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ASYMPTOTIC PERTURBATION OF
PALINDROMIC EIGENVALUE PROBLEMS

Tie-Xiang Li, Eric King-wah Chu* and Chern-Shuh Wang

Abstract. We investigate the perturbation of the palindromic eigenvalue prob-
lem for the matrix quadratic P (λ) ≡ λ2AT

1 +λA0 +A1, with A0, A1 ∈ Cn×n

and AT
0 = A0. The perturbation of eigenvalues and eigenvectors, in terms of

palindromic matrix polynomials and palindromic linearizations, are discussed
using Sun’s implicit function approach.

1. INTRODUCTION

Consider the matrix quadratic

P (λ) ≡ λ2AT
1 + λA0 + A1

where A0, A1 ∈ C
n×n and AT

0 = A0, and the corresponding palindromic quadratic
eigenvalue problem

(1) P (λ)x = 0 , x �= 0 .

In this paper, we shall consider only regular matrix polynomials P (λ), in the sense
that detP (λ) �≡ 0.

From the transpose of (1), a palindromic eigenvalue problem possesses a spec-
trum σ(P ) containing both λ and its reciprocal λ−1 (with 0 and ∞ considered to
be reciprocal to each other). When λ �= −1, the eigenvalue problem of the origi-
nal matrix polynomial P (λ) has a palindromic linearization [5, 8, 14] of the form
λZ ±ZT . (We can transform λZ −ZT to the form ν(−Z)+ (−Z)T with ν = −λ.
Similarly, λ2AT

1 + λA0 + A1 and ν2AT
1 − νA0 + A1 define equivalent palindromic

eigenvalue problems).
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A great foundation for the solution of palindromic eigenvalue problems has
been laid by Hilliges, Mackey, Mehl and Mehrmann [11, 14, 15]. Alternative
approaches in tackling the problem with structure-preserving doubling algorithms
and generalized Patel/Analdi method can be found in [5, 12]. There has been
much recent interest in quadratic eigenvalue problems [20]. An important example
of palindromic eigenvalue problems can be found in the vibration analysis of fast
trains; see [11, 13] for general introductions and [10] for details. For general
perturbation of eigenvalues for polynomial eigenvalue problems, see [4, 19]. On
results for general matrix polynomials, see the masterpiece [8].

This paper is organized as follows. The perturbation result for a simple eigen-
value and its corresponding eigenvector is obtained by differentiation in Section 2.
Sun’s implicit function approach [18] is then applied to palindromic linearizations,
general matrix quadratics and palindromic eigenvalue problems in Section 3, to
obtain perturbation results for (simple) eigenvalues and the corresponding eigenvec-
tors/deflating subspaces. An illustrative example is given in Section 4 and the paper
is concluded in Section 5.

Some related results for perturbation of arbitrary size, in terms of Bauer-Fike
type theorems, can be found in [6]. Although we have only considered the T-
paldindromic problems here, related H-palindromic, anti-palindromic and odd/even
problems can be treated similarly.

2. PERTURBATION BY DIFFERENTIATION

Without establishing the differentiability or the existence of asymptotic expan-
sions (which can be achieved using the implicit function approach in the next sec-
tion), perturbation results can be obtained by simple differentiation. See [1] for
more details on this approach.

For some fixed z �= 0, consider the palindromic eigenvalue problem

P (λ, ρ)x(ρ) = 0 , P (λ, ρ) ≡ λ(ρ)2AT
1 (ρ) + λ(ρ)A0(ρ) + A1(ρ)

with the scaling zTx(ρ)−1 = 0, where ρ is the perturbation parameter, A0(0) = A0

and A1(0) = A1. We shall use the subscripts (·)ρ and (·)λ to denote the corre-
sponding partial derivatives. For a simple eigenvalue λ, differentiation produces, at
ρ = 0:

(2) λρ = −yT Pρx

yTPλx
= − yT Pρx

yT (2λAT
1 + A0)x

and
Pxρ = −(λρPλ + Pρ)x , zT xρ = 0 .
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Choosing z = y(0) (the left-eigenvector corresponding to λ(0)), we have, at ρ = 0:

xρ = −P †(λρPλ + Pρ)x

where P † denotes the Penrose generalized inverse [9].
The usual conclusion can be drawn — the right-eigenvector x will be rotated

through a big angle, even for a small perturbation, when ‖P†‖ is large, i.e., when
the separation between λ and other eigenvalues is fine. This happens, of course,
when the assumption of simplicity for the eigenvalue is near collapsing.

