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Abstract. In this paper, we first present some sufficient conditions for the
upper semicontinuity and/or the continuity of the Bregman farthest-point map
Qg

C and the relative farthest-point map Sg
C for a nonempty D-maximally ap-

proximately compact subset C of a Banach space X. We next present certain
sufficient conditions as well as equivalent conditions for a Klee set to be
singleton in a Banach space X. Our results extend and/or improve the cor-
responding ones of [Bauschke, et al., J. Approx. Theory, 158 (2009), pp.
170-183] to infinite dimensional spaces.

1. INTRODUCTION

Let X be a real normed space with the dual space X ∗. Let C ⊂ X be a
nonempty subset of X . As usual, the norm farthest-point map on C is denote by
QC : X ⇒ C and defined by

QC(x) := {z ∈ C : ‖x − z‖ = sup
y∈C

‖x − y‖} for each x ∈ X.

We recall (cf. [16]) that C is a Klee set if QC(x) is singleton for each x ∈ X .
One of the oldest questions (dating back to the 1960s) in real analysis and

approximation is the so-called singleton problem of Klee sets on farthest-points,
which is formulated as follows:

“Is a Klee set in a Hilbert space necessarily a singleton?”
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This problem is closely related to the famous convexity problem of Chebyshev sets,
and has attracted a lot of attention of mathematicians; see, e.g., [5, 13-16, 22] and
the references therein. Although the answer to this problem is affirmative in R

n,
as was shown originally by Klee [16], only partial results are known in infinite-
dimensional Banach space settings; see, e.g., [18, 21, 22].

Recent interests are focused on some similar problems but with the Bregman
distance instead of the norm distance on X . Let g : X → R := R ∪ {+∞} be a
proper convex function with its domain domg. The right hand side derivative of g
at x ∈ domg in the direction h is given by

(1.1) g′+(x, h) : = lim
t→0+

g(x + th) − g(x)
t

.

The Bregman distance with respect to g between the points x, y ∈ domg is defined
as

(1.2) Dg(y, x) : = g(y)− g(x)− g′+(x, y − x).

In 1976, Bregman discovered an elegant and effective technique for the use of the
function Dg in the process of designing and analyzing feasibility and optimization
algorithms. This opened a growing area of research in which Bregman’s technique
is applied in various ways in order to design and analyze iterative algorithms for
solving not only feasibility and optimization problems, but also algorithms for solv-
ing variational inequalities and computing fixed points of nonlinear mappings and
more (see [3, 8-12, 19] and the references therein).

Let C ⊂ domg be a nonempty subset. The Bregman farthest-point map, de-
noted by Qg

C , is defined as the set of the solutions of the optimization problem
max
y∈C

Dg(y, x), i.e.,

Qg
C(x) := arg max

y∈C
Dg(y, x) for each x ∈ domg.

In 2009, Bauschke et al. started in [5] to consider the singleton problem of a Klee
set in the sense of Bregman distance in Euclidean space R

n. Under the assumption
that g is a convex function of Legendre type and 1-coercive, they proved that each
Klee set (in the sense of Bregman distance) is a singleton. The corresponding
convexity problem of D-Chebyshev sets in Rn was explored in [4]. The techniques
used there are closely dependent upon the properties possessed by the Euclidean
space.

Very recently, the results on characterization of convexity of D-Chebyshev sets
in R

n are extended in [17] to the infinite-dimensional Banach space setting. The
purpose of the present paper is to consider the singleton problem of a Klee set (in
the sense of Bregman distance) in general Banach spaces. Our approach is based on
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the study of the Bregman farthest-point map Qg
C as well as the relative farthest-point

map Sg
C : X∗ → C, which is defined by

S
g
C(x∗) := argmax

y∈C
W g(y, x∗),

where W g is the function defined by

W g(x, x∗) := g(x)− 〈x∗, x〉+ g∗(x∗) for each pair (x, x∗) ∈ X × X∗.

In this paper, we first present some sufficient conditions ensuring the upper
semicontinuity and the continuity of the Bregman farthest-point map Qg

C and the
relative farthest-point map Sg

C for a nonempty compact subset C of a Banach space
X . We next present certain sufficient conditions as well as equivalent conditions
for the pointwise of a Klee subset of a Banach space X . Our results extend and/or
improve the corresponding results of [5] to infinite dimensional spaces.

