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SOLVING REGULARIZED TOTAL LEAST SQUARES PROBLEMS
BASED ON EIGENPROBLEMS

Jörg Lampe and Heinrich Voss

Abstract. The total least squares (TLS) method is a successful approach
for linear problems if both the system matrix and the right hand side are
contaminated by some noise. For ill-posed TLS problems regularization is
necessary to stabilize the computed solution. In this paper we summarize
two iterative methods which are based on a sequence of eigenproblems. The
focus is on efficient implementation with particular emphasis on the reuse of
information gained during the convergence history.

1. INTRODUCTION

Many problems in data estimation are governed by overdetermined linear systems

(1.1) Ax ≈ b, A ∈ R
m×n, b ∈ R

m, m ≥ n.

In the classical least squares approach the system matrix A is assumed to be free
from error, and all errors are confined to the observation vector b. However, in
engineering application this assumption is often unrealistic. For example, if the
matrix A is only available by measurements or if A is an idealized approximation
of the true operator then both the matrix A and the right hand side b are contaminated
by some noise.

An appropriate approach to this problem often is the total least squares (TLS)
method which determines perturbations ∆A ∈ R

m×n to the coefficient matrix and
∆b ∈ R

m to the vector b such that

(1.2) ‖[∆A, ∆b]‖2
F = min! subject to (A + ∆A)x = b + ∆b,

where ‖ · ‖F denotes the Frobenius norm of a matrix. An overview of total least
squares methods and a comprehensive list of references is contained in [25, 35-37].
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The name total least squares appeared only recently in the literature [15], but
under the names orthogonal regression or errors-in-variables this fitting method has
a long history in the statistical literature. The univariate case (n = 1) was already
discussed in 1877 by Adcock [1]. Further historical remarks can be found in
[25, 37].

The TLS problem (1.2) can be analyzed (cf. [14, 37]) in terms of the singular
value decomposition (SVD) of [A, b]

[A, b] = UΣV T , Σ = diag{σ1, . . . , σn+1}, σ1 ≥ σ2 ≥ · · · ≥ σn+1.

A TLS solution exists if and only if the right singular subspace Vmin corresponding
to σn+1 contains at least one vector with a nonzero last component. It is unique if
σ′

n > σn+1 where σ′
n denotes the smallest singular value of A, and it is then given

by

xTLS = − 1
Vn+1,n+1

V (1 : n, n + 1).

In this paper our focus is on ill-conditioned problems which arise, for example,
from the discretization of ill-posed problems such as integral equations of the first
kind (cf. [8, 17]). Then least squares or total least squares methods for solving
(1.1) often yield physically meaningless solutions, and regularization is necessary to
stabilize the computed solution.

To regularize problem (1.2) Fierro, Golub, Hansen and O’Leary [9] suggested
to filter its solution by truncating the small singular values of the TLS matrix [A, b],
and they proposed an iterative algorithm based on Lanczos bidiagonalization for
computing truncated TLS solutions.

Beck and Ben-Tal [3] adopted the Tikhonov regularization concept to stabilize
the TLS solution, i.e. they considered the problem

(1.3) min
∆A,∆b,x

{‖[∆A, ∆b]‖2
F + ρ‖Lx‖2} subject to (A + ∆A)x = b + ∆b,

where (as in the whole paper) ‖ · ‖ denotes the Euclidean norm, L ∈ R
p×n, p ≤ n

is a regularization matrix and ρ > 0 is a penalty parameter.
Closely related to Tikhonov regularization is the well established approach to

add a quadratic constraint to problem (1.2) yielding the regularized total least squares
(RTLS) problem

(1.4) ‖[∆A, ∆b]‖2
F = min! subject to (A + ∆A)x = b + ∆b, ‖Lx‖ ≤ δ,

where δ > 0 is a regularization parameter, and L ∈ R
p×n, p ≤ n defines a (semi-)

norm on the solution through which the size of the solution is bounded or a certain
degree of smoothness can be imposed on the solution. Stabilization of total least
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squares problems by introducing a quadratic constraint was extensively studied in
[4, 13, 16, 19, 20, 21, 24, 26, 31, 32].

It is usually assumed that the regularization parameter δ > 0 is less than
‖LxTLS‖, where xTLS denotes the solution of the total least squares problem (1.2)
(otherwise no regularization would be necessary). Then at the optimal solution of
(1.4) the constraint ‖Lx‖ ≤ δ holds with equality. Under this condition Golub,
Hansen and O’Leary [13] derived the following first order necessary conditions:
The solution xRTLS of problem (1.4) is a solution of the problem

(1.5) (ATA + λIIn + λLLTL)x = AT b,

where the parameters λI and λL are given by

(1.6) λI = −‖Ax − b‖2

1 + ‖x‖2
, λL =

1
δ2

(
bT (b − Ax) − ‖Ax − b‖2

1 + ‖x‖2

)
.

This condition was used in the literature in two ways to solve problem (1.4):
In [13, 16, 19, 26] λI is chosen as a free parameter; for fixed λL problem (1.5) is
solved for (x, λI), and then λL is updated in a way that the whole process converges
to the solution of (1.4). Conversely, in [20, 21, 31, 32] for a chosen parameter λI

problem (1.5) is solved for (x, λL), which yields a convergent sequence of updates
for λI .

In either case, problem (1.5) can be solved via the solution of an eigenvalue
problem. To be more specific, for the first type one has to determine in every
iteration step the eigenvector of a symmetric matrix corresponding to its smallest
eigenvalue, and in the latter approach one has to find the rightmost eigenvalue
and corresponding eigenvector of a quadratic eigenproblem in every iteration step.
Hence, in both cases one has to solve a sequence of eigenvalue problems which
converge as the methods approach the solution of (1.4). This suggests, that when
solving one of these eigenvalue problems one should reuse as much information as
possible from previous iteration steps.

Typically, the occurring eigenproblems are solved by inverse iteration, Rayleigh
quotient iteration, implicitly restarted Lanczos or second order Krylov subspace
solvers. Thus, the only information that can be recycled from previous iterations in
these methods is the eigenvector of the preceding step that can be used as initial
vector. Much more information can be exploited in general iterative projection
methods such as the nonlinear Arnoldi algorithm [38] which can be started with the
entire search space of the previous eigenvalue problem.

