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ON DOMINATING PHENOMENON FOR BOUNDED REAL HARMONIC

FUNCTIONS IN SEVERAL VARIABLES

So-Chin Chen* and Cin-Chang Lu

Abstract. In this article, motivated by the work of Brown, Shields, and

Zeller[2], we first consider the representation problem of zero by exponential

sums in several complex variables. Then we give a complete characterization

of dominating sets for bounded real harmonic functions, denoted by h∞(<Bn),
on the open unit ball <Bn in Rn, n ≥ 3, and for bounded real M-harmonic

functions, denoted byMh∞(Bn), on the open unit ball Bn in Cn, n ≥ 2.

1. INTRODUCTION

In this article, motivated by the work of Brown, Shields, and Zeller[2], we shall

first consider the following representation problem of zero by exponential sums in

several complex variables. Namely, is it possible to find a sequence of distinct

points {αk} from Bn and a sequence of complex numbers {ak} such that

(1.1) 0 ≡
∞∑

k=1

ake
αkz , and 0 <

∞∑

k=1

|ak| < ∞.

Here Bn = {z ∈ Cn | |z| < 1} is the open unit ball in Cn, n ≥ 2, and
S = ∂Bn denote the boundary of Bn. We have adopted the notations αk =
(αk1, · · · , αkn), z = (z1, · · · , zn) and αkz =

∑n
j=1 αkjzj . Denote by O(Bn) the

space of holomorphic functions on Bn, and let

H∞(Bn) = {f ∈ O(Bn) | ‖ f ‖∞ = sup
z∈Bn

|f(z)| < ∞}.
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Denote also by E(Bn) the space of all entire functions g(z) that admit a repre-
sentation of the form

(1.2) g(z) =
∞∑

k=1

cke
βkz

with
∑∞

k=1 |ck| < ∞ and βk ∈ Bn for all k.

Obviously, E(Bn) is a complex vector space. Define a norm on E(Bn) by

(1.3) ‖ g ‖E= inf

∞∑

k=1

|ck|,

where the infimum is taken over all possible representations (1.2) of g.

Definition 1.4. A subset E of Bn is said to be nontangentially dense al-

most everywhere on S if almost every boundary point ζ ∈ S can be approached

nontangentially by a subsequence of points of E.

When n = 1, Brown, Shields, and Zeller showed in [2] the following theorem.

Theorem 1.5. Suppose {ωk} is a sequence of distinct points in B1 = U with

no interior limit points, then the following four statements are equivalent:

(i) {ωk} is nontangentially dense almost everywhere on T = ∂U .

(ii) ‖ f ‖∞= supk|f(ωk)| for every f ∈ H∞(U).
(iii) {ωk} represents all of E(U), i.e., if g ∈ E(U) and ε > 0 are given, then

there exists {ak} ∈ l1 such that

(1.6) g(z) =
∞∑

k=1

ake
ωkz ,

∞∑

k=1

|ak| <‖ g ‖E +ε.

(iv) {ωk} represents zero, i.e., there exists {ak} ∈ l1, not all zero, such that

0 =
∞∑

k=1

ake
ωkz .

If the sequence of points {ωk} has limit points in U , Theorem 1.5 still hold.

See also Bonsall[1] for related results.

For n ≥ 2, we may introduce another concept of approaching the boundary
points, namely, the K-limit which is more general than the nontangential approach.
See Section 2 for the details. Then we prove the following theorem in several

complex variables.

Theorem 1.7. Let {αk}∞k=1 be a sequence of distinct points in Bn, n ≥ 2,
with no interior limit points. Then we have (i)⇒(ii)⇒(iii)⇒(iv), where
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(i) {αk} is K-dense almost everywhere on S.

(ii) ‖ f ‖∞= supk |f(αk)| for all f ∈ H∞(Bn).

(iii) {αk} represents all of E(Bn), i.e., if g ∈ E(Bn) and ε > 0 are given, then
there exists coefficients {ak} such that

(1.8) g(z) =
∞∑

k=1

ake
αkz , and

∞∑

k=1

|ak| <‖ g ‖E +ε.

