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THE HYPER ORDER OF SOLUTIONS OF SECOND ORDER

DIFFERENTIAL EQUATIONS AND SUBNORMAL

SOLUTIONS OF PERIODIC EQUATIONS

Zong-Xuan Chen and Kwang Ho Shon

Abstract. In this paper, we obtain a precise estimation of the hyper order

of solutions for a class of second order linear differential equations, and in-

vestigate the condition of the existence of nontrivial subnormal solution for

a class of second order periodic equations. These results generalize the re-

sults of Gundersen, Steinbart [5] and Wittich [10]. Our methods of proofs are

different from the methods applied in [5, 10].

1. INTRODUCTION AND RESULTS

Consider the second order homogeneous linear periodic differential equation

(1.1) f ′′ + P0(ez)f ′ + Q0(ez)f = 0

where P0(ζ) and Q0(ζ) are polynomials in ζ = ez (z ∈ C) and are not both
constant. It is well known that every solution f of (1.1) is an entire function.

In this paper we will use standard notations from the value distribution theory

of meromorphic functions (see [8, 9, 11]). We suppose that f(z) is a meromorphic
function in whole complex planeC. The Nevanlinna characteristic of f(z), denoted
by T (r, f), i.e.

T (r, f) = m(r, f) +N(r, f)

where

N(r, f) =
∫ r

0

n(t, f)− n(0, f)
t

dt + n(0, f) logr
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is the pole-counting contribution, where n(r, f) is number of poles of f , including
multiplicities, for |z| ≤ r. The proximity function m(r, f) is given by

m(r, f) =
1
2π

∫ 2π

0
log+ |f(reiθ|dθ

where log+ x = max{0, logx} for all x > 0. In addition, we denote the order of
growth of f(z) by σ(f), and also use the notation σ2(f) to denote the hyper-order
of f(z), is defined as

σ2(f) = lim
r→∞

log logT (r, f)
log r

.

Suppose f 6≡ 0 is a solution of equation (1.1). If f satisfies the condition

(1.2) lim
r→∞

logT (r, f)
r

= 0,

then we say that f is a nontrivial subnormal solution of (1.1) (see [5, 10]).

Wittich [10] investigated the subnormal solution of (1.1), and obtained the form

of all subnormal solutions in the following theorem.

Theorem A. If f(6≡ 0) is a subnormal solution of (1.1), then f must have the
form

(1.3) f(z) = ecz(h0 + h1e
z + · · ·+ hme

mz)

wherem ≥ 0 is an integer and c, h0, · · · , hm are constants with h0 6= 0 and hm 6= 0.

Gundersen and Steinbart [5] refined Theorem A and got the following theorem.

Theorem B. Under the assumption of Theorem A, the following statements

hold.

(i) If degP0 > degQ0 and Q0 6≡ 0, then any subnormal solution f 6≡ 0 of (1.1)
must have the form

(1.4) f(z) =
m∑

k=0

hke
−kz

where m ≥ 1 is an integer and h0, h1, · · · , hm are constants with h0 6= 0 and
hm 6= 0.

(ii) If Q0 ≡ 0 and degP0 ≥ 1, then any subnormal solution of (1.1) must be a
constant.

(iii) If degP0 < degQ0, then the only subnormal solution of (1.1) is f ≡ 0.
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For the subnormal solution, we are only interested in the non-trivial subnormal

solution. Theorem B show that if degP0 < degQ0, then (1.1) must have no a

non-trivial subnormal solution. But if degP0 > degQ0, then Theorem B shows

that any non-trivial subnormal solution must have the form (1.4).

Thus three natural questions are:

(i) What condition will guarantee that (1.1) does not have a non-trivial subnormal
solution under the condition degP0 > degQ0?

(ii) What condition will P0 and Q0 satisfy if (1.1) has a non-trivial subnormal

solution under the condition degP0 > degQ0?

(iii) What can be said about the growth of all other solutions of (1.1) except
subnormal solutions?

In this paper, we investigate more general equations than (1.1), and get the

following theorems 1 and 2. For more general equations (1.7) and (1.8), we prove

that all solutions satisfy σ2(f) = 1. Applying these results to periodic differential
equation (1.1), we obtain the following theorem 3 and corollaries 1 and 2. These

results answer the above three questions. Theorem 3 shows that any one of three

additional hypotheses (i)-(iii) in Theorem 3 guarantees that (1.1) has no non-trivial

subnormal solution. Corollary 1 shows that if (1.1) with n > s, has a non-trivial

subnormal solution, then the constant terms c0, d0 of P0, Q0 must satisfy (1.10).

Corollary 2 gives a precise estimation of growth of all other solutions of (1.1) except

subnormal solutions, and shows that, for any two linearly independent solutions of

(1.1), at least one of them satisfies σ2(f) = 1.
These results generalize the results of [5, 10]. Our methods of proofs are also

different from the methods applied in [5, 10].