In this paper we review both types of approaches mentioned in the penultimate
paragraph, and we discuss efficient implementations with particular emphasis on
the reuse of information gained in the convergence history. The paper is organized
as follows. In section 2 the two basic algorithms are presented and the connection
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to a sequence of eigenproblems is shown. Computational considerations concerning
the details of the algorithms are discussed in section 3. Section 4 contains different
numerical examples, comparing effort and computation time.

2. RTLS VIA SEQUENCES OF EIGENPROBLEMS

In the entire paper we assume that the condition

(2.1) σmin([AK, b]) < σmin(AK),

holds where K is an orthonormal basis of the kernel of L which guarantees that a
solution of the RTLS problem (1.4) is attained, cf. [3]. Notice that the condition is
empty if the regularization matrix L is nonsingular.

Our starting point for deriving methods for solving (1.4) with the equality con-
straint ‖Lx‖ = δ are the first order necessary conditions (1.5) and (1.6). We present
two different iterative approaches.

The parameters λI and λL both depend on x and make the system of equation
(1.5) hardly tractable. The basic idea is to keep one of the parameters λI or λL

fixed for one iteration step and to treat the other one as a free parameter. In either
case the resulting system can be solved as an eigenvalue problem which is linear
and quadratic, respectively.

2.1. RTLS via a sequence of quadratic eigenvalue problems
The first algorithm is based on keeping the parameter λI fixed for one iteration

step and let λ := λL be a free parameter. The fixed parameter is updated and
initialized as suggested in (1.6)

(2.2) λI = λI(xk) = −‖Axk − b‖2

1 + ‖xk‖2
.

The first order optimality conditions then reads
(2.3) B(xk)x + λLTLx = AT b, ‖Lx‖2 = δ2,

with

(2.4) B(xk) = AT A − f(xk)I, f(xk) =
‖Axk − b‖2

1 + ‖xk‖2
= −λI(xk).

which suggests the following Algorithm 1.

Algorithm 1. RTLSQEP
Require: Initial vector x1.

1. for k = 1, 2, . . . until convergence do
2. With Bk := B(xk) solve

(2.5) Bkxk+1 + λLTLxk+1 = AT b, ‖Lxk+1‖2 = δ2
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for (xk+1, λ) corresponding to the largest λ ∈ R

3. end for

Sima, Van Huffel and Golub [32] proposed to solve (2.3) via a quadratic eigen-
value problem similarly to the approach of Golub [12] for regularized least squares
problems. This motivates the name RTLSQEP of the algorithm.

If L is square and nonsingular, then with z = Lxk+1 problem (2.5) is equivalent
to

(2.6) Wkz + λz := L−T BkL−1z + λz = L−TAT b =: h, zT z = δ2.

Assuming that Wk + λI is positive definite, and denoting u := (Wk + λI)−2h,
one gets hT u = zT z = δ2, and h = δ−2hhT u yields that (Wk + λI)2u = h is
equivalent to the quadratic eigenvalue problem

(2.7) (Wk + λI)2u − δ−2hhT u = 0.

The choice of the rightmost eigenvalue can be motivated as the maximal La-
grange multiplier that minimizes an underlying quadratic function, cf. [10], [21].

In [20] it is proven that the rightmost eigenvalue λ̂ of (2.7) is real and that
Wk + λ̂I is positive semidefinite. We are only considering the generic case of
Wk+λ̂I being positive definite. In this case the solution of the original problem (2.5)
is recovered from z = (Wk + λ̂I)u, and xk+1 = L−1z where u is an eigenvector
corresponding to λ̂ which is scaled such that hT u = δ2. The case that Wk + λ̂I ≥ 0
is singular, when the solution of (2.5) may not be unique, is discussed by Gander,
Golub and von Matt, cf. [11].

If rank(L) = p < n let LTL = USUT be the spectral decomposition of LT L.
Then (2.5) is equivalent to

(2.8)
(
(AU)T (AU) − f(xk)I

)
y + λSy = (AU)T b, yT Sy = δ2,

with y = UTxk+1. Partitioning the matrices and vectors in (2.8) in block form

(2.9) (AU)T (AU)=
(

T1 T2

T T
2 T4

)
, S=

(
S1 0
0 0

)
, (AU)T b=

(
c1

c2

)
, y=

(
y1

y2

)
,

where the leading blocks have dimension p, one gets

(2.10)
(

T1 − f(xk)Ip T2

T T
2 T4 − f(xk)In−p

)(
y1

y2

)
+ λ

(
S1y1

0

)
=
(

c1

c2

)
.

Solving the second component for y2

y2 = (T4 − f(xk)In−p)−1(c2 − T T
2 y1),
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and substituting in the first component one gets

(2.11)

(
T1 − f(xk)Ip − T2(T4 − f(xk)In−p)−1T T

2

)
y1 + λS1y1

= (c1 − T2(T4 − f(xk)In−p)−1c2).

Hence, problem (2.8) is equivalent to the quadratic eigenvalue problem (2.7),
where

Wk = S
−1/2
1

(
T1 − f(xk)Ip − T2(T4 − f(xk)In−p)−1T T

2

)
S
−1/2
1 ,(2.12)

hk = S
−1/2
1

(
c1 − T2(T4 − f(xk)In−p)−1c2

)
.(2.13)

If (λ, u) is the eigenpair corresponding to the rightmost eigenvalue and u is
normalized such that uT hk = δ2, and z = (Wk + λI)u, then the solution of (2.5)
is recovered by xk+1 = Uy where

(2.14) y =
(

y1

y2

)
=

(
S
−1/2
1 z

(T4 − f(xk)In−p)−1(c2 − T T
2 S

−1/2
1 z)

)
.

When the constraint at the solution of (1.4) is active, i.e. if ‖Lx∗‖2 = δ2, then
the following global convergence result holds, cf. [21].

Theorem 2.1. Any limit point x∗ of the sequence {xk} constructed by Algorithm
1 is a global minimizer of the optimization problem

(2.15) f(x) :=
‖Ax − b‖2

1 + ‖x‖2
= min! subject to ‖Lx‖2 = δ2.

Remark 2.2. Sima et al. [32] proved the weaker convergence result, that
every limit point of {xk} satisfies the first order conditions (1.5) and (1.6).

