations of algebraic sum and multiplication by real num-
bers are continuous with respect to the Hausdorff metric. The norm is a continuous
function with respect to the Hausdorff metric.

Lemma 2.4. The following statements hold:

(i) Suppose that xk → x and yk → y and that xk � yk for any positive integer
k. Then x � y.

(ii) Suppose that xk → x and zk → x. If xk � yk � zk for any positive integer
k, then yk → x.

(iii) If xk + yk → x and yk → θ, then xk → x.

Let W be the set of all closed bounded intervals A of real numbers with end-
points A and A, i.e. A = [A, A]. The operations addition and multiplication by a
real number on W are defined, as follows:

A + B = {a + b : a ∈ A, b ∈ B} = [A + B, A + B]
αA = {αa : a ∈ A}.

Since W is a partially ordered set with respect to the relation subset or equal (⊆),
that is to say that

A ⊆ B if and only if B ≤ A and A ≤ B,

W is a quasilinear space with the algebraic operations, above. Define the function
‖ · ‖ on W by

‖A‖ = max{|A|, |A|}.

Then W is a normed quasilinear space with this norm. The Hausdorff metric d

obtained from this norm, on W is defined by (cf. Diamond and Kloeden [4])

d(A, B) = max{|A − B|, |A− B|}.

Then it can easily be observed that (W, d) is a complete metric space, (cf. Nanda
[10]). Now, we define the quasilinearity of an operator.

Definition 2.5. Let X and Y be quasilinear spaces. If the operator T : X → Y

satisfies the following conditions:

(o.1) T (α · x) = α · Tx;
(o.2) T (x + y) � Tx + Ty;
(o.3) If x � y, then Tx � Ty;
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for all x, y ∈ X and for all α ∈ R, then T is called a quasilinear operator. By
L(X : Y ), we denote the set of all quasilinear operators from X to Y . Let T1, T2 ∈
L(X : Y ). Then we write T1 � T2 whenever T1x � T2x for all x ∈ X . It is
easy to see that L(X : Y ) is a quasilinear space with the usual algebraic operations
addition and scalar multiplication of operators.

A quasilinear operator T : X → Y is said to be bounded if and only if there
exists a K > 0 such that ‖Tx‖Y ≤ K‖x‖X for all x ∈ X . By B(X : Y ), we
denote the set of all bounded quasilinear operators from X to Y . It is natural that
the order on the set B(X : Y ) can be defined by the similar way used in Definition
2.5, above. It is not hard to show that B(X : Y ) is a normed quasilinear space
with the usual algebraic operations addition and scalar multiplication of operators,
normed by

‖T‖ = sup
‖x‖X=1

‖Tx‖Y .

Now, we give four known propositions concerned some properties of quasilinear
operators of which the final one is analogous to the Banach-Steinhaus theorem.

Proposition 2.6. Let T ∈ L(X : Y ). Then, we have:

(i) Tθ = θ.
(ii) T is bounded if and only if T is continuous on θ ∈ X .
(iii) If T is continuous on θ ∈ X then T is uniformly continuous on X .

Proposition 2.7. The following statements hold:
(a) Let T ∈ B(X : Y ). Then, the Lipschitz condition ‖Tx‖Y � ‖T‖B‖x‖X

holds for all x ∈ X .
(b) The composition T2 ◦T1 is in the quasilinear space B(X : Z) if T 1 ∈ B(X :

Y ) and T2 ∈ B(Y : Z).

Proposition 2.8. If the sequence {Tk} ⊂ B(X : Y ) is convergent for each
x ∈ X then the operator T defined by Tx = limk→∞ Tkx is quasilinear.

The operator T does not need to be bounded. But, if the space X is complete
with respect to the metric defined on it, then T ∈ B(X : Y ).

