ON DISTANCE TWO LABELLING OF UNIT INTERVAL GRAPHS

Peter Che Bor Lam ${ }^{1 *}$, Tao-Ming Wang ${ }^{2}$, Wai Chee Shiu and Guohua Gu

Abstract

An $L(2,1)$-labelling of a graph G is an assignment of non-negative integers to the vertices of G such that vertices at distance at most two get different numbers and adjacent vertices get numbers which are at least two apart. The $L(2,1)$-labelling number of G, denoted by $\lambda(G)$, is the minimum range of labels over all such labellings. In this paper, we first discuss some necessary and sufficient conditions for unit interval graph G to have $\lambda(G)=$ $2 \chi(G)-2$ and then characterize all unit interval graphs G of order no more than $3 \chi(G)-1$, where $\chi(G)$ is the chromatic number of G. Finally, we discuss some subgraphs of unit interval graphs G on more than $2 \chi(G)+1$ vertices with $\lambda(G)=2 \chi(G)$.

1. Introduction

The study of distance two labellings of graphs is motivated from the channel/frequency assignment problem ($F A P$) introduced by Hale [5]. The FAP is the assignment of frequencies to television and radio transmitters subject to restrictions imposed by the distance between transmitters. This problem was first formulated as a graph coloring problem by Hale, who introduced the notion of the T-coloring of a graph. There has been a considerable effort to study the T-coloring problem over the past decade. In 1988, Roberts (in a private communication with Griggs) proposed a variation of the FAP in which "close" transmitters must receive different channels and "very close" transmitters must receive channels at least two apart. Motivated by this variation, Griggs and Yeh [4] first proposed and studied the $L(2,1)$-labelling of a simple graph with a condition at distance two. This is followed by many other works. For examples, see $[9,2,7,1,11,6,10,3]$.

[^0]Let G be a simple graph. A complete subgraph of G is called a clique. The size of a clique is the number of its vertices. A t-clique of G, denoted by K_{t}, is a clique of size t. The clique number of G, denoted by $\omega(G)$, is the size of the maximum clique of G. We also use the usual notations $V(G), E(G), n(G), \Delta(G)$, $\chi(G)$ and $\lambda(G)$ to denote the vertex set, the edge set, the number of vertices, the maximum degree, the chromatic number and the λ-number of G, respectively. The reference to G will sometimes be omitted if no confusion is possible.

Suppose $0 \leq a \leq b$ are integers. We shall use $[a, b]$ to denote the set $\{a, a+$ $1, \cdots, b-1, b\}$. An $L(2,1)$-labelling f of G is a function $f: V(G) \rightarrow[0, k]$, such that $|f(u)-f(v)| \geq 2$ if $u v \in E(G)$; and $|f(u)-f(v)| \geq 1$ if $d_{G}(u, v)=2$, where $d_{G}(u, v)$ is the length (number of edges) of a shortest path between u and v in G. Elements of the image under f are called labels, and the span of f, denoted by $\operatorname{span}(f)$, is the difference between the maximum and minimum labels of f. Without loss of generality, we assume that the minimum label of $L(2,1)$-labellings of G is 0 , and so $\operatorname{span}(f)$ is the maximum label. The $L(2,1)$-labelling number, or λ-number of $G, \lambda(G)$, is the minimum span over all such labellings. If $\operatorname{span}(f)=\lambda(G)$, then f is a called a span labelling.

A graph is a unit m-sphere graph if each vertex represents a closed sphere in R^{m} of unit diameter and edges correspond to pairs of spheres that overlap. In the FAP, the interference graph is usually represented by a unit m-sphere graph for $m=1,2$, or 3 . The unit 1 -sphere graphs are called unit interval graphs, or simply $U I$-graphs. The class of UI-graphs and its generalization are of particular interest in the FAP. In [8], Roberts showed that a graph G on n vertices is UI if and only if there exists an ordering $v_{1}, v_{2}, \ldots, v_{n}$ of V such that if v_{i} and v_{j} are adjacent for some $i \leq j$, then $\left\{v_{i}, v_{i+1}, \ldots, v_{j-1}, v_{j}\right\}$ induces a $(j-i+1)$-clique in G denoted by $\left[v_{i}, v_{j}\right]$. Such an ordering is called a compatible ordering of G. Henceforth, all UI-graphs will come with a listing $v_{1}, v_{2}, \ldots, v_{n}$ according to some compatible ordering. So when we say that a vertex v precedes or follows an other vertex w, we mean that v appears before or after w respectively, according to that ordering. Two distinct cliques in a UI-graph are adjacent if there exists a vertex in one clique which is adjacent to at least one vertex in the other, otherwise separated. Any set of vertices lying between (according to the compatible ordering) two separated χ cliques is called a set of separators of the two χ-cliques. Two consecutive χ-cliques K^{\prime} and $K^{\prime \prime}$ are properly separated if (i) they are separated and (ii) for any set of separators S, the number of vertices in $K^{\prime} \cup K^{\prime \prime}$ adjacent to all vertices of S is at most $\chi-|S|-1$. Throughout this paper, we always assume that a UI-graph is connected.

In [9], Sakai proved that each UI-graph G has only three possible λ-numbers: $2 \chi-2,2 \chi-1$ and 2χ. She also characterized UI-graphs G on $2 \chi+1$ vertices with $\lambda(G)=2 \chi(G)$ by the following theorem.

