
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 13, No. 5, pp. 1609-1622, October 2009
This paper is available online at http://www.tjm.nsysu.edu.tw/

AN INTERPOLATION THEOREM RELATED TO THE HARDY SPACE
WITH NON-DOUBLING MEASURE

Guoen Hu1, Jiali Lian and Huoxiong Wu2,∗

Abstract. Let µ be a nonnegative Radon measure satisfying the growth con-
dition that µ(B(x, r)) ≤ Crn for any x ∈ R

d and r > 0 and some fixed
positive constants C and n with 0 < n ≤ d. Let H1,∞

atb (µ) be the Hardy
space associated with µ which was introduced by Tolsa. In this paper, a new
interpolation theorems related to H1,∞

atb (µ) is established and the interpolation
theorem of Tolsa is improved.

1. INTRODUCTION

During the last decade, considerable attention has been paid to the study of
function spaces and boundedness of operators on these space (see [1-9]). Let µ be
a nonnegative Radon measure on R

d which only satisfies the following growth con-
dition: there exist constants C0 >0 and n∈(0, d] such that for all x∈Rd and r>0,

(1.1) µ
(
B(x, r)

) ≤ C0r
n,

where B(x, r) is the open ball centered at some point x ∈ Rd and having radius
r. The measure µ in (1.1) is not assumed to satisfy the doubling condition which
is a key assumption in the analysis on spaces of homogeneous type. We recall that
µ is said to satisfy the doubling condition if there exists some constant C > 0
such that µ(B(x, 2r)) ≤ Cµ(B(x, r)) for all x ∈ Rd and r > 0. Some important
non-doubling measures as in (1.1) and the motivation for developing the analysis
related to such measures can be found in [9], see also [4]. We only point out
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that the analysis with non-doubling measures plays an essential role in solving the
long-standing open Painlevé’s problem by Tolsa in [8].

In his remarkable work [6], Tolsa found a suitable substitute for the classical
BMO space when the underlying measure satisfies (1.1), RBMO(µ). The space
RBMO(µ) enjoys the properties which are parallel to those of the space BMO(Rd),
for example, RBMO(µ) is big enough so that a L2(µ) bounded Calderón-Zygmund
operator is also bounded from L∞(µ) to RBMO(µ), and small enough to satisfy the
properties (such as John-Nirenberg inequality) of the classical BMO space. Also,
Tolsa established the following interpolation theorem (see [6, p. 131]).

Theorem 1. Let T be a linear operator which is bounded from H 1,∞
atb (µ)

to L1(µ), and bounded from L∞(µ) to RBMO(µ). Then for any p ∈ (1, ∞), T

extends boundedly to Lp(µ), where H
1,∞
atb (µ) is the atomic Hardy space with the

measure µ in (1.1), see Definition 1 below.

The main purpose of this paper is to establish a new interpolation theorem
related to H1,∞

atb (µ) which improves Tolsa’s interpolation theorem above. To states
our main results, we first give some definitions and notation.

By a cube Q ⊂ R
d we mean a closed cube with sides parallel to the axes and

centered at some point of supp µ. We denote its side length by l(Q). Given α > 1
and β > αn, we say that Q is (α, β)-doubling if µ(αQ) ≤ βµ(Q), where αQ
is the cube concentric with Q with side length αl(Q). It was pointed by Tolsa in
[5] that there are a lot of “big” doubling cubes. To be precise, given any point
x ∈ supp(µ) and c > 0, there exists some (α, β)-doubling cube Q centered at x

with l(Q) ≥ c due to the growth condition (1.1). On the other hand, if β > αd,
then for µ−a. e. x ∈ R

d, there exists a sequence of (α, β)-doubling cubes {Qi}i∈N

centered at x with l(Qi) → 0 as i → ∞. In what follows, for definiteness, if α and
β are not specified, by a doubling cube we mean (2, 2d+1)-doubling cube. Given
two cubes Q1 ⊂ Q2, set

KQ1,Q2 = 1 +
NQ1, Q2∑

k=1

µ(2kQ1)
[l(2kQ1)]n

,

where NQ1, Q2 is the first positive integer k such that l(2kQ1) ≥ l(Q2); see [6] for
some basic properties of KQ1, Q2 .

Given a cube Q ⊂ R
d, let Q̃ be the smallest doubling cube in the sequence

{2kQ}k≥0, and by mQ(f) the mean value of f on Q, namely,

mQ(f) =
1

µ(Q)

∫
Q

f(x) dµ(x).

