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ROTATION HYPERSURFACES IN LORENTZ-MINKOWSKI SPACE

WITH CONSTANT MEAN CURVATURE

Uǧur Dursun

Abstract. We give explicit parameterizations of rotation hypersurfaces in

Lorentz-Minkowski space Ln+1. Then we obtain rotation hypersurfaces in

Lorentz-Minkowski space Ln+1 with constant mean curvature. In particu-

lar, we determine nonplanar rotation hypersurfaces with zero mean curvature,

namely, generalized catenoids of Ln+1. In the case the rotation axis is light-

like, the generalized catenoids generalize Enneper’s surfaces of the 2nd and

3rd kind.

1. INTRODUCTION

In an old paper [3], Delaunay proved that the profile curve of a rotation surface

with nonzero constant mean curvature in Euclidean 3-space can be described as the
locus of a focus when a quadratic curve is rolled along the axis of revolution. This

result was generalized in various directions by Hsiang and Yu [5]. In [9], Pinl and

Ziller proved that the only minimal rotation hypersurface (except the hyperplane)

of Euclidean space is the generalized catenoid. In [4], Carmo and Dajczer defined

rotation hypersurfaces in space of constant curvature and gave a local character-

ization of such hypersurfaces. Also they studied some special cases of rotation

hypersurfaces with constant mean curvature in hyperbolic space.

On the other hand, in Lorentz-Minkowski 3-space there are several different
kinds of rotation surfaces depending on the rotation axis: rotations about space-

like, time-like, and light-like axes. Rotation surfaces of constant mean curvature in

Minkowski 3-space L3 has been studied by a number of differential geometers. For
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instance, in [4], Hano and Nomizu studied the Delaunay’s problem in the Lorentz-

Minkowski 3-space L3, restricting themselves to the space-like surfaces such that

the rotation axis is either space-like, time-like or light-like. In the case of revolution

about the space-like and time-like axis, the profile curve is obtained by revolving

the focus of a quadratic curve along the axis of rotation, similarly to the Delaunay

surface in Euclidean 3-space. They also studied for the profile curves when the
rotation axis is light-like. The completeness of the surfaces obtained in [4] was

investigated in [2]. Recently in [7], Lee and Varnado studied various nonlinear

ordinary differential equations that characterize space-like constant mean curvature

rotation surfaces in Minkowski 3-space. They solved the differential equations
by using some numerical methods to obtain examples of space-like constant mean

curvatures.

In particular, there are various type of catenoids, that is, nonplanar rotation

surfaces with zero mean curvature, in Lorentz-Minkowski 3-space depending on
the rotation axis. In [6], Kobayashi classified maximal space-like rotation surfaces

in Minkowski space L3. However, McNertney [8] and Van de Woestijne [10]

independently classified catenoids, that is, nonplaner rotation surfaces with zero

mean curvature, in Lorentz-Minkowski space L3. In [10], Van de Woestijne calls

the space-like catenoid and time-like catenoid with light-like axis the surface of

Enneper of the 2nd kind and 3rd kind, respectively.

In this paper we extend the notion of rotation surfaces of the 3-dimensional
Lorentz-Minkowski space L3 to hypersurfaces of an (n + 1)-dimensional Lorentz
-Minkowski space Ln+1. We firstly give explicit parametrization of rotation hyper-

surfaces in Ln+1 according to the rotation axis is time-like, space-like or light-like.

Especially, when the rotation axis is light-like we determine the orthogonal transfor-

mations of Ln+1 that leaves the rotation axis fixed. We then compute the principal

curvatures of each rotation hypersurface in Ln+1 to determine the differential equa-

tion of the hypersurface with constant mean curvature. By solving the differential

equations we obtain profile curves of rotation hypersurfaces of constant mean cur-

vature. As a consequence we determine the generalized catenoids of Ln+1. In the

case the rotation axis is light-like, the generalized catenoids generalize Enneper’s

surfaces of the 2nd and 3rd kind.

2. PRELIMINARIES

Let Ln+1 denotes the (n + 1)-dimensional Lorentz-Minkowski space, that is, the

real vector space Rn+1 endowed with the Lorentzian metric 〈, 〉 = (dx1)2 + · · ·+
(dxn)2 − (dxn+1)2, where (x1, . . . , xn+1) are the canonical coordinates in Rn+1.

A vector x of Ln+1 is said to be space-like if 〈x, x〉 > 0 or x = 0, time-like if
〈x, x〉 < 0 or light-like (or null) if 〈x, x〉 = 0 and x 6= 0.
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An immersed hypersurfaceMq of L
n+1 with index q (q = 0, 1) is called space-

like (Riemannian) or time-like (Lorentzian) if the induced metric, which, as usual,

is also denoted by 〈, 〉 on Mq has the index 0 or 1, respectively. The de Sitter
n-space Sn

1 (x0, c) centered at x0 ∈ Ln+1, c > 0, is a Lorentzian hypersurface of
Ln+1 defined by

Sn
1 (x0, c) = {x ∈ Ln+1| 〈x− x0, x− x0〉 = c2},

and the hyperbolic space Hn(x0,−c) centered at x0 ∈ Ln+1, c > 0, is a space-like
hypersurface of Ln+1 defined by

Hn(x0,−c) = {x ∈ Ln+1| 〈x− x0, x− x0〉 = −c2 and xn+1 − x0
n+1 > 0},

where xn+1 − x0
n+1 is the (n+ 1)-th component of x − x0. The de Sitter n-space

Sn
1 (x0, c) and the hyperbolic space Hn(x0,−c), c > 0, are both totally umbilical
hypersurfaces of the Lorentzian space Ln+1.

Let e1, . . . , en be an orthonormal local tangent frame on a hypersurface Mq of

Ln+1 with signatures εi = 〈ei, ei〉 = ∓1, and AN denotes the shape operator ofMq

in a chosen unit normal direction N . Then the mean curvature α of Mq is defined

by

α =
1
n
trAN =

1
n

n∑

i=1

εi 〈AN (ei), ei〉 .

A space-like hypersurface of Ln+1 with vanishing mean curvature is called maximal.

