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PERIODIC SOLUTIONS OF DELAY EQUATIONS
IN BESOV SPACES AND TRIEBEL-LIZORKIN SPACES

Shangquan Bu and Yi Fang

Abstract. Under suitable assumptions on the Fourier transform of the delay
operator F , we give necessary and sufficient conditions for the inhomogeneous
abstract delay equations: u′(t) = Au(t) + Fut + f(t), (t ∈ T) to have
maximal regularity in Besov spaces Bs

p,q(T, X) and Triebel-Lizorkin spaces
F s

p,q(T, X).

1. INTRODUCTION

The aim of this paper is to study maximal regularity of the following inhomo-
geneous abstract delay equations:

u′(t) = Au(t) + Fut + f(t), t ∈ T := [0, 2π], (1.1)

here A is a closed linear operator in a complex Banach space X , ut(·) = u(t + ·)
is defined on [−2π, 0], f ∈ F(T, X), and F : F ([−2π, 0],X) → X is a bounded
linear operator, where F is an X-valued function space, it may be Lp-spaces, Besov
spaces Bs

p,q or Triebel-Lizorkin spaces F s
p,q. We say that (1.1) has F -maximal

regularity, if for each f ∈ F(T, X), there exists a unique function u, such that u is
a.e. differentiable, u(t) ∈ D(A) and (1.1) is satisfied for a.e. t ∈ T, u′, Au, Fu· ∈
F (T, X).

J. K. Hale [7] and G. Webb [14] firstly studied the equation (1.1) for t ∈ R.
In [3], A. Bátkai, E. Fasanga and R. Shvidkoy obtained results on the hyperbolicity
of delay equations using the theory of operator-valued Fourier multipliers. In [10],
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Y. Latushkin and F. Räbiger studied stability of linear control systems in Banach
spaces. Recently, in [11] C. Lizama obtained necessary and sufficient condition for
(1.1) to have Lp-maximal regularity using Fourier multiplier theorems on Lp(T, X),
and Cα-maximal regularity of the corresponding equation on the real line has been
studied by C. Lizama and V. Poblete [12]. We note that in the special case when
F = 0, maximal regularity of (1.1) has been studied by W. Arendt and S. Bu [1, 2]
in Lp-spaces case and Besov spaces case, S. Bu and J. Kim [6] in Triebel-Lizorkin
spaces case. The corresponding integro-differential equations were treated by V.
Keyantuo and C. Lizama [8, 9], S. Bu and Y. Fang [5].

In this paper, we are interested in maximal regularity of (1.1) in Besov spaces
Bs

p,q(T, X) and Triebel-Lizorkin spaces F s
p,q(T, X). The main results are necessary

or sufficient conditions for this problem to have maximal regularity in Bs
p,q(T, X)

and F s
p,q(T, X). The main tools we will use are operator-valued Fourier multi-

plier results on Bs
p,q(T, X) and F s

p,q(T, X) established in [2] and [6]. We remark
that the sufficient condition for a sequence M = (Mk)k∈Z ⊂ L(X, Y ) to be a
Bs

p,q−multiplier is a Marcinkiewicz condition of order 2 [2] , and in the F s
p,q-

multiplier case one requires a Marcinkiewicz condition of order 3 [6], while it is
well known that in the Lp-multiplier case, only a Marcinkiewicz condition of order
1 is needed when X is UMD spaces [1]. This is the reason that, in contrast with
the sufficient condition of Lp-maximal regularity of (1.1) given in [11], we have to
impose an extra condition on Fourier transform of delay operator F in our sufficient
condition of the maximal regularity of (1.1) in Bs

p,q(T, X) and F s
p,q(T, X). We will

see that this extra condition is not needed in the sufficient condition of the maximal
regularity of (1.1) in Bs

p,q(T, X) when the underlying Banach space X is B-convex,
as in this case a Marcinkiewicz condition of order 1 is sufficient for a sequence
M = (Mk)k∈Z ⊂ L(X, Y ) to be a Bs

p,q−multiplier.
It is known that for 0 < α < 1, the periodic α-Hölder continuous function space

Cα
per(T, X) coincides with Bα∞,∞(T, X). Thus actually our result gives necessary

and sufficient conditions for the problem (1.1) to have Cα-maximal regularity.
The paper is organized as follows. In Section 2, we consider Bs

p,q-maximal
regularity for (1.1). Section 3 will be devoted to Fs

p,q-maximal regularity for (1.1).