Remark 2.3. Beck and Teboulle [5] considered the minimization problem

f(x) :=
‖Ax − b‖2

1 + ‖x‖2
= min! subject to ‖Lx‖2 ≤ δ2

which is equivalent to (1.4). They proved (even for a more general rational objective
function) global convergence for Algorithm 1 with inequality constraint in (2.5).
Notice however, that problem (2.5) with inequality constraint can not be solved via
a quadratic eigenvalue problem, but requires a spectral decomposition of a matrix of
dimension p in every iteration step (cf. [4]), and is therefore much more expensive.
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Remark 2.4. The transformation of (2.3) to the quadratic eigenproblem (2.7)
seems to be very costly if L is not invertible. Notice however, that typical regular-
ization matrices are discrete versions of 1D first or second order derivatives

L̂=




1 −1
. . . . . .

1 −1


∈R

(n−1)×n or L̃=



−1 2 −1

. . . . . . . . .
−1 2 −1


∈R

(n−2)×n

for which the spectral decomposition is explicitly known, and matrix-vector products
Uw can be evaluated cheaply by the discrete cosine transform. Likewise, for discrete
Fredholm integral equations with 2D or 3D domain one can take advantage of
the same technique combined with Kronecker representations of L. Moreover, the
smoothing properties of L̂ and L̃ are not deteriorated significantly if they are replaced
by nonsingular versions like (cf. [6])

L̂α :=




1 −1
. . . . . .

1 −1
α


 or L̂α :=




α

−1 1
. . . . . .

−1 1




where the diagonal element α > 0 is small, and

L̃α =




2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1


 or L̃α =




1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2




with α ∈ {1, 2}. Which one of these modifications is chosen depends on the
behaviour of the solution of (1.4) close to the boundary.

2.2. RTLS via a sequence of linear eigenvalue problems

The second algorithm is based on keeping the parameter λL fixed for one iter-
ation step and letting λ := −λI be a free parameter.

The following version of the first order optimality conditions was proved by
Renaut and Guo in [26].

Theorem 2.5. The solution xRTLS of the RTLS problem (1.4) subject to the
active constraint satisfies the augmented eigenvalue problem

(2.16) B(λL(xRTLS))
(

xRTLS

−1

)
= −λI(xRTLS)

(
xRTLS

−1

)
,
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with

B(λL) = M + λLN, M := [A, b]T [A, b], N :=
(

LTL 0
0 −δ2

)

and λL and λI as given in (1.6).

Conversely, if ((x̂T ,−1)T ,−λ̂) is an eigenpair of B(λL(x̂)) where λL(x̂) is
recovered according to (1.6), then x̂ satisfies (1.5), and λ̂ = −f(x̂).

This condition suggested Algorithm 2 called RTLSEVP for obvious reasons.

Algorithm 2. RTLSEVP
Require: Initial guess λ0

L > 0 and B0 = B(λ0
L)

1. for k = 1, 2, . . . until convergence do
2. Solve

(2.17) Bk−1y
k = λyk

for eigenpair (yk, λ) corresponding to the smallest λ

3. Scale yk such that yk =
(

xk

−1

)
4. Update λk

L = λL(xk) and Bk = B(λk
L)

5. end for

The choice of the smallest eigenvalue is motivated by the fact that we are
aiming at λ = −λI (cf. (2.16)), and by the first order conditions (1.6) it holds that
−λI = f(x) = ‖Ax−b‖2

1+‖x‖2 is the function to be minimized.
The straightforward idea in [16] to update λL in line 4 with (1.6), i.e.

(2.18) λk+1
L =

1
δ2

(
bT (b − Axk+1)− ‖Axk+1 − b‖2

1 + ‖xk+1‖2

)
does not lead in general to a convergent algorithm.

To enforce convergence Renaut and Guo [26] proposed to determine a value θ
such that the eigenvector (xT

θ ,−1)T of B(θ) corresponding to the smallest eigen-
value of B(θ) satisfies the constraint ‖Lxθ‖2 = δ2, i.e. find a non-negative root θ̂
of the real function

(2.19) g(θ) :=
‖Lxθ‖2 − δ2

1 + ‖xθ‖2
.

Then the corresponding eigenvector (xT
θ̂
,−1)T is a solution of (2.16).
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Unfortunately the last component of an eigenvector corresponding to the smallest
eigenvalue of B(θ) need not be different from zero, and then g(θ) is not necessarily
defined. To fill this gap the following generalization has been made in [19]:

Definition 2.6. Let E(θ) denote the eigenspace of B(θ) corresponding to its
smallest eigenvalue. Then

(2.20) g(θ) := min
y∈E(θ)

yT Ny

yT y
= min

(xT ,xn+1)T∈E(θ)

‖Lx‖2 − δ2x2
n+1

‖x‖2 + x2
n+1

is the minimal eigenvalue of the projection of N onto E(θ).

This extends the definition of g to the case of eigenvectors with zero last com-
ponents. The following theorem was proven in [19].

Theorem 2.7. The function g : [0,∞) → R has the following properties:

(i) If σmin([A, b]) < σmin(A) then g(0) > 0
(ii) limθ→∞ g(θ) = −δ2

(iii) If the smallest eigenvalue of B(θ0) is simple, then g is continuous at θ0

(iv) g is monotonically not increasing on [0,∞)
(v) Let g(θ̂) = 0 and let y ∈ E(θ̂) such that g(θ̂) = yTNy/‖y‖2. Then the last

component of y is different from 0.
(vi) g has at most one root.

Theorem 2.7 demonstrates that if θ̂ is a positive root of g, then x := −y(1 :
n)/yn+1 solves the RTLS problem (1.4) where y denotes an eigenvector of B(θ̂)
corresponding to its smallest eigenvalue.

Remark 2.8. If the smallest singular value σn+1(θ̃) of B(θ̃) is simple, then
it follows from the differentiability of σn+1(θ) and its corresponding right singular
vector that

(2.21)
dσn+1(B(θ))

dθ

∣∣
θ=θ̃

= g(θ̃).

Hence, searching the root of g(θ) can be interpreted as searching the maximum of
the minimal singular values of B(θ) with respect to θ.

Remark 2.9. Notice that g is not necessarily continuous. If the multiplicity
of the smallest eigenvalue of B(θ) is greater than 1 for some θ0, then g may have
a jump discontinuity at θ0. It may also happen that g does not have a root, but
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it jumps below zero at some θ0. This indicates a nonunique solution of problem
(1.4). See [19] how to construct a solution in this case. Here we assume a unique
solution, which is the generic case.