The sharp maximal operator associated with the measure µ in (1.1) is defined by
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M �f(x) = sup
Q�x

1
µ( 3

2Q)

∫
Q
|f(y) − m

Q̃
f |dµ(y) + sup

R⊃Q�x

Q, R doubling

|mQf − mRf |
KQ,R

.

Definition 1. Let ρ > 1 and 1 < p ≤ ∞. A function b ∈ L1
loc(µ) is called a

p-atomic block if

(1) there exists some cube R such that supp b ⊂ R,

(2)
∫

Rd

b(x) dµ(x) = 0,

(3) for j = 1, 2, there are functions aj supported on cubes Qj ⊂ R and numbers
λj ∈ R such that b = λ1a1 + λ2a2, and

‖aj‖Lp(µ) ≤
[
µ(ρQj)1−1/pKQj, R

]−1
.

Then we define
|b|

H1,p
atb (µ)

= |λ1| + |λ2|.

We say that f ∈ H1, p
atb (µ) if there are p-atomic blocks {bi}i∈N such that

f =
∞∑
i=1

bi

with
∑∞

i=1 |bi|H1, p
atb (µ)

< ∞. The H1, p
atb (µ) norm of f is defined by

‖f‖H1, p
atb (µ) = inf

{∑
i

|bi|H1, p
atb (µ)

}
,

where the infimum is taken over all the possible decompositions of f in atomic
blocks.

The space H1,∞
atb (µ) was introduced by Tolsa in [6], and further considered

by Tolsa in [7]. Moreover, it was proved by Tolsa in [6, 7] that the definition
of H1, p

atb (µ) is independent of the chosen constant ρ > 1. Moreover, for any p ∈
(1, ∞),

H1, p
atb(µ) = H1,∞

atb (µ)

with equivalent norms.
Our main result can be stated as follows.

Theorem 2. Let T be an operator which satisfies that

(i) |Tf1 − Tf2| ≤ |T (f1 − f2)|;
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(ii) there is another operator T 1, which is bounded from Lp0(µ) to Lq0,∞(µ) for
some p0, q0 with p0 ≤ q0 and p0, q0 ∈ (1, ∞] such that for any bounded
function f with compact support,

M �(Tf)(x) ≤ CT1f(x);

(iii) for some q1 ∈ [1, ∞), T is bounded from H 1,∞
atb (µ) to Lq1,∞(µ), that is,

there is a constant C > 0, such that for any λ > 0 and any f ∈ H 1,∞
atb (µ),

µ({x ∈ R
d : |Tf(x)| > λ}) ≤ C

(
λ−1‖f‖

H1,∞
atb (µ)

)q1

.

Then for any p, q ∈ (1, ∞) with

1
p

= t +
1 − t

p0
,

1
q

=
t

q1
+

1 − t

q0
, t ∈ (0, 1),

T is bounded from Lp(µ) to Lq(µ).

2. PROOF OF THEOREM 2

We begin with the John-Strömberg sharp maximal operator with a measure in
(1.1), which was introduced in [1]. For a cube Q with µ(Q) �= 0, and a real-valued
locally integrable function f , mf(Q), the median value of f on the cube Q, is
defined to be one of numbers such that

µ({y ∈ Q : f(y) > mf(Q)}) ≤ 1
2
µ(Q)

and
µ({y ∈ Q : f(y) < mf (Q)}) ≤ 1

2
µ(Q).

For the case that µ(Q) = 0, we set mf (Q) = 0 for any real-valued locally integrable
function f . If f is complex-valued, the median value of f is defined by mf(Q) =
mRe(f)(Q) + imIm(f)(Q), where i2 = −1.

Let s ∈ (0, 2−d−2). For each fixed cube Q and a locally integrable function f ,
define m0, s; Q(f) by

(2.1)
m0, s; Q(f) = inf

{
t > 0 : µ

({y ∈ Q : |f(y)| > t}) < sµ
(

3
2Q

)}
when µ

(
Q

) �= 0,

and m0, s; Q(f) = 0 when µ(Q) = 0. The John-Strömberg maximal operatorM0, s,
and the doubling John-Strömberg maximal operatorMd

0, s, associated with measure
in (1.1) are defined by
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(2.2) M0, sf(x) = sup
Q�x

m0, s; Q(f), Md
0, sf(x) = sup

Q�x
Q doubling

m0, s; Q(f),

and the John-Strömberg sharp maximal operator M�
0, s is defined by

(2.3) M �
0, sf(x) = sup

Q�x
m0, s; Q

(
f − mf (Q̃)

)
+ sup

R⊃Q�x

Q, R doubling

|mf(Q) − mf (R)|
KQ,R

.

