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GENERALIZED CONSTRAINTS QUALIFICATION CONDITIONS AND
INFINITE DIMENSIONAL DUALITY

Giovanna Idone and Antonino Maugeri

Abstract. Following the papers [7, 8, 9] and [19], the strong duality between a
convex optimization problem with both cone and equality constraints is further
studied by means of the concepts of normal cone and of quasi relative interior.
In such a way the difficulty that often the ordering cone has empty interior is
overcome.

1. INTRODUCTION

In the papers [7, 8, 9] and [19] the authors present an infinite dimensional
duality theory which, with the aid of generalized constraints qualification assump-
tions related to the notion of quasi relative interior called Assumption S ([7, 8])
and Assumption N ([9, 19]), guarantees the existence of strong duality between
a convex optimization problem and its Lagrange dual. The use of quasi rela-
tive interior, introduced by Borwein and Lewis [2], and the notions of tangent
and normal cone, allows to overcome the difficulty that in many cases the inte-
rior of the set involved in the regularity condition is empty. This is the case of
all the Optimization Problems or Variational Inequalities connected with network
equilibrium problems, the obstacle problem, the elastic-plastic torsion problem (see
[1, 5, 6, 10, 12, 13, 14, 15, 17, 18, 20]) which use positive cones of Lp(Ω) or
of Sobolev spaces. Then the usual interior conditions, as the core, the intrinsic
core or the strong-quasi relative interior condition (see [22]) are not suitable for our
problem because, for example, the strong-quasi relative interior of the positive cone
of Lp(Ω), namely the most general condition among the above mentioned ones, is
empty. Also the result of Jeyakumar and Wolkowicz [16] which uses the notion of
quasi relative interior, however requires that the cone defining the constraints has a
non empty interior.
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The convex optimization problem and its Lagrange dual we are concerning with
are the following. Given f : S → R, g : S → Y, h : S → Z, where S is a convex
subset of a real linear topological space X, Y is a real normed space ordered by
a convex cone C, Z is a real normed space and h is an affine-linear mapping, we
consider the optimization problem:

f(x0) = min
x∈K

f(x), Problem 1

with
K = {x ∈ S : g(x) ∈ −C, h(x) = θZ}

and the Lagrange dual problem:

max
u∈C∗
v∈Z∗

inf
x∈S

[f(x) + 〈u, g(x)〉+ 〈v, h(x)〉], Problem 2

where
C∗ = {u ∈ Y ∗ : 〈u, y〉 ≥ 0, ∀y ∈ C} .

Now let us recall the main concepts which we need in order to present the duality
results.

Given a point x ∈ X and a subset C of X , the set

TC(x) =
{
h ∈ X : h = lim

n→∞ λn(xn − x), λn ∈ R and λn > 0 ∀n ∈ N,

xn ∈ C, ∀n ∈ N and lim
n
xn = x

}
is called the tangent cone to C at x. Of course, if TC(x) �= ∅, then x ∈ cl C. If
x ∈ cl C and C is convex, then we have:

TC(x) = cl cone (C − {x}) ,
where

cone (C) = {λx : x ∈ C, λ ∈ R, λ ≥ 0} .
Following Borwein and Lewis (see [2]), we give the following definition of quasi-
relative interior for a convex set.

Definiton 1.1. Let C be a convex subset of X. The quasi-relative interior of C,
denoted by qri C, is the set of those x ∈ C for which TC(x) is a linear subspace
of X.

If we define the normal cone to C at x by

NC(x) = {ξ ∈ X∗ : 〈ξ, y − x〉 ≤ 0, ∀y ∈ C} ,
where X∗ is a topological dual space of X , the following result holds true.
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Proposition 1.1. Let C be a convex subset of X and x ∈ C. Then x ∈ qri C
if and only if NC(x) is a linear subspace of X ∗.

The first theorem on duality is the following (see [9]).

Theorem 1.1. Assume that the functions f : S → R, g : S → Y are convex and
that h : S → Z is an affine-linear mapping. Assume that the following Assumption
S is fulfilled at the extremal solution x 0 ∈ K to Problem 1, namely

T
M̃

(f(x0), θY , θZ)∩]−∞, 0[×θY × θZ = ∅, Assumption S

where

M̃ = {(f(x) + α, g(x) + y, h(x)) : x ∈ S \ K, α ≥ 0, y ∈ C} .