2.3. Trust Region Subproblems

When solving constrained optimization problems by trust region methods a typ-
ical subproblem consists of minimizing a quadratic function subject to a quadratic
constraint

(2.22) min Ψ(x) = min
1
2
xT Hx + gTx subject to ‖x‖ ≤ ∆

with given H = HT ∈ R
n×n, x, g ∈ R

n and ∆ > 0, which is called (Large scale)
trust-region-subproblem (LSTRS) in [27, 28, 29, 30, 34].

The following characterization of a solution was proved in [33]

Lemma 2.10. A feasible vector x∗ is a solution to (2.22) with corresponding
Lagrange multiplier λ∗ if and only if x∗, λ∗ satisfy (H−λ∗I)x∗ = −g with H−λ∗I
being positive semidefinite, λ∗ ≤ 0, and λ∗(∆− ‖x∗‖) = 0.

The connection to regularization problems is obvious when choosing H = ATA
and g = −AT b. Then problem (2.22) is equivalent to the regularized least squares
problem (RLS) with a quadratic constraint

(2.23) ‖Ax− b‖2 = min! subject to ‖x‖2 ≤ ∆2.

For the special choice of the regularization matrix L = I , the RTLS problem (1.4)
reduces to the RLS problem (2.23) if δ2 ≤ ‖xLS‖2 holds, cf. [13].

Remark 2.11. Lemma 2.10 implies that the general solution of (2.22) is

x = −(H − λ∗I)†g + z, with z ∈ N (H − λ∗I).

If the matrix H − λ∗I ≥ 0 is nonsingular, then the solution is unique. The case
that H − λ∗I is singular is called hard case [28]. It indicates a (nearly) nonunique
solution.

Rojas, Santos and Sorensen [27, 28, 29, 30, 34] suggested to solve (2.22) via a
sequence of linear eigenvalue problems:

(2.24) Bα

(
1
x

)
= λ

(
1
x

)
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with Bα = B(α) =
(

α gT

g H

)
, which is equivalent to

(2.25) α − λ = −gTx and (H − λI)x = −g.

To fulfill the definiteness requirement of Lemma 2.10, λ is chosen as the small-
est eigenvalue of (2.24). α is determined iteratively using a sequence of rational
interpolations of the secular equation

(2.26) φ(λ) ≡ gT (H − λI)†g = −gTx

where α is controlled such that

(2.27) φ′(λ) = gT
(
(H − λI)†

)2
g = xTx = ∆2.

This is essentially the same idea as determining the root of the monotonic function
g(θ) from section 2.2.

The problem class LSTRS is more general than RLS problems, because the
matrix H can also be indefinite and g does not have to lie in the rowspace of A,
but it is straightforward to extend Algorithm 2 to solve the LSTRS problem (2.22)
as long as the constraint is active. So the function g(θ) could also be used in this
context.

Gander, Golub and von Matt [11] proved that the Lagrange equations of the
LSTRS problem with equality constraint are equivalent to the quadratic eigenvalue
problem

(2.28) (H + λI)2x − ∆−2ggTx = 0

considered in Section 2.1. Hence, if the quadratic constraint ‖x‖2 − ∆2 = 0 is
active, then problem (2.22) can be solved via one quadratic eigenvalue problem
using the techniques to be discussed in Section 3.1.

3. COMPUTATIONAL CONSIDERATIONS

In the two subsections 3.1 and 3.2 we discuss in more detail efficient implemen-
tations of the Algorithms 1 and 2. The focus is set on dealing with the sequence of
quadratic eigenvalue problems resp. linear eigenvalue problems. We give hints and
advices how to save matrix vector multiplications (MatVecs) and keep the algorithms
free of matrix-matrix products.

3.1. RTLSQEP - Algorithm 1

In the following subsections we discuss different approaches for solving the
sequence of quadratic eigenvalue problems (2.7). It is important to note that (for not
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too small dimensions) efficient methods are iterative projections methods where in
each step the underlying problem (2.7) is projected to a search space V = span{V }
which is expanded until the approximation by the solution of the projected problem

V T
(
(Wk + λI)2 − δ−2hkhT

k

)
V u = 0

is sufficiently accurate. Expanding the subspace by some vector v obviously requires
only to append a new vector Wkv and a new component hT

k v to the current projected
matrix WkV and vector hT

k V , respectively. Hence, one does not need the explicit
matrix Wk in these algorithms but only a procedure to evaluate Wkv for a given
vector v.

3.1.1. Linearization
An obvious approach for solving the QEP

(3.1) Tk(λ)u :=
(
(Wk + λI)2 − δ−2hkh

T
k

)
u = 0

at the k-th iteration step of Algorithm 1 is linearization, i.e. solving the linear
eigenproblem

(3.2)
(−2Wk −W 2

k + δ−2hkh
T
k

I 0

)(
λu
u

)
= λ

(
λu
u

)
,

and choosing the maximal real eigenvalue, and the corresponding u-part of the
eigenvector, which is an eigenvector of (3.1).

This approach is reasonable if the dimension n of problem (1.4) is small. For
larger n it is not efficient to determine the entire spectrum of (3.2). In this case one
could apply the implicitly restarted Arnoldi method implemented in ARPACK [22]
(and included in MATLAB as function eigs) to determine the rightmost eigenvalue
and corresponding eigenvector of (3.2). However, it is a drawback of linearization
that symmetry properties of the quadratic problem are destroyed.

3.1.2. A Krylov subspace-type method

Li and Ye [23]presented a Krylov subspace projection method for monic QEPs

(3.3) (λ2I − λP1 − P0)u = 0

which does not use a linearization but works with the matrices P1 and P0 directly.
The method has particularly favorable properties if some linear combination of P1

and P0 is a matrix of small rank q. Then with � + q + 1 steps of an Arnoldi-
type process a matrix Q ∈ R

n×�+q+1 with orthonormal columns and two matrices
H1 ∈ R

�+q+1×� and H0 ∈ R
�+q+1×� with lower bandwidth q + 1 are determined

such that

(3.4) P1Q(:, 1:�) = Q(:, 1:�+ q+1)H1 and P0Q(:, 1:�) = Q(:, 1:�+ q+1)H0.
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Approximations to eigenpairs of the monic QEP are then obtained from its orthog-
onal projection onto span{Q(:, 1 : �)}. The straightforward choice of P1 = 2Wk

and P0 = W 2
k − δ−2hkhT

k results in the projected QEP

(3.5)
(
λ2I − λH1(1 : �, 1 : �)− H0(1 : �, 1 : �)

)
ũ = 0.