Now we let polynomials

(1.5) aj(z) = ajdjz
dj + aj(dj−1)z

dj−1 + · · ·+ aj1z + aj0, (j = 0, 1, · · · , n);

(1.6) bk(z) = bkmk
zmk + bk(mk−1)z

mk−1 + · · ·+ bk1z + bk0, (k = 0, 1, · · · , s),

where dj ≥ 0, mk ≥ 0 (j = 1, · · · , n, k = 1, · · · , s) are integers, ajdj , · · · , aj0;
bkmk

, · · · , bk0 are constants, ajdj 6= 0, bkmk
6= 0.

Theorem 1. Let an(z), · · · , a1(z), bs(z), · · · , b1(z) be polynomials and satisfy
(1.5) and (1.6), and an(z)bs(z) 6≡ 0. Suppose that

P (ez) = an(z)enz + · · ·+ a1(z)ez, Q(ez) = bs(z)esz + · · ·+ b1(z)ez .

If n 6= s, then every solution f(6≡ 0) of equation

(1.7) f ′′ + P (ez)f ′ + Q(ez)f = 0



614 Zong-Xuan Chen and Kwang Ho Shon

satisfies σ2(f) = 1.

Theorem 2. Let an(z), · · · , a1(z), a0(z), bs(z), · · · , b1(z), b0(z) be polynomi-
als and satisfy (1.5) and (1.6), and an(z)bs(z) 6≡ 0. Suppose that

P ∗(ez) = an(z)enz+· · ·+a1(z)ez+a0(z), Q∗(ez)=bs(z)esz+· · ·+b1(z)ez+b0(z).

If n < s, then every solution f(6≡ 0) of equation

(1.8) f ′′ + P ∗(ez)f ′ + Q∗(ez)f = 0

satisfies σ2(f) = 1.

Theorem 3. Let

(1.9) P0(ez)=cnenz+· · ·+ c1e
z+c0, Q0(ez)=dse

sz+· · ·+d1e
z + d0, cnds 6=0,

where cj , dk (j = 0, 1, · · · , n; k = 0, 1, · · · , s) are constants. Suppose that P0

and Q0 satisfy any one of the following three additional hypotheses:

(i) s > n;

(ii) n > s and c0 = d0 = 0;

(iii) n > s and equation x2 − c0x+ d0 = 0 has no positive integer solution.

Then (1.1) has no non-trivial subnormal solution, and every non-trivial solution f
satisfies σ2(f) = 1.

Corollary 1. Suppose that P0(ez) and Q0(ez) satisfy (1.9) and n > s, c0 =
c01 + c02i and d0 = d01 + d02i, where c01, c02, d01, d02 are real constants. If

(1.1) has a non–trivial subnormal solution, then c0 and d0 satisfy

(1.10)

{
d02 = c02m

m2 − c01m+ d01 = 0

where m is a positive integer and m ≥ n− s.

Wittich [10] showed that of any two linearly independent solutions of (1.1) at

most one of them can be subnormal. By the result of Wittich, we can get the

following corollary 2.

Corollary 2. Suppose that P0(ez) and Q0(ez) satisfy (1.9). If f1 and f2 are
two linearly independent solutions of (1.1), then at least one of f1 and f2, say f2,

satisfies σ2(f2) = 1.
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Example 1. The equation

f ′′ +
(
− 1

2
e3z +

1
2
ez + 2

)
f ′ + ezf = 0

has a subnormal solution f0 = e−2z − 1, and all subnormal solutions must have the
form f = cf0 where c is any constant. Here c0 = 2 and d0 = 0, the equation

x2 − c0x+ d0 = 0

has a positive integer solution x = 2 = m = n− s.

Example 2. The equation

f ′′ +
(
− e2z + 2

)
f ′ +

(
ez + 1

)
f = 0

has a subnormal solution f0 = e−z − 1, and all subnormal solutions must have the
form f = cf0 where c is any constant. Here c0 = 2 and d0 = 1, equation

x2 − 2x+ 1 = 0

has a positive integer solution x = 1 = m = n− s.

2. LEMMAS FOR PROOFS OF THEOREMS

Lemma 1. [7]. Let f(z) be an entire function and suppose that |f (k)(z)| is
unbounded on some ray arg z = θ. Then there exists an infinite sequence of points

zn = rne
iθ(n = 1, 2, . . .), where rn → ∞, such that f (k)(zn) → ∞ and

(2.1)

∣∣∣∣∣
f (j)(zn)
f (k)(zn)

∣∣∣∣∣ ≤ |zn|k−j(1 + o(1)) (j = 0, . . . , k− 1).

Lemma 2. [6]. Let f be a transcendental meromorphic function with σ(f) =
σ < ∞. Let H = {(k1, j1), (k2, j2), . . . , (kq, jq)} be a finite set of distinct pairs
of integers that satisfy ki > ji ≥ 0, for i = 1, . . . , q. And let ε > 0 be a given
constant. Then there exists a set E ⊂ [0, 2π) that has linear measure zero, such
that if ψ ∈ [0, 2π)\E, then there is a constant R0 = R0(ψ) > 1 such that for all
z satisfying arg z = ψ and |z| ≥ R0 and for all (k, j) ∈ H, we have

(2.2)

∣∣∣∣∣
f (k)(z)
f (j)(z)

∣∣∣∣∣ ≤ |z|(k−j)(σ−1+ε).
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Remark 1. Obviously, in Lemma 2, if ψ ∈ [0, 2π)\E is replaced by ψ ∈
[−π

2 ,
3π
2 )\E, then (2.2) still holds.