Then also Problem 2 is solvable and if ū ∈ C ∗, v̄ ∈ Z∗ are the optimal points to
Problem 2, we have:

〈ū, g(x0)〉 = 0

and the optimal values of the two problems are equal, namely

f(x0) = f(x0) + 〈u, g(x0)〉+ 〈v, h(x0)〉
= max

u∈C∗
v∈Z∗

inf
x∈S

[f(x) + 〈u, g(x)〉+ 〈v, h(x)〉].(1)

Next, in [9], it is also proved the following result based on the notion of normal
cone.

Theorem 1.2. Let f : S → R, g : S → Y , h : S → Z be three functions such
that the following assumption holds:

∃ x̄ ∈ K, ∃ (ξ̂, ŷ∗, ẑ∗) ∈ NM(0, θY , θZ) such that

ξ̂(f(x̄) − f(x0)) + 〈ŷ∗, g(x̄)〉+ 〈ẑ∗, h(x̄)〉 < 0 Assumption N

where

M = {(f(x)− f(x0) + α, g(x) + y, h(x)), x ∈ S, α ≥ 0, y ∈ C}

and x0 ∈ K is the optimal solution to Problem 1. Then Problem 2 is solvable and
the optimal values of both problems are equal.
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Assumption S, besides the strong duality result, guarantees that the point (0, θY , θZ)
does not belong to qri M , namely that TM(0, θy, θZ) or NM(0, θY , θZ) are not lin-
ear subspaces.

In turns, also Assumption N is strictly connected with the qri M notion. In
fact, if Assumption N holds, then there exists a point ( ξ̂, ŷ∗, ẑ∗) ∈ NM(0, θY , θZ)
with ξ̂ �= 0 and NM(0, θY , θZ) is not a linear subspace (see Section 3). Then, if
M is convex, namely for instance if f and g are convex and h is affine-linear,
also the tangent cone TM(0, θY , θZ) (see Proposition 1.1) is not a linear subspace
and (0, θY , θZ) /∈ qri M . Vice versa, if (0, θY , θZ) /∈ qri M, NM(0, θY , θZ)
cannot be a linear subspace and there exists (ξ̂, ŷ∗, ẑ∗) �= (0, θY ∗ , θZ∗) such that
(ξ̂, ŷ∗, ẑ∗) ∈ NM(0, θY , θZ). However, in order to obtain the strong duality result
we need that ξ̂ �= 0, therefore it is necessary to make some additional assumptions.
In Section 2, we will prove the following result, which is slightly different from
Theorem 1.2.

Theorem 1.3. Let f : S → R, g : S → Y , h : S → Z be three functions with h
affine-linear. Let us assume that S is a linear subspace of X , cl (C − C) = Y , cl
h(S−S) = Z and there exists x̂ ∈ S with g(x̂) ∈ −qri C and h(x̂) = θZ . If there
exists (ξ̂, y∗, z∗) ∈ NM(0, θY ∗ , θZ∗) with (ξ̂, y∗, z∗) �= (0, θY ∗ , θZ∗) and Problem
1 is solvable, also Problem 2 is solvable and the optimal values of both problems
are equal.

In Section 3, we point out the reason for which the strong duality result is
connected with the normal cone and hence with the tangent cone and the quasi
relative interior of M . In fact, let us denote by u ∈ C∗ and z ∈ Z∗ the optimal
points of Problem 2. We will show the following result.

Theorem 1.4. The strong duality between Problem 1 and Problem 2 (Lagrange
dual) holds if and only if (−1,−u,−v) belongs to the normal cone NM(0, θY , θZ).

In Section 4, we study the duality for various infinite-dimensional equilibrium
problems and it is worth mentioning that Assumption S is the most effective for the
applications, whereas the other assumptions have only a theoretical interest.

2. PROOF OF THEOREM 1.3

First we report, for the reader’s convenience, the proof of the sign property of
the points of NM(0, θY , θZ) (see [9], Sec. 4). The points (ξ, ỹ, z̃) ∈ R × Y ∗ × Z∗

of the cone NM(0, θY , θZ) are such that:

(2)
ξ(f(x) − f(x0) + α) + 〈ỹ, g(x) + y〉 + 〈z̃, h(x)〉 ≤ 0

∀x ∈ S, ∀α ≥ 0, ∀y ∈ C.
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Assuming in (2) x ∈ K, α = 0 and y = −g(x) ∈ C, we get:

ξ(f(x) − f(x0)) ≤ 0, ∀x ∈ K,

and hence we obtain:

(3) ξ ≤ 0.

Now, choosing in (2) x = x0, α = 0 and y = −g(x0) + z ∈ C ∀z ∈ C, we get:

〈ỹ, z〉 ≤ 0, ∀z ∈ C,

namely

(4) ỹ ∈ C−.