2. PRELIMINARIES

Let X be a Banach space and g : X → R be a proper convex function. As usual,
the closed unit ball and unit sphere of X are denoted by B and S, respectively. We
also denote by B(x, r) the closed ball centered at x with radius r. Moreover, we
use domg to denote the domain of g. Let x ∈ domg. The subdifferential of g at x
is the convex set defined by

∂g(x) := {x∗ ∈ X∗ : g(x) + 〈x∗, y − x〉 ≤ g(y) for each y ∈ X};

while the conjugate function of g is the function g ∗ : X∗ → R defined by

g∗(x∗) := sup{〈x∗, x〉 − g(x) : x ∈ X}.

Then, by [24, Theorem 2.4.2(iii)], the Young-Fenchel inequality holds

(2.1) 〈x∗, x〉 ≤ g(x) + g∗(x∗) for each pair(x∗, x) ∈ X∗ × X,

and the equality holds if and only if x∗ ∈ ∂g(x), i.e.,

(2.2) 〈x∗, x〉 = g(x) + g∗(x∗) ⇐⇒ x∗ ∈ ∂g(x) for each pair(x∗, x) ∈ X∗ × X.

The domain and the image of ∂g are denoted by dom(∂g) and Im(∂g), respectively,
which are defined by

dom(∂g) = {x ∈ dom g : ∂g(x) �= ∅}
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and
Im(∂g) = {x∗ ∈ X∗ : x∗ ∈ ∂g(x), x ∈ dom ∂g}.

Recall that the Bregman distance with respect to g is defined by

(2.3) Dg(y, x) = g(y)− g(x)− g′+(x, y − x) for any x, y ∈ domg.

According to [10], we define the modulus of total convexity at x by

(2.4) νg(x, t) := inf{Dg(y, x) : y ∈ domg, ‖y − x‖ = t} for each t ≥ 0.

Defintion 2.1. Let x ∈ domg. The function g : X → R is said to be

(a) totally convex at x if its modulus is positive on (0,∞), i.e. νg(x, t) > 0 for
each t > 0;

(b) essentially strictly convex if (∂g)−1 is locally bounded on its domain and g

is strictly convex on every convex subset of dom(∂g).

Remark 2.1. (a) The notion of total convexity at a point was first introduced
in [8] but using the terminology “very convex”; while the notion of the es-
sentially strict convexity was introduced in [2].

(b) It was proved in [10] (see also [12, Proposition 2.2]) that if g is totally
convex at any point of domg, then it is strictly convex on domg, and in [12,
Proposition 2.13] that if X is reflexive and g is totally convex at any point
of dom(∂g), then it is essentially strictly convex.

(c) By [19, Proposition 2.2], the function g is totally convex at x ∈ domg if and
only if for any sequence {yn} ⊂ domg, the following implication holds:

(2.5) lim
n→∞Dg(yn, x) = 0 =⇒ lim

n→∞ ‖yn − x‖ = 0.

(d) Recall from [23] that g is uniformly convex at x ∈ domg, if the function

(2.6)
µg(x, t) :

= inf
{

λg(x)+(1−λ)g(y)−g(λx+(1−λ)y)
λ(1−λ)

:
λ∈(0, 1), y∈domg,

‖y − x‖ = t

}

is positive whenever t > 0. Then νg(x, t) ≥ µg(x, t) for all t ≥ 0. Hence,
if g is uniformly convex at x ∈ domg, then it is totally convex at the same
point.

By [12, Theorem 2.14], we have the following proposition, which shows that
all convexities are equivalent for a real-valued convex function g on the Euclidean
space R

n.
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Proposition 2.1. Let g : R
n → R be a convex function. Then the following

conditions are equivalent.
(i) The function g is strictly convex.
(ii) The function g is essentially strictly convex.
(iii) The function g is totally convex at any x ∈ R

n.
(iv) The function g is uniformly convex at any x ∈ R

n.

In an infinite dimensional setting, for reasons related to effective computability,
the functions gp defined by gp(·) := 1

p‖ · ‖p with p > 1 are among the most
likely functions to be used in the build up of Bregman type algorithms. It was
shown by Zalinescu (see [24]) that if X is locally uniformly convex then gp with
p > 1 is uniformly convex at any x ∈ X , and so totally convex at any x ∈ X .
Following [19], a Banach space X is called locally totally convex, if the function
g2 is totally convex at each x ∈ S. It is clear that locally uniformly convex spaces
are locally totally convex. The following proposition on characterizing the locally
total convexity of X was given in [12].

Proposition 2.2. Suppose that X is a Banach space. Then the following con-
ditions are equivalent.

(i) The sapce X is locally totally convex.
(ii) For any x ∈ S and for any real number ε > 0, there exists δ = δ(x, ε) > 0

such that, for any y ∈ S with ‖y − x‖ ≥ ε, there exists λ 0 ∈ (0, 1) such that

‖(1− λ0)x + λ0y‖ < 1 − λ0δ.