Theorem 1.1. [9]. Let G be a UI-graph on $n=2 \chi+1$ vertices and $\chi>2$. There is a compatible vertex ordering $v_{1}, v_{2}, \cdots, v_{n}$ of vertices such that either
(1) $v_{1} v_{\chi}, v_{\chi+2} v_{n}, v_{q} v_{q+\chi-1} \in E$ for some $3 \leq q \leq \chi$, or
(2) $v_{1} v_{\chi}, v_{2} v_{\chi+1}, v_{\chi+1} v_{n-1}, v_{\chi+2} v_{n} \in E$
if and only if $\lambda=2 \chi$.
In [9], Sakai also stated three unsolved problems. Two of them are as follows.
(1) Generalize the characterization of UI-graphs on more than $2 \chi+1$ vertices with $\lambda=2 \chi$.
(2) Characterize UI-graphs with $\lambda=2 \chi-2$ and with $\lambda=2 \chi-1$.

In this paper, we study the above problems. In Section 2, we first discuss some necessary conditions and some sufficient conditions for UI-graphs to have $\lambda=2 \chi-2$. We then give a characterization of UI-graphs on at most $3 \chi-1$ vertices with $\lambda=2 \chi-2$. In Section 3, we obtain some sufficient conditions for UI-graphs to have $\lambda=2 \chi$.

2. Unit Interval Graphs with $\lambda=2 \chi-2$

In this section, we present some necessary conditions and some sufficient conditions for a UI-graph to have $\lambda=2 \chi-2$.

Theorem 2.1. Let G be a UI-graph on $n \geq 2 \chi+1$ vertices with $\chi>2$. If $\lambda=2 \chi-2$, then any two consecutive χ-cliques are properly separated.

Proof. Let G be a UI-graph on $n \geq 2 \chi+1$ vertices with $\chi>2$ and $\lambda=$ $2 \chi-2$. If f is a λ-labelling of G, then for any χ-clique K_{χ} of $G, f\left(V\left(K_{\chi}\right)\right)=$ $\{0,2,4, \ldots, 2 \chi-2\}$, the set of all available even labels. Let K^{\prime} and $K^{\prime \prime}$ be two consecutive χ-cliques. If they are not separated, then there exists $v \in K^{\prime} \backslash K^{\prime \prime}$ such that $\{v\} \cup K^{\prime \prime}$ is of diameter two. So each vertex of $\{v\} \cup K^{\prime \prime}$ has to be assigned a distinct label from $\{0,2,4, \ldots, 2 \chi-2\}$, which is impossible. Therefore K^{\prime} and $K^{\prime \prime}$ are separated. It remains to show that they are properly separated.

Suppose S is a set of separators of K^{\prime} and $K^{\prime \prime}$ such that there exists $S^{*} \subset$ $K^{\prime} \cup K^{\prime \prime}$ with $\left|S^{*}\right| \geq \chi-|S|$ and each vertex in S^{*} is adjacent to all vertices in S. Clearly $S^{*} \not \subset K^{\prime}$ and $S^{*} \not \subset K^{\prime \prime}$, otherwise $S^{*} \cup S$ is a χ-clique which is not separated from K^{\prime} or $K^{\prime \prime}$. Therefore each of $K^{\prime} \cup S, K^{\prime \prime} \cup S$ and $S \cup S^{*}$ is of diameter two. Consequently, each vertex of S and S^{*} has to be assigned a distinct label from $\{1,3, \cdots, 2 \chi-3\}$ and $\{0,2,4, \ldots, 2 \chi-2\}$ respectively. But $S^{*} \cup S$ is of diameter two, so after labelling S, at least $|S|+1$ labels in $\{0,2,4, \ldots, 2 \chi-2\}$
cannot be used to label S^{*}. That means only $\chi-|S|-1 \leq\left|S^{*}\right|-1$ labels are available for S^{*}. The contradiction shows that K^{\prime} and $K^{\prime \prime}$ are properly separated.

It is straight-forward to show that the necessary condition of Theorem 2.1 is satisfied when a UI-graph G has only one χ-clique, or any two consecutive χ cliques of G are separated by χ or more vertices. However, this condition is not sufficient for a UI-graph G to have λ-number $2 \chi-2$. To see this fact, we give two UI-graphs H_{I} and $H_{I I}$, each of which satisfies the necessary condition of Theorem 2.1, but $\lambda \geq 2 \chi-1$.
H_{I} is the UI-graph on $3 \chi+s(\chi>2, \chi-3 \geq s \geq 0)$ vertices $v_{1}, v_{2}, \cdots, v_{3 \chi+s}$ such that $\left[v_{1}, v_{\chi}\right]$ and $\left[v_{2 \chi+s+1}, v_{3 \chi+s}\right]$ are two χ-cliques and $\left[v_{\chi}, v_{2 \chi-2}\right],\left[v_{\chi+1}, v_{2 \chi-1}\right]$ are two $(\chi-1)$-cliques, and $\left[v_{2 \chi}, v_{2 \chi+s+1}\right]$ is an $(s+2)$-clique. $H_{I I}$ is the UI-graph on $4 \chi-5(\chi>3)$ vertices $v_{1}, v_{2}, \cdots, v_{4 \chi-5}$ such that $\left[v_{1}, v_{\chi}\right]$ and $\left[v_{3 \chi-4}, v_{4 \chi-5}\right.$] are two χ-cliques; and $\left[v_{\chi}, v_{2 \chi-2}\right]$ and $\left[v_{2 \chi-2}, v_{3 \chi-4}\right]$ are two $(\chi-1)$-cliques (see Figure 1).

