TAIWANESE JOURNAL OF MATHEMATICS

Vol. 13, No. 4, pp. 1181-1187, August 2009

This paper is available online at http://www.tjm.nsysu.edu.tw/

INVARIANCE OF PRIMITIVE IDEALS BY Φ -DERIVATIONS ON BANACH ALGEBRAS

S. Hejazian* and A. R. Janfada

Abstract. We show that in certain cases a Φ -derivation on a Banach algebra with a nilpotent separating ideal leaves each primitive ideal invariant. We also obtain some sufficient conditions for the separating ideal of a Φ -derivation to be nilpotent.

1. Introduction

In this paper we study Φ -derivations on Banach algebras. Following [3] by a Φ -derivation on an algebra A, we mean a linear mapping $\Delta\colon A\to A$ which satisfies

$$\Delta(xy) = \Delta(x)\Phi(y) + x\Delta(y) \qquad (x, y \in A),$$

where Φ is an automorphism on A.

If τ denotes the identity map on A, then τ -derivations would be the ordinary derivations on A. Also for every automorphism Φ on A, τ - Φ is a Φ -derivation, and for each fixed $c \in A$ the mapping $\Delta(x) = c\Phi(x) - cx$ ($x \in A$), is a Φ -derivation which is called an inner Φ -derivation. Moreover, if D is an ordinary derivation on A and if b is an invertible element in A, then the map $x \mapsto D(x)b$ is a Φ -derivation on A where Φ is the inner automorphism $x \mapsto b^{-1}xb$.

These objects have been considered extensively in algebraic point of view, see for example [1, 2] and [4]. They also have been used in [2] to study Jordan automorphisms on Banach algebras. Brešar and Villena in [3] obtained some algebraic technical results about Φ -derivations and by applying them they proved some results concerning Φ -derivations of Banach algebras. The following theorem is the final result of [3]. Here Rad(A) denotes the Jacobson radical of A.

Theorem A. Consider the following assertions.

Received June 17, 2006, accepted November 28, 2007.

Communicated by Wen-Fong Ke.

2000 Mathematics Subject Classification: 47B47, 46H40.

Key words and phrases: Φ-derivation, Primitive ideal, Nilpotent ideal, Separating space.

- (i) For every inner automorphism Φ and every Φ -derivation Δ of a unital Banach algebra A, Δ leaves each primitive ideal of A invariant.
- (ii) For every inner automorphism Φ and every Φ -derivation Δ of a unital Banach algebra A, $\Delta(a)$ is quasinilpotent whenever $a \in Rad(A)$ is such that $\Delta^2(a) = 0$.
- (iii) For every inner automorphism Φ and every Φ -derivation Δ of a unital Banach algebra $A, \Delta(a) \neq 1$ for every $a \in Rad(A)$.
- (iv) Every derivation on a Banach algebra A leaves each primitive ideal of A invariant.
- (v) Every derivation on a unital Banach algebra A takes invertible values only on such elements $a \in A$ for which the two sided ideal of A generated by a equals A.

Then
$$(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Leftrightarrow (v)$$
.

Assertion (iv) is the well known noncommutative Singer-Wermer conjecture.

In section 2 we show that if Δ is a Φ -derivation of a unital Banach algebra with Φ a continuous automorphism, such that both Φ and $[\Delta, \Phi] := \Delta \Phi - \Phi \Delta$ leave each nilpotent and each primitive ideal invariant (e.g. Φ is inner) and if $S(\Delta)$, the separating space of Δ , is nilpotent then Δ leaves each primitive ideal invariant. This is a generalization of [3, Corollary 3.4]. Also we may add a new assertion to Theorem A as follows.

(i') For every inner automorphism Φ and every Φ -derivation Δ of a unital Banach algebra A, Δ has a nilpotent separating ideal.

Then
$$(i') \Rightarrow (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Leftrightarrow (v)$$
.

This naturally leads us to the following questuion.

Q1. Is it true that each Φ -derivation on a Banach algebra has a nilpotent separating space?

It is indeed an open problem for ordinary derivations and it is shown in [8] that for ordinary derivations it is equivalent to the noncommutative Singer-Wermer conjecture. In Section 3 we obtain some sufficient conditions for Δ to have a nilpotent separating ideal and hence leave each primitive ideal invariant.