Then, each point (ξ, ỹ, z̃) of NM(0, θY , θZ) is such that ξ ≤ 0 and ỹ ∈ C− and,
if NM(0, θY , θZ) contains some points (ξ, ỹ, z̃), with ξ �= 0 or ỹ �= θY ∗ , it cannot
be a linear subspace.

Now, let us pass to the proof of Theorem 1.3. From the assumptions there exists
(ξ̂, y∗, z∗) ∈ NM(0, θY ∗ , θZ∗) with (ξ̂, y∗, z∗) �= (0, θY ∗ , θZ∗). Then (ξ̂, y∗, z∗)
verifies (2), (3) and (4). We recall that 〈−y∗, g(x0)〉 = 0. In fact, choosing
x = x0, y = θY and α = 0, from (2) we get

〈y∗, g(x0)〉 ≤ 0.

Because g(x0) ∈ −C, it follows

〈y∗, g(x0)〉 ≥ 0

and hence the claim.
Then, from (2) written for ξ = ξ̂, ỹ = y∗, z̃ = z∗, we get

(5)
ξ̂(f(x)− f(x0) + α) + 〈y∗, g(x) + y〉 + 〈z∗, h(x)〉 ≤ 0,

∀x ∈ S, ∀α ≥ 0, ∀y ∈ C.

Let us prove that ξ̂ < 0. Assume that ξ̂ = 0. From (5), when y = θY , we get

(6) 〈y∗, g(x)〉+ 〈z∗, h(x)〉 ≥ 0 ∀x ∈ S.

By assumption, ∃x̂ ∈ S such that

−g(x̂) ∈ qri C, h(x̂) = θZ
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and, this fact, taking into account that in virtue of (6) it results that 〈y ∗, g(x̂)〉 ≤ 0,
leads to 〈y∗, g(x̂)〉 = 0. Therefore

〈y∗, y + g(x̂)〉 ≤ 0 ∀y ∈ C

and then −y∗ ∈ NC(−g(x̂)).
In virtue of Proposition 1.1, also −y∗ ∈ NC(−g(x̂)) and 〈y∗, y〉 ≥ 0 ∀y ∈ C.

This implies 〈y∗, C〉 = 0 and 〈y∗, cl (C −C)〉 = 0, namely y∗ = θY ∗ . Now let us
prove that also z∗ must be θZ∗ . From (5) we get, being µ = 0, y∗ = θY ∗

(7) 〈z∗, h(x)〉 ≤ 0 ∀x ∈ S

and, taking into account that h(x̂) = 0 and that S is a linear subspace, we obtain

−h(x) = h(−x+ 2x̂) ∀x ∈ S,

and hence
〈z∗, h(−x+ 2x̂)〉 = −〈z∗, h(x)〉 ≥ 0, ∀x ∈ S.

Then it results that
〈z∗, h(x)〉 = 0 ∀x ∈ S

and also

〈z∗, h(S)〉 = 0, 〈z∗,−h(S)〉 = 0, 〈z∗, h(S)− h(S)〉 = 0, 〈z∗, cl h(S − S)〉 = 0,

namely, since it is cl h(S − S) = Z by assumption, it turns out to be z∗ = θZ∗ . In
such a way we obtain (ξ̂, y∗, z∗) = (0, θY ∗ , θZ∗) that is an absurdity. Consequently,
it is ξ̂ > 0 and from (5) for α = 0 and y = θY we get:

(8) f(x0) ≤ f(x) − 1
ξ̂
〈y∗, g(x)〉 − 1

ξ̂
〈z∗, h(x)〉 ∀x ∈ S.

Setting ū = −1
ξ̂
y∗ ∈ C∗, v̄ = −1

ξ̂
z∗ ∈ Z∗ and having in mind that 〈ū, g(x0)〉 = 0

and 〈v̄, h(x0)〉 = 0, we obtain

inf
x∈S

[f(x) + 〈ū, g(x)〉+ 〈v̄, h(x)〉] ≥ f(x0) + 〈ū, g(x0)〉+ 〈v̄, g(x0)〉.