(iv) {αk} represents zero, i.e., there exists an element (a1, a2, · · ·) ∈ l1, not all
zero, such that (1.1) holds. Also, the projected sequence of {αk} in every
complex line L through the origin is nontangentially dense on T = ∂U , where
U is the open unit disc in L.

Obviously, (iv) does not imply (ii). For instance, if we let αk = (ωk, 0) ∈ B2

such that {ωk} is nontangentially dense almost everywhere on T in z1 component,

then (iv) of Theorem 1.5 implies {αk} represents zero in B2. But, for the function

f(z1, z2) = z2, we have ‖ f ‖∞,B2= 1 > 0 = supk|f(αk)|.
Also, it was shown in Massaneda and Thomas[7] that, if n > 1, there exists

a sequence of points {αk}∞k=1 in Bn satisfying ‖ f ‖∞= supk|f(αk)| for all f ∈
H∞(Bn), but theK-limit set of {αk} on S is of Lebesgue measure zero. Therefore,

(ii) fails to imply (i) either.
In general, it is still not clear that, if n ≥ 2, what condition on the sequences

of points {αk} really characterizes the statements (ii) or (iii) or (iv).
Therefore, we consider in Section 3 a similar problem for the space of bounded

real harmonic functions, denoted by h∞(<Bn), on the open unit ball <Bn in Rn,

n ≥ 3. We also make the following definition.

Definition 1.9. A subsetE of <Bn is said to be a dominating set for h
∞(<Bn)

if for every two functions f, g ∈ h∞(<Bn) satisfying |f(x)| ≤ |g(x)|, x ∈ E, we

have ‖ f ‖∞≤‖ g ‖∞.

Then we prove the theorem.

Theorem 1.10. Let {αk}∞k=1 be a sequence of distinct points in <Bn, n ≥ 3,
with no interior limit points. Then the following three statements are equivalent:

(i) {αk} is nontangentially dense almost everywhere on S = ∂<Bn.

(ii) ‖ f ‖∞= supk |f(αk)| for every f ∈ h∞(<Bn).

(iii) {αk} is a dominating set for h∞(<Bn).
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Finally, we consider in Section 4 the same problem for the space of bounded

real M-harmonic functions, denoted by Mh∞(Bn), on the open unit ball Bn in

Cn, n ≥ 2. The concept of dominating set can also be introduced for Mh∞(Bn).
Then we prove a similar theorem as follows.

Theorem 1.11. Let {αk}∞k=1 be a sequence of distinct points in Bn, n ≥ 2,
with no interior limit points. Then the following three statements are equivalent:

(i) {αk} is K-dense almost everywhere on S.

(ii) ‖ f ‖∞= supk|f(αk)| for every f ∈ Mh∞(Bn).

(iii) {αk} is a dominating set forMh∞(Bn).

The following corollary can also be obtained immediately via the concept of

dominating sets for H∞(Bn).

Corollary 1.12. Let E be a subset of Bn, n ≥ 2. Then E is a dominating set

for H∞(Bn) if and only if ‖ f ‖∞= supz∈E |f(z)| for every f ∈ H∞(Bn).

For related results concerning the dominating sets see Chen[3] for uniform al-

gebra on pseudoconvex domains, Danikas and Hayman[4] and Hayman[5] for the

Hardy space Hp(U) on the open unit disc U in C.

2. MAIN RESULTS

In this section we will prove Theorem 1.7. Most of the ideas in this section are

motivated by the work of Brown, Shields, and Zeller[2]. For self-containedness we

shall supply a complete proof of the theorem. Recall that n ≥ 2 throughout this
section. First we make the following definitions.

Definition 2.1. Let µ be a complex Borel measure of compact support K in

Cn. µ is said to represent zero if

∫

Cn

ezwdµ(w) = 0, z ∈ Cn.

Definition 2.2. A complex Borel measure µ is said to be concentrated on Bn

if µ(E) = 0 for all subsets E with E ∩ Bn = ∅.