Proposition 2.9. Suppose that X is a complete normed quasilinear space, and
Y a normed quasilinear space. Assume that the sequence {T k} of elements of the
space B(X : Y ) is bounded at each point x ∈ X . Then the sequence {‖T k‖} of
norms is also bounded.
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We continue by giving some required definitions. A fuzzy number is a fuzzy set
on the real axis, i.e. a mapping u : R → [0, 1] which satisfies the following four
conditions:

(i) u is normal, i.e. there exists an x0 ∈ R such that u(x0) = 1.
(ii) u is fuzzy convex, i.e. u[λx + (1− λ)y] ≥ min{u(x), u(y)} for all x, y ∈ R

and for all λ ∈ [0, 1].
(iii) u is upper semi-continuous.
(iv) The set [u]0 = {x ∈ R : u(x) > 0} is compact, (cf. Zadeh [16]).

We denote the set of all fuzzy numbers on R by E1 and call it as the space
of fuzzy numbers. λ-level set [u]λ of u ∈ E1 is defined by

[u]λ =

{ {x ∈ R : u(x) ≥ λ} , (0 < λ ≤ 1),

{x ∈ R : u(x) > λ} , (λ = 0),

where {x ∈ R : u(x) > λ} denotes the closure of the set {x ∈ R : u(x) > λ}
in the usual topology of R. The set [u]λ is closed, bounded and non-empty
interval for each λ ∈ [0, 1] which is defined by [u]λ = [u−(λ), u+(λ)]. R

can be embedded in E1, since each r ∈ R can be regarded as a fuzzy number
r defined by

r(x) =

{
1 , (x = r)

0 , (x �= r)
.

Representation Theorem. [5]. Let [u]λ = [u−(λ), u+(λ)] for u ∈ E1 and for
each λ ∈ [0, 1]. Then the following statements hold:

(i) u− is a bounded and non-decreasing left continuous function on (0, 1].
(ii) u+ is a bounded and non-increasing left continuous function on (0, 1].
(iii) The functions u− and u+ are right continuous at the point λ = 0.
(iv) u−(1) ≤ u+(1).

Conversely, if the pair of functions α and β satisfies the conditions (i)-(iv), then
there exists a unique u ∈ E 1 such that [u]λ = [α(λ), β(λ)] for each λ ∈ [0, 1].
The fuzzy number u corresponding to the pair of functions α and β is defined by
u : R → [0, 1], u(x) = sup{λ : α(λ) ≤ x ≤ β(λ)}.

Let u, v, w ∈ E1 and α ∈ R. Then the operations addition, scalar multiplication
and product defined on E1 by

u + v = w ⇔ [w]λ = [u]λ + [v]λ for all λ ∈ [0, 1]
⇔ w−(λ) = u−(λ) + v−(λ) and w+(λ)
= u+(λ) + v+(λ) for all λ ∈ [0, 1],
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[αu]λ = α[u]λ for all λ ∈ [0, 1]

and

uv = w ⇔ [w]λ = [u]λ[v]λ for all λ ∈ [0, 1],

where it is immediate that

w−(λ) = min{u−(λ)v−(λ), u−(λ)v+(λ), u+(λ)v−(λ), u+(λ)v+(λ)}
and

w+(λ) = max{u−(λ)v−(λ), u−(λ)v+(λ), u+(λ)v−(λ), u+(λ)v+(λ)}
for all λ ∈ [0, 1].

The partial ordering relation ⊆ on E1 is defined as follows:

u ⊆ v ⇔ u(x) ≤ v(x) for all x ∈ R ⇔ [u]λ ⊆ [v]λ for all λ ∈ [0, 1].

In spite of the product being commutative and associative, it is not distributive
on addition in E1. But the following relation holds

u · (v + w) ⊆ u · v + u · w
for any u, v, w ∈ E1. It is known that E1 is a quasilinear space with the partial
ordering relation and the algebraic operations, defined above, (see M. A. Rojas-
Medar et al. [8]). The unit element with respect to the operation (+) of the space
E1 is 0. We define the norm on E1 by

‖u‖ = sup
λ∈[0,1]

max{|u−(λ)|, |u+(λ)|} = max{|u−(0)|, |u+(0)|}.(2.1)

Thus, E1 is a normed quasilinear space with the norm defined by (2.1). The
Hausdorff metric D obtained from the norm given by (2.1) is defined by

D(u, v) = sup
λ∈[0,1]

d([u]λ, [v]λ)

= sup
λ∈[0,1]

max{|u−(λ)− v−(λ)|, |u+(λ)− v+(λ)|}.(2.2)

It is immediate that ‖ · ‖ = D(·, 0).
Following Matloka [7], we now give some definitions concerned with the se-

quences of fuzzy numbers which are needed in the text.