Note that if Φ is an automorphism and if Δ is a Φ -derivation on a nonunital algebra A, then we may extend it to the unitization of A by defining $\Delta(1)=0$. Throughout this paper A is a unital Banach algebra, Φ is a continuous automorphism on A and Δ is a Φ -derivation of A. For a Banach algebra A, the sets A and A denote the Jacobson radical and the Baer radical of A, respectively. It is clear that

B and R are invariant under each automorphism Φ on A. The separating space, $S(\Delta)$ of Δ is defined to be the set

$$S(\Delta) := \{ a \in A : \exists \{a_n\} \subseteq A, a_n \to 0, \Delta(a_n) \to a \};$$

which is a closed subspace of A and by the closed graph theorem $S(\Delta)=\{0\}$ if and only if Δ is continuous. For a moment consider A as a Banach A-bimodule, denoted by A^o , with module operations, $A\times A^o\to A^o$, $(a,x)\mapsto a.x=a\Phi(x)$, $(x,a)\mapsto x.a=xa$, for all $a,x\in A$. Obviously Δ is an intertwining map from A into A^o . Thus by [6, Theorem 5.2.15], $S(\Delta)$ is a separating submodule and hence a separating ideal of A, by surjectivity of Φ .

2. Δ -Invariant Ideals

Cusack in [5] proved that each derivation on a Banach algebra leaves the Baer radical invariant. Here we prove a similar result for Φ -derivations, where Φ is a continuous automorphism and Φ , $[\Delta, \Phi]$ leave each nilpotent ideal invariant. Clearly these conditions hold if Φ is inner.

Theorem 2.1. Let Δ be a Φ -derivation on A, such that Φ and $[\Delta, \Phi]$ leave each nilpotent ideal invariant. Then $\Delta(B) \subseteq B$.

Proof. Let I be a nilpotent ideal with $I^k = \{0\}$. Take $a \in I$ and $b_1, b_2, ..., b_k \in A$, then by assumption, $(b_1a)(\Phi^{-1}(b_2a))...(\Phi^{-(k-1)}(b_ka)) = 0$. Hence by [3, Theorem 2.3]

$$0 = \Delta^{k}((b_{1}a)(\Phi^{-1}(b_{2}a))...(\Phi^{-(k-1)}(b_{k}a))) + I = k!\Delta(b_{1}a)\Delta(b_{2}a)...\Delta(b_{k}a) + I.$$

But $\Delta(b_i a) + I = b_i \Delta(a) + \Delta(b_i) \Phi(a) + I = b_i \Delta(a) + I$ for i = 1, ...k. Thus $(A\Delta(a))^k \subseteq I \subseteq B$. Therefore $\Delta(a) \in B$ and hence $\Delta(I) \subseteq B$. Since B is the algebraic sum of all nilpotent ideals we have the result.

In [3, Theorem 3.2] it is proved that if Φ is a continuous automorphism and Δ is a continuous Φ -derivation on a Banach algebra A and if J is an ideal of A, such that both Φ , $[\Delta, \Phi]$ leave J invariant, then $\Delta(J)/J$ is a quasinilpotent ideal of A/J. So, if J is a primitive ideal, then $\Delta(J)/J \subseteq Rad(A)/J = \{0\}$ and hence $\Delta(J) \subseteq J$. We use this fact in the proof of the next theorem.

Theorem 2.2. Suppose that Φ , $[\Delta, \Phi]$ leave each nilpotent and each primitive ideal invariant. If $S(\Delta)$ is nilpotent then $\Delta(P) \subseteq P$ for each primitive ideal P of A.

Proof. $S(\Delta)$ is a nilpotent ideal, hence $S(\Delta)\subseteq B$. Let π be the canonical quotient map from A onto A/\overline{B} then $\pi\circ\Delta$ is continuous. Therefore $\pi(\Delta(\overline{B}))=\{0\}$ and it follows that $\Delta(\overline{B})\subseteq \overline{B}$. On the other hand, Φ leaves B invariant and Φ is continuous, thus Φ leaves \overline{B} invariant and so it drops to a continuous automorphism $\Phi_0:A/\overline{B}\to A/\overline{B}$. Consider $\Delta_0:A/\overline{B}\to A/\overline{B}$; $a+\overline{B}\mapsto\Delta(a)+\overline{B}$, which is a continuous Φ_0 -derivation on A/\overline{B} and by the argument just before this theorem $\Phi_0(P/\overline{B})\subseteq P/\overline{B}$ for each primitive ideal P of A. Since $\overline{B}\subseteq P$ for every primitive ideal P, we have $\Phi_0(P)\subseteq P$.

Corollary 2.1. If Φ is an inner automorphism on a Banach algebra A and if Δ is a Φ -derivation with a nilpotent separating ideal, then Δ leaves each primitive ideal invariant.

Proof. Clearly for an inner automorphism Φ , $[\Delta, \Phi]$ leaves each ideal invariant. Now the result follows from Theorem 2.2.