Note that the notion stated in Definition 2.2 is somewhat different from saying

that the support of µ is contained in Bn.
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Again, we agree that zw =
∑n

j=1 zjwj , z, w ∈ Cn. For a multiindex m =
(m1, · · · , mn), mj ∈ {0} ∪ N, denote the length of m by |m| = m1 + · · ·+ mn,

and by zm = zm1
1 · · ·zmn

n . Also, the operator ∂|m|

∂zm stands for ∂|m|

∂z1
m1 ···∂zn

mn .

Then we have

Lemma 2.3. Let µ be a complex Borel measure concentrated on Bn. Then

the following three statement are equivalent.

(1) ∫

Cn

ezwdµ(w) = 0, z ∈ Cn.

(2) ∫

Bn

f(w)ezwdµ(w) = 0, for all f ∈ H∞(Bn), z ∈ Cn.

(3) ∫

Bn

f(w)dµ(w) = 0, for all f ∈ H∞(Bn).

Proof. (2) ⇒ (3) is trivial by setting z = 0. (3) ⇒ (1) is also obvious, since
ezw ∈ H∞(Bn) for each z ∈ Cn. Thus, we only need to prove (1) implies (2).

Suppose (1) holds. Let m = (m1, · · · , mn) be a multiindex. Then

0 =
∂ |m|

∂zm

∫

Cn

ezwdµ(w) =
∫

Cn

wmezwdµ(w).

Thus, (2) holds if f(w) is a polynomial. For any f ∈ H∞(Bn), let fρ(z) = f(ρz)
for 0 < ρ < 1. Then fρ is holomorphic in some open neighborhood of Bn, and fρ

can be approximated uniformly on Bn by polynomials. Hence, (2) holds for fρ.

Finally, for any f ∈ H∞(Bn), using Lebesgue dominated convergence theorem
we obtain

∫

Bn

f(w)ezwdµ(w) = lim
ρ→1−

∫

Bn

fρ(w)ezwdµ(w) = 0.

This proves (2), and hence the lemma.

Next, we recall the concept of K-limit. For α > 1 and ζ ∈ S, let

Dα(ζ) = {z ∈ Cn | |1 − 〈z, ζ〉| <
α

2
(1 − |z|2)}.

Here 〈z, ζ〉 =
∑n

j=1 zjζj . It is clear that Dα(ζ) ⊂ Bn and Dα(ζ) = ∅ if α ≤ 1.
Also, for every fixed ζ ∈ S, the region Dα(ζ) fill Bn as α → ∞. One should note
that a sequence of points in Dα(ζ) may approach the boundary point ζ tangentially.
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Definition 2.4. Let ζ ∈ S. A function F : Bn → C is said to have K-limit λ

at ζ, denoted by (K − lim F )(ζ) = λ, if for every α > 1 and every sequence {zk}
in Dα(ζ) that converges to ζ, F (zk) → λ as k → ∞.

Definition 2.5. A subset E of Bn is said to be K-dense almost everywhere on
S if almost every boundary point ζ ∈ S can be approached by a sequence of points
of E within some Dα(ζ).

In order to prove Theorem 1.7, we also need the following theorem from func-

tional analysis, for instance, see Hille and Phillips[6].

Theorem 2.6. Let X be a Banach space, and let X∗ be its adjoint space.

Suppose Σ is a weak*-closed subspace of X∗ and x∗
0 /∈ Σ. Then for each M

satisfying the condition 0 < M < inf{‖ x∗ − x∗
0 ‖: x∗ ∈ Σ}, there exists an

x0 ∈ X such that

x∗
0(x0) = 1, x∗(x0) = 0 for all x∗ ∈ Σ, and ‖ x0 ‖≤ 1/M.

Now we are ready to prove Theorem 1.7.