Definition 2.10. A sequence x = (xk) of fuzzy numbers is a function x from
the set N into the set E 1, where N = {0, 1, 2, . . .}. The fuzzy number xk denotes
the value of the function at k ∈ N and is called as the k th term of the sequence.
By w(F ), we denote the set of all sequences of fuzzy numbers.
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Definition 2.11. An infinite matrix A = (ank) of fuzzy numbers is a double
sequence of fuzzy numbers defined by a function A from the set N×N into the set
E1. The fuzzy number ank denotes the value of the function at (n, k) ∈ N×N and
is called as the element of the matrix which stands on the nth row and kth column.

Definition 2.12. A sequence (uk) ∈ w(F ) is called convergent with limit
u ∈ E1, if and only if for every ε > 0 there exists an n0 = n0(ε) ∈ N such that

D(uk, u) < ε for all k ≥ n0.

If the sequence (uk) ∈ w(F ) converges to a fuzzy number u then by the
definition of D, the sequences of functions {u−

k (λ)} and {u+
k (λ)} are uniformly

convergent to u−(λ) and u+(λ) in [0, 1], respectively. Indeed, by combining the
definition of D and the fact limk→∞ D(uk, u) = 0 one can observe that

lim
k→∞

sup
λ∈[0,1]

max{|u−
k (λ)− u−(λ)|, |u+

k (λ)− u+(λ)|} = 0.

Therefore, we have

lim
k→∞

sup
λ∈[0,1]

|u−
k (λ)− u−(λ)| = 0 and lim

k→∞
sup

λ∈[0,1]

|u+
k (λ)− u+(λ)| = 0

which yield that the sequences of functions {u−
k (λ)} and {u+

k (λ)} are uniformly
convergent to u−(λ) and u+(λ) in [0, 1], and conversely.

Definition 2.13. A sequence (uk) ∈ w(F ) is called bounded if and only if

sup
k∈N

‖uk‖ = sup
k∈N

sup
λ∈[0,1]

max{|u−
k (λ)|, |u+

k (λ)|} < ∞.

Definition 2.14. Let (uk) ∈ w(F ). Then the expression
∑

uk is called a
series of fuzzy numbers. Denote sn =

∑n
k=0 uk for all n ∈ N, if the sequence (sn)

converges to a fuzzy number u then we say that the series
∑

uk of fuzzy numbers
converges to u and write

∑
uk = u. We say otherwise the series of fuzzy numbers

diverges. By cs(F ), we denote the set of all convergent series of fuzzy numbers.
As this, if the sequence (sn) is bounded then we say that the series

∑
uk of fuzzy

numbers is bounded.

Remark.
∑

uk = u implies as n → ∞ that

n∑
k=0

u−
k (λ) → u−(λ) and

n∑
k=0

u+
k (λ) → u+(λ),
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uniformly in λ ∈ [0, 1]. Conversely, if the fuzzy numbers uk = {(u−
k (λ), (u+

k (λ)) :
λ ∈ [0, 1]},

∑∞
k=0 u−

k (λ) = u−(λ) and
∑∞

k=0 u+
k (λ) = u+(λ) converge uniformly

in λ, then u = {(u−(λ), (u+(λ)) : λ ∈ [0, 1]} defines a fuzzy number such that
u =

∑
uk .

Now, we may give the well-known theorem concerning uniform convergence of
the series of functions:

Weierstrass M test. Let uk : [a, b] → R be given. If there exists an Mk ≥ 0
such that |uk(x)| ≤ Mk for all k ∈ N and the series

∑
Mk converges, then the

series
∑∞

k=0 uk(x) is uniformly and absolutely convergent in [a, b].

3. THE QUASILINEARITY OF THE CLASSICAL SETS OF SEQUENCES OF FUZZY NUMBERS

In this section, our purpose is to give the basic theorem on the quasilinearity of
the classical sets of sequences of fuzzy numbers together with some other results.