We end this section with two propositions on some properties of convex func-
tions, which will be frequently used in next sections; see [6, Proposition 2.11] and
[1, Corollary 3.1, Corollary 3.2] for the first one, and [11, Proposition 3.4] for the
second one.

Proposition 2.3. Suppose that g : X → R is a lower semicontinuous proper
convex function which is Gâteax differentiable (resp. Fréchet differentiable) on
int(domg). Then g is continuous and its Gâteax derivative ∇g is norm-weak∗
continuous (resp. continuous) on int(domg).

Proposition 2.4. Suppose that g : X → R is a lower semicontinuous proper
convex function. Let x ∈ domg and suppose that g is totally convex at x. Then
∂g(x) ⊆ int(domg∗) and g∗ is Fréchet differentiable at each point x ∗ ∈ ∂g(x).
Furthermore, there exists a nondecreasing function θ : [0, +∞) → [0, +∞) with
limt→0+ θ(t)=0 such that, for any pair (y, y ∗)∈X ×X∗ with y∗∈∂g(y), one has

‖y − x‖≤θ(‖y∗ − x∗‖).
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3. APPROXIMATE COMPACTNESS AND CONTINUITY OF THE BREGMAN

FARTHEST POINT MAPPING

For the remainder, we always assume that X, Y are Banach spaces and that
g : X→R is lower semicontinuous proper convex and Gâteaux differentiable on
int(domg) with its Gâteaux derivative denoted by �g. Suppose that C ⊆ int(domg)
is a nonempty bounded set. Then the Bregman distance Dg with respect to g can
be reexpressed as

(3.1)
Dg(y, x) = g(y)− g(x)− 〈�g(x), y − x〉

for each pair (y, x) ∈ X × int(domg).

Clearly, Dg(·, x) is convex for each x ∈ int(domg) and the following equality holds
for any ŷ, x ∈ int(domg) and y ∈ X :

(3.2) Dg(y, ŷ) = Dg(y, x)− Dg(ŷ, x) + 〈∇g(ŷ) −∇g(x), ŷ − y〉.

We define the Bregman farthest function of C by

(3.3) F g
C(x) := sup

y∈C
Dg(y, x) for each x ∈ int(domg).

Then the Bregman farthest point map onto C is

(3.4) Qg
C(x) = {y ∈ C : Dg(y, x) = F g

C(x)} for each x ∈ int(domg).

One key tool for our study is the function Wg : X × X∗ → R associated with g,
which was first introduced by Butnariu and Resmerita [12] and is defined by

W g(x, x∗) = g(x)− 〈x∗, x〉+ g∗(x∗) for each pair (x, x∗) ∈ X × X∗.

Clearly, the function Wg is nonnegative, convex and continuous on int(domg) ×
int(domg∗). Moreover the following equality holds:

(3.5)
W g(y, y∗) = W g(y, x∗) + g∗(y∗)− g∗(x∗) − 〈y∗ − x∗, y〉

for any x∗, y∗ ∈ X∗ and y ∈ X.

Similar to the case of Bregman farthest functions, we define

(3.6) V g
C(x∗) := sup

y∈C
W g(y, x∗) for each x∗ ∈ domg∗.

Then

(3.7) Sg
C(x∗) = {y ∈ C : W g(y, x∗) = V g

C(x∗)} for each x∗ ∈ domg∗.
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In the case when X is a Hilbert space and g(·) = 1
2‖ · ‖2, the operators Qg

C and Sg
C

coincide and are equal to the norm farthest point map onto the set C. For the general
case, the relationship between the two operators are described in the following
proposition, which is a direct consequence of the Young-Fenchel inequality and the
definition of subdifferential of convex functions (cf. (2.1) and (2.2)).

Proposition 3.1. The following assertions hold:

(3.8) Dg(y, x) = W g(y,∇g(x)) for each (y, x) ∈ int(domg)× int(domg);

(3.9) Qg
C(x) = Sg

C(∇g(x)) for each x ∈ int(domg).

Let x ∈ int(domg) and {yn} ⊆ C. The sequence {yn} ⊆ C is called a
D-maximizing sequence of x if

(3.10) lim
n→∞ Dg(yn, x) = F g

C(x).

Defintion 3.1. The set C is said to be D-maximally approximately compact if,
for any x ∈ int(domg), each D-maximizing sequence of x has a subsequence that
converges to an element of C.

Lemma 3.1. Let x ∈ int(domg) and let {yn} ⊆ C be a D-maximizing sequence
of x. If ȳ ∈ C is a cluster point of {yn}, then ȳ ∈ Qg

C(x).