Fig. 1. UI-Graphs H_{I} and $H_{I I}$.
Lemma 2.2. $\lambda\left(H_{I}\right) \geq 2 \chi-1$ and $\lambda\left(H_{I I}\right) \geq 2 \chi-1$.
Proof. We first prove $\lambda\left(H_{I}\right) \geq 2 \chi-1$. Suppose to the contrary that $\lambda\left(H_{I}\right)=$ $2 \chi-2$ and f is a span labelling of H_{I}. Then $f\left(\left[v_{1}, v_{\chi}\right]\right)=f\left(\left[v_{2 \chi+s+1}, v_{3 \chi+s}\right]\right)=$ $\{0,2, \cdots, 2 \chi-2\}$. Since $\left[v_{1}, v_{2 \chi-2}\right]$ is of diameter two, $f\left(\left[v_{\chi+1}, v_{2 \chi-2}\right]\right) \subset$ $\{1,3, \cdots, 2 \chi-3\}$. Similarly, $f\left(\left[v_{2 \chi}, v_{2 \chi+s}\right]\right) \subset\{1,3, \cdots, 2 \chi-3\}$. The label of v_{χ} must be either $2 \chi-2$ or 0 , otherwise there are at most $\chi-3$ odd integers in $\{1,3, \cdots, 2 \chi-3\}$ available to label $v_{\chi+1}, \cdots, v_{2 \chi-2}$, which is impossible. Assume that $f\left(v_{\chi}\right)=2 \chi-2$ (the case of $f\left(v_{\chi}\right)=0$ is similar). Then $f\left(\left[v_{\chi+1}, v_{2 \chi-2}\right]\right)=\{1,3, \cdots, 2 \chi-5\}$ and $f\left(v_{2 \chi-1}\right)=2 \chi-3$. Hence any odd integer in $\{1,3, \cdots, 2 \chi-3\}$ cannot be used to label $v_{2 \chi}$ because $v_{2 \chi}$ is at a distance of at most two from any vertex in $\left[v_{\chi+1}, v_{2 \chi-1}\right]$, a contradiction.

To prove that $\lambda\left(H_{I I}\right) \geq 2 \chi-1$, we assume to the contrary that $\lambda\left(H_{I I}\right)=2 \chi-2$. Let f be a span labelling of $H_{I I}$. With the same argument as above, we may assume
that $f\left(v_{\chi}\right)=2 \chi-2$ and hence $f\left(\left[v_{\chi+1}, v_{2 \chi-2}\right]\right)=\{1,3, \cdots, 2 \chi-5\}$. Similar argument leads to $f\left(v_{3 \chi-4}\right)=0$ or $2 \chi-2$. But since v_{χ} is at distance 2 from $v_{3 \chi-4}$, we have $f\left(v_{3 \chi-4}\right)=0$ and $f\left(\left[v_{2 \chi-2}, v_{3 \chi-5}\right]\right)=\{3, \cdots, 2 \chi-3\}$. This means that $\chi-1$ labels are available to label $[\chi+1,3 \chi-5]$, a graph on $2 \chi-5$ vertices with diameter two. Because $\chi \geq 5$, we have $\chi-1<2 \chi-5$ and a contradiction.

Therefore, we have the following necessary condition for a UI-graph to have $\lambda=2 \chi-2$.

Theorem 2.3. Let G be a UI-graph on $n \geq \chi$ vertices. If $\lambda=2 \chi-2$, then no subgraph of G is isomorphic to H_{I} or $H_{I I}$.

We also have the following sufficient condition for a UI-graph to have $\lambda=$ $2 \chi-2$.

Theorem 2.4. Let G be a UI-graph. If
(a) G contains exactly one χ-clique, or
(b) G has at least two χ-cliques and the number of vertices between any pair of consecutive χ-cliques is $(2 m-1) \chi-m$ for some integer $m \geq 1$,
then $\lambda=2 \chi-2$.

Proof. We first observe that the infinite periodic sequence

$$
\begin{equation*}
\cdots, \underbrace{1,3, \cdots, 2 \chi-3}, \overbrace{0,2, \cdots, 2 \chi-2}, \underbrace{1,3, \cdots, 2 \chi-3}, \overbrace{0,2, \cdots, 2 \chi-2}, \cdots \tag{A}
\end{equation*}
$$

has the following properties:
(1) Period of the sequence is $2 \chi-1$, and elements in the same period are distinct from each other,
(2) All elements in any string of length $\chi-1$ differs from each other by at least two, and
(3) Between any two strings of even integers $0,2, \cdots, 2 \chi-2$, there are $(2 m-$ 1) $\chi-m$ elements for some $m \geq 1$.

Now we assign the string $\{0,2, \cdots, 2 \chi-2\}$ to one χ-clique. If there are more χ-cliques, then because of (b) and (3), all other χ-cliques will be fitted with the string $\{0,2, \cdots, 2 \chi-2\}$. After trimming off excess elements from the sequence, we shall see that we have in fact obtained an $L(2,1)$-labelling of G with span $2 \chi-2$.