Lemma 3. [2]. Let f(z) be an entire function with σ(f) = σ < ∞. Suppose

that there exists a set E ⊂ [0, 2π) that has linear measure zero, such that for any
ray arg z = θ0 ∈ [0, 2π)\E, |f(reiθ0)| ≤Mrk(M = M(θ0) > 0 is a constant and
k(> 0) is a constant independent of θ0, then f(z) is a polynomial with deg f ≤ k.

Lemma 4. [1]. Let A,B be entire functions of finite order. If f(z) is a solution
of the equation

(2.3) f ′′ + Af ′ +Bf = 0,

then σ2(f) ≤ max{σ(A), σ(B)}.

Lemma 5. [3]. Let g(z) be an entire function of infinte order with the hyper-
order σ2(g) = σ and let ν(r) be the central index of g. Then

(2.4) lim
r→∞

log log ν(r)
log r

= σ.

Using a similar proof as in the proof of Remark 1 of [1], we can obtain the

following lemma 6.

Lemma 6. Let f(z) be an entire function of infinite order with σ2(f) = α (0 ≤
α < ∞) and a set E ⊂ [1,∞) have finite logarithmic measure. Then there exists
{zk = rke

iθk} such that |f(zk)| = M(rk, f), θk ∈ [−π
2 ,

3π
2 ), limk→∞ θk = θ0 ∈

[−π
2 ,

3π
2 ), rk /∈ E, rk → ∞, and such that

(i) if σ2(f) = α (0 < α <∞), then for any given ε1 (0 < ε1 < α),

(2.5) exp{rα−ε1
k } < ν(rk) < exp{rα+ε1

k };

(ii) if σ(f) = ∞ and σ2(f) = 0, then for any given ε2 (0 < ε2 <
1
2) and for

any large M(> 0), we have as rk sufficiently large

(2.6) rM
k < ν(rk) < exp{rε2

k }.

Proof. By Lemma 5, σ(f) = ∞ and σ2(f) = α, we have

lim
r→∞

log ν(r)
log r

= ∞, lim
r→∞

log log ν(r)
log r

= σ2(f) = α <∞.
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There is a sequence {r′k}(r′k → ∞) satisfying

lim
r′k→∞

log ν(r′k)
log r′k

= ∞, lim
r′k→∞

log log ν(r′k)
log r′k

= α.

Set the logarithmic measure of E, lmE = δ < ∞. Then there is a point rk ∈
[r′k, (δ + 1)r′k]\E. Since

log log ν(rk)
log rk

≥ log log ν(r′k)
log[(δ + 1)r′k]

=
log log ν(r′k)

log r′k[1 + log(δ+1)
log r′k

]
,

we have

(2.7) lim
rk→∞

log ν(rk)
log rk

= ∞, lim
rk→∞

log log ν(rk)
log rk

= α.

Now we take zk = rke
iθk and θk ∈ [−π

2 ,
3π
2 ), such that |f(zk)| = M(rk, f). Thus

there exists a subset of {θk}. For convenience, we still suppose that the subset is
{θk}. Then it satisfies limk→∞ θk = θ0 ∈ [−π

2 ,
3π
2 ). Thus we easily obtain (2.5)

and (2.6) by (2.7), i.e. (i) and (ii) hold.

Lemma 7. [6]. Let f be a transcendental meromorphic function and let α > 1
be a given constant. Then there exists a set E ⊂ (1,∞) with finite logarithmic
measure and a constant B > 0 that depends only on α and i, j (0 ≤ i < j ≤ 2),
such that for all z satisfying |z| = r 6∈ [0, 1]

⋃
E, we have

(2.8)

∣∣∣∣∣
f (j)(z)
f (i)(z)

∣∣∣∣∣ ≤ B

(
T (αr, f)

r
(logα r) logT (αr, f)

)j−i

.

Remark 2. From the proof of Lemma 7 (i.e. Theorem 3 in [6]), we can see

that the exceptional set E satisfies that if an and bm (n,m = 1, 2, · · ·) denote all
zeros and poles of f respectively and if O(an) and O(bm) denote sufficiently small
neighborhoods of an and bm respectively, then

E =

{
|z| : z ∈

(
+∞⋃

n=1

O(an)

)⋃(
+∞⋃

m=1

O(bm)

)}
.

Hence, if f(z) is a transcendental entire function, and z is a point that satisfies
|f(z)| is sufficiently large, then (2.8) holds.

Lemma 8. [4] Let equation

w(k) + ak−1w
(k−1) + · · ·+ a0w = 0
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be satisfied in the complex plane by linearly independent meromorphic functions

f1, · · · , fk. Then the coefficients aj (j = 0, · · · , k − 1) are meromorphic in the
plane satisfying the properties

m(r, aj) = O{log[max(T (r, fs) : s = 1, · · · , k)]}.

