EVOLUTION OF CR YAMABE CONSTANT UNDER THE CARTAN FLOW ON A CR 3-MANIFOLD

Chin-Tung Wu

Abstract. In this note we derive a formula for the derivative of the CR Yamabe constant $\mathcal{Y}(J_{(t)})$, where $J_{(t)}$ is a solution of the Cartan flow on a closed CR 3-manifold. We also give some simple applications.

0. Introduction

In this paper, following the way of Chang and Lu [1], we derive a formula for the derivative of the CR Yamabe constant $\mathcal{Y}(J_{(t)})$, where $J_{(t)}$ is a solution of the Cartan flow on a closed CR 3-manifold. As an application, we show that if $(J_{(0)},\theta)$ is of nonnegative constant Tanaka-Webster curvature and the real part (or imaginary part) of torsion along T-direction derivative vanishes for the initial data, then the Cartan flow will increase the CR Yamabe constant at later time.

To be precise, let M be a closed 3-manifold with an oriented contact structure ξ . There always exists a global contact form θ , obtained by patching together local ones with a partition of unity (see, e.g. [7, 9]). The characteristic vector field of θ is the unique vector field T such that $\theta(T)=1$ and $d\theta(T,\cdot)=0$. A CR structure compatible with ξ is a smooth endomorphism $J:\xi\to\xi$ such that $J^2=-identity$. A pseudohermitian structure is a CR structure J compatible with ξ together with a global contact form θ .

Given a pseudohermitian structure (J,θ) , we can choose a complex vector field Z_1 , an eigenvector of J with eigenvalue i, and a complex 1-form $\theta^{\rm l}$ such that $\{\theta,\theta^1,\theta^{\bar 1}\}$ is dual to $\{T,Z_1,Z_{\bar 1}\}$. It follows that $d\theta=ih_{1\bar 1}\theta^1\wedge\theta^{\bar 1}$ for some nonzero real function $h_{1\bar 1}$. If $h_{1\bar 1}$ is positive, we call such a pseudohermitian structure (J,θ) positive, and we can choose a Z_1 (hence θ^1) such that $h_{1\bar 1}=1$. That is to say

$$d\theta = i\theta^1 \wedge \theta^{\bar{1}}.$$

Received October 8, 2007, accepted January 11, 2008.

Communicated by Shu-Cheng Chang.

2000 Mathematics Subject Classification: 53C21, 32G07.

Key words and phrases: CR Yamabe constant, Cartan flow, Spherical CR structure.

We will always assume our pseudohermitian structure (J,θ) is positive and $h_{1\bar{1}}=1$ throughout the paper. The pseudohermitian connection of (J,θ) is the connection ∇ on $TM\otimes C$ (and extended to tensors) given by

$$\nabla Z_1 = \omega_1^{\ 1} \otimes Z_1, \quad \nabla Z_{\bar{1}} = \omega_{\bar{1}}^{\ \bar{1}} \otimes Z_{\bar{1}}, \quad \nabla T = 0,$$

in which the 1-form ω_1^{-1} is uniquely determined by the following equation and associated normalization condition:

$$d\theta^1 = \theta^1 \wedge \omega_1^{\ 1} + A^1_{\ \bar{1}} \theta \wedge \theta^{\bar{1}}, \quad \omega_1^{\ 1} + \omega_{\bar{1}}^{\ \bar{1}} = 0.$$

The coefficient $A^1_{\bar{1}}$ is called the (pseudohermitian) torsion. Since $h_{1\bar{1}}=1$, $A_{\bar{1}\bar{1}}=h_{1\bar{1}}A^1_{\bar{1}}=A^1_{\bar{1}}$. And A_{11} is just the complex conjugate of $A_{\bar{1}\bar{1}}$. Differentiating ω_1^1 gives

$$d\omega_1^{\ 1} = R\theta^1 \wedge \theta^{\bar{1}} + 2iIm(A_{11} \,\bar{1}\theta^1 \wedge \theta)$$

where R is the Tanaka-Webster curvature (see [8, 9]).