Proof. We may assume, without loss of generality, that yn → ȳ as n → ∞.
Since g is continuous at ȳ by Proposition 2.3, we have g(ȳ) = limn→∞ g(yn);
consequently

Dg(ȳ, x) = g(ȳ)− g(x)− 〈∇g(x), ȳ − x〉
= lim

n→∞(g(yn) − g(x)− 〈∇g(x), yn − x〉)
= lim

n→∞Dg(yn, x)(3.11)

= F g
C(x).

Hence ȳ ∈ Qg
C(x).

Proposition 3.2. Suppose that C is D-maximally approximately compact. Then
Qg

C(x) �= ∅ for any x ∈ int(domg).

Proof. Let x ∈ int(domg) be arbitrary and take a sequence {yn} ⊆ C such
that (3.10) holds. Since C is D-maximally approximately compact, {yn} has a
subsequence which is convergent to an element of C. Without loss of generality, we
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may assume that yn → ȳ ∈ C; hence ȳ is a cluster point of {yn}. Thus ȳ ∈ Qg
C(x)

by Lemma 3.1.

For the remainder, we need the notion of the 1-coercivity, or super-coercivity
(cf.[2]). We say that g is 1-coercive if

lim
‖y‖→∞

g(y)
‖y‖ = ∞.

It is easy to see (cf. [2]) that g is 1-coercive if and only if

(3.12) int(domg∗) = domg∗ = X∗.

Theorem 3.1. Suppose that g is 1-coercive or totally convex at any point of
int(domg). Then the following statements hold.

(i) The function V g
C is continuous on ∇g(int(domg)).

(ii) If g is Fréchet differentiable on int(domg), then F g
C is continuous on int(domg).

Proof. (i) Let x∗ ∈ ∇g(int(domg)) and {x∗
n} ⊂ domg∗ be such that

x∗
n → x∗. Then we have the assertion x∗ ∈ int(domg∗), which is true by (3.12) in

the case when g is 1-coercive and by Proposition 2.4 in the case when g is totally
convex at any point of int(domg). Since g∗ is continuous at x∗, one has

(3.13) g∗(x∗
n) → g∗(x∗).

Fix n ∈ N. By (3.5), we have

(3.14) W g(y, x∗
n) = W g(y, x∗)+g∗(x∗

n)−g∗(x∗)−〈x∗
n−x∗, y〉 for each y ∈ C.

It follows that

(3.15) W g(y, x∗
n) → W g(y, x∗) for each y ∈ C.

Thus,
V g

C(x∗
n) ≥ W g(y, x∗

n) −→ W g(y, x∗) for each y ∈ C;

hence

(3.16) lim inf
n→∞ V g

C(x∗
n) ≥ V g

C(x∗).

Below we verify that

(3.17) V g
C(x∗) ≥ lim sup

n→∞
V g

C(x∗
n).
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Granting this together with (3.16), we complete the proof of assertion (i).
To show (3.17), let ε > 0 be arbitrary and let {yn} ⊆ C be such that

W g(yn, x∗
n) ≥ V g

C(x∗
n) − ε for each n = 1, 2, · · · .

By (3.5),

W g(yn, x∗) = W g(yn, x∗
n) + g∗(x∗) − g∗(x∗

n) + 〈x∗
n − x∗, yn〉.(3.18)

Noticing that {yn} is bounded, and letting n → +∞ in (3.18) and using (3.13), we
get that

V g
C(x∗) ≥ lim sup

n→∞
W g(yn, x∗

n) ≥ lim sup
n→∞

V g
C(x∗

n) − ε.

This completes the proof of (3.17).
(ii) Since g is Fréchet differentiable on int(domg), by Proposition 2.3, one

has that ∇g is continuous on int(domg). By Proposition 3.1, we have Fg
C(x) =

V g
C(∇g(x)) for every x ∈ int(domg). Hence the assertion follows directly from

assertion (i).

Let Z be a Bananch space and let T : Z ⇒ X be a set-valued mapping. The
domain of T is denoted by D(T ) and defined by

D(T ) := {z ∈ Z : T (z) �= ∅}.

Defintion 3.2. The set-valued mapping T is said to be

(a) upper semicontinuous at z0 ∈ D(T ) if for every open set U ⊃ T (z0), there
exists δ > 0 such that T (z) ⊂ U for every z ∈ B(z0, δ) ∩D(T );

(b) upper semicontinuous on a subset Z0 ⊂ D(T ) if it is upper semicontinuous
at each z ∈ Z0.

Theorem 3.2. Suppose that g is 1-coercive or totally convex at any point of
int(domg). If C is D-maximally approximately compact, then the following state-
ments hold.