2. MAXIMAL REGULARITY ON BESOV SPACES

Let X be a Banach space. For f ∈ L1(T; X), we denote by

f̂ (k) =
1
2π

∫ 2π

0

e−k(t)f(t)dt

the k-th Fourier coefficient of f , where k ∈ Z , T = [0, 2π] (the point 0 and 2π
are identified), and ek(t) = eikt. For k ∈ Z and x ∈ X , we denote by ek ⊗ x the
X-valued function defined by (ek ⊗ x)(t) = ek(t)x.
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Firstly, we briefly recall the definition of periodic Besov spaces in the vector-
valued case introduced in [2]. Let S(R) be the Schwartz space of all rapidly de-
creasing smooth functions on R. Let D(T) be the space of all infinitely differentiable
functions on T equipped with the locally convex topology given by the seminorms
‖f‖α = supx∈T|f (α)(x)| for α ∈ N0 := N∪{0}. Let D′

(T, X) := L(D(T), X) be
the space of all bounded linear operator from D(T) to X . In order to define Besov
spaces, we consider the dyadic-like subsets of R:

I0 =
{
t ∈ R : |t| ≤ 2

}
, Ik =

{
t ∈ R : 2k−1 < |t| ≤ 2k+1

}

for k ∈ N. Let φ(R) be the set of all systems φ = (φk)k∈N0 ⊂ S(R) satisfying
supp(φk) ⊂ Īk for each k ∈ N0,

∑
k∈N0

φk(x) = 1 for x ∈ R,

and for each α ∈ N0

supx∈R

k∈N0

2kα|φ(α)
k (x)| < ∞.

Let φ = (φk)k∈N0 ∈ φ(R) be fixed. For 1 ≤ p, q ≤ ∞, s ∈ R, the X-valued
periodic Besov space is defined by

Bs
p,q(T, X) =

{
f ∈ D′

(T, X) :
∥∥f

∥∥
Bs

p,q
: =

( ∑
j≥0

2sjq
∥∥∥∑

k∈Z

ek ⊗ φj(k)f̂(k)
∥∥∥q

p

)1/q
< ∞}

with the usual modification if q = ∞. The space Bs
p,q(T, X) is independent from

the choice of φ and different choices of φ lead to equivalent norms ‖ · ‖Bs
p,q

on
Bs

p,q(T, X). Bs
p,q(T, X) equipped with the norm ‖ · ‖Bs

p,q
is a Banach space. See

[2, Section 2] for more information about the space Bs
p,q(T, X). If f ∈ Bs

p,q(T, X),
then we will identify f with its periodic extension to R. In this way, if r ∈ R is
fixed, we say that a function f : [r, r + 2π] → X is in Bs

p,q([r, r + 2π], X) if and
only if its periodic extension to R is in Bs

p,q([0, 2π], X). It is easy to verify from
the definition that if u ∈ Bs

p,q(T, X) and t0 ∈ [0, 2π] is fixed, then the function ut0

defined on [−2π, 0] by ut0(t) = u(t0 + t), is still an element of Bs
p,q(T, X), and

‖ut0‖Bs
p,q

= ‖u‖Bs
p,q

.
We consider the equation

u′(t) = Au(t) + Fut + f(t), t ∈ T = [0, 2π] (2.1)

where A is a closed linear operator in X , f ∈ Bs
p,q(T, X) is given,

F : Bs
p,q([−2π, 0], X)→ X
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is a bounded linear operator. Moreover, for fixed t ∈ T, ut is an element of
Bs

p,q([−2π, 0], X) defined by ut(s) = u(t + s) for −2π ≤ s ≤ 0.

Definition 2.1. Let 1 ≤ p, q ≤ ∞, s > 0 and f ∈ Bs
p,q(T, X) is given. A

function u ∈ Bs+1
p,q (T, X) is called a strong Bs

p,q-solution of (2.1), if u(t) ∈ D(A)
and (2.1) holds for a.e. t ∈ T, Au ∈ Bs

p,q(T, X) and the function t → Fut also
belongs to Bs

p,q(T, X). We say that (2.1) has Bs
p,q-maximal regularity, if for each

f ∈ Bs
p,q(T, X), (2.1) has a unique strong Bs

p,q-solution.