But, taking into account that 〈u, g(x0)〉 ≤ 0 ∀u ∈ C∗ and 〈v, h(x0)〉 = 0 ∀v ∈ Z∗,
it results

inf
x∈S

[f(x) + 〈u, g(x)〉+ 〈v, h(x)〉] ≤ f(x0) + 〈u, g(x0)〉 + 〈v, h(x0)〉 ≤ f(x0)

∀u ∈ C∗, ∀v ∈ Z∗.
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Then

sup
u∈C∗
v∈Z∗

inf
x∈S

[f(x) + 〈u, g(x)〉+ 〈v, h(x)〉] ≤ f(x0) + 〈ū, g(x0)〉 + 〈v̄, h(x0)〉

from which we deduce

f(x0) + 〈ū, g(x0)〉+ 〈v̄, h(x0)〉 ≤ sup
u∈C∗
v∈Z∗

inf
x∈S

[f(x) + 〈u, g(x)〉+ 〈v, h(x)〉]

≤ f(x0) + 〈ū, g(x0)〉+ 〈v̄, h(x0)〉,
namely

f(x0) = f(x0) + 〈ū, g(x0)〉+ 〈v̄, h(x0)〉
= max

u∈C∗
v∈Z∗

inf
x∈S

[f(x) + 〈u, g(x)〉+ 〈v, h(x)〉]

and the assert is proved.

3. PROOF OF THEOREM 1.4

Let us assume that the strong duality (1) holds. Then, we have the following
inequality:

(9) f(x) + 〈u, g(x)〉+ 〈v, h(x)〉 ≥ f(x0) + 〈u, g(x0)〉 + 〈v, h(x0)〉, ∀x ∈ S,

form which we get

(10)
−(f(x) − f(x0) + α) + 〈−u, g(x) + y〉 + 〈−v, h(x)〉 ≤ 0,

∀α ≥ 0, x ∈ S, y ∈ C,

because 〈u, g(x0)〉 = 0, 〈v, h(x0)〉 = 0 and 〈u, y〉 ≥ 0, ∀y ∈ C. But (10) means
that (−1,−u,−v) ∈ NM (0, θY , θZ).

Vice versa, if (−1,−u,−v) ∈ NM(0, θY , θZ) then we have (10). Assuming
α = 0, x = x0 and y = −g(x0) + z, ∀z ∈ C, being −g(x0) ∈ C and C a convex
cone, we get y ∈ C and we have

〈−u, z〉 ≤ 0, ∀z ∈ C,

namely
u ∈ C∗.

Moreover, from (10) assuming α = 0, x = x0 and y = 0, using the usual technique,
we get
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〈u, g(x0)〉 = 0.

Finally, from (10) we have

f(x) + 〈u, g(x)〉+ 〈v, h(x)〉 ≥ f(x0), ∀x ∈ S,

from which (see Proof of Theorem 1.1 in [9]), the strong duality result follows.

4. APPLICATIONS TO DYNAMIC EQUILIBRIUM PROBLEMS

The aim of this section is to show the effectiveness of Assumption S in the
applications. In paper [9] the validity of Assumption S has been shown for the
archetype problem which models all the equilibrium problems (see [5, 6, 10, 11, 12,
13, 14, 15, 17, 18, 20]), that is the variational inequality

(11)
∫ T

0
〈C(x0(t)), x(t)− x0(t)〉 dt ≥ 0 ∀x ∈ K,

where

K =
{
x ∈ L2([0, T ],Rm) : x(t) ≥ 0, Φx(t) = ρ(t) a.e. in [0, T ]

}
,

with ρ ∈ L2([0, T ],Rl), ρ(t) > 0 a.e. in [0, T ], Φ = {Φij} i=1,...,l
j=1,...,m

, Φij ∈
{0, 1}, and in each column there is one entry different from zero and C : K →
L2([0, T ],Rm) is the cost trajectory.

Here, we would like to show that Assumption S is verified by the variational
inequality which expresses the dynamic Cournot-Nash equilibrium, namely the dy-
namic oligopolistic market equilibrium problem (see [1]):

(12) Find x∗ ∈ K : −∇v(t, x∗(t)), x− x∗ �≥ 0 ∀x ∈ K

where

K = {x ∈ L2([0, T ],Rm) : 0 ≤ λ(t) ≤ x(t) ≤ µ(t) a.e. in [0, T ]}.

The function vi(t, x(t)) ∈ C1([0, T ],Rm), i = 1, . . . , m, and such that

‖vi(t, x(t))‖ ≤ A(t)‖x(t)‖+ B(t),

is the profit of the firm Pi at time t ∈ [0, T ]. In the paper [1] the following Lemma
is proved.

Lemma 4.1. Let x∗ ∈ K be a solution to the variational inequality (12). Then,
setting for i = 1, . . . , m
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Ei− = {t ∈ [0, T ] : x∗i (t) = λi(t) a.e. in [0, T ]},
Ei

0 = {t ∈ [0, T ] : λi(t) < x∗i (t) < µi(t) a.e. in [0, T ]},
Ei

+ = {t ∈ [0, T ] : x∗i (t) = µi(t) a.e. in [0, T ]},
we have:

−∂v(t, x
∗(t))

∂xi
≥ 0 a.e. in Ei

−,

∂v(t, x∗(t))
∂xi

= 0 a.e. in Ei
0,

−∂v(t, x
∗(t))

∂xi
≤ 0 a.e. in Ei

+.

