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VARIATIONAL LYAPUNOV METHOD AND STABILITY ANALYSIS

FOR PERTURBED SETVALUED IMPULSIVE

INTEGRO-DIFFERENTIAL EQUATIONS WITH DELAY

Bashir Ahmad

Abstract. In this paper, we develop stability criteria in terms of two measures

for perturbed setvalued delay integro-differential equations with fixed moments

of impulsive effects. Variational Lyapunov method is employed to establish

the stability properties of the perturbed system via a comparison result which

connects the solutions of perturbed system and the unperturbed one through

the solutions of a comparison system.

1. INTRODUCTION

The study of setvalued differential equations, initiated as an independent subject,

has been addressed by many authors, for instance, see [1-5] and the references

therein. The interesting feature of the setvalued differential equations is that the

results obtained in this new framework become the corresponding results of ordinary

differential equations as the Hukuhara derivative and the integral used in formulating

the set differential equations reduce to the ordinary vector derivative and integral

when the set under consideration is a single valued mapping. Also, the differential

equations with delay provide a better approach for mathematical formulation of a

physical phenomenon involving a time lag between the cause and the effect, see

[6,7].

Stability is one of the major problems encountered in applications and has at-

tracted the attention of many researchers. In the perturbation theory of nonlinear

differential systems, a flexible mechanism known as variation of Lyapunov second
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method (variational Lyapunov method) was introduced in [8]. This technique essen-

tially connects the solutions of perturbed system and the unperturbed one through

the solutions of a comparison system using a comparison principle. The concept

of stability in terms of two measures [9-12] which unifies a number of stability

concepts such as Lyapunov stability, partial stability, conditional stability, etc. has

become an important area of investigation in the qualitative analysis.

In this paper, we investigate the the stability criteria in terms of two measures for

setvalued perturbed impulsive integro-differential equations with delay by employing

the variational Lyapunov method. A comparison result which connects the solutions

of perturbed system and the unperturbed one through the solutions of a comparison

system is also proved.

The theory and applications of integro-differential equations is an important

area of investigation as these equations extensively occur in the mathematical mod-

elling of physical problems, for instance, the governing equations in the problems of

biological sciences such as spreading of disease by the dispersal of infectious indi-

viduals, the reaction-diffusion models in ecology to estimate the speed of invasion,

etc. are integro-differential equations.

2. PRELIMINARIES AND COMPARISON RESULT

Let Kc(Rn) denote the collection of nonempty, compact and convex subsets of
Rn. We define the Hausdorff metric as

(1) D[X, Y ] = max[sup
y∈Y

d(y,X), sup
x∈X

d(x, Y )],

where d(y,X) = inf[d(y, x) : x ∈ X ] and X, Y are bounded subsets of Rn. Notice
that Kc(Rn) with the metric defined by (1) is a complete metric space. Moreover,
Kc(Rn) equipped with the natural algebraic operations of addition and nonnegative
scalar multiplication becomes a semilinear metric space which can be embedded as

a complete cone into a corresponding Banach space [13, 14]. The Hausdorff metric

(1) satisfies the following properties:

(2) D[X + Z, Y + Z] = D[X, Y ] and D[X, Y ] = D[Y,X ],

(3) D[µX, µY ] = µD[X, Y ],

(4) D[X, Y ] ≤ D[X,Z] +D[Z, Y ],

∀ X, Y, Z ∈ Kc(Rn) and µ ∈ R+ = [0,∞).
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Definition 2.1. The set Z ∈ Kc(Rn) satisfying X = Y + Z is known as the

Hukuhara difference of the sets X and Y in Kc(Rn) and is denoted as X − Y.

Definition 2.2. For any interval I ∈ R, the mapping F : I → Kc(Rn) has
a Hukuhara derivative DHF (t0) at a point t0 ∈ I if there exists an element
DHF (t0) ∈ Kc(Rn) such that the limits

lim
h→0+

F (t0 + h) − F (t0)
h

and lim
h→0+

F (t0) − F (t0 − h)
h

,

exist in the topology of Kc(Rn) and each one is equal to DHF (t0).
By embedding Kc(Rn) as a complete cone in a corresponding Banach space

and taking into account the result on differentiation of Bochner integral, it is found

that if

F (t) = X0 +
∫ t

0
Ω(η)dη, X0 ∈ Kc(Rn),

where Ω : I → Kc(Rn) is integrable in the sense of Bochner, then DHF (t) exists
and

DHF (t) = Ω(t) a.e. on I.