We then have

Lemma 1. Let 0 < s < 2−d−2. Then for any locally integrable function f
and any λ > 0,

(i) {x ∈ R
d : |f(x)| > λ} ⊂ {x ∈ R

d : Md
0, sf(x) ≥ λ} ∪ Θ with µ(Θ) = 0;

(ii)

µ
({

x ∈ R
d : M0, sf(x) > λ

}) ≤ Cs−1µ
({

x ∈ R
d : |f(x)| > λ

})
,

where C > 0 is a constant depending on d.

Proof. This lemma was essentially proved in [1]. For the sake of self-contained,
we present the proof here. Let Md be the maximal operator defined by

Mdf(x) = sup
Q�x

Qdoubling

1
µ(Q)

∫
Q
|f(y)| dµ(y).

By the Lebesgue differential lemma, we know that for µ almost x ∈ R
d,

|f(x)| ≤ Mdf(x)

and so

{x ∈ R
d : |f(x)| > λ} = {x ∈ R

d : χ{y∈Rd: |f(y)|>λ}(x) = 1}
⊂

{
x ∈ R

d : Md
(
χ{y∈Rd: |f(y)|>λ}

)
(x) > s2d+1

}
∪ Θ.

On the other hand, a straightforward computation leads to that

{x ∈ R
d : Md

(
χ{y∈Rd : |f(y)|>λ}

)
(x) > s2d+1

}
⊂ {x ∈ R

d : Md
0, sf(x) ≥ λ}.

The conclusion (i) then follows directly.
To prove (ii), for each fixed λ > 0 and r > 0, set

M r
0, sf(x) = sup

Q�x, l(Q)<r
m0, s; Q(f)
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and
Er, λ = {x ∈ R

d : M r
0, sf(x) > λ}.

For any fixed x ∈ Er, λ, there is a cube Qx containing x and l(Qx) < r, such that

µ({y ∈ Qx : |f(y)| > λ}) ≥ sµ(
3
2
Qx).

Applying the Besicovitch covering lemma, we can select N family of cubes
{Qk

j}1≤j≤N, k∈Λj from {Qx}x∈Er, λ
, such that

(a)

Er, λ ⊂
N⋃

j=1

⋃
k∈Λj

3
2
Qk

j ;

(b) there is a constant C > 0 such that for any fixed j, 1 ≤ j ≤ k,∑
k∈Λj

χQk
j
≤ C,

where N is the Besicovitch constant. It then follows that

µ(Er, λ) ≤
N∑

j=1

∑
k∈Λj

µ(
3
2
Qk

j )

≤ s−1
N∑

j=1

∑
k∈Λj

µ({y ∈ Qk
j : |f(y)| > λ})

≤ Cs−1µ({y ∈ R
d : |f(y)| > λ}).

Letting r → ∞ then leads to our desired conclusion.
To prove Theorem 2, we also need some preliminary lemmas.

Lemma 2. Let s ∈ (0, 2−d−2) and T be an operator which satisfies that

|Tf1(x)− Tf2(x)| ≤ |T (f1 − f2)(x)|.

There is a constant C > 0 such that for any f 1 and f2,

(2.4) M �
0, s[T (f1 + f2)](x) ≤ CM �(Tf1)(x) + CM0, s/2(Tf2)(x).



An Interpolation Theorem 1615

Proof. For any cube Q, a straightforward computation yields

m0, s; Q

(
T (f1 + f2) − mT (f1+f2)(Q̃)

)
≤ m0, s/2;Q

(
Tf1 − mTf1(Q̃)

)
+m0, s/2; Q

(
T (f1 + f2)− Tf1

)
+

∣∣∣mT (f1+f2)(Q̃)− mTf1(Q̃)
∣∣∣.

Note that for any cube I , locally integrable function h and constant c, mh(I)− c is
a median value of h − c on I , namely,

mh(I)− c = mh−c(I).