The addition (+) and scalar multiplication (·) are defined on w(F ) by (uk) +
(vk) = (uk + vk) and α(uk) = (αuk), as usual, for (uk), (vk) ∈ w(F ) and α ∈ R.
θ = (0) is the unit element of the space w(F ) with respect to addition.

Let us define the partial ordering relation � on w(F ), as follows: Let u = (uk),
v = (vk) ∈ w(F ). Then,

u � v ⇔ uk ⊆ vk for all k ∈ N.(3.1)

It is a routine verification that w(F ) is a quasilinear space with the partial ordering
relation defined by (3.1) and the usual algebraic operations addition and scalar
multiplication.

Now, we give the main theorem:

Main Theorem. The following statements hold:

(i) Let µ(F ) denotes anyone of the sets �∞(F ), c(F ) and c0(F ). Then the set
µ(F ) is a quasilinear space with the partial ordering relation � defined by
(3.1) and usual algebraic operations addition, scalar multiplication. Addi-
tionally, the set µ(F ) is a normed quasilinear space with the norm ‖ · ‖ ∞,
defined by

‖u‖∞ = sup
k∈N

‖uk‖; (u = (uk) ∈ µ(F )).

(ii) The set �p(F ) is a quasilinear space with the partial ordering relation de-
fined by (3.1) and usual algebraic operations addition, scalar multiplication.
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Additionally, the set �p(F ) is a normed quasilinear space with the norm ‖·‖ p,
defined by

‖u‖p =

(∑
k

‖uk‖p

)1/p

, (u = (uk) ∈ �p(F )).(3.2)

Proof. Since the proofs are similar for the sets c0(F ), c(F ), �∞(F ) and �p(F ),
we give the proof only for the set �p(F ).

(ii) Firstly, we establish that the set �p(F ) is a quasilinear space. Since the
inclusion �p(F ) ⊆ w(F ) holds, the conditions (q.1)-(q.13) are directly satisfied.
So, it is sufficient to show that the set �p(F ) is closed under the coordinatewise
operations addition and scalar multiplication.

Let u = (uk), v = (vk) ∈ �p(F ) and α ∈ R. Then, since

(∑
k

‖uk + vk‖p

)1/p

≤
[∑

k

(‖uk‖ + ‖vk‖)p

]1/p

(3.3)

≤
(∑

k

‖uk‖p

)1/p

+

(∑
k

‖vk‖p

)1/p

< ∞

and ∑
k

‖αuk‖p = |α|p
∑

k

‖uk‖p < ∞,(3.4)

u + v ∈ �p(F ) and αu ∈ �p(F ). It is trivial that θ = (0) ∈ �p(F ). Hence, �p(F )
is a quasilinear space.

Finally, we should show that the relation (3.2) satisfies the conditions (n.1)-(n.5)
on the set �p(F ).

(a) Let u ∈ �p(F ) \ {θ}. Then, there exists an k ∈ N such that uk �= 0, i.e.
‖uk‖ > 0. Thus, one can easily see that ‖u‖p = (

∑
k ‖uk‖p)1/p ≥ ‖uk‖1/p >

0, i.e. (n.1) holds.
(b) (3.3) and (3.4) give the conditions (n.2) and (n.3).
(c) Let u � v. Then, uk ⊆ vk for all k ∈ N which gives us ‖uk‖ ≤ ‖vk‖.

Therefore, it is immediate that ‖u‖p ≤ ‖v‖p, i.e. (n.4) holds.
(d) Let us suppose that for an ε > 0, there is an uε in the space �p(F ) such that

u � v + uε and ‖uε‖p =
(∑

k ‖uk
ε‖p
)1/p ≤ ε. Then, uk ⊆ vk + uk

ε for all
k ∈ N and ‖uk

ε‖ ≤ ε. Therefore, we have uk ⊆ vk for each k ∈ N. This
means that u � v, i.e. (n.5) holds.
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This step completes the proof of case (ii).

Now, we may give the definition of the concepts of quasialgebra and normed
quasialgebra for the quasilinear spaces.

Definition 3.15. Let (X,�, +, ·) be a quasilinear space. Then the set X is
called an quasialgebra if the following conditions hold for the operation � defined
on X :

(c.1) (α · x) � y = α · (x � y).
(c.2) x � (y � z) = (x � y) � z.
(c.3) x � (y + z) � (x � y) + (x � z) and (y + z) � x � (y � x) + (z � x)

for any x, y, z ∈ X and any α ∈ R.