Moreover, if F : [t0, T ] → Kc(Rn) is integrable, then
∫ t2

t0

F (σ)dσ =
∫ t1

t0

F (σ)dσ +
∫ t2

t1

F (σ)dσ, t0 ≤ t1 ≤ t2 ≤ T,

∫ T

t0

ζF (σ)dσ = ζ

∫ T

t0

F (σ)dσ, ζ ∈ R+.

Also, if F,G : [t0, T ] → Kc(Rn) are integrable, then D[F (.), G(.)] : [t0, T ] → R
is integrable and

D[
∫ t

t0

F (σ)dσ,
∫ t

t0

G(σ)dσ] ≤
∫ t

t0

D[F (σ), G(σ)]dσ.

For convenience, we define the following classes of functions:

K = {ν : [0, ρ) → R+ is continuous, strictly increasing and ν(0) = 0, ρ > 0};

PC = {µ : R+ → R+ is continuous on (tk−1, tk] and µ → µ(t+k ) exists as
t→ t+k };

PCK = {φ : R+ × [0, ρ) → R+, φ(., m) ∈ PC for each m ∈ [0, ρ), φ(t, .)∈ K
for each t ∈ R+};

Γ = {h : R+ ×Kc(Rn) → R+, infU∈Kc(Rn) h(t, U) = 0, h(., U) ∈ PC, for each
U ∈ Kc(Rn), and h(t, .) ∈ C(Kc(Rn), R+) for each t ∈ R+};
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S(h, ρ) = {(t, U) ∈ R+ ×Kc(Rn) : h(t, U) < ρ, h ∈ Γ};

C = PC([−τ, 0], Kc(Rn)), τ > 0;

S(ρ) = {U ∈ Kc(Rn) : (t, U) ∈ S(h, ρ) for each t ∈ R+}.
Consider the following perturbed setvalued integro-differential equations with fixed

moments of impulse

(5)





DHU(t) = F (t, Ut, L1Ut), t 6= tk,

Ut+k
= Utk + Ik(Utk), k = 1, 2, 3, ...,

Ut0 = Φ0,

together with the unperturbed ones

(6)





DHV (t) = G(t, Vt, L2Vt), t 6= tk,

Vt+k
= Vtk + Ik(Vtk), k = 1, 2, 3, ...,

Vt0 = Φ0,

where F,G : R+ × C × C → Kc(Rn) are continuous on (tk−1, tk] × C × C

with G smooth enough or containing the linear terms of system (5), Φ0 ∈ C,

Li denote the integral in sense of Hukuhara [22-23] and is defined by LiUt =∫ t
t0
Ki(t, η, Uη)dη, Ki : R+ × R+ × C → Kc(Rn) are continuous on (tk−1, tk] ×

(tk−1, tk] × C, i = 1, 2, Ik, Jk ∈ C(Kc(Rn), Kc(Rn)) and {tk} is a sequence of
points such that 0 ≤ t0 < t1 < ...tk < ... with limk→∞ tk = ∞ and Ut ∈ C be
defined by Ut(s) = U(t+ s), −τ ≤ s ≤ 0. The linear space PC([−τ, 0], Kc(Rn))
is equipped with the norm ‖.‖τ defined by ‖ψ‖τ = sup−τ≤s≤0 ψ(s) and [−τ, 0] =
(−τ, 0] when τ = ∞.
We denote the solution of (5) by U(t) = U(t0,Φ0)(t) with Ut0 = Φ0 and that

of (6) by V (t) = V (t0,Φ0)(t) with Vt0 = Φ0. By a solution of (5) (and that of
(6)), we mean a piecewise continuous function U(t0,Φ0)(t) on [t0,∞) which is
left continuous in every subinterval (tk, tk+1], k = 0, 1, 2, ....

Definition 2.3. Let W : R+ × Kc(Rn) → R+. Then W is said to belong to

a class W0 if W (t, X) is continuous in each (tk−1, tk] × Kc(Rn) and for each
X ∈ Kc(Rn), lim(t,Y )→(t+k ,X)W (t, Y ) = W (t+k , X) exists for k = 1, 2, .... and
W (t, X) is locally Lipscitzian in X.

Definition 2.4. Let W ∈ W0 and V (t, η, U) be any solution of (6). Then for
any fixed t > t0, (η, U) ∈ (tk−1, tk) × S(ρ), t0 ≤ η < t, we define

D+W (η, V (t, η, U))

= lim sup
h→0+

1
h

[W (η + h, V (t, η+ h, U + hF (η, Uη, L1Uη)))−W (η, V (t, η, U))],
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where V (t, η, U) is any solution of (6) such that V (η, η,U) = U.