Note that for palindromic eigenvalues problems, λ = ±1 may be multiple and
non-differentiable, and a more sophisticated approach, like the one in [3], is required.
This comment is also applicable to Sun’s approach in the next Section.

3. SUN’S IMPLICIT FUNCTION APPROACH

In this Section, we shall apply Sun’s approach [7, 18] where the implicit function
theorem is applied. Asymptotic perturbation series for the eigenvalues and the
corresponding deflating subspaces are obtained.

3.1 Palindromic pemcils

From [16], we have the following anti-triangular canonical form:

Theorem 1. Let Z −λZT be a regular n×n palindromic linearization. There
exists a unitary U ∈ C

n×n such that U TZU = (mij) with mij = 0 (i+ j ≤ n+1)
(i.e., UTZU is anti-triangular, with zero elements in the upper left corner).

The palindromic eigenvalues are:

m1n

mn1
,
m2,n−1

mn−1,2
, · · · ,

mi,n−i+1

mn−i+1,i
, · · · ,

mn−i+1,i

mi,n−i+1
, · · · ,

mn−1,2

m2,n−1
,
mn1

m1n
.

Using the anti-triangular form in Theorem 1, Sun’s approach [7] can be applied
to obtain the power series of eigenvalues and deflating subspaces. Without loss of
generality, we shall use an upper-triangular form in this section (with the help of the
order-reversing permutation matrix Pr ≡ [er, er−1, · · · , e1] ∈ R

r×r with ei being
the ith column of the r-dimensional identity matrix Ir, so that Sun’s approach can
be followed faithfully).

Using Pn, the anti-triangular form (in Theorem 1) is turned into a upper triangu-
lar form and is organized to reflect the symmetry of the eigenvalue pairs {λj, λ−1

j }:

PnUT (Z − λZT )U
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=
[

Λα1 ∗
0 Λα2

]
− λ

[
Λβ1 ∗
0 Λβ2

]

=


 Λα1 ∗

Λα0

0 Λα,−1


 − λ


 Λβ1 ∗

Λβ0

0 Λβ,−1


 .

With 2p < n, (Λα1, Λβ1) contains the p eigenvalues whose perturbation we are
interested in, (Λα,−1, Λβ,−1) their reciprocals, (Λα0, Λβ0) the rest of the spectrum,
and (Λα2, Λβ2) the complement of those in (Λα1, Λβ1). Consequently, we have

Λβ,−1 = PpΛα1Pp , Λβ,1 = PpΛα,−1Pp , Λβ0 = P2n−pΛα0P2n−p

and {U−1, U1} spanning the deflating subspaces of Z − λZT corresponding to
(Λα1, Λβ1). With similar organization of the deflating subspaces, we have

U ≡ [U1, U0, U−1] = [U1, U2] = [U−2, U−1], U2 ≡ [U0, U−1], U−2 ≡ [U1, U0]

and

UPn = [U−1Pp, U0Pn−2p, U1Pp] = [U−1Pp, U−2Pn−p] = [U2Pn−p, U1Pp] .

Here U1 (corresponding to (Λα1, Λβ1)) and U−1 (corresponding to the “reciprocal”
pencil (Λα,−1, Λβ,−1)) are respectively the first and last p columns of U .

Assume that (Λα1, Λβ1) and (Λα2, Λβ2) have nonitersecting spectra. (This ex-
cludes the possibility of λ = ±1 appearing in both (Λα,−1, Λβ,−1) and (Λα1, Λβ1).
All these unimodular eigenvalues have to be grouped together inside (Λα1, Λβ1),
with the necessary adjustment of the Us.) We assume that Z(ρ) is analytic with
respect to the perturbation parameter ρ. (Frequently, the dependence on ρ is not
written explicitly to avoid messy expressions.) We then have

M ≡ PnUTZ(ρ)U =

[ M11 M12

M21 M22

]
≡

[ PpU
T
1 ZU−1 PpU

T
1 ZU−2

Pn−pU
T
2 ZU−1 Pn−pU

T
2 ZU−2

]

and

L ≡ PnUT Z(ρ)TU =

[ L11 L12

L21 L22

]
≡

[ PpU
T
1 ZTU−1 PpU

T
1 ZT U−2

Pn−pU
T
2 ZT U−1 Pn−pU

T
2 ZT U−2

]
.