Lemma 9. [9, p. 5]. Let g : (0,+∞) → R and h : (0,+∞) → R be monotone
increasing functions such that g(r) ≤ h(r) outside of an exceptional set E of

finite logarithmic measure. Then, for any α > 1, there exists r0 > 0 such that
g(r) ≤ h(αr) holds for all r > r0.

3. PROOF OF THEOREM 2

Suppose that f(6≡ 0) is a solution of (1.8), then f is an entire function. Since
σ(P ∗) = σ(Q∗) = 1, by Lemma 4, we see that

(3.1) σ2(f) ≤ max{σ(P ∗), σ(Q∗)} = 1.

By Lemma 7, we see that there exist a subset E ⊂ (1,∞) having logarithmic
measure lmE < ∞, and a constant B > 0 such that for all z satisfying |z| = r 6∈
[0, 1]

⋃
E, we have

(3.2)
∣∣∣∣
f ′′(z)
f(z)

∣∣∣∣ ≤ B[T (2r, f)]3,
∣∣∣∣
f ′(z)
f(z)

∣∣∣∣ ≤ B[T (2r, f)]2.

Taking z = r, by (1.5) and (1.6), we obtain that for sufficiently large r

(3.3) |P ∗(z)| = |an(r)enr + · · ·+ a1(r)er + a0(r)| ≤ 2|andn |rdnenr(1 + o(1));

(3.4) |Q∗(z)| = |bs(r)esr + · · ·+ b1(r)er + b0(r)| ≥
1
2
|bsms|rmsesr(1 + o(1)).

Now taking z = r 6∈ [0, 1]
⋃
E, by (1.8) and (3.2)-(3.4), we deduce that

(3.5)

1
2
|bsms |rmsesr(1 + o(1))

≤ | − Q∗(z)| =
∣∣∣∣
f ′′(z)
f(z)

+ P ∗(z)
f ′(z)
f(z)

∣∣∣∣

≤
∣∣∣∣
f ′′(z)
f(z)

∣∣∣∣+ |P ∗(z)|
∣∣∣∣
f ′(z)
f(z)

∣∣∣∣
≤ B[T (2r, f)]3 + 2|andn |rdnenrB[T (2r, f)]2(1 + o(1))

≤ 4B[T (2r, f)]3|andn |rdnenr(1 + o(1)).
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By (3.5), we get when z = r 6∈ [0, 1]
⋃
E;

(3.6)
1
2
|bsms |rmse(s−n)r(1 + o(1)) ≤ 4B[T (2r, f)]3|andn |rdn(1 + o(1)).

Since s− n > 0, by (3.6) and Lemma 9, we get

(3.7) σ2(f) ≥ lim
r → ∞

r 6∈ [0, 1]
⋃

E

log logT (r, f)
log r

= 1.

By (3.1) and (3.7), we have σ2(f) = 1. Thus Theorem 2 is proved.

4. PROOF OF THEOREM 1

If s > n, by Theorem 2, we have σ2(f) = 1.
Now we suppose n > s. Suppose that f(6≡ 0) is a solution of (1.7), then f is

an entire function.

First step. We prove that σ(f) = ∞. If f is a polynomial, then we take z = r,

by observing the growth of the left side of (1.1), we can obtain a contradiction.

Now we assume f is transcendental with σ(f) = σ <∞.
By Lemma 2 and Remark 1, we know that for any given ε > 0, there exists a

set E ⊂ [−π
2 ,

3π
2 ) having linear measure zero, such that if ψ ∈ [−π

2 ,
3π
2 )\E, then

there is a constant R0 = R0(ψ) > 1 such that for all z satisfying arg z = ψ and

|z| = r > R0, we have

(4.1)
∣∣∣∣
f ′′(z)
f ′(z)

∣∣∣∣ ≤ rσ−1+ε,

∣∣∣∣
f ′′(z)
f(z)

∣∣∣∣ ≤ r2(σ−1+ε),

∣∣∣∣
f ′(z)
f(z)

∣∣∣∣ ≤ rσ−1+ε.

Now we take a ray arg z = θ ∈ (−π
2 ,

π
2 )\E. Then we have cos θ > 0. We

assert that |f ′(reiθ)| is bounded on the ray arg z = θ. If |f ′(reiθ)| is unbounded
on the ray arg z = θ, then by Lemma 1, there exists a sequence {zq = rqe

iθ} such
that as rq → ∞, f ′(zq) → ∞ and

(4.2)
∣∣∣∣
f(zq)
f ′(zq)

∣∣∣∣ ≤ rq(1 + o(1)).