Definition 2.5. Let h, h0 ∈ Γ. We say that

(i) h0 is finer than h if there exists a λ > 0 and a function φ ∈ PCK such that

h0(t, U) < λ implies h(t, U) ≤ φ(t, h0(t, U));

(ii) h0 is uniformly finer than h if (i) holds for φ ∈ K.

Definition 2.6. Let h, h0 ∈ Γ and W ∈ W0. Then W (t, U) is said to be

(i) h− positive definite if there exists a λ > 0 and a function b ∈ K such that

h(t, U) < λ implies b(h(t, U)) ≤ W (t, U);

(ii) weakly h0−decrescent if there exists a λ1 > 0 and a function a ∈ PCK such

that

h0(t, U) < λ1 implies W (t, U) ≤ a(t, h0(t, U));

(iii) h0−decrescent if (ii) holds with a ∈ K.

Definition 2.7. For h0 ∈ Γ, Φ0 ∈ C, we define

h̃0(t,Φ0) = sup
−τ≤s≤0

{h0(t + s,Φ0(s))}

Definition 2.8. Let h, h0 ∈ Γ and U(t) = U(t0,Φ0)(t) be any solution of (5),
then the system (5) is said to be

(I) (h̃0, h)−stable if for each ε > 0, there exists a δ = δ(t0, ε) > 0 such that

h̃0(t0,Φ0) < δ implies h(t, U(t)) < ε, t ≥ t0;

(II) (h̃0, h)-uniformly stable if (I) holds with δ independent of t0;
(III) (h̃0, h)-attractive if there exists a δ = δ(t0) > 0 and for each ε > 0, there

exists T = T (t0, ε) > 0 such that

h̃0(t0,Φ0) < δ0 implies h(t, U(t)) < ε, t ≥ t0 + T ;

(IV) (h̃0, h)-uniformly attractive if (III) holds with δ and T independent of t0;
(V) (h̃0, h)-asymptotically stable if it is (h̃0, h)-stable and (h̃0, h)-attractive;
(VI) (h̃0, h)-uniformly asymptotically stable if it is (h̃0, h)-uniformly stable and

(h̃0, h)-uniformly attractive.
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Now, we prove a comparison result which is needed for the sequel.

Lemma 2.1. Assume that

(A1) The solution V (t) = V (t, t0,Φ0) of (6) existing for all t ≥ t0 is unique,

continuous with respect to the initial values, locally Lipschitzian in Φ0 and

V (t0) = Φ0;

(A2) W ∈ C[R+ × K(Rn), R+] satisfies D[W (t, X)−W (t, Y )] ≤ ND[X, Y ],
where N is the local Lipschitz constant, X, Y ∈ K(Rn), t ∈ R+;

(A3) For (η, U) ∈ S(h, ρ), t0 ≤ η < t, W ∈ W0 satisfies the inequality





D+W (η, V (t, η, U))≤ g1(η,W (η, V (t, η, U))), t 6= tk ,

W (t+k , V (t, t+k , U(t+k ))) ≤ ψk(W (tk, V (t, tk, U(tk))), k = 1, 2, ...,

W (t+0 , V (t, t+0 , U0)) ≤ x0,

where g1(t, x) ∈ PC for each x ∈ R+ andψk : R+ → R+ are nondecreasing

functions for all k = 1, 2, ...;

(A4) The maximal solution r(t) = r(t, t0, x0) of the following scalar impulsive
differential equation exists on [t0,∞)

(7)





x′ = g1(t, x), t 6= tk ,

x(t+k ) = ψk(x(tk)), k = 1, 2, ...,

x(t+0 ) = x0 ≥ 0.

Then W (t, U(t, t0,Φ0)) ≤ r(t, t0, x0).

Proof. Let U(t) = U(t, t0,Φ0) be any solutions of (5) with (t0,Φ0) ∈ S(h, ρ).
We set m(η) = W (η, V (t, η, U(η)), η ∈ [t0, t] and limη→t−0m(η) = m(t). For
small h > 0, we consider

m(η + h) −m(η) = W (η + h, V (t, η + h, U(η + h)))−W (η, V (t, η, U(η))

= W (η+h, V (t, η + h, U(η + h)))−W (η+h, V (t, η+h, U(η)+hF (η,Uη, L1Uη)))

+W (η + h, V (t, η+ h, U(η) + hF (η, Uη, L1Uη))))−W (η, V (t, η, U(η)))

≤ ND[V (t, η + h, U(η + h)), V (t, η+ h, U(η) + hF (η, Uη, L1Uη)))]

+W (η + h, V (t, η+ h, U(η) + hF (η, Uη, L1Uη))))−W (η, V (t, η, U(η))),
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where we have used the assumption (A2). Thus,

D+m(t) = lim sup
h→0+

1
h

[m(t+ h) −m(t)]

≤ D+W (η, V (t, η, U(η))+N2 lim sup
h→0+

1
h
D[U(η+ h), U(η)

+hF (η, Uη, L1Uη))].