From the (2,1)-block of[
Ip 0

−Ψ In−p

]
(M− λL)

[
Ip 0
Φ In−p

]
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with Ψ(ρ) and Φ(ρ) being functions of ρ, we construct[
F (Φ, Ψ, ρ)

G(Φ, Ψ, ρ)

]

=

[ −ΨPpUT
1 ZU−1−ΨPpUT

1 ZU−2Φ+Pn−pU
T
2 ZU−1+Pn−pU

T
2 ZU−2Φ

−ΨPpUT
1 ZT U−1−ΨPpUT

1 ZT U−2Φ+Pn−pU
T
2 ZT U−1+Pn−pU

T
2 ZT U−2Φ

]
.

At ρ = 0, we have Φ = 0 = Ψ and F (0, 0, 0) = 0 = G(0, 0, 0). The appropriate
implicit function theorem can then be applied to [F T , GT ]T . Differentiation of
F and G respect to Ψ and Φ at ρ = 0 yields (after stacking columns and apply
Kronecker products)[

F

G

]
(Ψ,Φ)

=

[ −ΛT
α1 ⊗ In−p Ip ⊗ Λα2

−ΛT
β1 ⊗ In−p Ip ⊗ Λβ2

]
.

It is easy to see that the above operator is invertible when the spectra of (Λα1, Λβ1)
and (Λα2, Λβ2) do not intersect [2] (and it will be ill-conditioned when the sepa-
ration of the spectra is small). Consequently, we have proved that the power series
exist for Φ(ρ) and Ψ(ρ) within some small neighbourhood of ρ = 0, and

Φ(ρ) = Φρ(0)ρ + · · · , Ψ(ρ) = Ψρ(0)ρ + · · · .

Furthermore, the perturbed deflation subspaces [7] are

(3)

{
span

(
UPn

[
Ip

Ψ(p)

])
, span

(
U

[
Ip

Φ(p)

])}

=
{
span

(
U1Pn + U2Pn−pΨ(p)

)
, span (U−1 + U−2Φ(p))

}
.

Differentiation of

M11 ≡ PpU
T
1 ZU−1 , L11 ≡ PpU

T
1 ZTU−1

also yields, at ρ = 0:

∂M11

∂ρ
= PpU

T
1 ZρU−1 ,

∂L11

∂ρ
= PpU

T
1 ZT

ρ U−1 .

Applying the trace operator to the above derivatives will produce the derivatives of
the averages of multiple eigenvalues [3]. Alternatively, subgradients can be applied
for such analysis. Note that the multiple eigenvalues λ = ±1 are of particular inter-
est in the study of palindromic eigenvalue problems and their perturbation analysis
can be performed using the above formulae [5, 14, 15, 16].
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When p = 1 and (Λα1, Λβ1) = (λα1, λβ1) represents the finite eigenvalue
λ1 = λα1/λβ1, the above derivatives translate to

∂λ1

∂ρ
=

∂λα1
∂ρ λβ1 − ∂λβ1

∂ρ λα1

λ2
β1

=
∂λα1
∂ρ

λβ1
−

λ1
∂λβ1

∂ρ

λβ1
=

yT
1 Zρx1 − λ1y

T
1 ZT

ρ x1

yT
1 ZTx1

,

producing a result analogous to (2).
Lastly, differentiating F and G with respect to ρ at ρ = 0 produces

Fρ = Λα2Φρ − ΨρΛα1 + Pn−pU
T
2 ZρU−1 = 0 ,

Gρ = Λβ2Φρ − ΨρΛβ1 + Pn−pU
T
2 ZT

ρ U−1 = 0 .

The derivatives Φρ(0) and Ψρ(0) (required in (??) when calculating the perturbed
deflating subspaces) can then be retrieved from the above equations, when (Λα1, Λβ1)
and (Λα2, Λβ2) have nonintersecting spectra [2].