(i) The operator S g
C is upper semicontinuous on ∇g(int(domg)).

(ii) If g is Fréchet differentiable on int(domg), then the operator Q g
C is upper

semicontinuous on int(domg).

Proof. (i) By Proposition 3.2, Sg
C(∇g(x)) = Qg

C(x) �= ∅ for each x ∈
int(domg). Suppose on the contrary that Sg

C is not upper semicontinuous at
x∗ = ∇g(x) for some x ∈ int(domg). Then there exist an open set U ⊃ Sg

C(x∗),
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sequences {x∗
n} ⊂ domg and {yn} with each yn ∈ Sg

C(x∗
n) such that x∗

n → x∗ and
yn ∈ X \ U for each n. Then, by (3.5),

W g(yn, x∗) = W g(yn, x∗
n) + g∗(x∗) − g∗(x∗

n) + 〈x∗
n − x∗, yn〉.(3.19)

Since x∗ ∈ int(domg∗) as noted earlier, it follows that g∗(x∗
n) → g∗(x∗). Further-

more, by Theorem 3.1, we have that Wg(yn, x∗
n) = V g

C(x∗
n) → V g

C(x∗). Taking
limit in (3.19) , we get that

Dg(yn, x) = W g(yn, x∗) → V g
C(x∗) = F g

C(x).

Since C is D-maximally approximately compact, we have {yn} has a subsequence
which converges to some point ȳ ∈ C. Hence Wg(ȳ, x∗) = V g

C(x∗) by the continuity
of g at ȳ, that is, ȳ ∈ S

g
C(x∗). However, since yn ∈ X \U for each n and X \U is

closed, it follows that ȳ ∈ X \ U, which is a contradiction. Therefore Sg
C is upper

semicontinuous at x∗.
(ii) Suppose that g is Fréchet differentiable on int(domg). Then, by Proposition

2.3, ∇g is continuous on int(domg). Hence the assertion follows from (i) and
(3.9).

Defintion 3.3. Let C ⊂ X . The set C is said to be Klee with respect to
the Bregman distance, or simply D-Klee, if for every x ∈ int(domg), Qg

C(x) is
singleton.

Remark 3.1. By the definition of D-Klee set and the formula (3.9), one sees
that if C is D-Klee, then S g

C(x∗) is single-valued for each x∗ ∈ ∇g(int(domg)).

Observe that if a set-valued mapping is single-valued, then its upper semiconti-
nuity is equivalent to its continuity. Thus, by Theorem 3.2, we obtain the following
continuity results for operators Sg

C and Qg
C whenever C is a D-Klee subset of

int(domg).

Corollary 3.1. Suppose that g is 1-coercive or totally convex at any point of
int(domg). If C is D-maximally approximately compact and D-Klee subset of
int(domg). Then the following statements hold.

(i) The operator S g
C is continuous on ∇g(int(domg)).

(ii) If g is Fréchet differentiable on int(domg), then the operator Q g
C is contin-

uous on int(domg).

Applying Theorem 3.2 and Corollary 3.1 to the special convex function g = g2
(noting that g2 is clearly 1-coercive), we obtain the following corollary.
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Corollary 3.2. Let C be a D-maximally approximately compact subset of X .
Then the following statements hold.

(i) If X is a smooth Banach space, then the operator S g2

C is upper semicontinuous
on X∗. If, in addition, C is D-Klee, then the operator S g2

C is continuous on
X∗.

(ii) If the norm of X is Fréchet differentiable, then the operator Q g2

C is upper
semicontinuous on X . If, in addition, C is D-Klee, then the operator Q g2

C is
continuous on X .

4. SINGLETON OF D-KLEE SETS

As assumed in the previous section, let g : X → R be a lower semicontinuous
proper convex function and Gâteaux differentiable on int(domg), and let C ⊆
int(domg) be a nonempty bounded subset. This section is devoted to the study
of the singleton problem of D-Klee sets. For this purpose, we need to introduce
the notions of essentially smooth convex functions and Legendre convex functions,
which have been studied extensively in [2].

Defintion 4.1. The function g is said to be

(a) essentially smooth if ∂g is both locally bounded and single-valued on its
domain;

(b) Legendre if g is both essentially strictly convex and essentially smooth.

The following proposition is useful and known in [2, Theorems 5.4 and 5.6].

Proposition 4.1. The following assertions hold.

(i) The function g is essentially smooth if and only if dom(∂g) = int(domg) �= ∅
and ∂g is single-valued on its domain.

(ii) If X is reflexive, then g is essentially smooth if and only if g ∗ is essentially
strictly convex.