Let Π be a 2-dimensional subspace of Ln+1 passing through the origin. We will

say that Π is non-degenerate if the metric 〈, 〉 restricted to Π is a non-degenerate

quadratic form. A curve in Ln+1 is called space-like, time-like or light-like if the

tangent vector at any point is space-like, time-like or light-like, respectively. An

orthogonal transformation of Ln+1 is a linear map that preserves the metric.

Here we will define non-degenerate rotation hypersurfaces in Ln+1 with time-

like, space-like or light-like axis. For an open interval I ⊂ R, let γ : I → Π be

a regular smooth curve in a non-degenerate 2-plane Π of Ln+1 and let ` be a line
in Π that does not meet the curve γ. A rotation hypersurface Mq with index q in

Ln+1 with a rotation axis ` is defined as the orbit of a curve γ under the orthogonal
transformations of Ln+1 with positive determinant that leaves the rotation axis `

fixed. When the rotation axis ` is space-like or time-like it is easy to write the
orthogonal transformations of Ln+1 that leaves the rotation axis ` fixed. However,

if the rotation axis ` is light-like we will give the orthogonal transformations of
Ln+1 that leaves the axis ` fixed. The curve γ is called profile curve of the rotation

hypersurface. As we consider non-degenerate rotation hypersurfaces it is sufficient

to consider the case that the profile curve is space-like or time-like.

We will give explicit parameterizations for non-degenerate rotation hypersurfaces

Mq in L
n+1 according to the axis ` is time-like, space-like or light-like. Let
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{η1, . . . , ηn+1} be the standard orthonormal basis of Ln+1, that is, 〈ηi, ηj〉 = δij ,

〈ηn+1, ηn+1〉 = −1, 〈ηi, ηn+1〉 = 0, i, j = 1, 2, . . . , n.
Let Θ(u1, . . .un−2) denotes an orthogonal parametrization of the unit sphere

Sn−2(1) in the Euclidean space En−1 generated by {η1, . . . , ηn−1}:

(2.1)
Θ(u1, . . .un−2) = cosu1η1 + sinu1 cosu2η2 + · · ·+ sin u1 · · · sinun−3

cos un−2ηn−2 + sinu1 · · ·sin un−3 sinun−2ηn−1,

where 0 < ui < π (i = 1, . . . , n− 3), 0 < un−2 < 2π.

Remark. When n = 2, the term Θ(u1, . . . , un−2) in the following definitions
of rotation hypersurfaces is replaced by η1.

Case 1. ` is time-like. In this case the plane Π that contains the line ` and
a profile curve γ is Lorentzian. Without lose of generality, we may suppose that

` is the xn+1-axis and Π is the xnxn+1-plane which is Lorentzian. Since every

time-like line is transformed to the xn+1-axis by a Lorentz transformation, and then

every time-like plane containing the xn+1-axis is transformed to the xnxn+1-plane.

Let γ(t) = ϕ(t)ηn + ψ(t)ηn+1 be a parametrization of γ in the plane Π with

xn = ϕ(t) > 0, t ∈ I ⊂ R. The curve is space-like if ε = sgn(ϕ′2 −ψ′2) = 1 and
time-like if ε = sgn(ϕ′2 − ψ′2) = −1.

So we can give a parametrization of a rotation hypersurfaceMq,T of L
n+1 with

time-like axis as

(2.2)
fT (u1, . . . , un−1, t) = ϕ(t) sinun−1Θ(u1, . . . , un−2)

+ϕ(t) cosun−1 ηn + ψ(t)ηn+1,

where 0 < un−1 < π. The second index in Mq,T stands for the time-like axis.

The hypersurface Mq,T is also called a spherical rotation hypersurface of L
n+1 as

parallels of Mq,T are spheres Sn−1(0, ϕ(t)).

Case 2. ` is space-like. In this case the plane Π which contains a profile curve

is Lorentzian or Riemannian. So there are rotation hypersurfaces of the first and

second kind labeled by Mq,S1 and Mq,S2 in L
n+1 with space-like axis.

Subcase 2.1. The plane Π is Lorentzian. Without losing generality we may

suppose that ` is the xn-axis, that is, the vector ηn = (0, . . . , 0, 1, 0) is the direction
of the rotation axis, and Π is the xnxn+1-plane. Let γ(t) = ψ(t)ηn + ϕ(t)ηn+1 be

a parametrization of γ in the plane Π with xn+1 = ϕ(t) > 0, t ∈ I ⊂ R. Thus
we can give a parametrization of a rotation hypersurface of the first kind Mq,S1 of

Ln+1 with space-like axis as

(2.3)
fS1(u1, . . . , un−1, t) = ϕ(t) sinhun−1Θ(u1, . . . , un−2) + ψ(t)ηn

+ϕ(t) coshun−1ηn+1,
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0 < un−1 <∞, which is also called a hyperbolic rotation hypersurface of Ln+1 as

parallels of Mq,S1 are hyperbolic spaces Hn−1(0,−ϕ(t)).

Subcase 2.2. The planeΠ is Riemannian. We may suppose that ` is the xn-axis

and Π is the xn−1xn-plane without lose of generality. Let γ(t) = ϕ(t)ηn−1+ψ(t)ηn

be a parametrization of γ in the plane Π with xn−1 = ϕ(t) > 0, t ∈ I ⊂ R. In
this case the curve γ is space-like. Similarly we give a parametrization of a rotation
hypersurface of the second kind Mq,S2 of L

n+1 with space-like axis as

fS2 (u1, . . . , un−1, t) =ϕ(t) coshun−1Θ(u1, . . . , un−2) + ψ(t)ηn(2.4)

+ ϕ(t) sinhun−1ηn+1,

−∞ < un−1 < ∞, which is called a pseudo-spherical rotation hypersurface of
Ln+1 as parallels of Mq,S2 are pseudo-spheres Sn−1

1 (0, ϕ(t)) when n > 2. (If
n = 2, then S1

1 ≡ H1.) Later we will show that Mq,S2 has the index 1, that is,

q = 1.