3.2 General matrix quadratics

We now apply Sun’s approach [7] to the general matrix quadratic

Q2(λ) = λ2M + λD + K

similar to the development in the previous subsection. Assume the n× 2n matrices
X = [xj] and Y = [yj] contain, respectively, the right- and left-eigenvectors xj and
yj corresponding to λj = αj/βj . For the companion linearization

(4) L(λ) ≡
[

0 I
−K −D

]
− λ

[
I

M

]
,

it is easy to check that the right- and left-eigenvectors corresponding to λj = αj/βj

are respectively [
βjxj

αjxj

]
,
[
βjy

T
j D + αjy

T
j M, βjy

T
j

]T
.

Notice that by using (αj, βj) to represent λj , we have avoided the difficulties
involving infinite eigenvalues. We can then scale the eigenvectors to satisfy the
biorthogonality equations

ΛαY T MXΛβ + ΛβY T MXΛα + ΛβY TDXΛβ = Λβ ,(5)

ΛαY T MXΛα − ΛβY TKXΛβ = Λα .(6)
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Here Λα and Λβ are block-diagonal matrices, with blocks being the usual identity
or Jordan matrices for the generalized eigenvalue sub-problems.

Assume further that X , Y , Λα and Λβ are organized as follows:

X = [X1, X2], Y = [Y1, Y2]; Λα = diag{Λα1, Λα2}, Λβ = diag{Λβ1, Λβ2}
where the spectra of (Λα1, Λβ1) and (Λα2, Λβ2) do not intersect.

We assume the matrices M , D and K are differentiable with respect to the
perturbation parameter ρ. We first transform the linearization in (4) by pre-(post-
)multiplying with its left-(right-)eigenvectors:

M ≡
[ M11 M12

M21 M22

]
≡ [

ΛβY TD + ΛαY T M, ΛβY T
] [

0 I
−K −D

] [
XΛβ

XΛα

]

and

L ≡
[ L11 L12

L21 L22

]
≡ [

ΛβY T D + ΛαY T M, ΛβY T
] [

I
M

] [
XΛβ

XΛα

]
.

From the (2,1)-block of[
Ip 0

−Ψ In−p

]
(M− λL)

[
Ip 0
Φ In−p

]

with Ψ(ρ) and Φ(ρ) being functions of ρ, we construct

F (Φ, Ψ, ρ) ≡ −Ψ(Λα1Y
T
1 MX1Λα1 − Λβ1Y

T
1 KX1Λβ1)

−Ψ(Λα1Y
T
1 MX2Λα2 − Λβ1Y

T
1 KX2Λβ2)Φ

+(Λα2Y
T
2 MX1Λα1 − Λβ2Y

T
2 KX1Λβ1)

+(Λα2Y
T
2 MX2Λα2 − Λβ2Y

T
2 KX2Λβ2)Φ ,

G(Φ, Ψ, ρ) ≡ −Ψ(Λβ1Y
T
1 DX1Λβ1 + Λα1Y

T
1 MX1Λβ1 + Λβ1Y

T
1 MX1Λα1)

−Ψ(Λβ1Y
T
1 DX2Λβ2 + Λα1Y

T
1 MX2Λβ2 + Λβ1Y

T
1 MX2Λα2)Φ

+(Λβ2Y
T
2 DX1Λβ1 + Λα2Y

T
2 MX1Λβ1 + Λβ2Y

T
2 MX1Λα1)

+(Λβ2Y
T
2 DX2Λβ2 + Λα2Y

T
2 MX2Λβ2 + Λβ2Y

T
2 MX2Λα2)Φ .

At ρ = 0, we have Φ = 0 = Ψ and F (0, 0, 0) = 0 = G(0, 0, 0). The complex
implicit function theorem can then be applied to (F T , GT )T . Differentiation of
F and G respect to Ψ and Φ at ρ = 0 yields (after stacking columns and apply
Kronecker products)[

F
G

]
(Ψ,Φ)

=

[
−ΛT

α1 ⊗ Ip In−p ⊗ Λα2

−ΛT
β1 ⊗ Ip In−p ⊗ Λβ2

]
.
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It is easy to see that the above operator is invertible when the spectra of (Λα1, Λβ1)
and (Λα2, Λβ2) do not intersect [2] (and it will be ill-conditioned when the sepa-
ration of the spectra is small). Consequently, we have proved that the power series
exists for Φ(ρ) and Ψ(ρ) within some small neighbourhood of ρ = 0, and

Φ(ρ) = Φρ(0)ρ + · · · , Ψ(ρ) = Ψρ(0)ρ + · · · .