We can define the covariant differentiations with respect to the pseudohermitian connection. For instance, $f_{,1}=Z_1f$, $f_{,1\bar{1}}=Z_{\bar{1}}Z_1f-\omega_1{}^1(Z_{\bar{1}})Z_1f$, and $f_{,0}=Tf$ for a (smooth) function f. We define the subgradient operator ∇_b and the sublaplacian operator Δ_b by

$$\nabla_b f = f_{,\bar{1}} Z_1 + f_{,1} Z_{\bar{1}}, \quad \Delta_b f = -f_{,1\bar{1}} - f_{,\bar{1}1},$$

respectively. Also we define $|\nabla_b f|_{J,\theta}^2 = 2f_{,1}f_{,\bar{1}}$ for a real-valued function f. Recall that the CR Yamabe constant on a closed CR 3-manifold is defined by

(0.1)
$$\mathcal{Y}(J) \doteq \inf_{u \in C^{\infty}(M), u > 0} \frac{\int_{M} \left(4 \left| \nabla_{b} u \right|_{J, \theta}^{2} + R u^{2} \right) \theta \wedge d\theta}{\left(\int_{M} u^{4} \theta \wedge d\theta \right)^{1/2}},$$

where R is the Tanaka-Webster curvature and $\theta \wedge d\theta$ is the volume form associated with (J, θ) . The Euler-Lagrangian equation for a minimizer u is

$$(0.2) 4\Delta_b u + Ru = \mathcal{Y}(J)u^3,$$

$$\int_{M} u^{4} \theta \wedge d\theta = 1.$$

Note that the existence of minimizer u follows from the solution of CR Yamabe problem (e.g., see the serial papers [4, 5, 6]). Given such a solution u the contact form $u^2\theta$ has constant Tanaka-Webster curvature $\mathcal{Y}(J)$. Like the Riemannian case, we define the σ invariant of M by

$$\sigma(M) = \sup_{J} \mathcal{Y}(J),$$

where the sup is taken over all pseudohermitian structures (J, θ) on M.

We also recall that the Cartan flow is deforming the CR structure in the direction of its Cartan tensor. Due to a result of Gray [3], without loss of generality we fix a contact structure and a contact form throughout this paper. This gives rise to the evolution equation

(0.4)
$$\frac{\partial}{\partial t}J_{(t)} = 2Q_{J_{(t)}},$$

where $Q_J=2{\rm Re}(iQ_{11}\theta^1\otimes Z_{\overline{1}})$ is the Cartan tensor of the CR structure J with

$$Q_{11} = \frac{1}{6}R_{,11} + \frac{i}{2}RA_{11} - A_{11,0} - \frac{2i}{3}A_{11,\overline{1}1}$$

(Lemma 2.2 in [2]), whose vanishing characterizes the spherical $J:Q_J=0$ if and only if J is spherical.

We remark that (0.4) is a fourth order nonlinear subparabolic equation which is the negative gradient flow of the Burns-Epstein invariant and the spherical CR structures are the only equilibrium solutions. The short time existence of solutions for (0.4) is proved by adding a gauge-fixing term to the right-hand side of (0.4) (see Theorem B. in [2]).

Now we state the following result.

Proposition 0.1. Let $J_{(t)}$, $t \in [0, \epsilon)$ for some $\epsilon > 0$, be a solution of the Cartan flow (0.4) on a closed 3-dimensional pseudohermitian manifold M. Assume that there is a C^1 -family of smooth functions $u_{(t)} > 0$, $t \in [0, \epsilon)$ which satisfy