Remark 4.2. (a) By (2.2), the following equivalence holds:

(4.1) x ∈ ∂g∗(x∗) ⇐⇒ x∗ ∈ ∂g(x) for each pair (x, x∗) ∈ X × X∗;

hence

(4.2) x ∈ (∂g∗ ◦ ∇g)(x) for each x ∈ int(domg).
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(b) By (a) and Proposition 4.1(i), if g is essentially smooth, then

(4.3) Im(∂g∗) = dom(∂g) = int(domg).

(c) If g is 1-coercive and g is essentially smooth, then

(4.4) ∇g(int(domg)) = dom(∂g∗) = X∗

and

(4.5) F g
C ◦ ∂g∗ = V g

C and Qg
C ◦ ∂g∗ = Sg

C .

In fact, by (4.3) and the 1-coercivity assumption, one has that dom(∂g∗) =
domg∗ = X∗ and Im(∂g∗) = int(domg). Thus (4.4) follows from (4.1);
while (4.5) holds because of Proposition 3.1 and (4.2).

(d) If both g and g∗ are essentially smooth (e.g., if X is reflexive and g is
Legendre), then ∇g : int(domg) → int(domg∗) is a bijection satisfying

(4.6) (∇g)−1 = ∇g∗.

Let T : X∗ ⇒ X be a set-valued mapping. Recall that T is monotone if

(4.7) 〈x − y, x∗ − y∗〉 ≥ 0 for any x∗, y∗ ∈ D(T ) and x ∈ T (x∗), y ∈ T (y∗).

A monotone set-valued mapping T is maximal monotone if, for any monotone
mapping T ′ : X∗ ⇒ X , the condition that T (x∗) ⊂ T ′(x∗) for each x∗ ∈ D(T )
implies that T = T ′.

Proposition 4.2. The operator −Sg
C is monotone.

Proof. Let x∗, y∗ ∈ domSg
C and x ∈ Sg

C(x∗), y ∈ Sg
C(y∗) be arbitrary

elements. Then, by the definition of Sg
C , one has that

W g(x, x∗) ≥ W g(y, x∗)

and
W g(y, y∗) ≥ W g(x, y∗).

Adding these inequalities, one obtains

〈−x + y, x∗ − y∗〉 ≥ 0,

which shows that −S g
C is monotone.
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Proposition 4.3. Suppose that g is 1-coercive and essentially smooth. Then the
following statements hold.

(i) If C is D-Klee, then Sg
C is single-valued on X ∗.

(ii) If C is D-Klee and if S g
C is continuous, then −S g

C is maximal monotone.

(iii) If X is reflexive and −S g
C is maximal monotone, then C is singleton.

Proof. (i) By Remark 4.2(c), ∇g(int(domg)) = dom(∂g∗) = X∗. If C is D-
Klee, then domSg

C = X∗ and Sg
C(x∗) is a singleton for each x∗ ∈X∗ by Remark

3.1.

(ii) By (i), −Sg
C is single-valued on X∗. Thus, if Sg

C is continuous, then −Sg
C

is maximal monotone by a well known fact about maximal monotonicity (cf.
[7], Lemma 2).

(iii) Consider the following two maximal monotone operators ∂g∗ and −S
g
C , by

Brézis-Haraux range theorem (see [20, Corollary 31.6]), we have

int[range(∂g∗ − Sg
C)] = int[range(∂g∗) − range(Sg

C)]

= int[int(domg)− range(Sg
C)].

Since range(Sg
C)⊂C⊂ int(domg), we have 0∈ int[int(domg)−range(Sg

C)].
It follows that 0 ∈ int[range(∂g∗−Sg

C)]. Thus there exists x∗ ∈ int(domg∗)
such that ∂g∗(x∗) = Sg

C(x∗), this together with (4.5) implies that Qg
C(x) = x,

where x = ∂g∗(x∗). Hence C must be a singleton.

Let IC denote the indicate function of the set C, that is,

IC(x) :=

{
0 for each x ∈ C,

+∞ for each x ∈ X \ C.

It will be convenient to define the function g# on X defined by g#(x) = g(−x)
for each x ∈ X.

Lemma 4.1. Let x∗ ∈ domg∗. Then the following assertions hold.

(4.8) (−g# + I−C)∗(x∗) = V
g
C(x∗) − g∗(x∗);

(4.9) −S
g
C(x∗) ⊂ ∂(−g# + I−C)∗(x∗).