Definition 3.16. Let the normed quasilinear space (X, ‖ · ‖) be a quasialgebra
with the well-defined operation (·) on X . If ‖x · y‖ ≤ ‖x‖‖y‖ and ‖1‖ = 1, for all
x, y ∈ X , then the space X is called as a normed quasialgebra.

Lemma 3.17. [15, Lemma 2.6(i)]. The inequality ‖uv‖ ≤ ‖u‖‖v‖ holds for
u, v ∈ E1.

It is trivial that E1 is a normed quasialgebra and the normed quasilinear space
w(F ) is also a quasialgebra with

u · v = (uk) · (vk) = (uk · vk); u = (uk), v = (vk) ∈ w(F ).

The unit element with respect to the multiplication is 1 = (1).
Now, we may give:

Theorem 3.18. The normed quasilinear spaces �∞(F ) and c(F ) are normed
quasialgebras with ‖ · ‖∞.

The spaces c0(F ) and �p(F ) do not have a unit element with respect to the
multiplication.

Prior to giving the theorem on the quasilinearity and the boundedness of an
operator defined by an infinite matrix in the class (�∞(F ) : �∞(F )), we state the
following lemma which is needed:

Lemma 3.19. [15, Basic Theorem (i)]. A = (ank) ∈ (�∞(F ) : �∞(F )) if and
only if

sup
n∈N

∑
k

‖ank‖ < ∞.
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Theorem 3.20. The operator defined by an infinite matrix A = (a nk) from
�∞(F ) to �∞(F ) is bounded and quasilinear.

Proof. A-transform of a sequence u ∈ �∞(F ) is the sequence Au = {(Au)n}
defined by

(Au)n =
∑

k

ank · uk , (n ∈ N).

Let us show that this transformation satisfies the conditions (o.1)-(o.3). Let u =
(uk), v = (vk) ∈ �∞(F ) and α ∈ R.

(i) Since

{A(αu)}n =
∑

k

ank · (αuk) = α
∑

k

ank · uk = α(Au)n

for every fixed n ∈ N, it is obvious that A(αu) = αAu, i.e. (o.1) is satisfied.

(ii) Because of

ank · (uk + vk)

⊆ ank · uk + ank · vk

⇒
m∑

k=0

ank · (uk + vk) ⊆
m∑

k=0

ank · uk +
m∑

k=0

ank · vk

⇒ lim
m→∞

m∑
k=0

ank · (uk + vk) ⊆ lim
m→∞

m∑
k=0

ank · uk + lim
m→∞

m∑
k=0

ank · vk

⇒
∞∑

k=0

ank · (uk + vk) ⊆
∞∑

k=0

ank · uk +
∞∑

k=0

ank · vk

⇒ {A(u + v)}n ⊆ (Au)n + (Av)n,

one can observe that A(u + v) � (Au + Av). That is (o.2) is fulfilled.
(iii) Suppose that u � v. Then, uk ⊆ vk and hence ank · uk ⊆ ank · vk for all

k ∈ N and for each fixed n ∈ N. Therefore, one can easily establish by
analogy to the previous case that Au � Av, i.e. (o.3) holds.

Finally, we prove that the quasilinear operator A is bounded. By considering
the fact supn∈N ‖(Au)n‖< ∞ by Lemma 3.19, for all u ∈ �∞(F ) one can see by
Lemma 3.17 that
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sup
n∈N

‖(Au)n‖ = sup
n∈N

∥∥∥∥∥
∑

k

ank · uk

∥∥∥∥∥
≤ sup

n∈N

∑
k

‖ank · uk‖

≤ sup
n∈N

∑
k

‖ank‖ sup
k∈N

‖uk‖

= ‖u‖∞ sup
n∈N

∑
k

‖ank‖.

Thus, by taking supremum over ‖u‖∞=1 we conclude that ‖A‖≤supn∈N

∑
k ‖ank‖

what we wished to prove.