Proof of Theorem 1.7. (i) ⇒ (ii). Since f ∈ H∞(Bn), f has K-limit f∗(ζ)
for almost every ζ ∈ S and ‖ f ‖∞=‖ f∗ ‖∞. For instance, see Rudin[9]. Thus,
for given ε > 0, we have |f∗(ζ)| >‖ f ‖∞ −ε on a subset of S with positive

measure. Now, the hypothesis (i) ensures that supk|f(αk)| ≥‖ f ‖∞. This proves
(ii).

For (ii) ⇒ (iii), it suffices to show that if α0 6= αk, k = 1, 2, · · · , and ε > 0
is given, then there exists {ak}∞k=1 such that

eα0z =
∞∑

k=1

ake
αkz , and

∞∑

k=1

|ak| < 1 + ε.

Define the map

ϕ : H∞(Bn) → l∞

f 7→ {f(αk)}∞k=0.

From the hypothesis (ii), it is easy to see that ϕ is an isometric embedding and

F = ϕ(H∞(Bn)) is a norm closed subspace of l∞.
We claim that F is actually weak*-closed. Let {x∗

i } be a weak*-convergent
sequence in F . Hence, there is a M > 0 and x∗ ∈ l∞ such that ‖ x∗

i ‖∞≤ M for

all i and limi→∞ x∗
ik = x∗

k for k ∈ {0} ∪ N, where x∗
i = (x∗

i0, x
∗
i1, · · · , x∗

ik, · · ·)
and x∗ = (x∗

0, x
∗
1, · · · , x∗

k, · · ·). Clearly, x∗ is the weak*-limit of {x∗
i }. We need

to show that x∗ ∈ F .
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Since ϕ is an isometric embedding, there exists a sequence of functions {fi}
in H∞(Bn) such that ϕ(fi) = x∗

i . Still from the hypothesis (ii), this implies that
‖ fi ‖∞≤ M for all i and limi→∞ fi(αk) = x∗

k for k ∈ {0} ∪ N. Also from
(ii), we see that {αk}, k ∈ {0} ∪ N, is a set of uniqueness for H∞(Bn). Thus,
by Vitali’s theorem, for instance, see Narasimhan[8], {fi} converges uniformly on
compact subsets of Bn to a function f ∈ H∞(Bn). It follows that ϕ(f) = x∗ ∈ F .
This proves the claim.

Now, we consider the element x∗
0 = (1, 0, 0, · · ·) ∈ l∞ \ F . Since f ≡ 1

2 ∈
H∞(Bn), we get dist(x∗

0, F ) ≤ 1
2 . If dist(x

∗
0, F ) < 1

2 , then there is a function

h ∈ H∞(Bn) such that |h(α0) − 1| ≤ 1
2 − η, |h(αk)| ≤ 1

2 − η for all k ∈ N and

some small η > 0. Obviously, this violates the hypothesis (ii). Thus, we have
dist(x∗

0, F ) = 1
2 .

It follows that, given ε > 0, one may apply Theorem 2.6 to get an element

x0 = (a0, a1, a2, · · ·) ∈ l1 satisfying

(a)
∑∞

k=0 akf(αk) = 0, for all f ∈ H∞(Bn),

(b) a0 = 1,

(c)
∑∞

k=0 |ak| < 2 + ε. In particular,
∑∞

k=1 |ak| < 1 + ε.

Property (a) shows that the measure µ =
∑∞

k=0 akδ(αk), where δ(αk) is the
Dirac unit mass measure at αk , satisfies (3) of Lemma 2.3. Hence, it must also

satisfy (1) of Lemma 2.3, i.e.,

eα0z +
∞∑

k=1

ake
αkz = 0.

Clearly, this proves (iii).
To prove (iii) ⇒ (iv), choose an α0 = (α01, · · · , α0n) ∈ Bn such that α0j 6=

αkj for all k ∈ N and 1 ≤ j ≤ n. This is possible since {αk} is countable. Now,
according to (iii), there exists an element (a1, a2, · · ·) ∈ l1 such that

eα0z =
∞∑

k=1

akeαkz .