Suppose u and v are two adjacent vertices. If their positions in the compatible ordering differs by $\chi-1$, then they must belong to the same χ-clique and so each
are assigned distinct even labels. If their positions in the compatible ordering differs by $\chi-2$, then by (2), their labels differ by at least 2 .

Suppose a shortest path connecting two vertices u and v has length two with intermediate vertex w. Since $[u, w]$ and $[w, v]$ cannot be both χ-cliques, there are at most $2 \chi-4$ vertices lying between u and v. So by (1), they get distinct labels.

Although the condition of Theorem 2.1 is not sufficient for a general UI-graph G to have $\lambda=2 \chi-2$, it is sufficient for UI-graph in which any two consecutive χ-cliques are separated by at most $\chi-1$ vertices.

Theorem 2.5. Let G be a UI-graph such that any two consecutive χ-cliques K^{\prime} and $K^{\prime \prime}$ are properly separated by at most $\chi-1$ vertices. Then $\lambda(G)=2 \chi-2$.

Proof. We only need to give an $L(2,1)$-labelling of G with span $2 \chi-2$. If G contains exactly one χ-clique, then the labelling can be obtained as in Theorem 2.4.

Suppose G contains at least two χ-cliques. We shall denote the strings of labels $\{1,3, \cdots, 2 \chi-3\}$ and $\{0,2, \cdots, 2 \chi-2\}$ by I_{o} and I_{e} respectively. We first take a sequence (A) truncated just after the end of one I_{e}, fit that string to the first χ-clique and trim the unused elements in the front. Similarly, we take a sequence (A) truncated just before the beginning of one I_{e}, fit that string to the last χ-clique and trim the unused elements at the rear. For other χ-cliques, if any, we assign one I_{e}. For vertices between two consecutive χ-cliques, we label them with one I_{o}, preserving the order, but with segments appropriately trimmed off if necessary. We shall describe this process in the following paragraphs.

Let $K^{\prime}=\left[v_{1}, v_{\chi}\right]$ and $K^{\prime \prime}=\left[v_{l+1}, v_{l+\chi}\right]$, be two consecutive χ-cliques properly separated by the set $S=\left[v_{\chi+1}, v_{l}\right]$ with $l-\chi=s \leq \chi-1$. For each $q \in[1, s]$, we put $q^{\prime}=\left|N_{K^{\prime}}\left(v_{\chi+q}\right)\right|$ and $q *=\left|N_{K^{\prime \prime}}\left(v_{\chi+q}\right)\right|$. Note that either q^{\prime} or q^{*} can possibly be zero. We set $f^{\prime}\left(v_{\chi+q}\right)=2 q-1$ and $f^{\prime \prime}\left(v_{\chi+q}\right)=2 q^{*}+1$ for each $q \in[1, s]$.

If $f^{\prime}\left(v_{\chi+j}\right) \geq f^{\prime \prime}\left(v_{\chi+j}\right)$ for all $j \in[1, s]$, then label $v_{\chi+j}$ with $f^{\prime}\left(v_{\chi+j}\right)$ for all $j \in[1, s]$. Since $f^{\prime}\left(v_{\chi+j}\right)$ is odd and $2 s-1 \leq 2(\chi-1)-1=2 \chi-3$, all vertices of S have been labelled with elements from I_{o}. If there exists $j \in[1, s]$ such that $f^{\prime}\left(v_{\chi+j}\right)<f^{\prime \prime}\left(v_{\chi+j}\right)$, then let q be the smallest of such integers. We shall call $v_{\chi+q}$ a critical vertex. We label $v_{\chi+j}$ with $f^{\prime}\left(v_{\chi+j}\right)$ for all $j \in[1, q-1]$, and label $v_{\chi+q}$ with $f^{\prime \prime}\left(v_{\chi+q}\right)$. Consider the fact that

$$
\begin{equation*}
f^{\prime \prime}\left(v_{\chi+q}\right)-f^{\prime}\left(v_{\chi+q}\right)=\left(2 q^{*}+1\right)-(2 q-1)=2 k>0 \tag{1}
\end{equation*}
$$

Since both $2 q^{*}+1$ and $2 q-1$ are odd integers, it follows that k is a natural number. For $q<j \leq s$, we adjust the value of $f^{\prime}\left(v_{\chi+j}\right)$ to $2(j+k)-1$. Since $v_{\chi+q}$ is adjacent to $v_{l+q^{*}}$, the clique $\left[v_{\chi+q}, v_{l+q^{*}}\right]$ is of order $(s-q+1)+q^{*} \leq \chi-1$. Using this inequality and (1), we can deduce that $2(s+k)-1=2\left(s-q+1+q^{*}\right)-1 \leq 2 \chi-3$.

Therefore all adjusted values of $f^{\prime}\left(v_{\chi+j}\right), q<j \leq s$, belong to I_{o}. By comparing values of $f^{\prime}\left(v_{\chi+j}\right)$ and $f^{\prime \prime}\left(v_{\chi+j}\right)$ for all $j \in[q+1, s]$, we repeat the above process, adjusting f^{\prime} at critical vertices, if any, until all vertices of S have been labelled.