(0.5)
$$4\Delta_b u_{(t)} + R_{J_{(t)}} u_{(t)} = \widetilde{\mathcal{Y}}_{(t)} u_{(t)}^3,$$

$$\int_{M} u_{(t)}^{4} \theta \wedge d\theta = 1,$$

where $\widetilde{\mathcal{Y}}$ is function of t only. Then we have

$$\frac{d}{dt}\widetilde{\mathcal{Y}}_{(t)} = \int_{M} 2\operatorname{Re}[8Q_{11}u_{,\overline{1}}u_{,\overline{1}} + \frac{2}{3}A_{\overline{1}\overline{1}}(A_{11,\overline{1}}u_{,1} + A_{11,1}u_{,\overline{1}})u]\theta \wedge d\theta$$

$$(0.7) + \int_{M} \frac{1}{3} \left[\operatorname{Re}(iA_{11}R_{,\tilde{1}\tilde{1}}) + 2 \left| \nabla_{b}A_{11} \right|_{J,\theta}^{2} + 7R \left| A_{11} \right|_{J,\theta}^{2} \right] u^{2}\theta \wedge d\theta$$

$$-\int_{M} 2\operatorname{Re}(Q_{11,\overline{11}} + \frac{4}{3}iA_{11}A_{\overline{11},0})u^{2}\theta \wedge d\theta,$$

where $u = u_{(t)}$ and Q_{11} , A_{11} , R, and ∇_b are the Cartan tensor, the torsion, the Tanaka-Webster curvature, and the subgradient of $(J_{(t)}, \theta)$, respectively.

Proof. Let θ be a fixed contact form and let $h = \frac{du}{dt}$. Note that

$$\widetilde{\mathcal{Y}}_{(t)} = \int_{M} \left(4 \left| \nabla_{b} u \right|_{J,\theta}^{2} + R u^{2} \right) \theta \wedge d\theta.$$

By applying the computation on pages 231-232 in [2] (with $E_1^{\overline{1}}$ replaced by iQ_{11}), we have

$$\frac{d}{dt}\widetilde{\mathcal{Y}}_{(t)} = \int_{M} [16\operatorname{Re}(Q_{11}u_{,\bar{1}}u_{,\bar{1}}) + 8u\Delta_{b}h]\theta \wedge d\theta
+ \int_{M} [-2\operatorname{Re}(Q_{11,\bar{1}\bar{1}} + iA_{\bar{1}\bar{1}}Q_{11})u^{2} + 2Rhu]\theta \wedge d\theta,$$

where we have used

$$\frac{\partial}{\partial t} \left| \nabla_b u \right|_{J,\theta}^2 = 4 \operatorname{Re}(Q_{11} u_{,\bar{1}} u_{,\bar{1}} + h_{,1} u_{,\bar{1}})$$

and

$$\frac{\partial}{\partial t}R = -2\mathrm{Re}(Q_{11,\overline{1}\overline{1}} + iA_{\overline{1}\overline{1}}Q_{11}).$$

Taking derivative d/dt of (0.5), we obtain

$$4\Delta_b h - 16 \text{Re}(Q_{11}u_{,\bar{1}\bar{1}} + Q_{11,\bar{1}}u_{,\bar{1}}) - 2 \text{Re}(Q_{11,\bar{1}\bar{1}} + iA_{\bar{1}\bar{1}}Q_{11})u + Rh$$

$$= \left[\frac{d}{dt}\widetilde{\mathcal{Y}}_{(t)}\right]u^3 + 3\widetilde{\mathcal{Y}}_{(t)}hu^2.$$

Multiplying this by 2u, we get

$$8u\Delta_b h + 2Rhu = 32\text{Re}(Q_{11}u_{,\bar{1}\bar{1}}u + Q_{11,\bar{1}}u_{,\bar{1}}u) + 4\text{Re}(Q_{11,\bar{1}\bar{1}} + iA_{\bar{1}\bar{1}}Q_{11})u^2 + \left[\frac{d}{dt}\widetilde{\mathcal{Y}}_{(t)}\right]2u^4 + 6\widetilde{\mathcal{Y}}_{(t)}hu^3.$$