This implies that 0 <
∑∞

k=1 |ak| < ∞ and that the measure µ = −δ(α0) +∑∞
k=1 akδ(αk) satisfies (1) of Lemma 2.3. Therefore, if we apply (2) of Lemma

2.3 to the function f(w) = w1 − α01, we obtain

0 =
∞∑

k=1

ak(αk1 − α01)eαkz .
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Since αk1 − α01 6= 0 for all k ∈ N, we have 0 <
∑∞

k=1 |ak(αk1 − α01)| < ∞.
Thus, (1.1) holds. By an unitary transformation, the second assertion follows from

Theorem 1.5. This proves (iv) and the theorem.

Theorem 2.7. (E(Bn), ‖ · ‖E) is a Banach space, and the dual space of
E(Bn) is H∞(Bn).

Proof. First, choose a sequence of points {αk} in Bn such that (i) of Theorem
1.7 is satisfied. Then, by (iii) of Theorem 1.7, every function f ∈ E(Bn) can
be represented by using only the exponents {αk}, and the norm is not increased.
Define

N = {(a1, a2, · · ·) ∈ l1 |
∞∑

k=1

ake
αkz = 0}.

It is not hard to see thatN is a closed subspace of l1 and E(Bn) w l1/N . Therefore,
(E(Bn), ‖ · ‖E) is a Banach space.

To show E(Bn)∗ w H∞(Bn), we first observe that

(l1/N)∗ = N⊥ = {y∗ ∈ l∞ | y∗(x) = 0 for all x ∈ N}.

Denote also by F = ϕ(H∞(Bn)) as in the proof of (ii) ⇒ (iii) of Theorem 1.7.
Thus, following from Lemma 2.3, we have F ⊂ N⊥. Since F is weak*-closed and

weak*-dense in N⊥, we actually have F = N⊥. Finally, from the choice of {αk}
and Theorem 1.7, ϕ is an isometric embedding, and we obtain E(Bn)∗ w H∞(Bn).

Let f ∈ E(Bn) and g ∈ H∞(Bn). With {αk} chosen as in Theorem 2.7, if we
represent f =

∑∞
k=1 ake

αkz ,
∑∞

k=1 |ak| < ∞, then the pairing asserted in Theorem
2.7 is clearly given by

(2.8) (f, g) =
∞∑

k=1

akg(αk).

It follows that

(2.9) ‖f‖E = sup|(f, g)|,

where the supremum is taken over all g ∈ H∞(Bn) with ‖g‖∞ ≤ 1. Obviously,
it is equivalent to the supremum taken over all g ◦ ϕ, where g ∈ H∞(Bn) with
‖g‖∞ ≤ 1 and ϕ is an automorphism of Bn.

Now, using the results in one variable (see [2]) and (2.8), (2.9), we can also

compute the norm of some interesting examples in E(Bn) as follows:

(1) ‖ eαz ‖E= 1, for every α ∈ Bn,
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(2) ‖ eαz − 1 ‖E= 2|α|
1+
√

1−|α|2
, for every α ∈ Bn,

(3) ‖ eβz − eγz ‖E= 2|ϕγ(β)|
1+
√

1−|ϕγ(β)|2
= 2|ϕβ(γ)|

1+
√

1−|ϕβ(γ)|2
, for every β, γ ∈ Bn.

Here, for every α ∈ Bn, ϕα(z) defined by

(2.10) ϕα(z) =
α − Pαz − (1 − |α|2)1/2(I − Pα)z

1 − 〈z, α〉

is an involutive automorphism of Bn with the properties: ϕα(0) = α and ϕα(α) =
0. The operator Pα is the orthogonal projection of Cn onto the subspace [α] gen-
erated by α. For details concerning the automorphism ϕα(z) of Bn, see Rudin

[9].

Proof of (1). Obviously,‖eαz ‖E≤1. Since, for any f ∈E(Bn), |f(0)|≤‖ f ‖E,

we have 1≤‖eαz ‖E . This proves (1).