Consequently, if g is 1-coercive, then (4.8) holds for each x ∗ ∈ X∗.
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Proof. We observe that

(4.10)

V g
C(x∗) = sup

x∈C
{g(x) + g∗(x∗) − 〈x∗, x〉}

= g∗(x∗) + sup
x∈X

{〈x∗,−x〉 − (−g(x) + IC(x))}
= g∗(x∗) + sup

x∈X
{〈x∗, x〉 − (−g(−x) + I−C(x))}

= g∗(x∗) + (−g# + I−C)∗(x∗).

Hence (4.8) is proved.
To show (4.9), we first note that the following equivalences for x ∈ −C:

x ∈ (∂(−g# + I−C))−1(x∗) ⇔ x∗ ∈ ∂(−g# + I−C)(x)
⇔ −g(−x)+I−C(x)+(−g# + I−C)∗(x∗) = 〈x∗, x〉
⇔ −g(−x) + I−C(x) + V g

C(x∗)− g∗(x∗) = 〈x∗, x〉
⇔ W g(−x, x∗) = V g

C(x∗)
⇔ −x ∈ Sg

C(x∗).

Now, let x ∈ −Sg
C(x∗). Then x ∈ (∂(−g# + I−C))−1(x∗) and hence x∗ ∈

∂(−g# + I−C)(x). By (2.2),

(−g# + I−C)∗(x∗) + (−g# + I−C)(x) = 〈x∗, x〉.

since (−g# + I−C)∗∗(x) ≤ (−g# + I−C)(x), we have

(4.11) (−g# + I−C)∗∗(x) + (−g# + I−C)∗(x∗) ≤ 〈x∗, x〉

and hence
(−g# + I−C)∗∗(x) + (−g# + I−C)∗(x∗) = 〈x∗, x〉

because the converse inquality of (4.11) holds automatically. This implies that
x ∈ ∂(−g# + I−C)∗(x∗) and completes the proof.

The main results are given in the following theorems.

Theorem 4.1. Suppose that X is a reflexive Banach space and g is a 1-coercive,
essentially smooth function. Let C ⊂ int(domg) be such that Q g

C(x) �= ∅ for each
x ∈ int(domg). Then following conditions are equivalent.

(i) The set C is singleton.
(ii) The set C is D-maximally approximately compact and D-Klee.
(iii) The operator −Qg

C ◦∇g∗(= −Sg
C) is single-valued and continuous on X ∗.
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(iv) The operator −Qg
C ◦ ∇g∗ is maximal monotone.

Furthermore, if g is additionally essentially strictly convex, then each of
assertions (i)-(iv) is equivalent to the following one:

(v) F g
C ◦ ∇g∗(= V g

C) is Gâteaux differentiable on int(domg ∗).

Proof. The implication (i)=⇒(ii) is trivial. The implication (ii)=⇒(iii) follows
from Corollary 3.1 and Proposition 4.3(i); while the implications (iii)=⇒(iv)=⇒(i)
follow from Proposition 4.2 and Proposition 4.3(iii).

Suppose that g is additionally essentially strictly convex. Then g∗ is essentially
smooth by Proposition 4.1 and so Gâteaux differentiable on dom(∂g∗). Moreover,
by Remark 4.2(c), ∇g(int domg) = dom(∂g∗) = X∗ and F g

C ◦ ∇g∗ = V g
C . By

hypothesis Qg
C(x) �= ∅ for each x ∈ int(domg), it follows that Sg

C(x∗) = Qg
C ◦

∂g∗(x∗) �= ∅ for every x∗ ∈ X∗ by (4.2). Note that (4.8) holds for each x∗ ∈ X∗ by
Lemma 4.1. One has that V g

C is Gâteaux differentiable on int(domg∗) = X∗ if and
only if so is (−g#+I−C)∗. This together with (4.9) implies that (v) is equivalent to
−Sg

C = ∂(−g# + I−C)∗, which is in turn equivalent to −S g
C is maximal monotone

because ∂(−g# + I−C)∗ is maximal monotone extension of −Sg
C(x∗) by (4.9) and

Proposition 4.2. Hence the equivalence (iv) ⇐⇒ (v) is proved and completes the
proof.

Theorem 4.2. Suppose that X is a reflexive Banach space and g is 1-coercive,
essentially smooth and totally convex at any point of int(domg). Let C ⊆ int(domg)
be such that Qg

C(x) �= ∅ for each x ∈ int(domg).
(1) The following conditions are equivalent.

(i) The set C is singleton.
(ii) The set C is D-maximally approximately compact and D-Klee.
(iii) The operator −Qg

C ◦ ∇g∗(= −Sg
C) is single-valued and continuous on

X∗.
(iv) The operator −Qg

C ◦ ∇g∗ is maximal monotone.
(v) F g

C ◦ ∇g∗(= V g
C) is Gâteaux differentiable on int(domg ∗).