By (1.7), we get that

(4.3)

− (an(zq)enzq + · · ·+ a1(zq)ezq)

=
f ′′(zq)
f ′(zq)

+ (bs(zq)eszq + · · ·+ b1(zq)ezq )
f(zq)
f ′(zq)

.
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Since when rq → ∞,

(4.4)

|an(zq)enzq + · · ·+ a1(zq)ezq |

≥ |an(zq)enzq | −
[∣∣∣an−1(zq)e(n−1)zq

∣∣∣+ · · ·+ |a1(zq)ezq |
]

= |andn |rdn(1 + o(1))enrq cos θ

−
[
|an−1,dn−1|rdn−1

q e(n−1)rq cos θ(1 + o(1))

+ · · ·+ |a1d1 |rd1(1 + o(1))erq cos θ
]

= |andn |rdn(1 + o(1))enrq cos θ(1 + o(1))

and

(4.5) |bs(zq)eszq + · · ·+ b1(zq)ezq | ≤ |bsms|rms
q esrq cos θ(1 + o(1)),

by substituting (4.1), (4.2), (4.4) and (4.5) into (4.3), we obtain that

(4.6) |andn |rdnenrq cos θ(1 + o(1)) ≤ |bsms|rms
q esrq cos θrq(1 + o(1)) + rσ−1+ε

q .

By n > s, we know that when rq → ∞, (4.6) is a contradiction. Hence when
arg z = θ ∈ (−π

2 ,
π
2 )\E, we have |f ′(reiθ)| ≤ M, so, on the ray arg z = θ ∈

(−π
2 ,

π
2 )\E,

(4.7) |f(reiθ)| ≤Mr.

Now we take a ray arg z = θ ∈ (π
2 ,

3π
2 )\E, then cos θ < 0. We assert that

|f ′′(reiθ)| is bounded on the ray arg z = θ. If |f ′′(reiθ)| is unbounded on the ray
arg z = θ, then by Lemma 1, there exists a sequence {zq = rqe

iθ} such that as
rq → ∞, f ′′(zq) → ∞ and

(4.8)
∣∣∣∣
f ′(zq)
f ′′(zq)

∣∣∣∣ ≤ rq(1 + o(1)),
∣∣∣∣
f(zq)
f ′′(zq)

∣∣∣∣ ≤ r2q(1 + o(1)).

By (1.7), we get that

(4.9)
−1 =

f ′(zq)
f ′′(zq)

(an(zq)enzq + · · ·+ a1(zq)ezq)

+
f(zq)
f ′′(zq)

(bs(zq)eszq + · · ·+ b1(zq)ezq ) .

Since when rq → ∞,

(4.10)
|an(zq)enzq + · · ·+ a1(zq)ezq |

≤ |andn |rdn
q enrq cos θ(1 + o(1)) + · · ·+ |a1d1 |rd1

q e
rq cos θ(1 + o(1))
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and

(4.11)
|bs(zq)eszq + · · ·+ b1(zq)ezq |

≤ |bsms|rms
q esrq cos θ(1 + o(1)) + · · ·+ |b1m1|rm1

q erq cos θ(1 + o(1)).

Substituting (4.8), (4.10) and (4.11) into (4.9), we obtain that

(4.12)

1 ≤ rq(1 + o(1))
[
|andn |rdn

q enrq cos θ(1 + o(1))

+ · · ·+ |a1d1 |rd1
q e

rq cos θ(1 + o(1))
]

+r2q(1 + o(1))
[
|bsms|rms

q esrq cos θ(1 + o(1))

+ · · ·+ |b1m1 |rm1
q erq cos θ(1 + o(1))

]
.

Since cos θ < 0, when rq → ∞, by (4.12), we get 1 ≤ 0. This is a contradiction.
Hence |f ′′(reiθ)| ≤ M on the ray arg z = θ ∈ (π

2 ,
3π
2 )\E. So, on the ray arg z =

θ ∈ (π
2 ,

3π
2 )\E, we have

(4.13) |f(reiθ)| ≤Mr2.

Since the linear measure of E
⋃
{−π

2 ,
π
2 } is zero, by Lemma 3, (4.7) and (4.13),

we know that f(z) is a polynomial. This contradicts our assumption that f(z) is
transcendental. Therefore σ(f) = ∞.

Second step. We prove that σ2(f) = 1. By Lemma 4 and σ(P ) = σ(Q) = 1,
we see that

(4.14) σ2(f) ≤ max{σ(P ), σ(Q)} = 1.

Set σ2(f) = α, then α ≤ 1. We assert that α = 1. Now we assume that α < 1
and prove that σ2(f) = α < 1 is failing.

By the Wiman-Valiron theory (see [9, p.51]), there is a set E1 ⊂ (1,∞) having
logarithmic measure lmE1 <∞, such that we can choose a z satisfying |z| = r 6∈
[0, 1]

⋃
E1 and |f(z)| = M(r, f), then we get

(4.15)
f (j)(z)
f(z)

=
(
ν(r)
z

)j

(1 + o(1)), j = 1, 2,

where ν(r) is the central index of f(z).
By Lemma 6, we see that there exists a sequence {zk = rke

iθk} such that
|f(zk)| = M(rk, f), θk ∈ [−π

2 ,
3π
2 ), lim θk = θ0 ∈ [−π

2 ,
3π
2 ), rk 6∈ [0, 1]

⋃
E1, rk
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→ ∞, and if α > 0, then for any given ε1 (0 < ε1 < min{α, 1 − α}) and for
sufficiently large rk, we get by (2.5) that

(4.16) exp{rα−ε1
k } < ν(rk) < exp{rα+ε1

k }.