LettingU(η+h) = U(η)+Z(η),where Z(η) is the Hukuhara difference of U(η+h)
and U(η) for small h > 0 and is assumed to exist. Hence, employing the properties
of D[., .], it follows that

D[U(η+ h), U(η)+ hF (η, Uη, L1Uη))]

= D[U(η) + Z(η), U(η)+ hF (η, Uη, L1Uη))] = D[Z(η), hF (η, Uη, L1Uη))]

= D[U(η + h) − U(η), hF (η,Uη, L1Uη))].

Consequently, we find that

1
h
D[U(η + h), U(η) + hF (η, Uη, L1Uη))]

= D

[
U(η + h) − U(η)

h
, F (η, Uη, L1Uη))

]
,

which, in view of the fact that U(t) is a solution of (5), yields

lim sup
h→0+

1
h
D[U(η+ h), U(η)+ hF (η, Uη, L1Uη))]

= lim sup
h→0+

D

[
U(η + h) − U(η)

h
, F (η, Uη, L1Uη))

]

= D[U ′
H(η), F (η,Uη, L1Uη))] = 0.

Hence, we have

D+m(η) ≤ g1(η,m(η)), t 6= tk.

Also

m(t+k ) ≤ ψk(m(tk)), k = 1, 2, ...,

m(t0) ≤ x0.

Now, by Theorem 1.4.3 [15], it follows that m(η) ≤ r(η, t0, x0), η ∈ [t0, t], that is,
W (η, V (t, η, U(η))≤ r(η, t0, x0), η ∈ [t0, t]. Since V (t, t, U(t)) = U(t), therefore
we have

W (t, U(t, t0,Φ0)) = W (t, V (t, t, U(t))) ≤ r(t, t0, x0).

This proves the assertion of the lemma.



396 Bashir Ahmad

3. STABILITY ANALYSIS IN TERMS OF TWO MEASURES

Theorem 3.1. Assume that

(B1) The solution V (t) = V (t, t0,Φ0) = V (t0,Φ0)(t) of (6) existing for all t ≥ t0
is unique, continuous with respect to the initial values, locally Lipschitzian

in Φ0 and V (t0) = Φ0.

(B2) Ki(t, s, 0) = 0 so that G(t, 0, 0) = G(t, 0) = 0, g1(t, 0) = 0 and Jk(0) =
0, ψk(0) = 0, k = 1, 2, ...;

(B3) h0, h
∗, h ∈ Γ such that h∗ is finer than h and h∗(t, U) is nondecreasing in

t;

(B4) W ∈ W0 be such thatW (t, U) is h−positive definite and weakly h∗−decrescent
for (t, U) ∈ S(h, ρ), and satisfies the inequality





D+W (η, V (t, η, U)) ≤ g1(η,W (η, V (t, η, U))), η 6= tk ,

(η, U) ∈ S(h, ρ), η ∈ [t0, t),

W (t+k , V (t, t+k , U(t+k ))) ≤ ψk(W (tk, V (t, tk, U(tk)))), k = 1, 2, ...;

(B5) There exists a ρ0 ∈ (0, ρ] such that

h(tk , U(tk)) < ρ0 implies that h(t+k , U(t+k )) < ρ, k = 1, 2, ....

Then (h0, h
∗)−stability of the system (6) and the asymptotical stability of the trivial

solution of (7) imply the (h̃0, h)− asymptotical stability of (5).

Proof. Let U = U(t0,Φ0)(t), V = V (t0,Φ0)(t) and x(t) = x(t, t0, x0) be
any solutions of (5), (6) and (7) respectively. Since W (t, U) is h−positive definite
on S(h, ρ), there exists b ∈ K such that

(8) h(t, U) < ρ implies b(h(t, U)) ≤ W (t, U).