Substituting this into (0.8) to eliminate h, we obtain

$$\frac{d}{dt}\widetilde{\mathcal{Y}}_{(t)} = \int_{M} 16\operatorname{Re}(Q_{11}u_{,\bar{1}}u_{,\bar{1}} + 2Q_{11}u_{,\bar{1}\bar{1}}u + 2Q_{11,\bar{1}}u_{,\bar{1}}u)\theta \wedge d\theta
+ \int_{M} 2\operatorname{Re}(Q_{11,\bar{1}\bar{1}} + iA_{\bar{1}\bar{1}}Q_{11})u^{2}\theta \wedge d\theta + 2\frac{d}{dt}\widetilde{\mathcal{Y}}_{(t)}
+ 6\widetilde{\mathcal{Y}}_{(t)} \int_{M} hu^{3}\theta \wedge d\theta.$$

Integrating by parts, we have

$$(0.9) \qquad \frac{d}{dt}\widetilde{\mathcal{Y}}_{(t)} = \int_{M} [16\text{Re}(Q_{11}u_{,\bar{1}}u_{,\bar{1}}) - 2\text{Re}(Q_{11,\bar{1}\bar{1}} + iA_{\bar{1}\bar{1}}Q_{11})u^{2}]\theta \wedge d\theta,$$

where we used

$$\int_{M} (Q_{11}u_{,\bar{1}}u_{,\bar{1}} + Q_{11}u_{,\bar{1}\bar{1}}u + Q_{11,\bar{1}}u_{,\bar{1}}u)\theta \wedge d\theta = 0$$

and

$$\int_{M} hu^{3}\theta \wedge d\theta = 0$$

which is obtained by taking derivative d/dt of (0.6).

Next by using the commutation relation for pseudohermitian covariant derivative

$$(0.10) A_{11.1\overline{1}} - A_{11.\overline{1}1} = iA_{11,0} + 2A_{11}R,$$

the Cartan tensor Q_{11} can also be represented by

$$Q_{11} = \frac{1}{6} [R_{,11} + 7iRA_{11} - 8A_{11,0} - 2i(A_{11,\overline{1}1} + A_{11,1\overline{1}})].$$

Hence we have

$$\begin{split} &-2\mathrm{Re}(iA_{\bar{1}\bar{1}}Q_{11})\\ &=\frac{1}{3}\mathrm{Re}\left[-iA_{\bar{1}\bar{1}}R_{,11}+7R|A_{11}|_{J,\theta}^2+8iA_{\bar{1}\bar{1}}A_{11,0}-2A_{\bar{1}\bar{1}}(A_{11,\bar{1}1}+A_{11,1\bar{1}})\right]. \end{split}$$

The proposition follows from integrating by parts to the last term of above equation into (0.9).

We say a function f is basic if Tf = 0. We have the following Corollary.

Corollary 0.2. Let (M, J_0, θ) be a closed 3-dimensional pseudohermitian manifold of nonnegative constant Tanaka-Webster curvature and the real part (or imaginary part) of torsion is basic. Let $J_{(t)}$ be the solution of the Cartan flow (0.4) with $J_{(0)} = J_0$ and assume that there is a C^1 -family of smooth functions $u_{(t)} > 0$, $t \in [0, \epsilon)$ for some $\epsilon > 0$ satisfy the assumption in Proposition 0.1. Then we have $\frac{d}{dt}|_{t=0}\widetilde{\mathcal{Y}}_{(t)} \geq 0$ and the equality holds if and only if J_0 is spherical.

Proof. Integrating by parts, we obtain

$$\int_{M} \text{Re}(Q_{11,\bar{1}\bar{1}} + \frac{4}{3}iA_{11}A_{\bar{1}\bar{1},0})\theta \wedge d\theta = 0,$$

which follows from the fact that $\operatorname{Re}(A_{11})$ (or $\operatorname{Im}(A_{11})$) is basic. Now since $\nabla_b u_{(0)} = 0$ and $R \geq 0$ is a constant, we have

$$\frac{d}{dt}|_{t=0}\widetilde{\mathcal{Y}}_{(t)} = \frac{1}{3}[u_{(0)}]^2 \int_M [2|\nabla_b A_{11}|_{J,\theta}^2 + 7R|A_{11}|_{J,\theta}^2] \theta \wedge d\theta \ge 0.$$