Furthermore, the perturbed deflation subspaces [7] of the companion linearization
equal {

span
(

Ỹ −T

[
Ip

Ψ(p)

])
, span

(
X̃

[
Ip

Φ(p)

])}
with

Ỹ =
[
ΛβY TD + ΛαY TM, ΛβY T

]T
, X̃ =

[
XΛβ

XΛα

]
.

Differentiation of

M11 ≡ Λα1Y
T
1 MX1Λα1 − Λβ1Y

T
1 KX1Λβ1 ,

L11 ≡ Λβ1Y
T
1 DX1Λβ1 + Λα1Y

T
1 MX1Λβ1 + Λβ1Y

T
1 MX1Λα1

also yields, at ρ = 0:

∂M11

∂ρ
= Λα1Y

T
1 MρX1Λα1 − Λβ1Y

T
1 KρX1Λβ1 ,

∂L11

∂ρ
= Λβ1Y

T
1 DρX1Λβ1 + Λα1Y

T
1 MρX1Λβ1 + Λβ1Y

T
1 MρX1Λα1 .

Again for multiple eigenvalues (like λ = ±1), applying the trace operator to the
above derivatives will produce the derivatives of the averages of multiple eigenvalues
[3]; otherwise subgradients will be required.

When p = 1 and (Λα1, Λβ1) = (λα1, λβ1) represents the finite eigenvalue
λ1 = λα1/λβ1, the above derivatives translate to

(7)

∂λ1

∂ρ

=

∂λα1

∂ρ
λβ1 − ∂λβ1

∂ρ
λα1

λ2
β1

=

∂λα1

∂ρ

λβ1
−

λ1
∂λβ1

∂ρ

λβ1

=
−λ2

β1y
T
1 Kρx1 + λ2

α1y
T
1 Mρx1 − λ1(λ2

β1y
T
1 Dρx1 + 2λα1λβ1y

T
1 Mρx1)

λ2
β1y

T
1 Dx1 + 2λα1λβ1yT

1 Mx1

= −yT
1 (λ2

1Mρ + λ1Dρ + Kρ)x1

yT
1 (2λ1M + D)x1

,



Asymptotic Perturbation of Palindromic Eigenvalue Problems 789

producing a formula similar to (2).
Lastly, differentiating F and G with respect to ρ at ρ = 0 produces

Fρ = Λα2Φρ − ΨρΛα1 + Λα2Y
T
2 Mρ(0)X1Λα1 − Λβ2Y

T
2 Kρ(0)X1Λβ1 = 0 ,

Gρ = Λβ2Φρ − ΨρΛβ1 + Λα2Λβ2Y
T
2 Dρ(0)X1Λβ1

+Λα2Y
T
2 Mρ(0)X1Λβ1 + Λβ2Y

T
2 Mρ(0)X1Λα1 = 0 .

The derivatives Φρ(0) and Ψρ(0) can then be retrieved from the above equations,
when (Λα1, Λβ1) and (Λα2, Λβ2) have nonintersecting spectra [2].

3.3 Palindromic case

For palindromic eigenvalue problems, the perturbation results can be obtained
from those for general matrix quadratics, utilizing M = AT

1 = KT , D = A0 = DT

and the palindromic properties of the eigenvalues and eigenvectors. For the spec-
trum, we have (Λα1, Λβ1) and (Λα2, Λβ2) = (Λβ1, Λα1) representing, respectively,
eigenvalues on/inside and on/outside the unit circle, and [Y1, Y2] = [X2, X1].

For the simple palindromic eigenvalues λ1 and λ−1
1 , (??) implies, at ρ = 0:

∂λ1

∂ρ
= −yT

1

[
λ2

1(A1)T
ρ + λ1(A0)ρ + (A1)ρ

]
x1

yT
1 (2λ1AT

1 + A0)x1
,

∂
{
λ−1

1

}
∂ρ

=
yT
1

[
(A1)T

ρ + λ−1
1 (A0)ρ + λ−2

1 (A1)ρ

]
x1

yT
1 (2λ1AT

1 + A0)x1

from ∂{λ−1
1 }

∂ρ = −λ−2
1

∂λ1
∂ρ or (2λ1A1+A0)x1 = −(2λ−1

1 AT
1 +A0)x1. Interestingly,

the asymptotic relative errors of the pair of reciprocal eigenvalues equal to, at ρ = 0:

(8)
ρ

λ±1
1

∂λ±1
1

∂ρ
= ∓ρ

yT
1

[
λ1(A1)T

ρ + (A0)ρ + λ−1
1 (A1)ρ

]
x1

yT
1 (2λ1A

T
1 + A0)x1

.