Proof of (2). Choose an unitary transformation U that maps α to the j-th

coordinate and apply the result proven in [2] for one variable to the zj variable, we

obtain from (2.9)

‖ eαz − 1 ‖E = sup
g∈H∞(Bn)
‖g‖∞≤1

|g(α)− g(0)|

= sup
g∈H∞(Bn)
‖g‖∞≤1

|g ◦ U(α)− g ◦ U(0)|

=
2|U(α)|

1 +
√

1 − |U(α)|2
=

2|α|
1 +

√
1 − |α|2

.

This proves (2).

Proof of (3). From (2) and (2.9), we have

‖ eβz − eγz ‖E = sup
g∈H∞(Bn)
‖g‖∞≤1

|g(β)− g(γ)|

= sup
g∈H∞(Bn)
‖g‖∞≤1

|g ◦ ϕγ(β)− g ◦ ϕγ(γ)|

=‖ eϕγ(β)z − 1 ‖E

=
2|ϕγ(β)|

1 +
√

1 − |ϕγ(β)|2
.

Since |ϕβ(γ)| = |ϕγ(β)| for every β, γ ∈ Bn, thus it is irrelevant to choose ϕβ or

ϕγ . This proves (3).
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3. BOUNDED REAL HARMONIC FUNCTIONS ON <Bn

In this section we shall consider the dominating phenomenon of the space of

bounded real harmonic functions, denoted by h∞(<Bn), on the open unit ball <Bn

in Rn, n ≥ 3. Still we denote the boundary of <Bn by S.
The Poisson kernel P (x, y) on <Bn is defined by

P (x, y) =
1 − |x|2

|x − y|n , x ∈ <Bn, y ∈ S.

The Poisson integral of a measure µ on S defined by

P [µ](x) =
∫

S
P (x, y)dµ(y)

is a harmonic function in <Bn.

The main effort of this section is to prove the following result which is asserted in

the introduction concerning the dominating phenomenon of bounded real harmonic

functions on <Bn.

Theorem 3.1. Let {αk}∞k=1 be a sequence of distinct points in <Bn, n ≥ 3,
with no interior limit points. Then the following three statements are equivalent:

(i) {αk} is nontangentially dense almost everywhere on S.

(ii) ‖ f ‖∞= supk|f(αk)| for every f ∈ h∞(<Bn).
(iii) {αk} is a dominating set for h∞(<Bn).

Proof. (i) ⇒ (ii). Suppose f ∈ h∞(<Bn), then there is an f∗ ∈ L∞(σ) such
that f has nontangential limit f∗(ζ) at almost every boundary point ζ ∈ S. Here σ
is the normalized Lebesgue measure on S. Thus, by the same argument that proves
(ii) from (i) in Theorem 1.7, we are done.

(ii) ⇒ (i). Suppose (i) does not hold. Then there is a measurable subset Σ of S
with positive measure such that every boundary point y ∈ Σ can not be approached
nontangentially by {αk}.

Now, attach an open regular cone of fixed size to each y ∈ Σ so that the cone

is symmetric with respect to the radius y. We may assume that the cone is obtained
by revolving around the radius y a half line emitted from y which forms a fixed

angle θ, 0 < θ < π
2 , with the radius y. Therefore, using this fixed open cone, a

truncated open regular cone with height h ∈ Q, denoted by C(y, h), can be attached
to each vertex y ∈ Σ so that C(y, h) ∩ {αk} = ∅. Obviously, we may assume that
0 < h ≤ h0 for some fixed small h0 ∈ Q.

Next, for each h ∈ Q, 0 < h ≤ h0, denote by

Σh = {y ∈ Σ | C(y, h)∩ {αk} = ∅}.
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We claim that Σh is closed in Σ. Let {yi} be a sequence in Σh that converges to

a y ∈ Σ. If y /∈ Σh, then C(y, h) contains some αk. Clearly, this αk will lie in

C(yi, h) for some large i. It leads to a contradiction. Hence, Σh is closed in Σ. In
particular, Σh is measurable.

Hence, we have

Σ =
∪

h∈Q
0<h≤h0

It follows that, for some h ∈ Q, 0 < h ≤ h0, Σh has positive Lebesgue measure.