Suppose the above equality holds. If R is positive, then $A_{11}=0$. If R is zero, then by the fact $\nabla_b A_{11}=0$ and the commutation relation (0.10) will imply $A_{11,0}=0$. All these implies that $Q_{11}=0$ and therefore J is spherical. Conversely, if J is spherical, that is $Q_{11}=0$. Then from (0.9), we get

$$\frac{d}{dt}|_{t=0}\widetilde{\mathcal{Y}}_{(t)} = \int_{M} [16\text{Re}(Q_{11}u_{,\bar{1}}u_{,\bar{1}}) - 2\text{Re}(Q_{11,\bar{1}\bar{1}} + iA_{\bar{1}\bar{1}}Q_{11})u^{2}]\theta \wedge d\theta = 0.$$

This implies the Corollary.

Note that $\widetilde{\mathcal{Y}}_{(t)}$ in Corollary 0.2 may not be equal to the CR Yamabe constant $\mathcal{Y}(J_{(t)})$ even if $J_{(0)}$ satisfies $\widetilde{\mathcal{Y}}_{(0)} = \mathcal{Y}(J_{(0)})$. If we assume that the real part (or imaginary part) of torsion of $(J_{(0)},\theta)$ is basic and $(J_{(t)},\theta)$ has unit volume and constant Tanaka-Webster curvature $\mathcal{Y}(J_{(t)})$, we have the following result, which says that infinitesimally the Cartan flow will try to increase the CR Yamabe constant.

Corollary 0.3.

- (i) Let (M, J_0, θ) be a closed 3-dimensional pseudohermitian manifold of non-negative constant Tanaka-Webster curvature and the real part (or imaginary part) of torsion is basic. Let $J_{(t)}$ be the solution of the Cartan flow (0.4) with $J_{(0)} = J_0$ and assume that there is a C^1 -family of smooth functions $u_{(t)} > 0$, $t \in [0, \epsilon)$ for some $\epsilon > 0$ with constant $u_{(0)}$ such that $(J_{(t)}, \theta)$ has unit volume and constant Tanaka-Webster curvature $\mathcal{Y}(J_{(t)})$. Then we have $\frac{d}{dt}|_{t=0}\mathcal{Y}(J_{(t)}) \geq 0$ and the equality holds if and only if J_0 is spherical.
- (ii) Furthermore, if J_0 further satisfies $\mathcal{Y}(J_0) = \sigma(M)$, then J_0 must be spherical.

ACKNOWLEDGMENT

The author would like to express his thanks to Prof. S.-C. Chang for bring the paper [1] to his attention and Prof. P. Lu for valuable discussions. The author's research is partially supported by NSC of Taiwan.

REFERENCES

1. S.-C. Chang and P. Lu, Evolution of Yamabe constant under Ricci flow, *AGAG*, **31** (2007), 147-153.

- 2. J.-H. Cheng and J. M. Lee, The Burns-Epstein invariant and deformation of the CR structures, *Duke Math. J.*, **60** (1990), 221-254.
- 3. J. W. Gray, Some global properties of contact structures, *Ann. Math.*, **69** (1959), 421-450.
- 4. D. Jerison and J. M. Lee, The Yamabe problem on CR manifolds, *J. Diff. Geom.*, **25** (1987), 167-197.
- 5. ——, Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, *J. AMS*, **1** (1988), 1-13.
- 6. ——, Intrinsic CR normal coordinates and the CR Yamabe problem, *J. Diff. Geom.*, **29** (1989), 303-343.
- 7. J. M. Lee, The Fefferman metric and pseudohermitian invariants, *Trans. AMS*, **296** (1986), 411-429.
- 8. N. Tanaka, A Differential Geometric Study on Strongly Pseudoconvex Manifolds, Kinokuniya Co. Ltd., Tokyo, 1975.
- 9. S. M. Webster, Pseudohermitian structures on a real hypersurface, *J. Diff. Geom.*, **13** (1978), 25-41.

Chin-Tung Wu Department of Applied Mathematics, National PingTung University of Education, PingTung 90003, Taiwan, R.O.C.

E-mail: ctwu@mail.npue.edu.tw