We shall denote the above labelling by f and show that f is in fact an $L(2,1)$ labelling of G. Suppose that v and w are two adjacent vertices. If they both belong to the first χ-clique together with its preceding vertices, or to the last χ-clique together with its succeeding vertices, then by Theorem 2.4 their labels differ by at least two. If they both belong to the separators of two consecutive χ-cliques, then they were assigned distinct odd labels, and so their labels differ by at least two. Since it is impossible to have a χ-clique between two adjacent vertices, the only remaining case is that $v=v_{\chi+q}$ belongs to the separators of two consecutive χ-cliques $K^{\prime}=\left[v_{1}, v_{\chi}\right]$ and $K^{\prime \prime}=\left[v_{l+1}, v_{l+\chi}\right]$, and $w=v_{r}$ belongs to one of the two χ-cliques. If $v_{r} \in K^{\prime \prime}$, then $r-l-\chi+1 \leq q^{*}$ and $f\left(v_{\chi+q}\right) \geq 2 q^{*}+1$. Therefore $f\left(v_{r}\right)=2(r-l-\chi) \leq 2 q^{*}-2 \leq f\left(v_{\chi+q}\right)-3$. If $v_{r} \in K^{\prime}$, then $\chi-q^{\prime}+1 \leq r \leq \chi$ and $f\left(v_{r}\right)=2(r-1) \geq 2 \chi-2 q^{\prime}$. Suppose $f\left(v_{\chi+q}\right)=2 q-1$, then $f\left(v_{r}\right)-f\left(v_{\chi+q}\right) \geq 2 \chi-2 q^{\prime}-2 q+1=2\left(\chi-1-q-q^{\prime}\right)+3$. Since $\left[v_{\chi-q^{\prime}+1}, v_{\chi+q}\right]$ is a clique of size $q+q^{\prime}$ and is not separated from K^{\prime}, therefore $\chi-1 \geq q+q^{\prime}$. It follows that $f\left(v_{r}\right) \geq f\left(v_{\chi+q}\right)+3$. Suppose $f\left(v_{\chi+q}\right)>2 q-1$, then we can determine $v_{\chi+q_{o}}$, the first vertex in S preceding $v_{\chi+q}$ (possibly $q_{o}=q$), for which $f\left(v_{\chi+q_{o}}\right)=2 q_{o}^{*}+1$. Consider the set $S^{*}=\left[v_{\chi+q_{o}}, v_{\chi+q}\right]$, a set of separators for K^{\prime} and $K^{\prime \prime}$. Because of the property of compatible ordering, all vertices in S are adjacent to q^{\prime} and q_{o}^{*} vertices in K^{\prime} and $K^{\prime \prime}$ respectively. Because K^{\prime} and $K^{\prime \prime}$ are properly separated, we have

$$
\begin{equation*}
\left(q-q_{o}+1\right)+q^{\prime}+q_{o}^{*} \leq \chi-1 \tag{2}
\end{equation*}
$$

Because $f\left(v_{\chi+q_{o}}\right)=f^{\prime \prime}\left(v_{\chi+q_{o}}\right)=2 q_{o}^{*}+1$, we have $f\left(v_{\chi+q}\right)=2 q_{o}^{*}+1+2\left(q-q_{o}\right)$. Using (2), we can deduce that $f\left(v_{\chi+q}\right) \leq 2 \chi-2 q^{\prime}-3 \leq f\left(v_{r}\right)-3$.

Let v_{r} and $v_{s}, r \leq s$, be two vertices at distance two. We may assume that both of them belong to χ-cliques, or none of them belongs to a χ-clique. Suppose both of them belong χ-cliques, then because they are at distance two from each other, they belong to consecutive χ-cliques, say $K^{\prime}=\left[v_{1}, v_{\chi}\right]$ and $K^{\prime \prime}=\left[v_{l+1}, v_{l+\chi}\right]$, where $\chi+1 \leq l \leq 2 \chi-1$. Since no vertex in K^{\prime} is adjacent to any vertex of $K^{\prime \prime}$, there exists a vertex $v \in\left[v_{\chi+1}, v_{l}\right]$ adjacent to both v_{r} and v_{s}. From the previous paragraph, we have shown that $f\left(v_{r}\right)-3 \geq f(v) \geq f\left(v_{s}\right)+3$, and hence $f\left(v_{r}\right)>f\left(v_{s}\right)$. Finally, suppose v_{r} and v_{s} comes before and after a χ-clique K, respectively. If $v \in K$ is adjacent to both v_{r} and v_{s}, then again by the above argument, we have $f\left(v_{r}\right)-3 \geq f(v) \geq f\left(v_{s}\right)+3$ (same conclusion holds if either v_{r} or v_{s} precedes the first χ-clique or follows the last χ-clique respectively). A gain, we have $f\left(v_{r}\right)>f\left(v_{s}\right)$.

With Theorems 2.1, 2.4 and 2.5, we can characterize all UI-graphs on at most
$3 \chi-1$ vertices with $\lambda=2 \chi-2$. In particular, we have the following Theorem and Corollary.

Theorem 2.6. Let G be a UI-graph on $n<3 \chi$ vertices and $\chi>3$. Then $\lambda=2 \chi-2$ if and only if (1) G contains exactly one χ-clique or (2) G contains precisely two properly separated χ-cliques.