Also W (t, U) is weakly h∗−decrescent and h∗ is finer than h, so there exists a
λ0 > 0 and a ∈ PCK, φ ∈ PCK such that

(9) h(t, U) ≤ φ(t, h∗(t, U)) and W (t, U) ≤ a(t, h∗(t, U)),

when h∗(t, U) < λ0 and φ(t+0 , λ0) < ρ. Since the trivial solution of (7) is stable,
therefore, for given b(ε) > 0, we can find a δ1 = δ1(t0, ε) > 0 such that

(10) 0 ≤ x0 < δ1 implies that x(t, t0, x0) < b(ε), t ≥ t0,

where 0 < ε < ρ0 and t0 ∈ R+. Since the system (6) is (h0, h
∗)−stable, so there

exists a δ2 = δ2(t0, ε) > 0 corresponding to δ1 such that

(11) h0(t+0 ,Φ0) < δ2 implies h
∗(t+0 , V (t)) < a−1(t0, δ1), t ≥ t0.
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Select δ = δ(t0, ε) > 0 satisfying δ < min{λ0, δ2}. Now if h̃0(t+0 ,Φ0) < δ, then it

follows from (8)-(11) that

b(h(t+0 ,Φ0)) ≤ W (t+0 ,Φ0) ≤ a(t+0 , h
∗(t+0 ,Φ0)) < a(t+0 , δ2) ≤ δ1 ≤ b(ε),

which implies that h(t+0 ,Φ0)) < ε.
Now we claim that

(12) h(t, U(t)) < ε whenever h̃0(t+0 ,Φ0) < δ.

For the sake of contradiction, let us assume that (12) is false and there exists

t∗ > t0 such that h(t∗, U(t∗)) ≥ ε. For h ∈ Γ, there are two cases: (i) t0 < t∗ ≤ t1
(ii) tk < t∗ ≤ tk+1 for some k = 1, 2, ....

(i) Without loss of generality, let t∗ = inf{t : h(t, U(t)) ≥ ε} and h(t∗, U(t∗)) =
ε. Using Lemma 2.1 and (8)-(9) together with the fact that r(t, t0, x1) ≤
r(t, t0, x2) for x1 ≤ x2, we obtain

(13)

W (t∗, U(t∗)) ≤ r(t∗, t0,W (t+0 , V (t∗, t0,Φ0)))

≤ r(t∗, t0, a(t0, h∗(t+0 , V (t∗, t0,Φ0)))

≤ r(t∗, t0, δ1) < b(ε).

On the other hand, it follows from (8) that

W (t∗, U(t∗)) ≥ b(h(t∗, U(t∗))) = b(ε),

which contradicts (12).

(ii) In view of the impulse effect, we have

h(t∗, U(t∗)) ≥ ε and h(t, U(t)) < ε, t ∈ [t0, tk].

Since 0 < ε < ρ0, it follows from assumption (B5) that

h(t+k , U(t+k )) = h(t+k , U(tk) + Ik(U(tk)))) < ρ.

Consequently, there exists a t∗∗ ∈ (tk , t∗] such that

(14) ε ≤ h∗(t∗∗, U(t∗∗)) < ρ and h(t, U(t)) < ρ, t ∈ [t0, t1).

Now, by virtue of Lemma 2.1 and (8)-(9), we obtain

W (t∗∗, U(t∗∗)) ≤ r(t∗∗, t0,W (t+0 , V (t∗∗, t0, U0)))

≤ r(t∗∗, t0, a(t0, h(t+0 , V (t∗∗, t0, U0))))

≤ r(t∗∗, t0, δ1) < b(ε),
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whereas (8) and (14) yields

W (t∗∗, U(t∗∗)) ≥ b(h(t∗∗, U(t∗∗))) ≥ b(ε),

which is again a contradiction. Thus h(t, U(t)) < ε whenever h̃0(t+0 ,Φ0) <
δ, t ≥ t0. Hence the system (5) is (h̃0, h)− stable.

Next, it is assumed that the trivial solution of (7) is asymptotically stable. In view

of (h̃0, h)− stability of the system (5), we set ε = ρ0 and δ = δ3 = δ3(t0, ρ0) > 0
in (12) and obtain

h(t, U(t)) < ρ0 < ρ whenever h̃0(t+0 ,Φ0)) < δ3, t ≥ t0.

In order to prove the (h̃0, h)− attractive of system (5), let the trivial solution of (7)
be attractive, that is, for t0 ∈ R+, there exists a δ

∗
0 = δ∗0(t0) > 0 such that

x0 < δ∗0 implies lim
t→∞

x(t, t0, x0) = 0.