3. NILPOTENCY OF THE SEPARATING IDEAL

Considering (Q1) we obtain some sufficient conditions for the separating ideal of a Φ -derivation on a Banach algebra to be nilpotent or quasinilpotent. Theorem 3.1 (ii) is a generalization of [5, Lemma 4.2] and Corollary 3.2 is [3, Corollary 4.3] which is proved in a different way. Theorem 3.3 and the other results of this section are generalizations of the results in [7]. Throughout this section by (A1) we mean the following assumption:

(A1). The automorphism Φ is inner or Φ is continuous (as before), and $[\Delta, \Phi] = 0$. Under this assumption $S(\Delta)$ is invariant under $[\Delta, \Phi]$ and each Φ^j $(j \in Z)$.

Theorem 3.1. Let A be a Banach algebra, and let Δ be a Φ -derivation on A. Set $J := S(\Delta) \cap R$. Then the following assertions hold.

- (i) Let Q(A) be the set of all quasinilpotent elements of A. If $\Delta(J) \subseteq Q(A)$, then $S(\Delta) \subseteq R$.
- (ii) Assuming A(1) holds. If J is a nil ideal, then $S(\Delta)$ is a nilpotent ideal of A.

Proof.

(i) Let $\Delta(J)\subseteq Q(A)$, but $S(\Delta)\nsubseteq R$. Since $S(\Delta)$ is a separating ideal, $S(\Delta)/J$ is finite dimensional by [6, Lemma 5.2.25]. Therefore $S(\Delta)$ has a strong Wederburn decomposition, that is there exists a finite dimensional subalgebra U of $S(\Delta)$ such that $S(\Delta)=U\oplus J$ and $S(\Delta)$ contains a nonzero idempotent, say e by [6, Theorem 2.8.6]. Let $\{a_n\}$ be a sequence in A, with $a_n\to 0$ and $\Delta(a_n)\to e$. Then $\{ea_n\}\subseteq S(\Delta)$ and there exist $\{u_n\}\subseteq U$ and $\{r_n\}\subseteq J$, such that $u_n\to 0, r_n\to 0$, and $ea_n=u_n+r_n$. We

have $\Delta(ea_n) \to e$. Since U is finite dimensional $\Delta(u_n) \to 0$. Therefore $\Delta(r_n) \to e$, and so $e \in \overline{\Delta(J)} \subseteq \overline{Q(A)}$. Thus by [6, Corollary 2.4.8], the spectrum of e is a connected set containing the origin. It follows that the spectrum of e is nothing but the set $\{0\}$ and this contradicts the fact that e is non-zero. Thus $S(\Delta) \subseteq R$.

(ii) If J is nilpotent, then $J\subseteq B$. Suppose on the contrary that $S(\Delta)$ is not nilpotent, then $S(\Delta)\neq J$. Using the same notation as in the proof of (i), it follows that $e\in \overline{\Delta(J)}\subseteq \overline{\Delta(B)}$. Hence by (A1) and Theorem 2.1 $e\in \overline{B}\subseteq R$ which is a contradiction.

Corollary 3.2. Each Φ -derivation Δ on a semisimple Banach algebra is continuous.

Proof. As before let R denote the Jacobson radical. We have $S(\Delta) \cap R \subseteq R = \{0\}$ and by Theorem 3.1(i), $S(\Delta) \subseteq R$. Thus $S(\Delta) = \{0\}$, and Δ is continuous.

Theorem 3.3. Let Δ be a Φ -derivation on a Banach algebra A such that $[\Delta, \Phi]$ and Φ are continuous. Let I be a closed ideal of A with $\Phi^{-1}(I) \subseteq I$. Then $S(\Delta) \cap I$ is nilpotent if and only if $\Delta^2 \Big|_{\bigcap_{i=1}^{\infty} (S(\Delta) \cap I)^n}$ is continuous.

Proof. We have $\Phi^{-1}(S(\Delta \cap I)) \subseteq S(\Delta) \cap I$. Suppose that Δ^2 is continuous on $\bigcap_{n=1}^{\infty} (S(\Delta) \cap I)^n$. Consider $a \in S(\Delta) \cap I$, thus $\Phi^{-1}(a^n) = (\Phi^{-1}(a))^n \in (S(\Delta) \cap I)^n$. Since $S(\Delta)$ is a separating ideal, there exists $N \in \mathbb{N}$ such that $\overline{S(\Delta)\Phi^{-1}(a^n)} = \overline{S(\Delta)\Phi^{-1}(a^N)}$ $(n \geq N)$. Hence by Mittag-Leffler theorem and the fact that $S(\Delta)\Phi^{-1}(a^n) \subseteq (S(\Delta) \cap I)^n$, we have

$$\overline{S(\Delta)\Phi^{-1}(a^N)} = \bigcap_{n=1}^{\infty} \overline{S(\Delta)\Phi^{-1}(a^n)} = \overline{\bigcap_{n=1}^{\infty} S(\Delta) \cap \Phi^{-1}(a^n)} \subseteq \overline{\bigcap_{n=1}^{\infty} (S(\Delta) \cap I)^n}.$$