Corollary 2.7. Let G be a UI-graph on $2 \chi+1$ vertices and $\chi>3$. Then $\lambda=2 \chi-2$ if and only if (1) G contains exactly one χ-clique or (2) G contains precisely two nonadjacent χ-cliques and the remaining vertex of G has degree at most χ - 2 .

The following theorem follows from Corollary 2.5 in [[9]] and Theorem 2.1.
Theorem 2.8. Let G be a UI-graph on n vertices, $\chi+1 \leq n \leq 2 \chi$. Then

1. $\lambda=2 \chi-2$ if and only if G contains exactly one χ-clique,
2. $\lambda=2 \chi-1$ if and only if G contains at least two χ-cliques.

Theorem 1.1 and Corollary 2.7 together characterizes all UI-graphs on $2 \chi+1$ vertices with any possible λ, i.e. $2 \chi-2 \leq \lambda \leq 2 \chi$. Theorem 2.8 characterize all UI-graphs on $\leq 2 \chi$ vertices with any possible λ, i.e. $2 \chi-2 \leq \lambda \leq 2 \chi-1$.

3. Unit Interval Graphs with $\lambda=2 \chi$

If the span of an $L(2,1)$-labeling of a graph G is $2 k-2$, then any k-clique of G can only receive one set of labels, namely $\{0,2, \ldots, 2 k-2\}$. However, if the span of L is $2 k-1$, then a k-clique can receive any one of the following sets of integers [9].

$$
\begin{align*}
& L_{1}(k)=\{0, \quad 2, \quad 4, \quad 6, \cdots 2 k-8, \quad 2 k-6, \quad 2 k-4, \quad 2 k-2\}, \\
& L_{2}(k)=\left\{\begin{array}{llll}
0 & 2, & 4, & 6,
\end{array} \cdots 2 k-8,2 k-6,2 k-4, \quad 2 k-1\right\}, \\
& L_{3}(k)=\{0, \quad 2, \quad 4, \quad 6, \cdots 2 k-8,2 k-6,2 k-3,2 k-1\}, \\
& L_{4}(k)=\left\{\begin{array}{llll}
0, & 2, & 4, & 6,
\end{array} \cdots 2 k-8,2 k-5,2 k-3, \quad 2 k-1\right\}, \\
& \ldots \text {... } \tag{L}\\
& L_{k-2}(k)=\left\{\begin{array}{llllll}
0, & 2, & 4, & 7, & \cdots & 2 k-7,
\end{array} 2 k-5,2 k-3,2 k-1\right\}, \\
& L_{k-1}(k)=\left\{\begin{array}{llllll}
0, & 2, & 5, & 7, & \cdots & 2 k-7,
\end{array} 2 k-5,2 k-3,2 k-1\right\}, \\
& L_{k}(k)=\left\{\begin{array}{lllll}
0 & 3, & 5, & 7, & \cdots
\end{array} 2 k-7, \quad 2 k-5,2 k-3,2 k-1\right\}, \\
& L_{k+1}(k)=\left\{\begin{array}{lllll}
1, & 3, & 5 & 7, & \cdots
\end{array} 2 k-7,2 k-5,2 k-3,2 k-1\right\},
\end{align*}
$$

Some nice properties about the above sets of integers are given by the following useful lemmas:

Lemma 3.1. [9] If $r<s<t$ are integers and $x \in L_{r}(k) \cap L_{t}(k)$, then $x \in L_{s}(k)$.

Lemma 3.2. [9] Let G be a graph and let $k>2$ be an integer. Suppose that there is an $L(2,1)$-labelling with span $2 k-1$. If K is a k-clique of G, then the set of labels of K is $L_{i}(k)$ for some integer $i, 1 \leq i \leq k+1$.

Suppose f is an $L(2,1)$-labelling of G with span $2 k-1$ and K is a k-clique in G. If 1 or $2 k-2 \in f(K)$, then $f(K)=L_{1}(k)$ or $L_{k+1}(K)$ respectively. Lemma 3.1 and Lemma 3.2 lead to Lemma 3.3 that appears below. Recall that an r-path on n-vertices, denoted by P_{n}^{r}, is the graph G with $V(G)=\left\{v_{i}: i=1,2, \ldots, n\right\}$ and $E(G)=\left\{v_{i} v_{j}: 1 \leq|i-j| \leq r\right\}$.

Lemma 3.3. Let $P_{2 k}^{k-1}$ be a $(k-1)$-path on $2 k$ vertices $v_{1}, \ldots, v_{2 k}$ and f is an $L(2,1)$-labelling of $P_{2 k}^{k-1}$ with span $2 k-1$. Then either $f\left(v_{i}\right)=2(k-i)$ and $f\left(v_{k+i}\right)=2(k-i)+1$ for $i=1,2, \ldots, k$; or $f\left(v_{i}\right)=2(i-1)+1$ and $f\left(v_{k+i}\right)=2(i-1)$ for $i=1,2, \ldots, k$.

The λ-number of a graph cannot be less than that of any of its subgraphs. If a UI-graph G contains a subgraph G^{\prime} with $\lambda\left(G^{\prime}\right)=2 \chi(G)$, we can conclude that $\lambda(G)=2 \chi(G)$. Therefore one method of determining whether a UI-graph has λ-number equal to 2χ is to look for subgraphs having λ-number 2χ. Now we shall discuss three types of UI-graphs with $\lambda=2 \chi$. The first type of UI-graphs is one that satisfies condition 2 of Theorem 1.1.