Thus, ∣∣∣mT (f1+f2)(Q̃) − mTf1(Q̃)
∣∣∣ ≤

∣∣∣mT (f1+f2)−mTf1
(Q̃)

(Q̃)
∣∣∣

≤ 2m
0, s; Q̃

(
T (f1 + f2) − mTf1(Q̃)

)
≤ 2m

0, s/2; Q̃

(
Tf1 − mTf1(Q̃)

)
+2m

0, s/2; Q̃

(
T (f1 + f2)− Tf1

)
,

where the second inequality follows from the fact that for any doubling cube I ,
locally integrable function h and s ∈ (0, 2−d−2),

|mh(I)| ≤ 2m0, s; I(h),

see [1, Lemma 2.5]. This in turn leads to that

m0, s; Q

(
T (f1 + f2) − mT (f1+f2)(Q̃)

)
≤ 3 inf

x∈Q
M

�
0, s/2(Tf1)(x)

+3 inf
x∈Q

M0, s/2(Tf2)(x).

On the other hand, we can verify that for any two doubling cubes Q ⊂ R,∣∣∣mT (f1+f2)(Q)− mT (f1+f2)(R)
∣∣∣ ≤ ∣∣∣mT (f1+f2)(Q)− mTf1(Q)

∣∣∣
+|mT (f1+f2)(R)− mTf1(R)

∣∣∣
+|mTf1(Q) − mTf1(R)|

≤ 2m0, s/2;Q

(
Tf1 − mTf1(Q)

)
+2m0, s/2;Q

(
T (f1 + f2) − Tf1

)
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+2m0, s/2; R

(
Tf1 − mTf1(R)

)
+2m0, s/2; R

(
T (f1 + f2)− Tf1

)
+|mTf1(Q)− mTf1(R)|

≤ 4 inf
x∈Q

M �
0, s/2(Tf1)(x) + 4 inf

x∈Q
M0, s/2(Tf2)(x)

+|mTf1(Q)− mTf1(R)|.
We then get that

M �
0, s[T (f1 + f2)](x) ≤ CM �

0, s/2
(Tf1)(x) + CM0, s/2(Tf2)(x).

Therefore, the proof of the estimate (2.4) can be reduced to proving that

(2.5) M �
0, sh(x) ≤ CM �h(x).

Let M � be the sharp maximal operator defined by

M �f(x) = sup
Q�x

1
µ
(

3
2Q

) ∫
Q

|f(y)− mf(Q̃)|dµ(y)

+ sup
R⊃Q�x

Q, R doubling

|mf(Q) − mf (R)|
KQ,R

.

Observe that for any cube Q

m0, s/2; Q

(
f − mf (Q̃)

) ≤ 2
sµ

(
3
2Q

) ∫
Q
|f(y) − mf (Q̃)|dµ(y).

It then follows that
M �

0, s/2f(x) ≤ 2s−1M �f(x).

Recall that for any cube I ,

1
µ(I)

∫
I
|f(y) − mf (I)| dµ(y) ≤ 1

µ(I)

∫
I
|f(y)− mI(f)| dµ(y)

(see [5, p. 115]). It then follows that

1
µ( 3

2Q)

∫
Q
|f(y) − mf (Q̃)| dµ(y) ≤ 1

µ( 3
2Q)

∫
Q
|f(y)− m

Q̃
(f)| dµ(y)

+
1

µ(Q̃)

∫
Q̃

|f(y)− mf (Q̃)| dµ(y)

≤ C inf
x∈Q

M �f(x).
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On the other hand, for any two doubling cubes Q and R, with Q ⊂ R,

|mf (Q)−mf(R)| ≤ |mQ(f)−mf(Q)|+ |mR(f)−mf(R)|+ |mQ(f)−mR(f)|
≤ 1

µ(Q)

∫
Q
|f(y)− mf (Q)| dµ(y)

+
1

µ(R)

∫
R
|f(y)− mf(R)| dµ(y) + |mQ(f) − mR(f)|

≤ CKQ, R inf
x∈Q

M �f(x).

Combining the last two estimates leads to that

M �f(x) ≤ CM �f(x),

and
M �

0,s[T (f1 + f2)](x) ≤ CM �
0, s

2
(Tf1)(x) + CM0, s

2
(Tf2)(x)

≤ 2s−1CM �(Tf1)(x) + CM0, s
2
(Tf2)(x)

≤ CM �(Tf1)(x) + CM0, s
2
(Tf2)(x),

then completes the proof of Lemma 2.

Lemma 3. Let T , T1, T2 be three operators such that for any x ∈ R
d,

|T (f1 + f2)(x)| ≤ |T1f1(x)|+ |T2f2(x)|.

Suppose that

(i) for p0, q0 with p0 ≤ q0 and p0, q0 ∈ (1, ∞], T1 is bounded from Lp0(µ) to
Lq0,∞(µ), when q0 = ∞, Lq0,∞(µ) should be replaced by Lq0(µ);

(ii) for some q1 ∈ [1, ∞), T2 is bounded from H 1,∞
atb (µ) to Lq1,∞(µ).