(vi) The function F g
C ◦ ∇g∗ is Fréchet differentiable on X ∗.

(2) If g is Fréchet differentiable on int(domg), then each of (i)-(vi) is equivalent
to the following one:

(vii) The operator Qg
C is single-valued and continuous on int(domg).

(3) If ∇g and ∇g∗ are Fréchet differentiable respectively on int(domg) and
int(domg∗), then each of (i)-(vii) is equivalent to the following one:

(viii) The function F
g
C is Fréchet differentiable on int(domg).
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Proof. (1) By Theorem 4.1, the assertions (i)-(v) are equivalent. To show
the equivalence between (iv) and (vi), we note that g∗ is Fréchet differentiable
on dom(∂g∗) by Proposition 2.4. Thus the same argument for the proof of the
equivalence (iv)⇐⇒(v) in Theorem 4.1 shows that (iv) and (vi) are equivalent.
Hence (1) is proved.

(2) Suppose that g is Fréchet differentiable on int(domg). Then, by Propositions
2.3 and 2.4, ∇g and ∇g∗ are continuous respectively on int(domg) and
int(domg∗). Since Qg

C = (Qg
C ◦∇g∗) ◦∇g, it follows that (iii)⇐⇒(vii) and

the proof of (2) is complete.

(3) Finally, suppose that ∇g and ∇g∗ are Fréchet differentiable respectively on
int(domg) and int(domg∗). Since F g

C = (F g
C ◦ ∇g∗) ◦ ∇g, we have that

(vi)⇐⇒(viii) and complete the proof.

Applying above Theorem 4.2 to the Euclidean space Rn, we immediately have
the following corollary, which extends and improves the corresponding one in [5].

Corollary 4.1. Let X = R
n and suppose that g : Rn → R be Legendre and

1-coercive. Let C ⊂ int(domg) be a nonempty closed set. Then the following
assertions are equivalent.

(i) The set C is singleton.

(ii) The set C is D-Klee.

(iii) The operator Qg
C is continuous on int(domg).

(iv) The operator −Qg
C ◦ ∇g∗ is maximal monotone.

(v) The function F g
C ◦ ∇g∗ is differentiable on X ∗.

If, in addition, g is second order continuously differentiable on int(domg),
and ∇2g(x) is positive definite for every x ∈ int(domg), then each of (i)-(v)
is equivalent to the following one:

(vi) The function F g
C is differentiable on int(domg).

Proof. We need only prove that if g is second order continuously differentiable
on int(domg), and for every x ∈ int(domg), ∇2g(x) is positive definite, then ∇g∗

is differentiable on int(domg∗). In fact, since g is Legendre, by Remark 4.2(d),
∇g : int(domg) → int(domg∗) is bijective, and ∇g∗ = (∇g)−1. Since g is second
order continuously differentiable on int(domg), and for every x ∈ int(domg),
∇2g(x) is positive definite, by the well known inverse theorem, ∇g∗ = (∇g)−1 is
continuously differentiable on int(domg∗).
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Consider the significant particular case when g = g2. Let J : X ⇒ X∗ and
J∗ : X∗ ⇒ X be the normlized duality mappings, i.e.,

J(x) : = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2},
J∗(x∗) : = {x ∈ X : 〈x∗, x〉 = ‖x∗‖2 = ‖x‖2}.

It is well known that when X is a reflexive smooth and strictly convex Banach
space, J is bijective and J−1 = J∗.

Corollary 4.2. Suppose that X is a reflexive, smooth and strictly convex Banach
space. Suppose that C is D-Klee subset of X with respect to the function g 2. Then
the following statements are equivalent.

(i) The set C is singleton.
(ii) The set C is D-maximally approximately compact.
(iii) The operator Qg2

C ◦ J∗ is continuous on X ∗.
(iv) The operator −Qg2

C ◦ J∗ is maximal monotone.
(v) The function F g2

C ◦ J∗ is Gâteaux differentiable on X ∗.

Moreover, if X is locally totally convex, then (i)-(v) are equivalent to the
following assertions:

(iv) The function F
g2

C ◦ J∗ is Fréchet differentiable on X ∗.

Proof. Since X is smooth if and only if ∂g2 = J is single-valued. It is clear
that domJ = int(domg2) = X. Hence g2 is essentially smooth. By Lemma 5.8 in
[2], X is strictly convex if and only if g2 is essentially strictly convex.

Moreover, the local total convexity of X implies that g2 is totally convex at any
point of X . Hence the result follows from Theorem 4.2.
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