A graph is called U_{I} if it is a UI-graph on $2 \chi+1$ vertices containing four χ-cliques $\left[v_{1}, v_{\chi}\right],\left[v_{2}, v_{\chi+1}\right],\left[v_{\chi+1}, v_{2 \chi}\right]$ and $\left[v_{\chi+2}, v_{2 \chi+1}\right]$, see Figure 2.

Fig. 2. Sketch of graph U_{I}.

Fig. 3. Sketch of graph $U_{I I}$.
A graph is called $U_{I I}$ if it is a UI-graph on at least $2 \chi+1$ vertices containing three χ-cliques $\left[v_{r}, v_{\chi+r-1}\right],\left[v_{s}, v_{\chi+s-1}\right]$ and $\left[v_{t}, v_{\chi+t-1}\right]$, where $r<s \leq \chi+r-1<$ $t-1$, see Figure 3.

Theorem 3.4. If a UI-graph contains a subgraph isomorphic to either U_{I} or $U_{I I}$, then $\lambda=2 \chi$.

Proof. Since the graph U_{I} defined above satisfies condition (2) of Theorem 1.1, $\lambda\left(U_{I}\right)=2 \chi$. Although the graph $U_{I I}$ is more general than the graph specified in condition (1) of Theorem 1.1, an argument similar to that of Sakai shows that $\lambda\left(U_{I I}\right)=2 \chi$ (see [9]).

A sequence of χ-cliques of a UI-graph G is called a χ-chain if the sequence consists of consecutive non-separated χ-cliques one following another. The number of χ-cliques in the chain is called the length of the chain. The number of vertices covered by the χ-chain is called the order of the chain. Hence the sequence of χ-cliques $K_{i}=\left[v_{n_{i}}, v_{n_{i}+\chi-1}\right]$, where $1 \leq i \leq s$ and $n_{j}<n_{j+1} \leq n_{j}+\chi-1$ for $j=1,2, \ldots, s-1$, will be called a χ-chain of length s and of order $n_{s}+\chi-n_{1}$. A χ chain of length s is maximal if its order is $\chi+s-1$, i.e. $n_{j}+1=n_{j+1}$ for $j=1,2, \ldots, s-1$ in the above example. Since any χ-chain of order $2 \chi+1$ contains either U_{I} or $U_{I I}$ as subgraph, the following lemma follows from Theorem 3.4.

Lemma 3.5. For a UI-graph with $\lambda \leq 2 \chi-1$, the order of any χ-chain is at most 2χ.

Lemma 3.5 implies the following Theorem.
Theorem 3.6. If there is a χ-chain of order $2 \chi+1$ or more in a UI-graph, then $\lambda=2 \chi$.

The third graph $U_{I I I}$ is a UI-graph consisting of two consecutive maximal χ chains \mathcal{C}_{1} and \mathcal{C}_{2}, each of which is of length χ. Moreover if v_{i} and v_{j} is the last vertex of \mathcal{C}_{1} and the first vertex of \mathcal{C}_{2} respectively, then $\left[v_{i}, v_{j}\right]$ consists of at least three vertices and is of diameter at most 2 .

Fig. 4. Sketch of $U_{I I I}$.
Theorem 3.7. If a UI-graph contains a subgraph isomorphic to $U_{I I I}$, then $\lambda=2 \chi$.

Proof. It is sufficient to show that $\lambda\left(U_{I I I}\right)=2 \chi$. Suppose the two maximal χ-chains in $U_{I I I}$ are $A=\left[v_{1}, v_{2 \chi}\right]$ and $B=\left[v_{s+1}, v_{s+2 \chi}\right]$, where $s+1 \geq 2 \chi+1$.

Also suppose $C=\left[v_{2 \chi}, v_{s+1}\right]$ contains at least three vertices and is of diameter at most two (Figure 4).

Suppose for contradiction purposes that $\lambda \leq 2 \chi-1$ and f is an $L(2,1)$-labelling of G with $\operatorname{span}(f) \leq 2 \chi-1$. Since A is a maximal χ-chain of length χ and of order 2χ, then by Lemma 3.3, we must have $f\left(v_{2 \chi}\right)=2(\chi-1)$ or 1 and similarly $f\left(v_{s+1}\right)=2(\chi-1)$ or 1 also. Since C contains at least three vertices and its diameter is at most 2 , there is at least one vertex x between $v_{2 \chi}$ and v_{s+1} such that $v_{2 \chi} x v_{s+1}$ is a path of length 2 . Therefore $v_{2 \chi}$ and v_{s+1} cannot get the same label.

If $f\left(v_{2 \chi}\right)=2(\chi-1)$, then $f\left(v_{s+1}\right)=1$. So the cliques $\left[v_{\chi+1}, v_{2 \chi}\right]$ and $\left[v_{s+1}, v_{s+2 \chi}\right]$ are labelled with all the integers from 0 to $2 \chi-1$. But x is adjacent to $v_{2 \chi}$ and v_{s+1}. So its distance from each vertex of these two cliques is one. That means x cannot be labelled. The contradiction shows that $\lambda\left(U_{I I I}\right)=2 \chi$.