Then for any p, q with

1
p

= t +
1 − t

p0
,

1
q

=
t

q1
+

1− t

q0
, t ∈ (0, 1),

T is bounded from Lp(µ) to Lq,∞(µ).

Proof. Our goal is to prove that there is a constant C > 0 such that for any
λ > 0, and bounded function f with compact support,

(2.6) λqµ({x ∈ R
d : |Tf(x)| > λ}) ≤ C

( ∫
Rd

|f(x)|p dµ(x)
)q/p

.
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By homogeneity, we may assume that ‖f‖Lp(µ) = 1. For each fixed λ > 0
and bounded function f with compact, observe that if ‖µ‖ < ∞ and λq/p ≤
‖f‖L1(µ)/‖µ‖, the inequality (2.6) follows directly, since by the Hölder inequality,

λqµ({x ∈ R
d : |Tf(x)| > λ}) ≤ C‖f‖p

L1(µ)
≤ C.

Thus, we may assume ‖µ‖ = ∞, or ‖µ‖ < ∞ and λq/p > ‖f‖L1(µ)/‖µ‖. Note
that

1
q
− 1

q0

1
q1

− 1
q0

=

1
p
− 1

p0

1 − 1
p0

,

1
q1

− 1
q

1
q1

− 1
q0

=
1 − 1

p

1 − 1
p0

.

It then follows that
1
q
− 1

q0

1
q1

− 1
q

=

1
p
− 1

p0

1− 1
p

and so
(q0 − q)p0

(p0 − p)q0
=

q − q1

(p− 1)q1
.

Let θ = (q− q1)/(p− 1)q1. Applying the Caldeón-Zygmund decomposition to |f |p
at level λθp (see [6, p. 131-132]), we know that there exist a sequences of cubes
{Qj}j such that

(a) the cubes {Qj}j have bounded overlaps, that is, there is a constant C such
that

∑
j χQj(x) ≤ C;

(b)
1

µ(2Qj)

∫
Qj

|f(x)|p dµ(x) >
λθp

2d+1
;

(c) for any η > 0,
1

µ(2ηQj)

∫
ηQj

|f(x)|p dµ(x) ≤ λθp

2d+1
;

(d) |f(x)| ≤ λθ, µ-a. e. x ∈ R
d\ ∪j Qj;

(e) for each fixed j, let Rj be the smallest (6, 6n+1)-doubling cube of the form
6kQj for k ∈ N. Set wj = χQj/

∑
k≥1 χQk

(x). Then there is a function φj

with supp φj ⊂ Rj and some positive constant C satisfying∫
Rd

φj(x) dµ(x) =
∫

Qj

f(x)wj(x) dµ(x),
∑

j

|φj(x)| ≤ Cλθ,

and ( ∫
Rj

|φj(x)|p dµ(x)
)1/p

[µ(Rj)]1/p′ ≤ C

λθ(p−1)

∫
Qj

|f(x)|p dµ(x).



An Interpolation Theorem 1619

We can decompose f as
f(x) = g(x) + b(x).

where
g(x) = f(x)χRd\∪jQj

(x) +
∑

j

φj(x)

and
b(x) =

∑
j

(f(x)wj(x) − φj(x)) .

It is easy to verify that

‖g‖p0
Lp0 ≤ ‖g‖p0−p

L∞(µ)‖g‖p
Lp(µ) ≤ Cλθ(p0−p)

and
‖b‖

H1, p
atb (µ)

≤ Cλ−θ(p−1).

This in turn leads to that

µ({x ∈ R
d : |T1g(x)| > λ/2}) ≤ Cλ−q0‖g‖q0

Lp0(µ) ≤ Cλ−q0λθ(p0−p)q0/p0 ≤ Cλ−q .

and

µ({x ∈ R
d : |T2b(x)| > λ/2}) ≤ Cλ−q1‖b‖q1

H1, p
atb (µ)

≤ Cλ−q .

then
µ({x ∈ R

d : |Tf(x)| > λ}) ≤ Cλ−q.

This completes the proof of Lemma 3.