Now, for this δ∗0, there is a δ
∗
1 = δ∗1(t0, δ

∗
0) > 0 such that

h̃0(t+0 ,Φ0) < δ∗1 implies h
∗(t+0 , V (t)) < a−1(t0, δ∗0).

Taking δ0 = δ0(t0) (independent of ε) such that 0 < δ0 < min{δ∗, δ∗0, δ∗1} and
applying the earlier arguments, we find that

b(h(t, U(t))) ≤ W (t, U(t)) ≤ r(t, t0,W (t+0 , V (t, t0,Φ0))) ≤ r(t, t0, δ∗0) → 0,

as t → ∞ when h̃0(t+0 ,Φ0)) < δ0. This implies that limt→∞ h(t, U(t)) = 0 when
h̃0(t+0 ,Φ0)) < δ0, that is, the system (5) is (h̃0, h)− attractive. Hence system (5)

is (h̃0, h)−asymptotically stable.

Theorem 3.2. Assume that all the assumptions of Theorem 3.1 hold except (B3)
and (B4) which are modified as

(B∗
3) h

∗ is uniformly finer than h instead of finer in (B3);

(B∗
4) W is h∗− decrescent instead of weakly h∗− decrescent in (B4).

Then the (h0, h
∗)−uniform stability of the trivial solution of (6) and the uniform

asymptotical stability of the trivial solution of (7) imply the (h̃0, h)−uniform asymp-
totical stability of (5).

Proof. From (B∗
3) and (B∗

4), it follows that there exists a λ0 > 0 and a, φ ∈ K
such that

(15) h(t, U) ≤ φ(h∗(t, U)) and W (t, U) ≤ a(h∗(t, U)),
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when h∗(t, U) < λ0 with φ(λ0) < ρ. The trivial solution of (7) is uniformly stable,

therefore, for given b(ε) > 0, we can find a δ1 = δ1(ε) > 0 independent of t0 such
that

(16) 0 ≤ x0 < δ1 implies x(t, t0, x0) < b(ε), t ≥ t0,

where 0 < ε < ρ0 and t0 ∈ R+. From the hypothesis that the trivial solution of
(6) is (h0, h

∗)−uniformly stable, for the above δ1, there exists a δ2 = δ2(ε) > 0
independent of t0 such that

(17) h0(t+0 ,Φ0) < δ2 implies h
∗(t+0 , V (t)) < a−1(δ1).

Now, applying the arguments similar to the ones used in the proof of Theorem 2.1

and recalling that U(t) = U(t0,Φ0)(t) is any solution of (5), we conclude that

h̃0(t+0 ,Φ0) < δ implies h(t, U(t)) < ε, t ≥ t0,

where δ is independent of t0 and satisfies 0 < δ = δ(ε) < min{λ0, δ2}. Thus, the
system (5) is (h0, h)− uniformly stable.

Next, from the hypothesis that the trivial solution of (7) is uniformly asymptoti-

cally stable, we can find a δ∗0 > 0 independent of t0 and any ε satisfying 0 < ε < ρ0

such that there exists a τ = τ(ε) so that

(18) 0 < x0 < δ∗0 implies x(t, t0, x0) < b(ε), t ≥ t0 + τ(ε), t0 ∈ R+.

In view of the fact that (6) is uniformly stable, there is a δ∗1 independent of t0
corresponding to δ∗0 such that

h0(t+0 ,Φ0) < δ∗1 implies h
∗(t, V (t)) < a−1(δ∗0), t ≥ t0.

Since uniform asymptotical stability of (7) implies its asymptotically stability, so

system (5) is (h̃0, h)− uniformly stable. For ε = ρ0, there exists a δ
∗ = δ∗(ρ0)

such that

h̃0(t+0 ,Φ0) < δ∗ implies h(t, U(t)) < ρ0 < ρ, t ≥ t0.

Choosing δ0 such that 0 < δ0 < min{δ∗, δ∗0, δ∗1} and using the arguments employed
in Theorem 2.1, we find that h(t, U(t))) ≤ ε, t ≥ t0 + τ, when h̃0(t+0 ,Φ0)) < δ0,
where δ0 and τ are independent of t0. This implies that the system (5) is (h̃0, h)−
uniformly attractive. Hence the system (5) is (h̃0, h)−uniformly asymptotically
stable.

Remark. The (h0, h)− equatability of (5) can be established on the same

pattern if we require δ = δ(t0, ε) in Definition 2.8 to be a continuous function in t0
for each ε.
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