If α = 0, then by σ(f) = ∞ and (2.6), we see that for any given ε2 (0 < ε2 <
1
2)

and for any sufficiently large M > 0, we have for sufficiently large rk,

(4.17) rM
k < ν(rk) < exp{rε2

k }.

Since θ0 may belong to (−π
2 ,

π
2 ), or (π

2 ,
3π
2 ), or {−π

2 ,
π
2}, we divide this proof

into three cases to prove.

Case 1. Suppose θ0 ∈ (−π
2 ,

π
2 ). By cos θ0 > 0 and θk → θ0, we see that for

sufficiently large k, we have cos θk > 0. By (1.7) and (4.15), we get for sufficiently
large rk,

−f
′(zk)
f(zk)

(an(zk)enzk + · · ·+ a1(zk)ezk) =
f ′′(zk)
f(zk)

+(bs(zk)eszk + · · ·+ b1(zk)ezk)

and

(4.18)

ν(rk)
rk

|an(zk)|enrk cos θk(1 + o(1))

≤ ν2(rk)
r2k

(1 + o(1)) + |bs(zk)|esrk cos θk(1 + o(1)).

If α > 0, then by (4.16) and (4.18), we get for sufficiently large rk,

(4.19)
exp{rα−ε1

k }r−1
k |an(zk)|enrk cos θk (1 + o(1))

≤ exp{2rα+ε1
k }|bs(zk)|esrk cos θk(1 + o(1)).

Since n > s, α+ ε1 < 1 and cos θk > 0, we see (4.19) is a contradiction. If α = 0
then by (4.17) and (4.18), we get for sufficiently large rk,

(4.20)
rM−1
k |an(zk)|enrk cos θk (1 + o(1))

≤ exp{2rε2
k }r−2

k |bs(zk)|esrk cos θk (1 + o(1)).

Since n > s, ε2 <
1
2 and cos θk > 0, we see (4.20) is also a contradiction.

Case 2. Suppose θ0 ∈ (π
2 ,

3π
2 ). By cos θ0 < 0 and θk → θ0, we see that for

sufficiently large k, we have cos θk < 0. By (1.7), (4.15) and cos θk < 0, we get
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for sufficiently large rk,

e−nzk
f ′′(zk)
f(zk)

=
f ′(zk)
f(zk)

(
an(zk) + · · ·+ a1(zk)e−(n−1)zk

)

+
(
bs(zk)e−(n−s)zk + · · ·+ b1(zk)e−(n−1)zk

)

and

(4.21)

ν2(rk)
r2k

e−nrk cos θk (1 + o(1))

≤ (|an(zk)|+ · · ·+ |a1(zk)|)e−(n−1)rk cos θk
ν(rk)
rk

(1 + o(1))

+(|bs(zk)|+ · · ·+ |b1(zk)|)e−(n−1)rk cos θk(1 + o(1)).

By (4.16) and (4.21) (if α > 0), or (4.17) and (4.21) (if α = 0), we get for
sufficiently large rk, respectively,

(4.22)

exp{2rα−ε1
k }r−2

k e−nrk cos θk (1 + o(1))

≤ (|an(zk)|+ · · ·+ |a1(zk)|)e−(n−1)rk cos θk exp{rα+ε1
k }

+(|bs(zk)|+ · · ·+ |b1(zk)|)e−(n−1)rk cos θk(1 + o(1)) (if α > 0)

or

(4.23)

e−nrk cos θkr
2(M−1)
k (1 + o(1))

≤ (|an(zk)|+ · · ·+ |a1(zk)|)e−(n−1)rk cos θk exp{rε2
k }

+(|bs(zk)|+ · · ·+ |b1(zk)|)e−(n−1)rk cos θk(1 + o(1)) (if α = 0).

Since a1, · · · , an, b1, · · · , bs are polynomials, α+ε1 < 1 (or ε2 < 1
2) and−nrk cos θk

> −(n − 1)rk cos θk > 0, we see that both (4.22) and (4.23) are absurd.

Case 3. Suppose that θ0 = π
2 or θ0 = −π

2 . Since the proof for θ0 = −π
2

is the same as the proof for θ0 = π
2 , we only prove the case that θ0 = π

2 . Since

θk → θ0, for any given ε3 (0 < ε3 <
1
10), we see that there is an integer K(> 0),

as k > K, θk ∈ [π
2 − ε3,

π
2 + ε3], and

(4.24) zk = rke
iθk ∈ Ω =

{
z :

π

2
− ε3 ≤ arg z ≤ π

2
+ ε3

}
.

By Lemma 7, we see that there exist a subset E2 ⊂ (1,∞) having logarithmic
measure lmE2 <∞, and a constant B > 0 such that for all z satisfying |z| = r 6∈
[0, 1]

⋃
E2, we have

(4.25)
∣∣∣∣
f ′′(z)
f ′(z)

∣∣∣∣ ≤ B[T (2r, f ′)]2.