Lemma 4. (see [1]). Let s1 ∈ (0, 2−d−2) and p ∈ (0,∞). There is a constant
C1 ∈ (0, 1) depending on s1 such that for any s2 ∈ (0, C1s1),

(i) if ‖µ‖ = ∞, f ∈ Lp0,∞(µ) with p0 ∈ [1, ∞) and

sup
0<λ<R

λpµ({x ∈ R
d : |f(x)| > λ}) < ∞

for any R > 0, then

sup
λ>0

λpµ(
{
x∈R

d : Md
0, s1

f(x)>λ})≤C sup
λ>0

λpµ(
{
x∈R

d : M �
0, s2

f(x)>λ});

(ii) if ‖µ‖ < ∞ and f ∈ Lp0,∞(µ) with p0 ∈ [1, ∞), then

supλ>0 λpµ(
{
x ∈ Rd : Md

0, s1
f(x) > λ})

≤ C supλ>0 λpµ(
{
x ∈ R

d : M
�
0, s2

f(x) > λ})
+‖µ‖(s1‖µ‖))−p/p0‖f‖p

Lp0, ∞(µ)
.
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Proof of Theorem 2. At first, for any s ∈ (0, 2−d−2), our assumption (ii) along
with the estimate (2.5) tells us that the operator M �

0, s◦T is bounded from Lp0(µ) to
Lq0,∞(µ). On the other hand, the assumption (iii) in Theorem 2 via Lemma 1 (ii)
states that M0, s ◦ T is bounded from H1,∞

atb (µ) to Lq1,∞(µ). Therefore, it follows
from Lemma 2 and Lemma 3 that M�

0, s ◦ T is bounded from Lp(µ) to Lq,∞(µ),
that is, for any fixed λ > 0 and bounded function f with compact support,

(2.7) λqµ({x ∈ R
d : M �

0, sTf(x) > λ}) ≤ C‖f‖q
Lp(µ)

provided that p and q satisfies

1
p

= t +
1 − t

p0
,

1
q

=
t

q1
+

1 − t

q0
, t ∈ (0, 1).

We can now conclude the proof of Theorem 2. Set

L∞
0,0(µ) = {f : f is bounded, has compact support,

∫
Rd

f(x)dµ(x) = 0}.

It is well known that L∞
0,0(µ) is a density subset of Lp(µ) for any p ∈ [1, ∞). For

each fixed f ∈ L∞
0,0(µ), which implies f ∈ H 1,∞

atb (µ), our hypothesis guarantee that
Tf ∈ Lq1,∞(µ) and so for any R > 0, q > q1,

sup
0<λ<R

λqµ({x∈R
d : |Tf(x)| > λ})≤Rq−q1 sup

λ>0
λq1µ({x∈R

d : |Tf(x)|>λ})<∞.

By the standard density argument, we need only to prove Theorem 2 for f ∈ L∞0,0(µ)
in the following two cases:

Case 1. ‖µ‖ = ∞. By Lemma 1, Lemma 4 (i) and (2.7), we have

sup
λ>0

λqµ({x ∈ Rd : |Tf(x)| > λ}) ≤ sup
λ>0

λqµ(
{
x ∈ R

d : Md
0, s1

Tf(x) ≥ λ})

≤ Csup
λ>0

λqµ(
{
x ∈ R

d : M �
0, s2

Tf(x) ≥ λ})

≤ C‖f‖q
Lp(µ)

.

This implies T is bounded from Lp(µ) to Lq,∞(µ). On the other hand, the assump-
tion (i) implies that T is sublinear. Thus, by Marcinkiewicz’s interpolation theorem,
we know that T is also bounded from Lp(µ) to Lq(µ).

Case 2. ‖µ‖ < ∞. By a trivial computation, we see that for each fixed p ∈
(1, ∞),

‖f‖
H1, p

atb (µ)
≤ C‖µ‖1−1/p‖f‖Lp(µ).
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By Lemma 1 (i), Lemma 4 (ii) and (2.7), we have

sup
λ>0

λqµ({x ∈ R
d : |Tf(x)| > λ})

≤ sup
λ>0

λqµ(
{
x ∈ R

d : Md
0, s1

Tf(x) ≥ λ})

≤ Csup
λ>0

λqµ(
{
x ∈ R

d : M �
0, s2

Tf(x) ≥ λ}) + ‖µ‖(s1‖µ‖)−
q
q1 ‖Tf‖q

Lq1,∞(µ)

≤ C‖f‖q
Lp(µ) + Cs

− q
q1

1 ‖µ‖1− q
q1 ‖f‖q

H
1,∞
atb (µ)

≤ C‖f‖q
Lp(µ),

which together with the same arguments as in Case 1 implies that T is bounded
from Lp(µ) to Lq(µ). This completes the proof of Theorem 2.
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