Case 3. ` is light-like. Let {η̂1, . . . , η̂n+1} be a pseudo-Lorentzian basis
of Ln+1, that is, < η̂i, η̂j >= δij , i, j = 1, . . . , n − 1, < η̂i, η̂n >= <

η̂i, η̂n+1 >= 0, i = 1, 2, . . . , n − 1, < η̂n, η̂n+1 >= 1, < η̂n, η̂n >= 0, <
η̂n+1, η̂n+1 >= 0. We can choose η̂1 = (1, 0, . . . , 0), . . . , η̂n−1 = (0, . . . , 1, 0, 0),
η̂n = 1√

2
(0, . . . , 0, 1,−1), η̂n+1 = 1√

2
(0, . . . , 0, 1, 1). We may suppose that ` is the

line spanned by the null vector η̂n+1 and Π is the xnxn+1-plane without lose of

generality. Let γ(t) =
√

2ϕ(t)η̂n +
√

2ψ(t)η̂n+1 be a parametrization of γ in the

plane Π with xn = ϕ(t) > 0, t ∈ I ⊂ R.
Let Θ1(u1, . . . , un−2), . . . ,Θn−1(u1, . . . , un−2) be the components of the or-

thogonal parameterizationΘ(u1, . . . , un−2) given by (2.1) of the unit sphere Sn−2(1)
in the basis {η̂1, . . . , η̂n−1}. We consider the subgroup of Lorentz group which fixes
the direction η̂n+1 of the light-like axis ` is given by

{B(u1, . . . , un−1) : u1, . . . , un−3 ∈ (0, π), un−2 ∈ (0, 2π), un−1 ∈ R} ,

where B is the (n+ 1) × (n+ 1) matrix of the form

B =




1 0 · · · 0 un−1Θ1 −un−1Θ1

0 1 · · ·
...

...
...

...
...

. . . 0
...

...

0 0 · · · 1 un−1Θn−1 −un−1Θn−1

un−1Θ1 · · · · · · un−1Θn−1 1 − u2
n−1

2

u2
n−1

2

un−1Θ1 · · · · · · un−1Θn−1 −u2
n−1

2 1 +
u2

n−1

2




,
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which has determinant one. When we apply the transformation B to the vectors

η̂1, . . . , η̂n−1 we can have

(2.5) B(η̂i) = η̂i +
√

2un−1Θiη̂n+1, i = 1, . . . , n− 1,

(2.6) B(η̂n) =
n−1∑

i=1

√
2un−1Θiη̂i + η̂n − u2

n−1η̂n+1 and B(η̂n+1) = η̂n+1.

If we write x =
∑n+1

i=1 xiη̂i, then by using (2.5) and (2.6) it can easily be shown

that B preserves the metric, that is, 〈B(x), B(x)〉 = 〈x, x〉.
Hence, writing γ(t) = (0, . . . , 0, ψ(t) + ϕ(t), ψ(t)− ϕ(t)) the rotation hyper-

surface Mq,L of L
n+1 with light-like axis is defined as

fL(u1, . . . , un−1, t) = B(γ(t))

=(2ϕ(t)un−1Θ1, . . . , 2ϕ(t)un−1Θn−1, (ψ(t) + ϕ(t) − ϕ(t)u2
n−1),(2.7)

(ψ(t)− ϕ(t)− ϕ(t)u2
n−1)), un−1 6= 0

or equivalently by using γ(t) =
√

2ϕ(t)η̂n +
√

2ψ(t)η̂n+1 and (2.6) in the pseudo-

Lorentzian basis we can write

(2.8)

fL(u1, . . . , un−1, t) = B(γ(t))

= 2ϕ(t)un−1Θ(u1, . . . , un−2) +
√

2ϕ(t)η̂n

+
√

2(ψ(t)− ϕ(t)u2
n−1)η̂n+1, un−1 6= 0.

Note that in the third case if ϕ(t) = ϕ0 or ψ(t) = ψ0 is a constant, then the

profile curve is degenerate. However, in the other cases if ϕ(t) = ϕ0 > 0 is a
constant and ψ(t) = t, then the rotation hypersurface M1,T is the Lorentz cylinder

Sn−1(0, ϕ0)× L1, M0,S1 is the hyperbolic cylinder Hn−1(0,−ϕ0)× R, and M1,S2

is the pseudo-spherical cylinder Sn−1
1 (0, ϕ0) × R. If ϕ(t) = t and ψ(t) = ψ0 is a

constant, then M0,T is a space-like hyperplane of L
n+1, and M1,S1 and M1,S2 are

time-like hyperplanes of Ln+1. Therefore all these are rotational hypersurfaces of

Ln+1 with constant mean curvature.

3. ROTATION HYPERSURFACES WITH TIME-LIKE AXIS

In this section we determine rotation hypersurfaces Mq,T of L
n+1 with time-

like axis and constant mean curvature. Especially we determine maximal space-like

rotation hypersurface and Lorentzian rotation hypersurface with zero mean curvature

of Ln+1 as a generalization of catenoids of the first kind and third kind, respectively.
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Proposition 3.1. Let Mq,T be a rotation hypersurface of L
n+1 with the index

q and time-like axis parameterized by (2.2). Then the directions of parameters are
principal directions, and the principal curvatures along the coordinate curves ui,

i = 1, . . . , n− 1, are all equal and given by

λ = − ψ′

ϕ
√
ε(ϕ′2 − ψ′2)

with multiplicity n− 1, and the principal curvature along the coordinate curve t is
given by

µ =
ψ′ϕ′′ − ψ′′ϕ′

(ϕ′2 − ψ′2)
√
ε(ϕ′2 − ψ′2)

,

where ε = sgn(ϕ′2 − ψ′2) = ∓1 and, q = 0 if ε = 1 and q = 1 if ε = −1.

Proof. Taking derivative of (2.2) we have the orthogonal coordinate vector

fields on Mq,T as

∂fT

∂ui
= ϕ(t) sinun−1

∂Θ
∂ui

, i = 1, . . . , n− 2,

∂fT

∂un−1
= ϕ(t)(cosun−1Θ − sinun−1ηn),

∂fT

∂t
= ϕ′(t)(sinun−1Θ + cos un−1ηn) + ψ′(t)ηn+1.

(3.1)

The vectors ∂fT/∂ui’s are space-like, and however the vector ∂fT/∂t is space-like
if ε = sgn(〈∂fT/∂t, ∂fT/∂t〉) = sgn(ϕ′2 − ψ′2) = 1 and time-like if ε = −1.