Proposition 3.21. Let µi(F ) denotes anyone of the spaces �∞(F ), c(F ), c0(F )
and �p(F ) for i = 1, 2. Suppose that (µ1(F ), D) is a complete metric space and
{Tn} ⊂ L(µ1(F ) : µ2(F )) such that

sup
n∈N

‖Tnx‖µ2(F ) < ∞

for all x ∈ µ1(F ). Then, there exists a number C > 0 such that

‖Tnx‖µ2(F ) ≤ C‖x‖µ1(F ), (n ∈ N)

for all x ∈ µ1(F ).

Proof. Since µ1(F ) is one of the quasilinear spaces �∞(F ), c(F ), c0(F ) and
�p(F ), the pointwise boundedness of the sequence {Tn} of operators between these
spaces implies its uniform boundedness, as was desired.

4. THE β−, α−DUALS OF THE SEQUENCE SPACE �1(F ) AND THE

CHARACTERIZATION OF THE CLASS (�1(F ) : �p(F ))

In this section, we state and prove four theorems. The first two are on the β− and
α−duals of the sequence space �1(F ) and the third one concerns the characterization
of the class (�1(F ) : �p(F )) of infinite matrices of fuzzy numbers, where 1 ≤ p ≤
∞. In addition, we show that the spaces �∞(F ) and �1(F ) are perfect. Finally, we
prove that A ∈ (�p(F ) : �p(F )) if A ∈ (�∞(F ) : �∞(F )) ∩ (�1(F ) : �1(F )) with
1 < p < ∞.

Firstly, we define the β-dual and α-dual of a set µ(F ) ⊂ w(F ) which are
respectively denoted by {µ(F )}β and {µ(F )}α, as follows:

{µ(F )}β = {(xk) ∈ w(F ) : (xkyk) ∈ cs(F ) for all (yk) ∈ µ(F )}
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and

{µ(F )}α = {(xk) ∈ w(F ) : (xkyk) ∈ �1(F ) for all (yk) ∈ µ(F )} .

It follows from here that {µ(F )}α ⊂ {µ(F )}β.

Theorem 4.1. The β−dual of the space �1(F ) is the space �∞(F ).

Proof. Suppose that (uk) ∈ �1(F ) and (vk) ∈ w(F ). Then,
∑ ‖uk‖ < ∞

and the inequalities

|(ukvk)−(λ)| ≤ ‖ukvk‖ ≤ ‖uk‖‖vk‖
and

|(ukvk)+(λ)| ≤ ‖ukvk‖ ≤ ‖uk‖‖vk‖
hold for each λ ∈ [0, 1]. If (vk) ∈ �∞(F ), then since ‖v‖∞ = supk∈N ‖vk‖ < ∞
one can immediately see that∑

‖uk‖‖vk‖ ≤ ‖v‖∞
∑

‖uk‖ < ∞.

Since the series
∑

k(ukvk)−(λ) and
∑

k(ukvk)+(λ) are uniformly convergent by
the Weierstrass M test, the series

∑
ukvk is also convergent. Hence, the inclusion

�∞(F ) ⊆ {�1(F )}β(4.1)

holds.
Conversely, let us take any point v = (vk) in the set {�1(F )}β. Then, the series∑
ukvk is convergent for each (uk) ∈ �1(F ). Define the sequence (fk) of bounded

quasilinear operators on �1(F ) by

fn(u) =
n∑

k=0

ukvk

for all n ∈ N. One can observe by using Proposition 2.8 and Proposition 3.21 at
this stage that the operator f defined by

f(u) = lim
n→∞ fn(u) =

∑
ukvk

is a bounded quasilinear operator on the space �1(F ). Consider the sequence
{u(n)

k }∞k=0 ∈ �1(F ) defined by

u
(n)
k =

{
1 , (n = k)

0 , (n �= k)
(4.2)
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for every fixed n ∈ N. Therefore, by the boundedness of f we see from the fact∥∥∥∥∥
∑

k

u
(n)
k vk

∥∥∥∥∥ ≤ ‖f‖
∥∥∥u(n)

k

∥∥∥
1

that ‖(vk)‖ ≤ ‖f‖. This yields that (vk) ∈ �∞(F ). That is to say that the inclusion

{�1(F )}β ⊆ �∞(F )(4.3)

holds. Now, the desired result follows by combining the inclusions (4.1) and
(4.3).