But for this straightforward choice of P0 and P1 usually no linear combination is
of small rank q, and the matrices H0 and H1 will become full.

Applying �+2 steps of the algorithm of Li and Ye with P1 = Wk and P0 = hkh
T
k

one obtains a matrix Q ∈ R
n×�+2 (different from the one in (3.4)) with orthonormal

columns such that

P0Q(:, 1 : �) = Q(:, 1 : � + 2)H0(1 : � + 2, 1 : �),(3.6)

P1Q(:, 1 : �) = Q(:, 1 : � + 2)H1(1 : � + 2, 1 : �).(3.7)

Hence,

P 2
1 Q(:, 1 : �) = P1Q(:, 1 : � + 2)H1(1 : � + 2, 1 : �)

= Q(:, 1 : � + 4)H1(1 : � + 4, 1 : � + 2)H1(1 : � + 2, 1 : �)(3.8)

and the orthogonal projection of problem (3.3) to Q := span{Q(:, 1 : �)} reads

(3.9)
(
λ2I − 2λH1(1 : �, 1 : �)− Ĥ0

)
ũ = 0

with Ĥ0(1 : �, 1 : �) = δ−2H0(1 : �, 1 : �)−H1(1 : �+2, 1 : �)TH1(1 : �+2, 1 : �).
As a consequence of rank{P0} = 1 it follows that H1 and Ĥ0 are symmetric

pentadiagonal matrices, and the cost for expanding the subspace Q by one vector is
one matrix-vector product (1 MatVec for short) and 9 level-1 operations, cf. [23].

Because we have to solve a sequence of QEPs, and Wk and hk are converging
it is favorable to use the solution vector of the preceding QEP as initial vector of
the Arnoldi-type process.

The rightmost eigenvalue and corresponding eigenvector of a projected prob-
lem can be determined cheaply by linearization and a dense eigensolver since the
dimensions of the projected problems are quite small.

The method is terminated if the residual ‖(Wk + λrm)2urm − δ−2hhT urm‖ at
the rightmost Ritz pair (λrm, urm) is small enough. Notice that the residual norm
can be evaluated inexpensively taking advantage of (3.6), (3.7), (3.8) with a delay
of 2 expansion steps. Computing the residual of (2.5) is expensive due to the back
transformation to xk+1. Since the residuals are not needed explicitly we recommend
just to monitor the rightmost eigenvalue of the sequence of projected QEPs.
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3.1.3. Second Order Arnoldi Reduction

Another approach is the Second Order Arnoldi Reduction (SOAR for short)
introduced by Bai and Su [2] for solving the large scale QEP (λ2M+λD+K)u = 0.
The main idea is based on the observation that the Krylov space of the linearization

(3.10)
(

P1 P0

I O

)(
λu
u

)
= λ

(
λu
u

)

with P1 = −M−1D, P0 = −M−1K and initial vector
(

r0

0

)
has the form

(3.11) K� =
{(

r0

0

)
,

(
r1

r0

)
,

(
r2

r1

)
, . . . ,

(
r�−1

r�−2

)}
,

where

r1 = P1r0,

rj = P1rj−1 + P0rj−2, for j ≥ 2.(3.12)

The entire information on K� is therefore contained in the second order Krylov space

(3.13) G�(P1, P0; r0) = span{r0, r1, . . . , r�−1}.

Bai and Su [2] presented an Arnoldi type algorithm based on the two term recurrence
(3.12) for computing an orthonormal basis Q� ∈ R

n×� of G�(P1, P0; r0). The
orthogonal projection of the QEP (3.1) onto G�(P1, P0; r0) is the structure-preserving
variant of projecting the linearized problem (3.10) onto K� from (3.11). The SOAR
approach has the same approximation quality, but outperforms the Arnoldi method
applied to the linearized problem.

Since the QEPs (3.1) are monic there is no need to perform a LU-decomposition
of the matrix M = I and the matrices P1 = −2Wk and P0 = −W 2

k + δ−2hkhT
k

are directly available.
The current second order Krylov space G�(P1, P0; r0) is expanded by q̃ :=

P1q� + P0p�, where p� = Q�s� is some vector p� ∈ span{Q�}. Orthogonalization
yields the direction of the new basis element

q�+1 = (I − Q�Q
T
� )(P1q� + P0p�)

= (I − Q�Q
T
� )(−2Wkq� − W 2

k Q�s� + δ−2hkhT
k Q�s�)

where WkQ�s� can be updated from the previous step. Hence, expanding the search
space G�(P1, P0; r0) requires 2 MatVecs.
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A single step of the SOAR methods costs essentially twice as much as the one of
the Krylov-type method in section 3.1.2. On the other hand, SOAR builds up a 2nd
order Krylov space which has better approximation properties than the search space
of the method of Li and Ye, however, this gain usually is not enough to balance the
higher cost.

We now present a variant of the SOAR method that reduces the cost per ex-
pansion to 1 MatVec. This approach approximates the second order Krylov space
G�(P1, P0; r0) by G�(P1, P̃0; r0) with P̃0 = δ−2hkh

T
k . In this case the current search

space is expanded by the vector

q̂�+1 = (I − Q̂�Q̂
T
� )(−2Wkq̂� + δ−2hkh

T
k Q̂�ŝ�)

= (I − Q̂�Q̂
T
� )(−2Wkq̂� − Q̂�(WkQ̂�)T (WkQ̂�)ŝ� + δ−2hkhT

k Q̂�ŝ�),

and the approximate eigenpairs are obtained from the projected problem(
λ2I + 2λQ̂T

� (WkQ̂�) + (WkQ̂�)T (WkQ̂�) − δ−2(Q̂T
� hk)(Q̂T

� hk)T
)
z = 0.

The search spaces of this variant and of the original SOAR coincide when the
starting vector is chosen to be r0 = hk. Then

(3.14) G�(−2Wk,−W 2
k +δ−2hkhT

k ; hk)=G�(−2Wk, δ
−2hkhT

k ; hk)=K�(Wk; hk),

and the second order Krylov spaces G� both reduce to the usual Krylov space.
However, this choice is often not appropriate. For an arbitrary r0 it holds that

G�(−2Wk,−W 2
k + δ−2hkhT

k ; r0) ⊆ [K�(Wk; r0) ∪K�−2(Wk; hk)
]

G�(−2Wk, δ
−2hkhT

k ; r0) ⊆ [K�(Wk; r0) ∪K�−2(Wk; hk)
]
.