Now, let us rewrite Problem (12) in a more suitable form. If x∗ ∈ K is a solution
to variational inequality (12) and we set

ψ(x) = ∇v(x∗), x− x∗ �, ∀x ∈ K,

we get
ψ(x) ≥ 0 ∀x ∈ K

and x∗ is a minimal solution of the problem

(13) min
x∈K

ψ(x) = ψ(x∗) = 0.

With the aid of this Lemma we can show the following theorem:

Theorem 4.1. Problem (13) verifies Assumption S.

Proof. Let us recall that

T
M̃

(ψ(x∗), θL2([0,T ],Rm), θL2([0,T ],Rm))

=
{
y : y = lim

n→+∞ λn

[(
ψ(xn) + αn,−xn + λ+ yn,

−µ+ xn + zn

)
−

(
ψ(x∗), θL2([0,T ],Rm), θL2([0,T ],Rm)

)]
,with λn > 0,

θL2([0,T ],Rm) = lim
n→+∞ λn(λ− xn + yn),

θL2([0,T ],Rm) = lim
n→+∞ λn(xn − µ+ zn),

θL2([0,T ],Rm) = lim
n→+∞(ψ(xn) + αn),

θL2([0,T ],Rm) = lim
n→+∞(λ− xn + yn),

θL2([0,T ],Rm) = lim
n→+∞(xn − µ+ zn),

xn ∈ L2([0, T ],Rm) \ K, αn ≥ 0, yn, zn ∈ C
}
,
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where C is the ordering cone in L2([0, T ],Rm). In order to achieve Assumption S,
we prove that, if (l, θL2([0,T ],Rm), θL2([0,T ],Rm)) belongs to T

M̃
(ψ(x∗), θL2([0,T ],Rm),

θL2([0,T ],Rm)), then l ≥ 0. It results:

l = lim
n→+∞ λn

( m∑
i=1

∫ T

0

∂v(t, x∗(t))
∂xi

(xn
i (t) − x∗i (t))dt+ αn

)

≥ lim
n→+∞ λn

( m∑
i=1

∫
Ei

−

∂v(t, x∗(t))
∂xi

(xn
i (t) − λi(t))dt

+
m∑

i=1

∫
Ei

0

∂v(t, x∗(t))
∂xi

(xn
i (t)− x∗i (t))dt

+
m∑

i=1

∫
Ei

+

∂v(t, x∗(t))
∂xi

(xn
i (t) − µi(t))dt

)
.

Furthermore we remark that

lim
n→+∞ λn

m∑
i=1

∫
Ei

−

∂v(t, x∗(t))
∂xi

(xn
i (t)− λi(t))dt

= lim
n→+∞ λn

[ m∑
i=1

( ∫
Ei−

∂v(t, x∗(t))
∂xi

(xn
i (t)− λi(t) − yn

i (t))dt

+
∫

Ei
−

∂v(t, x∗(t))
∂xi

yn
i (t)dt

)]
≥ 0

because

lim
n→+∞(xn

i (t) − λi(t) − yn
i (t)) = θL, yn

i (t) ≥ 0, λn ≥ 0.

Moreover we have

lim
n→+∞ λn

m∑
i=1

∫
Ei

0

∂v(t, x∗(t))
∂xi

(xn
i (t) − x∗i (t))dt = 0

and, finally,

lim
n→+∞ λn

m∑
i=1

∫
Ei

+

∂v(t, x∗(t))
∂xi

(xn
i (t) − µi(t))dt

= lim
n→+∞ λn

m∑
i=1

∫
Ei

+

∂v(t, x∗(t))
∂xi

(xn
i (t) + zn

i (t) − µi(t) − zn
i (t))dt

= lim
n→+∞

m∑
i=1

∫
Ei

+

∂v(t, x∗(t))
∂xi

λn(xn
i (t) + zn

i (t) − µi(t))dt

+ lim
n→+∞λn

m∑
i=1

∫
Ei

+

∂v(t, x∗(t))
∂xi

(−zn
i (t))dt ≥ 0
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because

lim
n→+∞ λn(xn

i (t) + zn
i (t) − µi(t)) = 0, λn ≥ 0, zn

i ≥ 0.

Hence the Assumption S holds.

Finally we recall that Assumption S guarantees the existence of the Lagrange
multiplier associated to the elastic-plastic torsion problem (see [3, 4, 8, 21]).
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