Theorem 4.2. The α−dual of the space �1(F ) is the space �∞(F ).

Proof. Suppose that (uk) ∈ �1(F ) and (vk) ∈ w(F ). Then,
∑ ‖uk‖ < ∞. If

(vk) ∈ �∞(F ), then since ‖v‖∞ = supk∈N ‖vk‖ < ∞ one can immediately see that∑
‖ukvk‖ ≤

∑
‖uk‖‖vk‖ ≤ ‖v‖∞

∑
‖uk‖ < ∞.

Hence, the inclusion

�∞(F ) ⊆ {�1(F )}α(4.4)

holds.
Conversely, since the inclusion {�1(F )}α⊆{�1(F )}β =�∞(F ) holds we derive

together with (4.4) that the α−dual of the space �1(F ) is the space �∞(F ).

Now, we may state the definition of the concept of perfectness of a set of
sequences of fuzzy numbers and give our easy result concerning the perfectness of
the spaces �∞(F ) and �1(F ).

Definition 4.3. A set µ(F ) ⊂ w(F ) is said to be perfect if {µ(F )}αα = µ(F ).

Proposition 4.4. The spaces �∞(F ) and �1(F ) are perfect.

Proof. One can immediately see by bearing in mind the consequences {�∞
(F )}α = �1(F ) (cf. [15, Theorem 3.2]) and Theorem 4.2 of the present section
that

{[�1(F )]α}α = {�∞(F )}α = �1(F )

and

{[�∞(F )]α}α = {�1(F )}α = �∞(F ),

as desired.
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Theorem 4.5. A ∈ (�1(F ) : �p(F )) if and only if
(i) M = supk∈N

∑
n ‖ank‖p < ∞, (1 ≤ p < ∞).

(ii) supk,n∈N ‖ank‖ < ∞, (p = ∞).

Proof. Since the proofs of cases (i) and (ii) are similar, we give the proof only
for case (i).

(i) Suppose that (uk) ∈ �1(F ). Then, by taking into account the fact that
the order of summation can be reversed by the absolute convergence of the series∑

n

∑
k ankuk we obtain from Minkowski’s inequality that(∑

n

∥∥∥∥∥
∑

k

ankuk

∥∥∥∥∥
p)1/p

≤
[∑

n

(∑
k

‖ankuk‖
)p]1/p

≤
∑

k

(∑
n

‖ankuk‖p

)1/p

≤
∑

k

‖uk‖
(∑

n

‖ank‖p

)1/p

≤ M1/p‖u‖1 < ∞.

This means that A ∈ (�1(F ) : �p(F )).
Conversely, let us suppose that A ∈ (�1(F ) : �p(F )). Then, since∑

i

‖(Au)i‖p < ∞

for all u ∈ �1(F ), the series
∑

k aikuk converges for all u ∈ �1(F ) and for each
i ∈ N. Hence, supk∈N ‖aik‖ < ∞ by Theorem 4.2. Define the operators qn’s on
the space �1(F ) by

qn(u) =

[
n∑

i=0

‖ (Au)i‖p

]1/p

, (n ∈ N).

The bounded quasilinearity of Ai’s on the space �1(F ) implies the bounded quasi-
linearity of qn’s on the space �1(F ). Therefore, there exists a number H > 0 by
Proposition 3.21 such that

sup
n∈N

qn(u) =
∞∑
i=0

‖ (Au)i‖p ≤ H‖u‖1.(4.5)

Thus, (4.5) gives for the sequence {u(n)
k } defined by (4.2) that

∑∞
i=0 ‖aik‖p ≤ H ,

as desired.
This step completes the proof.
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Theorem 4.6. Let 1 < p < ∞. If A ∈ (�∞(F ) : �∞(F )) ∩ (�1(F ) : �1(F )),
then A ∈ (�p(F ) : �p(F )).

Proof. Suppose that A ∈ (�∞(F ) : �∞(F ))∩(�1(F ) : �1(F )) and 1 < p < ∞.
Then, Lemma 3.19 and Theorem 4.5 together yield that

M = sup
n∈N

∑
k

‖ank‖ < ∞, N = sup
k∈N

∑
n

‖ank‖ < ∞.