3.1.4. Nonlinear Arnoldi method

A further method for solving the QEP Tk(λ)u = 0 from (3.1) is the nonlinear
Arnoldi method [38] which applies to much more general nonlinear eigenvalue
problems T (λ)u = 0 than (2.7).

In Algorithm 1 a sequence of quadratic eigenvalue problems has to be solved,
and the convergence of the matrices and vectors

Wk = C − f(xk)S̃ − D(T4 − f(xk)In−p)−1DT ,(3.15)

hk = g1 − D(T4 − f(xk)In−p)−1c2.(3.16)

with C = S
−1/2
1 T1S

−1/2
1 , S̃ = S−1

1 , D = S
−1/2
1 T2 and g1 = S

−1/2
1 c1 (cf. (2.12)

and (2.13)) suggest to reuse information from the previous steps when solving prob-
lem (3.1) in step k, cf. [20, 21].
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Algorithm 3. Nonlinear Arnoldi
Require: Initial basis V , V T V = I

1. Find rightmost eigenvalue µ of V T Tk(µ)V ũ = 0 and corresponding
eigenvector ũ

2. Determine preconditioner PC ≈ Tk(σ)−1, σ close to wanted eigenvalue
3. Set u = V ũ, r = Tk(µ)u
4. while ‖r‖/‖u‖ > εr do
5. v = PCr

6. v = v − V V Tv
7. ṽ = v/‖v‖, V = [V, ṽ]
8. , Find rightmost eigenvalue µ of V T Tk(µ)V ũ=0 and corr. eigenvector ũ
9. Set u = V ũ, r = Tk(µ)u
10. end while

For the two Krylov subspace methods in subsections 3.1.2 and 3.1.3 the only
degree of freedom is the choice of the initial vector, and we therefore start in step k

with the solution uk−1 of the preceding step. The nonlinear Arnoldi method allows
thick starts, i.e. when solving Tk(λ)u = 0 in step k Algorithm 1 can be started with
the orthonormal basis V that was used in the preceding step when determining the
solution uk−1 = V ũ of V T Tk−1(λ)V ũ = 0.

Some comments on an efficient implementation of RTLSQEP with the nonlinear
Arnoldi solver are in order.

• A suitable initial basis V of Algorithm 1 for the first quadratic eigenvalue
problem (2.7) was determined by a small number (� = 6, e.g.) of Lanczos
steps applied to the linear eigenproblem W1z = λz with a random vector r0

∈R
p because this is cheaper than executing the nonlinear Arnoldi method.

• Since the dimensions of the projected problems are small they can be solved
by linearization and a dense eigensolver like the QR algorithm.

• In our numerical examples it turned out that we obtained fast convergence
without preconditioning, so we simply set PC = I .

• The representation of Wk and hk in (3.15) and (3.16) demonstrates that the
projected eigenvalue problem

V TTk(µ)V ũ = ((Wk + µI)V )T ((Wk + µI)V )ũ − δ−2(hT
k V )T (hT

k V )ũ = 0

can be determined efficiently if the matrices CV , SV , DT V and gT
1 V are

known. These can be updated cheaply by appending in every iteration step
of the nonlinear Arnoldi method one column and component to the current
matrices and vector, respectively. Since the number n − p of columns of D
is very small the cost is essentially one MatVec Cṽ.
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• The determination of the residual r = Tk(µ)u costs another MatVec with
Wk. Due to Tk(µ)u = (Wk +µI)(Wk +µI)V ũ−δ−2hkh

T
k V ũ we can make

use of the stored matrices CV , SV , DTV and gT
1 V to obtain (Wk + µI)V ũ

and hT
k V ũ easily, but one further multiplication with (Wk + µI) has to be

executed. So, one iteration step of the nonlinear Arnoldi method roughly costs
2 MatVecs.

The considerations above demonstrate that due to the reuse of the entire search
space it is rather inexpensive to provide V T Tk(λ)V if V T Tk−1(λ)V is known. This
suggests early updates, i.e. to leave the inner loop of the nonlinear Arnoldi method
for determining the rightmost eigenpair long before convergence.

The cost of an outer iteration in Algorithm 1, namely to obtain updates of WkV
and hT

k V from the preceding matrices Wk−1V and hT
k−1V (cf. (3.15) and (3.16))

is only a fourth of the cost of one inner iteration in the nonlinear Arnoldi method.
Evaluating f(xk) costs 1 or 2 MatVecs (dependent on the structure of U ) and the
cost of an inner iteration are 2 MatVecs with Wk , that is 4 resp. 8 MatVecs.

It turned out that while reducing the residual of the approximated rightmost
eigenpair of a QEP in step k by a factor 100 (instead of solving it to full accuracy),
sufficient new information is added to the search space V . So the stopping criterion
in line 4 of Algorithm 3 is replaced by ‖r‖/‖r0‖ > 0.01 with the initial residual
r0 calculated in line 3. This approach leads to more outer iterations but overall to
less inner iterations.

The early update variant reduces the overall computation time substantially when
compared to the standard version. Implementing early update strategies in the
Krylov-type algorithms of Subsections 3.1.2 and 3.1.3 destroyed the convergence
of the overall process.

3.2. RTLSEVP - Algorithm 2

It is a common demand of both approaches, RTLSQEP and RTLSEVP that one
has to solve a converging sequence of eigenvalue problems which again suggests
to reuse information gained in previous iteration steps. An advantage of RTLSEVP
over RTLSQEP is the fact that for p < n (i.e. if L is not a nonsingular matrix) we
do not have to reduce the first order conditions (2.5) to the range of L and hence
do not need a spectral decomposition of LTL although this can be implemented
inexpensively in many important cases (cf. Remark 2.4).

3.2.1. Solving the sequence of linear eigenproblems

Renaut and Guo [26] proposed to determine the minimum eigenvalue of

(3.17) B(θk)y =
(
M + θkN

)
y = λy
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via the Rayleigh quotient iteration initialized by the eigenvector found in the pre-
ceding iteration step. Hence, one uses information from the previous step, but an
obvious drawback of this method is the fact that each iteration step requires O(n3)
operations providing the LU factorization of B(θk).