Now we can choose an orthonormal tangent basis on Mq,T as

ei =
1

‖∂fT/∂ui‖
∂

∂ui
, i = 1, . . . , n− 1, en =

1√
ε(ϕ′2 − ψ′2)

∂

∂t

with signatures εi =< ei, ei >= 1, i = 1, . . . , n − 1 and εn =< en, en >= ε,

where ‖∂fT/∂ui‖ =
√
εi 〈∂f/∂ui, ∂f/∂ui〉. We determine a unit normal vector

field N on Mq,T as

N =
1√

ε(ϕ′2 − ψ′2)
[ψ′(t)(sinun−1Θ + cosun−1ηn) + ϕ′(t)ηn+1]

with 〈N,N〉 = −ε . Let AN denotes the shape operator of Mq,T in the direction

N . By a straightforward calculation we obtain

AN (ei) = − ψ′

ϕ
√
ε(ϕ′2 − ψ′2)

ei, i = 1, . . . , n− 1
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and

AN (en) =
ψ′ϕ′′ − ψ′′ϕ′

(ϕ′2 − ψ′2)
√
ε(ϕ′2 − ψ′2)

en.

It follows from above that the coordinate curves are lines of curvature, and hence

the principal curvatures λ and µ are obtained.

Therefore the mean curvature of Mq,T is

(3.2) α=
1
n

n∑

i=1

εi〈AN (ei), ei〉=
1

n
√
ε(ϕ′2−ψ′2)

(
−(n − 1)ψ′

ϕ
+
ψ′ϕ′′−ψ′′ϕ′

ϕ′2−ψ′2

)

which is the function of t.
Now we will investigate the rotation hypersurfaces of Ln+1 with time-like axis

and constant mean curvature. We consider the rotation hypersurface Mq,T defined

by (2.2) for the profile curve γ(t) = (ϕ(t), ψ(t)) = (t, g(t)), t > 0, that is,

(3.3) fT (u1, . . . , un−1, t)= t sinun−1Θ(u1, . . . , un−2)+t cosun−1 ηn+g(t)ηn+1,

where g(t) is a differentiable function. This rotation hypersurface is space-like if
g′2 < 1, (ε = 1, q = 0) and time-like if g′2 > 1, (ε = −1, q = 1).

Theorem 3.2. The rotation hypersurface Mq,T of L
n+1 with the index q and

time-like axis defined by (3.3) has constant mean curvature α if and only if the

function g(t) for the profile curve is given by

(3.4) g(t) =
∫ t a± αtn√

(a± αtn)2 + εt2(n−1)
dt,

where a is an arbitrary constant, and q = 0 for ε = 1 and q = 1 for ε = −1.

Proof. For the functions ϕ(t) = t, t > 0 and ψ(t) = g(t), from (3.2) the
rotation hypersurfaceMq,T defined by (3.3) has constant mean curvature if and only

if g = g(t) satisfies the differential equation:

(3.5) g′′ +
(n− 1)(1− g′2)g′

t
+ nαε[ε(1 − g′

2)]3/2 = 0,

for some constant α.

Suppose that Mq,T has constant mean curvature α. Let ε = 1, that is, g′2 < 1.
If we substitute g′ = sinu, then the differential equation (3.5) becomes

(3.6) u′ +
(n− 1)

t
cos u sinu+ nµα cos2 u = 0,
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where µ = sgn(cosu) = ±1. Now we make another substitution w = tanu, then
we obtain

u′ =
w′

1 + w2
, cosu =

1√
1 + w2

, sinu =
w√

1 + w2
.

Hence the differential equation (3.6) becomes

(3.7) w′(t) +
(n− 1)

t
w(t) + nµα = 0.

The solution of (3.7) yields w(t) =
a± αtn

t(n−1)
for some constant a. Therefore

(3.8) g′(t) = sin
(

tan−1

(
a± αtn

t(n−1)

))
=

a± αtn√
(a± αtn)2 + t2(n−1)

and then

(3.9) g(t) =
∫ t a± αtn√

(a± αtn)2 + t2(n−1)
dt.

Let ε = −1, that is, g′2 > 1. Now if we substitute g′ = cosh u, then the
differential equation (3.5) turns to

(3.10) u′ − (n− 1)
t

cosh u sinhu− nµα sinh2 u = 0,

where µ = sgn(sinh u) = ±1. Let us put w = tanhu. Then we obtain

u′ =
w′

1 − w2
, cosh u =

1√
1− w2

, sinh u =
w√

1 − w2
.

Thus the differential equation (3.10) becomes

(3.11) w′(t) − (n− 1)
t

w(t)− nµαw2 = 0,

which has solution w(t) =
t(n−1)

a± αtn
for some constant a. Therefore

(3.12) g′(t) = cosh

(
tanh−1

(
t(n−1)

a± αtn

))
=

a± αtn√
(a± αtn)2 − t2(n−1)

and then

(3.13) g(t) =
∫ t a± αtn√

(a± αtn)2 − t2(n−1)
dt.
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Conversely, it can be shown that the mean curvature of Mq,T is constant if g(t) is
given by (3.4).

We can have the following corollaries.

Corollary 3.3. Let the mean curvature α of Mq,T be a non-zero constant. If

a = 0 in (3.4), then g(t) = ±α−1
√
α2t2 + ε+ c, t > 1/|α| for ε = −1, where c is

an integration constant. Moreover,

(1) for ε = 1 the space-like rotation hypersurface M0,T of L
n+1 with time-like

axis defined by (3.3) is a part of hyperbolic n-space Hn(cηn+1,−1/|α|),
hence it is totally umbilical.

(2) for ε = −1 the Lorentzian rotation hypersurface M1,T of L
n+1 with time-

like axis defined by (3.3) is a part of the de Sitter n-space Sn
1 (cηn+1, 1/|α|),

hence it is totally umbilical.

Proof. If a = 0, by integrating (3.4) we get g(t) = ±α−1
√
α2t2 + ε + c for

ε = ±1, and t > 1/|α| when ε = −1. Using the parameterization (3.3) of Mq,T

we have

〈fT − cηn+1, fT − cηn+1〉 = t2 sin2 un−1 〈Θ,Θ〉+t2 cos2 un−1−
α2t2 + ε

α2
= − ε

α2

as 〈Θ,Θ〉 = 1 from (2.1). Thus the proof follows.