Therefore, we derive for (uk) ∈ �p(F ) that∥∥∥∥∥
∑

k

ankuk

∥∥∥∥∥ ≤
∑

k

‖ankuk‖

≤
∑

k

‖ank‖1/p‖ank‖1/q‖uk‖

≤
(∑

k

‖ank‖‖uk‖p

)1/p(∑
k

‖ank‖
)1/q

which leads us to the consequence that
∥∥∥∥∥
∑

k

ankuk

∥∥∥∥∥
p

≤
(∑

k

‖ank‖‖uk‖p

)(∑
k

‖ank‖
)p/q

.

Thus, since

∑
n

‖(Au)n‖p =
∑
n

∥∥∥∥∥
∑

k

ankuk

∥∥∥∥∥
p

≤
∑
n

∑
k

‖ank‖‖uk‖pMp/q

≤ Mp/q
∑

k

‖uk‖p
∑

n

‖ank‖

≤ Mp/qN
∑

k

‖uk‖p < ∞,

Au ∈ �p(F ), as desired.

5. CONCLUSION

Nanda introduced the classical sets �∞(F ), c(F ) and �p(F ) of sequences of
fuzzy numbers, and proved that (�∞(F ), D∞), (c(F ), D∞) and (�p(F ), Dp) are
complete metric spaces, in [10]. Quite recently Talo and Başar have dealt essentially
with the determination of the α−, β− and γ−duals of the classical sets of sequences
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of fuzzy numbers and the characterization of the classes of infinite matrices of fuzzy
numbers transforming one of the classical sets to the another one, (see [15]).

The table on the characterizations of the matrix transformations between certain
spaces of sequences with real or complex terms were given in the famous article by
Stieglitz and Tietz [12]. To prepare the fuzzy analogues of this table, Talo and Başar
have characterized the classes (µ(F ) : �∞(F )), (c0(F ) : c(F )), (c0(F ) : c0(F )),
(c(F ) : c(F ); p), (�p(F ) : c(F )) and (�p(F ) : c0(F )) of infinite matrices of fuzzy
numbers, as a beginning; where µ ∈ {�∞, c, c0, �p}, (see [15]). We have just
added the characterization of the class (�1(F ) : �p(F )) to this list.

Of course, during the completion of the table of matrix transformations from
the set µ1(F ) to the set µ2(F ), there are several open problems depending on the
choice of µ1(F ) and µ2(F ). Başar and Altay [3] have determined the α−, β−
and γ−duals of some new spaces of sequences with real or complex terms by using
the characterization of related matrix classes, which was a new development of the
matrix transformations. As a new approach, Altay and Başar have derived recently
some topological properties of certain spaces of sequences with real or complex
terms from the characterization of the related matrix classes, (see [1]). It is natural
that both of these techniques can apply to the sets of sequences of fuzzy numbers.
Then, the table of characterizations of the matrix classes between certain sets of
sequences of fuzzy numbers is needed. Indeed, if we study the new set µ(F )A
obtained by the domain of an infinite matrix A of fuzzy numbers in a set µ(F )
then it is necessary to know the characterization of the matrix transformations from
µ(F ) to �1(F ), to c(F ) and to �∞(F ) for calculating the α−, β− and γ−duals of
the set µ(F )A.
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8. M. A. Rojas-Medar, M. D. Jiménez-Gamero, Y. Chalco-Cano and A. J. Viera-
Brandão, Fuzzy quasilinear spaces and applications, Fuzzy Sets Syst., 152 (2005),
173-190.

9. M. Mursaleen and M. Başarır, On some new sequence spaces of fuzzy numbers,
Indian J. Pure Appl. Math., 34(9) (2003), 1351-1357.

10. S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets Syst., 33 (1989), 123-126.

11. M. S. El Naschie, A review of ε(∞) theory and the mass spectrum of high energy
particle physics, Chaos, Solitons & Fractals, 19(1) (2004), 209-236.

12. M. Stieglitz and H. Tietz, Matrix transformationen von folgenräumen eine ergeb-
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