Similar to the approach in RTLSQEP the entire information gathered in previous
iteration steps can be employed solving (3.17) via the nonlinear Arnoldi Algorithm
3 with thick starts applied to

Tk(µ)u = (M + θkN − µI)u = 0

This time in lines 1 and 8 we aim at the minimum eigenvalue of Tk(µ).
The projected problem

(3.18) V TTk(µ)V ũ =
(
([A, b]V )T ([A, b]V ) + θkV T NV − µI

)
ũ = 0

can be updated efficiently in both cases, if the search space is expanded by a new
vector and if the iteration counter k is increased (i.e. a new θk is chosen).

The explicit form of the matrices M and N is not needed. If a new vector v is
added to the search space span{V }, the matrices AV := [A, b]V and LV := LV (1 :
n, :) are refreshed appending the new column Av := [A, b]v and Lv := Lv(1 : n),
respectively, and the projected matrix MV := V TMV has to be augmented by the
new last column cv := (AT

V Av ; AT
v Av) and last row cT

v . Since the update of Lv
is usually very cheap (cf. Remark 2.4) the main cost for determining the projected
problem is essentially 1 MatVec.

For the preconditioner in line 3 it is appropriate to chose PC ≈ N−1 which
according to Remark 2.4 usually can be implemented very cheaply and can be kept
constant throughout the whole algorithm.

The evaluation of the residual

r = Tk(µ)V ũ = [A, b]T ([A, b]V )ũ + θkNV ũ − µu

in line 3 and 9 costs another MatVec with [A, b]T . Hence, one inner iteration step
of the nonlinear Arnoldi method costs 2 MatVecs resp. 4 MatVecs in the case of an
unstructured and full regularizarion matrix L. These are half the cost of an inner
iteration step of the nonlinear Arnoldi applied in the RTLSQEP algorithm, cf. 2.11.

3.2.2. Root-finding algorithm

Assuming that g is continuous and strictly monotonically decreasing Renaut and
Guo [26] derived the update

(3.19) θk+1 = θk +
θk

δ2
g(θk)
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for solving g(θ) = 0 where g(θ) is defined in (2.19), and at step k, (xT
θk

,−1) is the
eigenvector of B(θk) corresponding to its minimal eigenvalue. Since this sequence
usually does not converge, an additional backtracking was included, i.e. the update
was modified to

(3.20) θk+1 = θk + ι
θk

δ2
g(θk)

where ι ∈ (0, 1] was bisected until the sign condition g(θk)g(θk+1) ≥ 0 was
satisfied. However, this safeguarding hampers the convergence of the method con-
siderably.

We propose a root-finding algorithm taking into account the typical shape of
g(θ) which is shown in Figure 3.1. Left of its root θ̂ the slope of g is often very
steep, while right of θ̂ it is approaching its limit −δ2 quite quickly. This makes it
difficult to determine θ̂.

Fig. 3.1. Plot of a typical function g(θ).

We approximate the root of g based on rational interpolation of g−1 (if it ex-
ists) which has a known pole at θ = −δ2. Assume that we are given three pairs
(θj , g(θj)), j = 1, 2, 3 with

(3.21) θ1 < θ2 < θ3 and g(θ1) > 0 > g(θ3).

We determine the rational interpolation

h(γ) =
p(γ)

γ + δ2
, where p is a polynomial of degree 2,

and p is chosen such that h(g(θj)) = θj , j = 1, 2, 3, and we evaluate θ4 = h(0).
In exact arithmetic θ4 ∈ (θ1, θ3), and we replace θ1 or θ3 by θ4 such that the new
triple satisfies (3.21).
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The coefficients of p are obtained from a 3 by 3 linear system which may become
very badly conditioned, especially close to the root. We therefore use as a basis for
representing p Chebyshev polynomials transformed to the interval [g(θ3), g(θ1)]

If g is strictly monotonically decreasing in [θ1, θ3] then h is a rational interpo-
lation of g−1 : [g(θ3), g(θ1)] → R.

Due to nonexistence of the inverse g−1 on [g(θ3), g(θ1)] or due to rounding
errors very close to the root θ̂, it may happen that θ4 is not contained in the interval
(θ1, θ3). In this case we perform a bisection step such that the interval definitely still
contains the root of g. If g(θ2) > 0, then we replace θ1 by θ1 = θ2+θ3

2 , otherwise
θ3 is exchanged by θ3 = θ1+θ2

2 .
To initialize Algorithm 2 we determine three values θi such that not all g(θi)

have the same sign. Given θ1 > 0 we multiply either by 0.01 or 100 depending on
the sign of g(θ1) and obtain after very few steps an interval that contains the root
of g.

If a discontinuity at or close to the root is encountered, then a very small εθ =
θ3 − θ1 appears with relatively large g(θ1) − g(θ3). In this case we terminate the
iteration and determine the solution as described in [19].

The evaluation of g(θ) can be performed efficiently by using the stored matrix
LV (1 : n, :) to determine ‖Lu‖2 = (LV (1 : n, :)ũ)T (LV (1 : n, :)ũ) in much less
than a MatVec. The cost of an outer iteration is hence less than a MatVec.

Remark 3.1. In section 2.3 another problem class was mentioned, where a
sequence of linear eigenproblems (2.24) has to be solved. In [28] the implicitly
restarted Lanczos method (IRLM) is proposed as eigensolver, that can make use
of the solution vector of the preceding eigenproblem as starting vector for the next
iteration. A straightforward idea is to use the nonlinear Arnoldi in this context as
well, making use of all previous information by thick starts. Another idea is to
use the function g(θ) defined in (2.20) for updating the parameter α, notice that
θ = bT b−α

1+∆2 holds. Then the proposed enclosing root-finding algorithm could be
applied as well.

Remark 3.2. Let θc be the value where B(θ) gets indefinite. The root of g

is definitely contained in the interval [0, θc]. If for all θk holds θk ∈ [0, θc], then
B(θk) > 0 and the sequence of EVPs can be interpreted of a sequence of TLS
problems. A TLS problem (1.2) is just the determination of the smallest eigenpair
of a positive definite matrix.

4. NUMERICAL EXAMPLES

To evaluate the performance of Algorithms 1 and 2 for large dimensions we
use a 1D and a 2D test example from Hansen’s Regularization Tools, [18].Two
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functions heat(1) and tomo, which are both discretizations of integral equations, are
used to generate matrices Atrue ∈ R

m×n, right hand sides btrue ∈ R
m and solutions

xtrue ∈ R
n such that

Atruextrue = btrue.