Corollary 3.4.

(1) The space-like rotation hypersurfaceM0,T of L
n+1 with time-like axis defined

by (3.3) is maximal if and only if the function g(t) for the profile curve is
given by

(3.14) g(t) =
∫ t a√

a2 + t2(n−1)
dt.

(2) The Lorentzian rotation hypersurface M1,T of L
n+1 with time-like axis de-

fined by (3.3) has zero mean curvature if and only if the function g(t) for the
profile curve is given by

(3.15) g(t) =
∫ t a√

a2 − t2(n−1)
dt, 0 < t < n−1

√
|a|,

where a is a non-zero constant.
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For n > 2 a non-planer minimal rotation hypersurface of an Euclidean space
En+1 is called a generalized catenoid [1, 9]. Similarly we call a rotation hypersur-

face of a Lorentz-Minkowski space Ln+1 with zero mean curvature a generalized

catenoid. So the maximal rotation hypersurface M0,T of L
n+1 with time-like axis

is a part of the generalized catenoid of first kind. For instance, if n = 2, then from
(3.14) we get g(t) = a sinh−1( t

a) + b, and then we have from (3.3)

fT (u1, t) =
(
t sinu1, t cosu1, a sinh−1

(
t

a

)
+ b

)

which is congruent to the catenoid of first kind given in [6].

Similarly, the Lorentzian rotation hypersurface M1,T of Ln+1 with time-like

axis and zero mean curvature is called a generalized catenoid of the 3rd kind. For

instance, if n = 2, then from (3.15) we get g(t) = a sin−1( t
a)+b, and then by (3.3)

we have

fT (u1, t) = (t sinu1, t cosu1, a sin−1(
t

a
) + b)

which is congruent to a part of the catenoid of the 3rd kind given in [10].

4. ROTATION HYPERSURFACES OF FIRST KIND WITH SPACE-LIKE AXIS

In this section we investigate rotation hypersurfaces of the first kind Mq,S1 of

Ln+1 with space-like axis and constant mean curvature. Especially we determine

maximal space-like rotation hypersurfaces and Lorentzian rotation hypersurfaces

with zero mean curvature of the first kind of Ln+1 as a generalization of catenoids

of the second kind and fourth kind, respectively.

On the hypersurface Mq,S1 defined by (2.3), the unit normal field is given by

N̄ =
1√

ε̄(ψ′2 − ϕ′2)
[ψ′(t)(sinhun−1Θ + coshun−1ηn+1) + ϕ′(t)ηn],

where ε̄ = sgn(ψ′2 − ϕ′2) and
〈
N̄, N̄

〉
= −ε̄.

We state the followings without proof because the most of the calculations are

the same as in Section 2.

Proposition 4.1. Let Mq,S1 be a rotation hypersurface of the first kind of

Ln+1 with the index q and space-like axis parameterized by (2.3). Then the direc-

tions of parameters are principal directions, and the principal curvatures along the

coordinate curves ui, i = 1, . . . , n− 1, are all equal and given by

λ = − ψ′

ϕ
√
ε̄(ψ′2 − ϕ′2)
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with multiplicity n− 1, and the principal curvature along the coordinate curve t is
given by

µ =
ψ′′ϕ′ − ψ′ϕ′′

(ψ′2 − ϕ′2)
√
ε̄(ψ′2 − ϕ′2)

,

where ε̄ = sgn(ψ′2 − ϕ′2) = ∓1 and, q = 0 if ε̄ = 1 and q = 1 if ε̄ = −1.

Therefore the mean curvature vector of Mq,S1 is

(4.1) ᾱ=
1
n

n∑

i=1

ε̄i〈AN̄(ei), ei〉=
1

n
√
ε̄(ψ′2−ϕ′2)

(
−(n−1)ψ′

ϕ
+
ϕ′ψ′′−ψ′ϕ′′

ψ′2−ϕ′2

)

which is the function of t, where e1, . . . , en are the unit principal directions of the
shape operator AN̄ with signatures ε̄i = 〈ei, ei〉.

We now consider the rotation hypersurface of the first kind Mq,S1 of L
n+1

with space-like axis defined by (2.3) for the profile curve γ(t) = (ϕ(t), ψ(t)) =
(t, g(t)), t > 0, that is,

fS1(u1, . . . , un−1, t) =t sinh un−1Θ(u1, . . . , un−2) + g(t)ηn(4.2)

+ t coshun−1ηn+1,

where g(t) is a differentiable function. This rotation hypersurface is space-like if
g′2 > 1, (ε̄ = 1) and time-like if g′2 < 1, (ε̄ = −1).

Hence, from (4.1) we can state that the rotation hypersurface of the first kind

Mq,S1 of L
n+1 with space-like axis parametrized by (4.2) has constant mean cur-

vature if and only if g = g(t) satisfies the differential equation

(4.3) g′′ − (n− 1)(g′2 − 1)g′

t
+ nᾱε̄[ε̄(g′2 − 1)]3/2 = 0

for some constant ᾱ.

Theorem 4.2. The rotation hypersurface of the first kind Mq,S1 of L
n+1 with

the index q and space-like axis defined by (4.2) has constant mean curvature ᾱ if

and only if the function g(t) for the profile curve is given by

(4.4) g(t) =
∫ t a± ᾱtn√

(a± ᾱtn)2 − ε̄t2(n−1)
dt,

where a is an arbitrary constant, and q = 0 for ε̄ = 1 and q = 1 for ε̄ = −1.

So we can have the following corollaries.
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Corollary 4.3. Let the mean curvature ᾱ of Mq,S1 be a non-zero constant. If

a = 0 in (4.4), then g(t) = ±ᾱ−1
√
ᾱ2t2 − ε̄ + c, t > 1/|ᾱ| for ε̄ = 1, where c is

an integration constant. Moreover,

(1) for ε̄ = 1 the space-like rotation hypersurface of the first kind M0,S1 of

Ln+1 with space-like axis defined by (4.2) is a part of the hyperbolic n-space

Hn(cηn,−1/|ᾱ|), hence it is totally umbilical.
(2) for ε̄ = −1 the Lorentzian rotation hypersurface of the first kind M1,S1 of

Ln+1 with space-like axis defined by (4.2) is a part of de Sitter n-space

Sn
1 (cηn, 1/|ᾱ|), hence it is totally umbilical.