624 Zong-Xuan Chen and Kwang Ho Shon

Now we consider the property of f(reiθ) on a ray arg = θ ∈ Ω\{π
2}. If

θ ∈ [π
2 − ε3,

π
2 ), then cos θ > 0. We assert that |f ′(reiθ)| is bounded on the ray

arg z = θ. If |f ′(reiθ)| is unbounded on the ray arg z = θ, then by Lemma 1, there

exists a sequence {uj = Rje
iθ} such that as Rj → ∞, f ′(uj) → ∞ and

(4.26)
∣∣∣∣
f(uj)
f ′(uj)

∣∣∣∣ ≤ Rj(1 + o(1)).

Since Remark 2 and f ′(uj) → ∞, we know that |uj | = Rj 6∈ E2. By (4.25), we

have for sufficiently large j,

(4.27)
∣∣∣∣
f ′′(uj)
f ′(uj)

∣∣∣∣ ≤ B[T (2Rj, f
′)]2.

Since a1, · · · , an are polynomials, by (1.7), (4.26) and (4.27), we deduce that for

any given ε4 (0 < ε4 < 1 − α)

(4.28)

1
2
|an(uj)|enRj cos θ(1 + o(1))

≤ |an(uj)enuj + · · ·+ a1(uj)euj |

≤
∣∣∣∣
f ′′(uj)
f ′(uj)

∣∣∣∣+ |bs(uj)esuj + · · ·+ b1(uj)euj |
∣∣∣∣
f(uj)
f ′(uj)

∣∣∣∣

≤ B[T (2Rj, f
′)]2 + [|bs(uj)|+ · · ·+ |b1(uj)|] esRj cos θRj(1 + o(1))

≤ e2R
α+ε4
j + [|bs(uj)| + · · ·+ |b1(uj)|]esRj cos θRj(1 + o(1)).

Since n > s, α + ε4 < 1 and b1, · · · , bs are polynomials, we know that when
Rj → ∞, (4.28) is a contradiction. Hence |f ′(reiθ)| is bounded on the ray arg z =
θ ∈ [π

2 − ε3,
π
2 ). Set |f ′(reiθ)| ≤M , then on the ray arg z = θ ∈ [π

2 − ε3,
π
2 )

(4.29) |f(reiθ)| ≤Mr.

If θ ∈ (π
2 ,

π
2 + ε3], then cos θ < 0. We assert that |f ′′(reiθ)| is bounded on the

ray arg z = θ. If |f ′′(reiθ)| is unbounded on the ray arg z = θ, then by Lemma 1,

there exists a sequence {u∗j = R∗
je

iθ} such that as R∗
j → ∞, f ′′(u∗j ) → ∞ and

(4.30)

∣∣∣∣∣
f ′(u∗j )
f ′′(u∗j)

∣∣∣∣∣ ≤ R∗
j(1 + o(1)),

∣∣∣∣∣
f(u∗j)
f ′′(u∗j )

∣∣∣∣∣ ≤ (R∗
j)

2(1 + o(1)).

Since cos θ < 0 and a1, · · · , an, b1, · · · , bs are polynomials, by (1.7) and (4.30), we
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deduce that as R∗
j → ∞

(4.31)

1 ≤
∣∣∣an(u∗j)e

nu∗
j + · · ·+ a1(u∗j)e

u∗
j

∣∣∣
∣∣∣∣∣
f ′(u∗j )
f ′′(u∗j)

∣∣∣∣∣

+
∣∣∣bs(u∗j )esu

∗
j + · · ·+ b1(u∗j)e

u∗
j

∣∣∣
∣∣∣∣∣
f(u∗j )
f ′′(u∗j)

∣∣∣∣∣
≤
{
|an(u∗j)|e

nR∗
j cos θ + · · ·+ |a1(u∗j)|e

R∗
j cos θ

}
R∗

j(1 + o(1))

+
{
|bs(u∗j)|esR

∗
j cos θ + · · ·+ |b1(u∗j)|eR

∗
j cos θ

}
(R∗

j)
2(1 + o(1))

→ 0.

Thus (4.31) is a contradiction. Hence |f ′′(reiθ)| is bounded on the ray arg z = θ ∈
(π

2 ,
π
2 + ε3]. Set |f ′′(reiθ)| ≤M , then on the ray arg z = θ ∈ (π

2 ,
π
2 + ε3]

(4.32) |f(reiθ)| ≤Mr2.

By (4.29) and (4.32), we see that |f(reiθ)| satisfies on the ray arg z = θ ∈
Ω\{π

2}

(4.33) |f(reiθ)| ≤Mr2.

But since f(z) is of infinite order and every point zk of {zk = rke
iθk} satisfies

|f(zk)| = M(rk, f), we see that for any large N (> 2), as k sufficiently large,

(4.34) |f(zk)| = |f(rkeiθk )| ≥ exp{rN
k }.

Since zk ∈ Ω, by (4.33) and (4.34), we see that for sufficiently large k

θk =
π

2
.