4. Concluding Remarks

Although we did not answer all three questions mentioned at the end of [9] completely in this paper, we have completely characterized all UI-graphs G on at most $2 \chi+1$ vertices and all UI-graphs G on at most $3 \chi-1$ vertices for which $\lambda=2 \chi-2$. In addition, we have given some necessary conditions and some sufficient conditions for a UI-graph with $\lambda=2 \chi-2$. We have also given some sufficient conditions for a UI-graph to have λ-number 2χ.

However, it seems to be difficult to characterize unit interval graphs G with particular λ-numbers completely. Consiser the following two examples.

Let H_{1} be a UI-graph of 19 vertices with $\chi=4$ with two maximal 4 -chains on [$\left.v_{1}, v_{8}\right]$ and $\left[v_{12}, v_{19}\right]$ respectively. Further, let $v_{8} v_{9} v_{10}$ be a path and $\left[v_{10}, v_{12}\right]$ be a 3 -clique. We can follow the argument of Theorem 3.7 to get $\lambda\left(H_{1}\right)=8=2 \chi$.

Now let H_{2} be a UI-graph of 29 vertices with $\chi=6$ with two maximal 6 -chains on $\left[v_{1}, v_{12}\right]$ and $\left[v_{18}, v_{29}\right]$ respectively. Further, let $v_{12} v_{13} v_{14}$ be a path and $\left[v_{14}, v_{18}\right]$ be a 5 -clique. We obtain an $L(2,1)$-labelling f of H_{2} with span $11=2 \chi-1$ as follows.

$$
\begin{array}{ll}
f\left(v_{i}\right)=f\left(v_{17+i}\right)=2(\chi-i), & \text { for } \quad i=1,2,3,4,5,6, \\
f\left(v_{6+j}\right)=f\left(v_{23+j}\right)=2(\chi-j)+1, & \text { for } \quad j=1,2,3,4,5,6, \\
f\left(v_{11+k}\right)=2(\chi-k)+1, & \text { for } \quad k=3,4,5,
\end{array}
$$

and $f\left(v_{13}\right)=4$. Thus $\lambda\left(H_{2}\right)=11=2 \chi-1$.
We can see that the structure of H_{1} and H_{2} are very similar, but $\lambda\left(H_{1}\right)=2 \chi$, whereas $\lambda\left(H_{2}\right)=2 \chi-1$. It seems that there is something to do with their chromatic numbers.

Acknowledgment

The authors gratefully accept the valuable comments of the referees.

References

1. G. J. Chang, W.-T. Ke, D. Kuo, D. D.-F. Liu and R. K. Yeh, On $L(d, 1)$-labellings of graphs, Discrete Math., 220 (2000), 57-66.
2. G. J. Chang and D. Kuo, The $L(2,1)$-labelling problem on graphs, SIAM J. Discrete Math., 9 (1996), 309-316
3. J. P. Georges, D. W. Mauro and M. I. Stein, Labelling products of complete graphs with a condition at distance two, SIAM J. Discrete Math., 14 (2000), 28-35.
4. J. R. Griggs and R. K. Yeh, Labelling graphs with a condition at distance two, SIAM J. Discrete Math., 5 (1992), 586-595.
5. W. K. Hale, Frequency Assignment: Theory and Applications, Proc. IEEE, 68 (1980), 1497-1514.
6. J. van den Heuvel, R. A. Leese and M. A. Shepherd, Graph labelling and radio channel assignment, J. Graph Theory, 29 (1988), 263-283.
7. D. D.-F. Liu and R. K. Yeh, On distance two labellings of graphs, Ars Combinatoria, 47 (1997), 13-22.
8. F. S. Roberts (1971), On the compatibility between a graph and a simple order, J. Combin. Theory, 11 (1971), 28-38.
9. D. Sakai, Labeling chordal graphs with a condition at distance two, SIAM J. Discrete Math., 7 (1994), 133-140.
10. M. A. Whittlesey, J. P. Georges and D. W. Mauro, On the λ-number of Q_{n} and related graphs, SIAM J. Discrete Math., 8 (1995), 499-506.
11. K.-F. Wu and R. K. Yeh, Labelling graphs with the circular difference, Taiwanese J. Math., 4 (2000), 397-405.
[^1]
Wai Chee Shiu

Department of Mathematics,
Hong Kong Baptist University,
Hong Kong
Guohua Gu
Department of Mathematics, Southeast University,
Nanjing 210018,
P. R. China

[^0]: Received October 21, 2006, accepted November 23, 2007.
 Communicated by Xuding Zhu.
 2000 Mathematics Subject Classification: 05C78.
 Key words and phrases: $L(2,1)$-labelling, Unit interval graph.
 ${ }^{1}$ Partially supported by National Science Council grant NSC 096-2811-M-029-001.
 ${ }^{2}$ Partially supported by National Science Council grant NSC 95-2115-M-029-003.
 *Correspondence author.

[^1]: Peter Che Bor Lam
 Department of Mathematics,
 Tunghai University,
 Taichung, Taiwan
 E-mail: cblam2002@yahoo.com
 Tao-Ming Wang
 Department of Mathematics,
 Tunghai University,
 Taichung, Taiwan