Corollary 4.4.

(1) The space-like rotation hypersurface of the first kind M0,S1 of L
n+1 with

space-like axis defined by (4.2) is maximal if and only if the function g(t) for
the profile curve is given by

(4.5) g(t) =
∫ t a√

a2 − t2(n−1)
dt, 0 < t < n−1

√
|a|.

(2) The Lorentzian rotation hypersurface of the first kind M1,S1 of L
n+1 with

space-like axis defined by (4.2) has zero mean curvature if and only if the

function g(t) for the profile curve is given by

(4.6) g(t) =
∫ t a√

a2 + t2(n−1)
dt,

where a is a non-zero constant.

The maximal rotation hypersurface of the first kindM0,S1 of L
n+1 with space-

like axis is called a generalized catenoid of the second kind. For instance, if n = 2,
then from (4.5) we get g(t) = a sin−1( t

a) + b, 0 < t <
√
|a|, and then by (4.2)

we have

fS1(u1, t) = (t sinhu1, a sin−1(
t

a
) + b, t coshu1)

which is congruent to a part of the catenoid of the second kind given in [6].

Similarly, the Lorentzian rotation hypersurface of the first kind M1,S1 of L
n+1

with space-like axis and zero mean curvature is called a generalized catenoid of the

4th kind. For instance, if n = 2, then from (4.6) we get g(t) = a sinh−1( t
a) + b,

and then by (4.2) we have

fS1(u1, t) = (t sinhu1, a sinh−1(
t

a
) + b, t coshu1)

which is congruent to the catenoid of the 4th kind given in [10].
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5. ROTATION HYPERSURFACES OF SECOND KIND WITH SPACE-LIKE AXIS

In this section we study rotation hypersurfaces of the second kind Mq,S2 of

Ln+1 with space-like axis and constant mean curvature. In the following it is seen

that the index q is only one, That is, in this case we only have Lorentzian rotation

hypersurface of Ln+1.

Taking derivative of (2.4) we have the orthogonal coordinate vector fields on

Mq,S2 as

∂fS2

∂ui
= ϕ(t) coshun−1

∂Θ
∂ui

, i = 1, . . . , n− 2,

∂fS2

∂un−1
= ϕ(t)(sinhun−1Θ + cosh un−1ηn+1),

∂fS2

∂t
= ϕ′(t)(coshun−1Θ + sinhun−1ηn+1) + ψ′(t)ηn.

(5.1)

The vectors ∂fS2/∂t, ∂fS2/∂ui i = 1, . . . , n − 2 are space-like and the vector
∂fS2/∂un−1 is time-like. This means that Mq,S2 is Lorentzian, that is, q = 1.
Also, the space-like unit normal field on M1,S2 is given by

Ñ =
1√

ϕ′2 + ψ′2
[ψ′(t)(coshun−1Θ + sinh un−1ηn+1)− ϕ′(t)ηn].

Thus we give the followings without proof because the most of the calculations are

the same as in Section 2.

Proposition 5.1. Let M1,S2 be the Lorentzian rotation hypersurface of the

second kind of Ln+1 with space-like axis parameterized by (2.4). Then the direc-

tions of parameters are principal directions, and the principal curvatures along the

coordinate curves ui, i = 1, . . . , n− 1, are all equal and given by

λ = − ψ′

ϕ
√

(ψ′2 + ϕ′2)

with multiplicity n− 1, and the principal curvature along the coordinate curve t is
given by

µ =
ψ′ϕ′′ − ψ′′ϕ′

(ψ′2 + ϕ′2)
√

(ψ′2 + ϕ′2)
.

Hence the mean curvature of M1,S2 is

(5.2) α̃=
1
n

n∑

i=1

ε̃i〈AÑ (ei), ei〉=
1

n
√
ϕ′2+ψ′2

(
−(n−1)ψ′

ϕ
+
ψ′ϕ′′−ϕ′ψ′′

ϕ′2+ψ′2

)
,
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where e1, . . . , en are the unit principal directions of the shape operator AÑ with

signatures ε̃n = ε̃i = 1, i = 1, . . . , n− 2, ε̃n−1 = −1.
We consider the Lorentzian rotation hypersurface of the second kind M1,S2 of

Ln+1 with space-like axis defined by (2.4) for the profile curve γ(t) = (ϕ(t), ψ(t))
= (t, g(t)), t > 0, that is,

fS2(u1, . . . , un−1, t) =t coshun−1Θ(u1, . . . , un−2) + g(t)ηn(5.3)

+ t sinh un−1ηn+1,

where g(t) is a differentiable function. Hence, from (5.2) we can state that the rota-
tion hypersurface of the second kindM1,S2 of L

n+1 with space-like axis parametrized

by (5.3) has constant mean curvature if and only if the function g = g(t) satisfies
the differential equation:

(5.4) g′′ +
(n− 1)(1 + g′2)g′

t
+ nα̃(1 + g′

2)3/2 = 0

for some constant α̃.

Theorem 5.2. The Lorentzian rotation hypersurface of the second kind M1,S2

of Ln+1 with space-like axis defined by (5.3) has constant mean curvature α̃ if and

only if the function g(t) for the profile curve is given by

(5.5) g(t) =
∫ t a± α̃tn√

t2(n−1) − (a± α̃tn)2
dt,

where a is an arbitrary constant.

From this theorem we have the following corollaries.

Corollary 5.3. Let the mean curvature α̃ of M1,S2 be a non-zero constant. If

a = 0 in (5.5), then g(t) = ∓α̃−1
√

1 − α̃2t2 + c, 0 < t < 1/|α̃|. Moreover, the
Lorentzian rotation hypersurface of the second kindM1,S2 of L

n+1 with space-like

axis defined by (5.3) is a part of the de Sitter n-space Sn
1 (cηn, 1/|α̃|), hence it is

totally umbilical.