We shall denote F = Σh for this h. Note that the open region ∪y∈F C(y, h) contains
no points from {αk}.

Let y∗ be a point of density of F such that P [χF ](x) has nontangential limit 1
at y∗. Choose a suitable r << h such that σ(Bn−1(y∗, r)∩F ) ≥ 1

2σ(Bn−1(y∗, r)),
where Bn−1(y∗, r) = Bn(y∗, r) ∩ S. Now, we just consider the behavior of

P [χF ](x) on the points {αk} that lie in the open region Ω between Bn−1(y∗, r)
and the hyperplane passing through the boundary of Bn−1(y∗, r). For each such
αk ∈ Ω, αk /∈ ∪y∈F C(y, h), let yk = αk/|αk|. It is not hard to see that there also
exists rk such that

Bn−1(yk , rk) ⊂ S \ F

and that, for every y ∈ Bn−1(yk , rk), the angle formed by the radius yk and αky is

less than or equal to θ.
Now, for each such αk ∈ Ω, we are ready to estimate P [χF ](αk). Since

dist(αk, ∂Bn−1(yk, rk)) ≈ rk ≈ 1− |αk|,

obviously there is a constant c > 0 such that

P [χS\F ](αk) =
∫

S

P (αk , y)χS\F (y)dσ(y)

≥
∫

S
P (αk , y)χBn−1(yk ,rk)(y)dσ(y)

=
∫

Bn−1(yk ,rk)

1 − |αk|2

|αk − y|n dσ(y)

> c.

This shows

P [χF ](αk) = 1− P [χS\F ](αk) ≤ 1− c

for αk ∈ Ω.
Finally, for simplicity, we may assume y∗ = (1, 0, · · · , 0). Let

f(x) = P [χF ](x) + x1 + 1.
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Then f is a bounded real harmonic function on <Bn. Our construction of f shows,

for all k,

0 ≤ f(αk) ≤ max
(

3 − c, 3− r2

2

)
< 3 =‖ f ‖∞ .

Obviously, it contradicts the hypothesis (ii). Therefore, (ii) implies (i).
(ii) ⇒ (iii). This is trivial.
(iii) ⇒ (ii). Suppose (ii) does not hold. Then there is a f ∈ h∞(<Bn)

such that ‖ f ‖∞> supk |f(αk)|. Choose a number γ satisfying ‖ f ‖∞> γ >
supk |f(αk)|, and let g(x) ≡ γ be a constant function. Obviously, the hypothesis

(iii) is violated for these two functions f and g. Therefore, (ii) must hold. This
completes the proof of the theorem.

4. BOUNDED REAL M-HARMONIC FUNCTIONS ON Bn

In this final section we shall consider the dominating phenomenon of the space

of bounded real M-harmonic functions, denoted by Mh∞(Bn), on the open unit
ball Bn in Cn, n ≥ 2.

First, we recall briefly some facts about M-harmonic functions. Let f ∈
C2(Bn) and a ∈ Bn, we define the operator ∆̃ called invariant Laplacian by

(∆̃f)(a) = ∆(f ◦ϕa)(0),

where ϕa is the involution defined in (2.10) and ∆ is the ordinary Laplacian. The

invariant Laplacian ∆̃ commutes with the automorphisms of Bn.

Definition 4.1. A function f ∈ C2(Bn) is called M-harmonic if (∆̃f) = 0.

Theorem 4.2. Let u be a C2 real-valued function defined on Bn. Then u is
the real part of a holomorphic function on Bn if and only if ∆u = 0 and ∆̃u = 0
in Bn.

Definition 4.3. The kernel

PC(z, ζ) =
(1 − |z|2)n

|1 − 〈z, ζ〉|2n
, z ∈ Bn, ζ ∈ S,

is called the Cauchy-Poisson kernel in Bn.

Using the Cauchy-Poisson kernel, we can define

(4.4) PC [µ](z) =
∫

S
PC(z, ζ)dµ(ζ)
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the Cauchy-Poisson integral of the measure µ on S.