In all cases the matrices Atrue and [Atrue, btrue] are ill-conditioned.
To construct a suitable RTLS problem, the norm of btrue is scaled such that

‖btrue‖2 = maxi ‖Atrue(:, i)‖2 holds. xtrue is scaled by the same factor. The
noise added to the problem is put in relation to the average value of the elements
of the augmented matrix, aver =

∑
(
∑

(abs[Atrue, btrue]))/(m(n + 1)). We add
white noise of level 1-10% to the data and obtained the systems Ax ≈ b where
A = Atrue + σE and b = btrue + σe, with σ = aver · (0.01 . . .0.1) and the
elements of E and e are independent random variables with zero mean and unit
variance.

The numerical test were run on a PentiumR4 computer with 3.4 GHz and 8GB
RAM under MATLAB R2007b. Tables 1 and 2 contain the CPU times in seconds
averaged over 100 random simulations. for the 1D problem the dimensions n =
1000, n = 2000, n = 4000 are chosen and for the 2D problem n = 900, n = 1600,
n = 2500 which correspond to a solution on a 30x30, 40x40 and 50x50 grid. In
all examples the number of the rows of A is twice the number of the columns, i.e.
m = 2n. The noise levels are 1% and 10% for both examples.

For the 1D problem heat(1) the regularization matrix L̂ ∈ R
n−1×n approximates

the first order derivative, cf. Remark 2.4. The δ1 is chosen to be δ1 = 0.8‖L̂xtrue‖.
It was also tested a slightly disturbed variant L̂α with α = 0.1 which is denoted by
’b’ in comparison to the unperturbed L̂ denoted by ’a’ in the Table 1.

For the 2D example tomo a discrete version of the 2D first order derivative
operator L̂ is used. Here again a slightly disturbed variant to make L̂α have full
rank is denoted by ’b’ whereas the original L̂ is denoted by ’a’ in Table 2 below.
The δ2 is chosen to be δ2 = 0.3‖L̂xtrue‖.

In Algorithm 1 the outer iteration was terminated if the f(xk) has converged, i.e.
two subsequent values do not differ relatively by more than 0.1%. If not a regular
matrix L̂ is used, the matrix U is needed, but never set up explicitely. Performing
matrix vector multiplication with U can be done efficiently in less than O(n2) by
using either the discrete cosine transform in the 1D case or the Kronecker-product
structure in the 2D case. The quadratic eigenproblems are solved by the presented
solvers from subsections 3.1.2, 3.1.3 and 3.1.4. From subsection 3.1.3 it is taken
the variant of the SOAR method that needs less MatVecs.

Algorithm 2 is terminated if the g(θk) is sufficiently close to zero. i.e. less
than 10−10. A preconditioner is only needed in RTLSEVP and was calculated with
UMFPACK [7], i.e. MATLAB’s [L, U, P, Q] = lu(N ), with a slightly perturbed
N to make it nonsingular. The eigenproblems are solved by the nonlinear Arnoldi
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method according to section 3.2.1, and the root-finding algorithm from section 3.2.2
is applied.

In Table 1 the following shortcuts are used: ’LY’ denotes the Krylov subspace-
type method from Li and Ye, ’SO’ the Second Order Arnoldi Reduction and ’NLA’
denotes the nonlinear Arnoldi method. Algorithms 1 and 2 are denoted by ’1’ and
’2’ and the regularization matrices L̂ in the cases ’a’ and ’b’ are unperturbed and
perturbed respectively.

Table 1. Example heat(1), average CPU time in seconds

noise n LY 1a LY 1b SO 1a SO 1b NLA 1a NLA 1b NLA 2a
1% 1000 0.53 0.47 0.52 0.63 0.35 0.36 0.19

2000 1.28 1.19 1.13 1.02 1.08 0.99 0.60
4000 4.94 4.68 4.37 3.78 4.21 3.88 2.65

10% 1000 0.55 0.46 0.48 0.45 0.36 0.32 0.19
2000 1.37 1.18 1.19 0.99 1.07 0.98 0.61
4000 4.95 4.67 4.31 3.73 4.17 3.92 2.54

Table 2. Example tomo, average CPU time in seconds

noise n Li&Ye 1a SOAR 1a NL Arn. 1a NL Arn. 1b NL Arn. 2a
1% 30x30 0.77 1.01 1.02 1.24 0.20

40x40 2.62 2.55 2.07 2.81 0.54
50x50 6.93 6.44 4.78 6.03 3.86

10% 30x30 0.77 1.02 1.00 1.23 0.21
40x40 2.63 2.56 2.02 2.88 0.56
50x50 6.89 6.38 4.80 5.98 3.83

When using the RTLSQEP for problem heat(1) roughly 100 MatVecs are per-
formed in about 3 outer iterations. This is the case for all tested eigensolvers, both
noise levels and different problem sizes. A matrix vector multiplication is the most
expensive operation within the algorithms, so the computation times are about equal.
Algorithm 2 only needs approximately 50 MatVecs and this results in half the time.

In the 2D problem tomo Algorithm 1 roughly needs 200-300 MatVecs, due to
a lot of outer iterations. From the different quadratic eigensolvers the nonlinear
Arnoldi with the unperturbed regularization matrix L̂ (i.e. ’NL Arn. 1a’) is the best
choice. The computation time is much less when using the RTLSEVP algorithm
with about 60 MatVecs for the smaller problems and about 150 MatVecs for the
50x50 example.

The RTLSEVP turned out to be superior to the RTLSQEP algorithm, at least in
the chosen examples. Both approaches do converge in much less MatVecs than the
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dimension of the problem, so the computational complexity of both approaches is
of order O(n2).

5. CONCLUSIONS

The RTLSQEP algorithm for solving the RTLS problem (1.4) is very efficient
when combined with iterative projection methods in the inner loop like the Li/Ye
method, SOAR or the nonlinear Arnoldi method. The RTLSEVP algorithm is also
very efficient when combined with the nonlinear Arnoldi in the inner loop and a
suitable root-finding algorithm for g(θ) = 0 based on a rational inverse interpolation.
The computational complexity of the proposed approaches is kept at the order of
O(n2). We present a detailed description of an efficient implementation of the
different parts of the algorithms.
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