Let X and Y be Banach spaces. We denote by L(X, Y ) the space of all bounded
linear operators from X to Y . If X = Y , we will simply denote it by L(X). The
main tool in the study of Bs

p,q-maximal regularity of (2.1) is the operator-valued
Fourier multiplier theory established in [2].

Definition 2.2. Let X, Y be Banach spaces, 1 ≤ p, q ≤ ∞, s ∈ R and let
(Mk)k∈Z ⊂ L(X, Y ). We say that (Mk)k∈Z is a Bs

p,q-multiplier, if for each f ∈
Bs

p,q(T, X), there exists u ∈ Bs
p,q(T, Y ), such that û(k) = Mk f̂(k) for all k ∈ Z.

The following result has been obtained in [2]:

Theorem 2.3. Let X, Y be Banach spaces, 1 ≤ p, q ≤ ∞, s ∈ R and let
(Mk)k∈Z ⊂ L(X, Y ). We assume that

sup
k∈Z

(‖Mk‖ + ‖k(Mk+1 − Mk)‖) < ∞ (2.2)

sup
k∈Z

‖k2(Mk+2 − 2Mk+1 + Mk)‖ < ∞. (2.3)

Then (Mk)k∈Z is a Bs
p,q-multiplier. Moreover, if X and Y are B-convex, then the

first order condition (2.2) is sufficient for (M k)k∈Z to be a Bs
p,q-multiplier.

Recall that a Banach space X is B-convex if it does not contain ln1 uniformly.
This is equivalent to say that X has Fourier type 1 < p ≤ 2, i.e., the Fourier
transform is a bounded linear operator from Lp(R, X) to lq(Z, X), where 1/p +
1/q = 1. It is well known that when 1 < p < ∞, then Lp(µ) has Fourier type
min{p, p

p−1}.
Let F ∈ L(Bs

p,q([−2π, 0], X),X) and k ∈ Z, we define the operator Bk by
Bkx = F (ekx) for all x ∈ X . It is clear that ‖Bk‖ ≤ ‖F‖ as ‖ek‖Bs

p,q
≤ 1. We

define the spectrum of (2.1) by

σ(∆) =
{
k ∈ Z : ikI − Bk − A is not invertible from D(A) to X

}
. (2.4)
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Since A is closed, if k ∈ Z \ σ(∆), then (ikI − Bk − A)−1 is a bounded linear
operator on X . This is an easy consequence of the Closed Graph Theorem. We
will use the following notations: for k ∈ Z

Ck := ikI − Bk; Nk := (Ck − A)−1; Mk := ikNk. (2.5)

We will need the following preparation.

Lemma 2.4. Let A be a closed linear operator in a Banach space X . Assume
that σ(∆) = ∅, (Mk)k∈Z and (k(Bk+1 −2Bk +Bk−1)k∈Z are uniformly bounded.
Then

sup
k∈Z

‖k2(Nk+1 − Nk)‖ < ∞, (2.6)

sup
k∈Z

‖k3(Nk+2 − 2Nk+1 + Nk)‖ < ∞. (2.7)

Proof. For k ∈ Z,

Nk+1 − Nk = Nk+1(Bk+1 − Bk − i)Nk.

Thus supk∈Z ‖k2(Nk+1 − Nk)‖ < ∞ by assumption. To show (2.7), we remark
that for k ∈ Z

Nk+2 − 2Nk+1 + Nk

= Nk+2(Bk+2 − Bk+1 − i)Nk+1 − Nk(Bk+1 − Bk − i)Nk+1

= (Nk+2 − Nk)(Bk+2 − Bk+1 − i)Nk+1 + Nk(Bk+2 − 2Bk+1 + Bk)Nk+1.

Hence supk∈Z ‖k3(Nk+2−2Nk+1+Nk)‖ < ∞ by assumption and (2.6). The proof
is completed

Proposition 2.5. Let A be a closed linear operator in a Banach space X .
Suppose that σ(∆) = ∅ and (k(Bk+2 − 2Bk+1 + Bk))k∈Z is uniformly bounded.
Then the following assertions are equivalent:

(i) (Mk)k∈Z is a Bs
p,q-multiplier for all (or equivalently, for some) 1 ≤ p, q ≤ ∞

and s ∈ R.
(ii) (Mk)k∈Z is uniformly bounded.