Theorem 4.5. For every complex Borel measure µ on S, PC [µ](z) is a M-

harmonic function.

One should note that the Cauchy-Poisson integral in general need not be har-

monic function in the ordinary sense.

Theorem 4.6. If F ⊂ S with σ(F ) = m < 1, where σ is the normalized
Lebesgue measure on S, and α > 1, then there is a constant c = c(α, m) > 0 such
that

PC [χS\F ](z) ≥ c

for every z /∈ Ω(F, α) = ∪ζ∈FDα(ζ).

For details concerning the M-harmonic functions the reader is referred to

Rudin[9].

Next, we introduce the notion of dominating sets for M-harmonic functions.

Definition 4.7. A subset E of Bn is said to be a dominating set forMh∞(Bn)
if for every two functions f, g ∈ Mh∞(Bn) satisfying |f(z)| ≤ |g(z)|, z ∈ E, we

have ‖ f ‖∞≤‖ g ‖∞.

Finally, we prove the main result of this section which has been asserted in the

introduction as follows.

Theorem 4.8. Let {ωk}∞k=1 be a sequence of distinct points in Bn, n ≥ 2,
with no interior limit points. Then the following three statements are equivalent:

(i) {ωk} is K-dense almost everywhere on S.

(ii) ‖ f ‖∞= supk |f(ωk)| for every f ∈ Mh∞(Bn).
(iii) {ωk} is a dominating set for Mh∞(Bn).

Proof. (i) ⇒ (ii). Suppose f ∈ Mh∞(Bn), then there is an f∗ ∈ L∞(σ) such
that f has K-limit at every Lebesgue point ζ of f∗. Thus, by the same argument

that proves (ii) from (i) in Theorem 1.7, we are done.
(ii) ⇒ (i). The proof of this direction is similar to that in proving Theorem

1.10. Suppose (i) does not hold. Then there is a measurable subset Σ of S with

positive measure such that every boundary point ζ ∈ Σ can not be approached

within every Dα(ζ) by {ωk}.
Thus, fix an α > 1 and a rational number r0 < 1 sufficiently close to 1, we let

Dα(ζ, r) = Dα(ζ) ∩ {z ∈ Bn | |z| > 1− r},
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where ζ ∈ S and r ∈ Q, r0 ≤ r < 1. Hence, for each ζ ∈ Σ, there is a Dα(ζ, r)
such that Dα(ζ, r)∩ {ωk} = ∅.

Then, for r ∈ Q, r0 ≤ r < 1, denote by

Σr = {ζ ∈ Σ | Dα(ζ, r)∩ {ωk} = ∅}.

We see that Σr is closed in Σ. In particular, Σr is measurable. We also have

Σ =
∪

r∈Q
r0≤r<1

Σr.

It follows that, for some r ∈ Q, r0 ≤ r < 1, Σr has positive Lebesgue measure.

We shall denote F = Σr for this r. We may assume that σ(F ) < 1. Note also that
the open region ∪ζ∈F Dα(ζ, r) contains no points from {ωk}.

Let ζ∗ be a point of density of F such that (K − lim PC [χF ])(ζ∗) = 1. For
simplicity, we may assume ζ∗ = (1, 0, · · · , 0). Since σ(F ) < 1, Theorem 4.6 shows
that there is a constant c > 0 such that

PC [χS\F ](z) ≥ c

for every z /∈ Ω(F, α) = ∪ζ∈F Dα(ζ).
Finally, let x1 = Rez1. By Theorems 4.2 and 4.5, we consider the bounded

M-harmonic function

h(z) = PC [χF ](z) + x1 + 1.

It is not hard to see that there is a small δ > 0 such that

0 ≤ h(ωk) ≤ 3 − δ < 3 =‖ h ‖∞

for all k. Obviously, it contradicts the hypothesis (ii). Therefore, (ii) implies (i).
The equivalence between (ii) and (iii) can be obtained as in the proof of

Theorem 1.10. The proof of Theorem 1.11 is now complete.
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