Thus cos θk = 0 and

(4.35) |an(zk)enzk +· · ·+a1(zk)ezk |≤rC , |bs(zk)eszk +· · ·+b1(zk)ezk |≤rC ,

where C (> 0) is some constant. By (1.7) and (4.15), we obtain that

(4.36)
−
(

ν(rk)
zk

)2
(1+o(1)) = (an(zk)enzk +· · ·+a1(zk)ezk)

ν(rk)
zk

(1 + o(1))

+ (bs(zk)eszk + · · ·+ b1(zk)ezk ) .

By (4.35) and (4.36), we obtain that

(4.37) ν(rk) ≤ 3rC
k .

By (4.16) (or (4.17)), we see that (4.37) is a contradiction. Theorem 1 is thus

proved.
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5. PROOF OF THEOREM 3

By Theorems 1 and 2, we know that if P0, Q0 satisfy (i) or (ii), then all solutions

of (1.1) satisfy σ2(f) = 1. Thus by Theorems A and B, we know that if P0, Q0

satisfy (i) or (ii), then (1.1) has no nontrivial subnormal solution.

Now suppose P0 and Q0 satisfy (iii) and f0 is a non-trivial subnormal solution

of (1.1), by Theorem B, we see that as n > s ≥ 1, f0 must have the form

(5.1) f0(z) = h0 + h1e
−z + · · ·+ hme

−mz ,

where m ≥ 1 is an integer and h0, · · · , hm are constants with h0 6= 0 and hm 6= 0.
Substituting (5.1) into (1.1), we get

(5.2)

h1e
−z + 22h2e

−2z + · · ·+m2hme
−mz

−
[
cnh1e

(n−1)z + cn−1h1e
(n−2)z + · · ·+ c0h1e

−z

+2cnh2e
(n−2)z + 2cn−1h2e

(n−3)z + · · ·+ 2c0h2e
−2z

+ · · ·

+mcnhme
(n−m)z +mcn−1hme

(n−m−1)z + · · ·+mc0hme
−mz

]

+
[
dsh0e

sz + ds−1h0e
(s−1)z + · · ·+ d0h0

+dsh1e
(s−1)z + ds−1h1e

(s−2)z + · · ·+ d0h1e
−z

+ · · ·

+dshme
(s−m)z + ds−1hme

(s−m−1)z + · · ·+ d0hme
−mz

]

= 0

Taking z = −r, by observing the growth of the left side of (5.2) and noting that
hm 6= 0, we see that the sum of coefficients of all terms containing e−mz must

equal to zero, i.e.

(5.3) m2 − c0m+ d0 = 0.

Since m is a positive integer, (5.3) contradicts our assumption that equation x2 −
c0x + d0 = 0 has no a positive integer solution. Hence (1.1) has no non-trivial
subnormal solution.

Now suppose f is a non-trivial solution of (1.1), then we see that f is not

subnormal by the above results. Thus we have

(5.4) lim
r→∞

logT (r, f)
r

= M, (0 < M ≤ ∞).

By (5.4), we have σ2(f) ≥ 1. Combining Lemma 4, we get σ2(f) = 1.
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6. PROOFS OF COROLLARIES 1 AND 2

Proof of Corollary 1. Suppose that f is a non-trivial subnormal solution of
(1.1), then by n > s and Theorem 3, we see that there exists a positive integer m,

such that

(6.1) m2 − (c01 + c02i)m+ (d01 + d02i) = 0.

Thus we can easily obtain (1.10) from (6.1). If m < n−s, i.e. n−m > s, by taking
z = r and observing the growth of the left side of (5.2) and noting cn 6= 0, since
(n− 1)r > (n− 2)r > · · ·> (n−m)r > sr, we obtain h1 = h2 = · · · = hm = 0.
This contradicts hm 6= 0. So, m ≥ n− s.

Proof of Corollary 2. Suppose that f1 and f2 are two linearly independent

solutions of (1.1), and f1 is a non-trivial subnormal solution. By Theorem A, we
see that f1 is of the form (1.3).

By Lemma 8, we see that

(6.2) m(r, Q0) ≤M
{

log[max(T (r, f1), T (r, f2))]
}
.

Since m(r, Q0) = s
π r and T (r, f1) = O(r), by (6.2), we see that σ2(f2) ≥ 1.

Combining with Lemma 4, we obtain that σ2(f2) = 1.
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10. H. Wittich, Subnormale Lösungen der Differentialgleichungw′′+p(ez)w′+q(ez)w =
0, Nagoya Math. J., 30 (1967), 29-37.

11. Lo Yang, Value Distribution Theory and New Research, Beijing, Science Press, 1982,

(in Chinese).

Zong-Xuan Chen

School of Mathematical Sciences,

South China Normal University,

Guangzhou 510631,

P. R. China

E-mail: chzx@vip.sina.com

Kwang Ho Shon

Department of Mathematics,

College of Natural Sciences,

Pusan National University,

Pusan 609-735, Korea

E-mail: khshon@pusan.ac.kr