Corollary 5.4. The Lorentzian rotation hypersurface of the second kindM1,S2

of Ln+1 with space-like axis defined by (5.3) has zero mean curvature if and only

if the function g(t) for the profile curve is given by

(5.6) g(t) =
∫ t a√

t2(n−1) − a2
dt, t > n−1

√
|a|,

where a is a non-zero constant.
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The Lorentzian rotation hypersurface of the second kind M1,S2 of L
n+1 with

space-like axis and zero mean curvature is called a generalized catenoid of the 5th

kind. For instance, if n = 2, then from (5.6) we get g(t) = a cosh−1( t
a) + b, and

then by (5.3) we have

fS2(u1, t) = (t coshu1, a cosh−1(
t

a
) + b, t sinhu1)

which is congruent to the catenoid of the 5th kind given in [10].

6. ROTATION HYPERSURFACE WITH LIGHT-LIKE AXIS

In this section we study rotation hypersurfacesMq,L of L
n+2 with light-like axis

and constant mean curvature. We determine maximal space-like rotation hypersur-

face and Lorentzian rotation hypersurface with zero mean curvature of Ln+1 as a

generalization of Enneper surfaces of the second kind and third kind, respectively.

Proposition 6.1. Let Mq,L be a rotation hypersurface of L
n+1 with the index

q and light-like axis parameterized by (2.8). Then the directions of parameters are

principal directions, and the principal curvatures along the coordinate curves ui,

i = 1, . . . , n− 1 are all equal and given by

λ = − ϕ′

2ϕ
√
ε̂ϕ′ψ′

with multiplicity n− 1, and the principal curvature along the coordinate curve t is
given by

µ =
ϕ′ψ′′ − ψ′ϕ′′

4ϕ′ψ′√ε̂ϕ′ψ′ ,

where ε̂ = sgn(ϕ′ψ′) = ∓1 and, q = 0 if ε̂ = 1 and q = 1 if ε̂ = −1.

Proof. Taking derivative of (2.8) we have the orthogonal coordinate vector

fields on Mq,L as

∂fL

∂ui
=2ϕ(t)un−1

∂Θ
∂ui

, i = 1, . . . , n− 2,

∂fL

∂un−1
=2ϕ(t)(Θ−

√
2un−1η̂n+1),

∂fL

∂t
=ϕ′(t)(2un−1Θ +

√
2η̂n) +

√
2(ψ′(t) − ϕ′(t)u2

n−1)η̂n+1.

(6.1)

So we have
〈

∂fL
∂ui

, ∂fL
∂uj

〉
= 4ϕ2(t)u2

n−1

〈
∂Θ
∂ui
, ∂Θ

∂uj

〉
= 4ϕ2(t)u2

n−1‖ ∂Θ
∂ui

‖2δij , un−1 6=
0, i, j = 1, . . . , n − 2 as Θ is an orthogonal parametrization of the unit sphere
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Sn−2(1),
〈

∂fL
∂un−1

, ∂fL
∂un−1

〉
= 4ϕ2(t) and

〈
∂fL
∂t ,

∂fL
∂t

〉
= 4ϕ′(t)ψ′(t) 6= 0 because

the profile curve is nonnull.

The vectors ∂fL/∂ui’s are space-like, and however the vector ∂fL/∂t is space-

like if ε̂ = sgn(〈∂fT /∂t, ∂fT/∂t〉) = sgn(ϕ′(t)ψ′(t)) = 1 and time-like if ε̂ = −1.
Thus we can choose an orthonormal tangent basis on Mq,L as

ei =
1

‖∂fL/∂ui‖
∂

∂ui
, i = 1, . . . , n− 1, en =

1
2
√
ε̂ϕ′ψ′

∂

∂t

with ε̂i = 1, i = 1, . . . , n− 1, ε̂n = ε̂. Also we have the unit normal field to Mq,L

as

N̂ =
1√

2ε̂ϕ′ψ′ [ϕ
′(
√

2un−1Θ + η̂n)− (ψ′ + ϕ′u2
n−1)η̂n+1]

with
〈
N̂, N̂

〉
= −ε̂. By a straightforward calculation we obtain

AN̂ (ei) = − ϕ′

2ϕ
√
ε̂ϕ′ψ′ ei, i = 1, . . . , n− 1 and AN̂ (en) =

ϕ′ψ′′ − ψ′ϕ′′

4ϕ′ψ′√ε̂ϕ′ψ′ en.

It follows from above that the coordinate curves are lines of curvature, and hence

the principal curvatures λ and µ are obtained.

Therefore, for the mean curvature α̂ of Mq,L we have

(6.2) α̂ =
1
n

n∑

i=1

ε̂i
〈
AN̂ (ei), ei

〉
=

1
n
√
ε̂ϕ′ψ′

(
−(n− 1)ϕ′

2ϕ
+
ϕ′ψ′′ − ψ′ϕ′′

4ϕ′ψ′

)

which is the function of t.

To investigate the rotation hypersurface Mq,L of L
n+1 with light-like axis and

constant mean curvature we consider the rotation hypersurface defined by (2.8) for

the profile curve γ(t) = (ϕ(t), ψ(t)) = (t, g(t)), t > 0, that is,

(6.3)
fL(u1, . . . , un−1, t) = 2tun−1Θ(u1, . . . , un−2) +

√
2tη̂n

+
√

2(g(t)− tu2
n−1)η̂n+1,

where g(t) is a differentiable function. This rotation hypersurface is space-like if
g′ > 0, (ε̂ = 1) and time-like if g′ < 0, (ε̂ = −1) This means that the profile curve
is strictly monotonic.

Theorem 6.2. The rotation hypersurface Mq,L of L
n+1 with light-like axis

given by (6.3) has constant mean curvature α̂ if and only if the function g(t) for
the profile curve is given by

(6.4) g(t) =
∫ t

ε̂
t2(n−1)

(a− 2tnα̂)2
dt, ε̂ = ±1,

where a is an arbitrary constant.
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Proof. For the function ϕ(t) = t, t > 0 and ψ(t) = g(t), from (6.2) the
rotation hypersurface Mq,L parametrized by (6.3) has constant mean curvature if

and only if g = g(t) satisfies the differential equation:

(6.5) g′′ − 2(n− 1)g′

t
− 4nα̂g′

√
ε̂g′ = 0

for some constant α̂.

Suppose that Mq,L has constant mean curvature α̂. Let us put ε̂g
′ = w2. Then

g′′ = 2ε̂ww′ and the differential equation (6.5) becomes

(6.6) w′ − (n− 1)
t

w − 2nµα̂w2 = 0,

where µ = sgn(w) = ±1. The solution of (6.6) gives w(t) = µ
tn−1

a − 2α̂tn
for some

constant a. We then obtain (6.4) by solving g′ = ε̂w2.