Now, let $\{x_n\}\subseteq A$, $x_n\xrightarrow{}0$ and $\Delta(x_n)\xrightarrow{}a^{N+1}$. Take $y_n=x_n\Phi^{-1}(a^{N+1})$, then $y_n\in S(\Delta)\Phi^{-1}(a^N)\subseteq\bigcap_{n=1}^\infty(S(\Delta)\cap I)^n$, $y_n\to 0$, and $\Delta(y_n)=\Delta(x_n)a^{N+1}+x_n\Delta(\Phi^{-1}(a^{N+1}))\to a^{2(N+1)}$. Also by the hypothesis, $\Delta^2(y_n)\to 0$ and $\Delta^2(y_n\Phi^{-1}(y_n))\to 0$. On the other hand, by the continuity of $[\Delta,\Phi]$

$$\Delta^2((y_n)\Phi^{-1}(y_n)) = (y_n)\Delta^2(\Phi^{-1}(y_n)) + \Delta(y_n)^2 + \Delta(y_n)\Phi(\Delta(\Phi^{-1}(y_n))) + \Delta^2(y_n)\Phi(y_n)$$

 $\to 2a^{4(N+1)}$ as n tends to ∞ . Therefore $a^{4(N+1)} = 0$, that is $S(\Delta) \cap I$ is a nil and hence a nilpotent ideal by closedness. The converse is trivial.

Note that the assumptions of Theorem 3.3 hold whenever Φ is inner.

Corollary 3.4. Let Δ be a Φ -derivation on a Banach algebra A and let Φ satisfy (A1), then $S(\Delta)$ is a nilpotent ideal if and only if $\Delta^2\Big|_{\bigcap_{n=1}^{\infty}(S(\Delta)\cap R)^n}$ is continuous.

Proof. Since $\Phi^{-1}(R) \subseteq R$, then $S(\Delta) \cap R$ is nilpotent, by Theorem 3.3. Now Theorem 3.1 implies that $S(\Delta)$ is nilpotent. The converse is trivial.

Corollary 3.5. Let Δ be a Φ -derivation on a Banach algebra A and let Φ satisfy (A1). If dim $(\bigcap_{n=1}^{\infty} (S(\Delta) \cap R)^n) < \infty$, then $S(\Delta)$ is nilpotent, and hence Δ leaves each primitive ideal of A invariant.

Proof. This is immediate by Corollary 3.4 and Theorem 2.2.

Remark 3.6. Using the above results, the same notations and slightly different arguments as in [7], we observe that theorems 2.5, 2.6, 2.7 in [7] are also valid in the case of Φ -derivations whenever Φ satisfies assumption (A1). In particular, [7, Theorem 2.7] together with Corollary 2.1 above, show that "if Φ is inner and the set $M(\Delta) = \{x \in S(\Delta) \cap R : \Delta(x) \in R\}$ is a nil set, then Δ leaves each primitive ideal invariant".

REFERENCES

- 1. M. Brešar, On the composition of (α, β) -derivations of rings and applications to von Neumann algebras, *Acta Sci. Math.*, **56** (1992), 369-376.
- 2. M. Brešar, A. Fošner and M. Fošner, A Kleinecke-Shirkov type condition with Jordan automorphisms, *Studia Math.*, **147** (2001), 237-242.
- 3. M. Brešar and A. R. Villena, The noncommutative Singer-Wermer conjecture and Φ-derivations, *J. London. Math. Soc.*, **66(3)** (2002), 710-720.
- 4. M. Brešar and J. Vukman, Jordan (θ, ϕ) -derivations, *Glasnik Math.*, **26** (1991), 13-17.
- 5. J. Cusack, Automatic continuity and topologically simple radical Banach algebras, *J. London Math. Soc.*, **16(2)** (1977), 493-500.
- 6. H. G. Dales, *Banach Algebras and Automatic Continuity*, Clarendon Press, Oxford, 2000.
- 7. S. Hejazian and S. Talebi, Derivations on Banach algebras, *Int. J. Math. Math. Sci.*, **28** (2003), 1803-1806.
- 8. M. Mathieu and V. Runde, Derivations mapping in to the radical II, *Bull. London Math. Soc.*, **24(5)** (1992), 485-487.

S. Hejazian
Department of Pure Mathematics,
Ferdowsi University of Mashhad,
P. O. Box 91775-1159,
Mashhad, Iran

E-mail: hejazian@ferdowsi.um.ac.ir

A. R. Janfada Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 91775-1159, Mashhad, Iran E-mail: ajanfada@wali.um.ac.ir