These are identical except of the opposite signs. Equation (8) can easily be under-
stood through

1
λ + δλ

=
1

λ
(
1 + δλ

λ

) ≈ 1
λ

(
1 − δλ

λ

)
⇒ (λ + δλ)−1 − λ−1

λ−1
≈ −δλ

λ
.

After applying inequalities of norms, a condition number for both λ±1
1 can then

be produced:

(9) κ ≡ ‖y1‖2 ‖x1‖2

|yT
1 (2λ1A

T
1 + A0)x1|

√
|λ1|2 + 1 + |λ1|−2 .
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Table 1: Perturbation of a palindromic eigenvalue problem
i 1 2, 3 4
λi −0.5488554937 0.6854143467 ± −1.8219731997

0.7281532623i
λ̃i −0.5488554724 0.6854143626 ± −1.8219732705

0.7281532473i
δλi 2.1312649867e-08 1.5930742392e-08 ± −7.0749180514e-08

1.4995688913e-08i
ri −3.8831076873e-08 −4.1288419705e-16 ± 3.8831076399e-08

2.1878282362e-08i
|ri| 3.8831076873e-08 2.1878282362e-08 3.8831076399e-08
r
(e)
i −3.8831078433e-08 4.7865922782e-16 ± 3.8831078433e-08

2.1878282332e-08i
|r(e)

i | 3.8831078433e-08 2.1878282332e-08 3.8831078433e-08

κi 1.2701114034 1.5072107111 1.2701114034

r
(κ)
i 8.8772549782e-08 1.0534425368e-07 8.8772549782e-08

With appropriate scaling of the eigenvectors, κ can be interpreted as proportional to
the product of the norms of the left- and the right-eigenvectors, or in terms of the
angle between the eigenvectors, as in other algebraic eigenvalue problems.

4. NUMERICAL EXAMPLE

We shall consider the following small example to illustrate the results in Sec-
tion 7.3:

A0 =
[

1 2
2 1

]
, A1 =

[
1 ω

0 1

]
.

The parameter ω can be used to vary the condition of the eigenvalue problem,
but will be fixed to be 0.5 in the following calculations. The matrices are per-
turbed randomly to the magnitude of 0.5 × 10−7, with δ = ‖[δAT

1 , δA0, δA1]‖ =
0.6989351449543007×10−7. The eigenvalues are λi (i = 1, · · · , 4) with λ1 = λ−1

4

and λ2 = λ−1
3 . The numerical results are summarized in Table 1, with λ̃i denot-

ing the perturbed eigenvalues, δλi ≡ λ̃i − λi, ri ≡ δλi/λi (the relative error in
λ̃i), r

(e)
i estimating ri using (8), κi the individual condition numbers as in (9), and∣∣∣r(e)

i

∣∣∣≤r
(κ)
i ≡κiδ estimating |ri|. All calculations were carried out using MATLAB

7.1 (R14) on a Apple MacIntosh G4 Powerbook, with eps ≈ 2.2204× 10−16.
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It is obvious from Table 1 that (8) provides accurate approximations to the
relative errors of palindromic eigenvalues for small perturbations and the condition
number κ in (9) produces tight upper bounds for the (relative) errors. Also, the
fact that the relative errors for a reciprocal pairs of eigenvalues are negative of each
other is confirmed by the example.

5. CONCLUSIONS

Results for eigenvalues and the corresponding deflating subspaces of palindromic
linearizations and (palindromic) matrix quadratics are obtained using Sun’s implicit
function approach. Consistent results for simple eigenvalues and the corresponding
eigenvetors/deflating subspaces are obtained using simple differentiation. These
results indicate, not surprisingly, that the perturbations of an eigenvalue λ and its
corresponding deflating subspace Sλ, respectively, are proportional to the size of the
perturbation and the reciprocal of the gap between Sλ and other deflating subspaces.
Condition numbers are typically proportional the products of the norms of the left-
and right-eigenvectors or deflating subspaces.
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