Conversely, it can be shown that the mean curvature of Mq,L is constant if g(t)
is given by (6.4).

Then we have the following corollaries.

Corollary 6.3. Let the mean curvature α̂ of Mq,L be a non-zero constant. If

a = 0 in (6.4), then g(t) = c − ε̂
4tα̂2 , t > 0, where c is an integration constant.

Moreover,

(1) for ε̂ = 1 the space-like rotation hypersurface M0,L of L
n+1 with light-like

axis parameterized by (6.3) is a part of hyperbolic n-spaceHn(cη̂n+1,−1/|α̂|),
hence it is totally umbilical.

(2) for ε = −1 the Lorentzian rotation hypersurfaceM1,L of L
n+1 with time-like

axis parameterized by (6.3) is a part of the de Sitter n-space Sn
1 (cη̂n+1, 1/|α̂|),

hence it is totally umbilical, where η̂n+1 is the direction of the light-like

rotation axis.

Proof. If a = 0, by integrating (6.4) we get g(t) = c− ε̂
4tα̂2 . Using the para-

meterization (6.3) of Mq,L we have

〈
fL−c

√
2η̂n+1, fL−c

√
2η̂n+1

〉
=4t2u2

n−1 〈Θ,Θ〉+4t(− ε̂

4tα̂2
−tu2

n−1) 〈η̂n, η̂n+1〉

= − ε̂

α̂2

as 〈Θ,Θ〉 = 1 from (2.1). Therefore the proof follows.
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Corollary 6.4.

(1) The space-like rotation hypersurfaceM0,L of L
n+1 with light-like axis given

by (6.3) is maximal if and only if the function g(t) for the profile curve is
given by

(6.7) g(t) =
1
a2

t2n−1

2n− 1
+ b.

(2) The Lorentzian rotation hypersurface M̂1,L of L
n+1 with light-like axis given

by (6.3) has zero mean curvature if and only if the function g(t) for the profile
curve is given by

(6.8) g(t) = b− 1
a2

t2n−1

2n− 1
,

where a 6= 0 and b are constants.
We call the maximal space-like rotation hypersurface M0,L of L

n+1 with light-

like axis the hypersurface of Enneper of the second kind. For instance, for n =
2, a = 1 and b = 0 from (6.3) and (6.7) the maximal space-like rotation surface
M0,L with light-like axis is given by

fL(u1, t) =2tu1η1 +
√

2tη̂2 +
√

2
(
t3

3
− tu2

1

)
η̂3

=
(

2tu1,
t3

3
+ t− tu2

1,
t3

3
− t− tu2

1

)
,

which is congruent to the Enneper’s surface of the second kind given in [6].

Similarly we call the time-like rotation hypersurface M1,L of L
n+1 with light-

like axis and zero mean curvature the hypersurface of Enneper of the third kind.

For instance, for n = 2, a = 1 and b = 0 from (6.3) and (6.8) the time-like rotation
surface M1,L with light-like axis and zero mean curvature is given by

fL(u1, t) =2tu1η1 +
√

2tη̂2 +
√

2
(
− t

3

3
− tu2

1

)
η̂3

=
(

2tu1,−
t3

3
+ t − tu2

1,−
t3

3
− t − tu2

1

)
,

which congruent to the Enneper’s surface of the third kind given in [10].

Corollary 6.5. For n = 2 and a 6= 0, the rotation surfaceMq,L with light-like

axis given by (6.3) has non-zero constant mean curvature if and only if the function
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g(t) for the profile curve is given by

(6.9) g(t) =





ε̂

8α̂2

(
t

ρ2−t2 −
1
ρ

tanh−1

(
t

ρ

))
+b, 0<

t

ρ
<1,

a

2α̂
= ρ2>0

ε̂

8α̂2

(
−t

t2+ρ2
+

1
ρ

tan−1

(
t

ρ

))
+ b, t>0,

a

2α̂
=−ρ2<0,

where a is a non-zero constant, q = 0 when ε̂ = 1 and q = 1 when ε̂ = −1.

Proof. The proof is followed from the evaluation of the integral in (6.4) for

n = 2.

The results given in Corollary 6.5 for the space-like surface (ε̂ = 1) was also
obtained in [4].

Now we state a classification theorem for rotation hypersurfaces of Ln+1 with

constant mean curvature.

Theorem 6.6. LetM be a rotation hypersurface of a Lorentz-Minkowski space

Ln+1. If M has constant mean curvature, then it is locally congruent to a part of

one of the following rotation hypersurfaces:

(1) a space-like hyperplane or a time-like hyperplane of Ln+1;

(2) a Lorentz cylinderM1,T = Sn−1(0, ϕ0)×L1 or a hyperbolic cylinderM0,S1 =
Hn−1(0,−ϕ0)×R or a pseudo-spherical cylinderM1,S2 = Sn−1

1 (0, ϕ0)×R,
where ϕ0 is a positive real number;

(3) the rotation hypersurface Mq,T of L
n+1 with time-like axis defined by (3.3)

for the profile curve g(t) given by (3.4);
(4) the rotation hypersurface of the first kindMq,S1 of L

n+1 with space-like axis

defined by (4.2) for the profile curve g(t) given by (4.4);
(5) the rotation hypersurface of the second kind M1,S2 of L

n+1 with space-like

axis defined by (5.3) for the profile curve g(t) given by (5.5);
(6) the rotation hypersurface Mq,L of L

n+1 with light-like axis defined by (6.3)

for the profile curve g(t) given by (6.4).

Note that the cases (3), (4), (5), and (6) in Theorem 6.6 include a hyperbolic

n-space Hn or a de Sitter n-space Sn
1 with time-like, space-like or light-like axis by

following Corollaries 3.3, 4.3, 5.3, and 6.3.

When n = 2, Theorem 6.6 gives all time-like and space-like rotation surfaces
of Lorentz-Minkowski 3-space with constant mean curvature which includes locally

the results on the space-like rotation surfaces with constant mean curvature given

in [4].

I would like to express my thanks to the referee for his/her valuable suggestions

to improve the article.
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