Proof. The implication (i) ⇒ (ii) is trivially true (see e.g. [2]). To show the the
converse implication, we assume that the sequence (Mk)k∈Z is uniformly bounded,
we are going to show that (Mk)k∈Z satisfies the Marcinkiewicz conditions (2.2)
and (2.3). We have for k ∈ Z

k(Mk+1 − Mk) = ik2(Nk+1 − Nk) + ikNk+1.
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Thus (k(Mk+1 − Mk))k∈Z is uniformly bounded by assumption and Lemma 2.4.
This shows that (Mk)k∈Z satisfies (2.2). To show that (Mk)k∈Z also satisfies (2.3),
we remark that for k ∈ Z

k2(Mk+2 − 2Mk+1 + Mk) = k2[i(k + 2)Nk+2 − 2i(k + 1)Nk+1 + ikNk]

= ik3(Nk+2 − 2Nk+1 + Nk) + 2ik2(Nk+2 − Nk+1)

which is uniformly bounded by assumption and Lemma 2.4. Then the result follows
from Theorem 2.3.

When X is B-convex, the first order condition (2.2) is sufficient for a sequence
(Mk)k∈Z to be a Bs

p,q-multiplier by Theorem 2.3. Thus we have the following

Corollary 2.6. Let A be a closed linear operator in a B-convex Banach space
X . Suppose that σ(∆) = ∅. Then the following assertions are equivalent:

(i) (Mk)k∈Z is a Bs
p,q-multiplier for all (equivalently, for some) 1 ≤ p, q ≤ ∞,

s ∈ R.
(ii) (Mk)k∈Z is uniformly bounded.

The following is the main result of this section.

Theorem 2.7. Let A be a closed linear operator defined in a Banach space X .
Assume that (k(Bk+2−2Bk+1 +Bk))k∈Z is uniformly bounded. Then the following
assertions are equivalent:

(i) The problem (2.1) has Bs
p,q-maximal regularity for all (equivalently, for some)

1 ≤ p, q ≤ ∞ and s > 0.
(ii) σ(∆) = ∅ and (Mk)k∈Z is uniformly bounded.

Proof. We notice that when s > 0, we have Bs
p,q(T, X) ⊂ Lp(T, X) [2]. The

implication (i)⇒(ii) follows the same lines in the proof of [1, Theorem 2.3] or [11,
Proposition 3.3]. We omit the details.

To show that the implication (ii)⇒(i) is true, we assume that σ(∆) = ∅ and
(Mk)k∈Z is uniformly bounded. Then (Mk)k∈Z is a Bs

p,q-multiplier by Proposition
2.5. We let f ∈ Bs

p,q(T, X) be fixed. Since the sequence (Pk)k∈Z given by
Pk = (I/ik) when k �= 0, and P0 = I is a Bs

p,q-multiplier by [2, Theorem 4.5],
(Nk)k∈Z is also a Bs

p,q-multiplier as the product of two Bs
p,q-multipliers is still

a Bs
p,q-multiplier, and if we change the value of a Bs

p,q-multiplier at 0, then the
resulting sequence is still a B s

p,q-multiplier. There exists u ∈ Bs
p,q(T, X) such that

û(k) = Nkf̂(k) for all k ∈ Z. This implies that û(k) ∈ D(A) and

(ikI − A − Bk)û(k) = f̂(k), k ∈ Z. (2.8)
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Since Mk = ikNk is a Bs
p,q-multiplier by Proposition 2.5, there exists v ∈ Bs

p,q(T, X)
such that

v̂(k) = ikNkf̂(k) = ikû(k), k ∈ Z.

By [1, Lemma 2.1], u is differentiable a.e. and v = u′. Therefore u ∈ Bs+1
p,q (T, X)

by [2, Theorem 2.3].
We claim that (BkNk)k∈Z is also a Bs

p,q-multiplier. In fact, BkNk is uniformly
bounded and

k(Bk+1Nk+1 − BkNk) = Bk+1(kNk+1) − Bk(kNk)

is also uniformly bounded by assumption. On the other hand,

k2(Bk+2Nk+2 − 2Bk+1Nk+1 + BkNk)

= k2Bk+2(Nk+2 − Nk+1) + k2(Bk+2

−2Bk+1 + Bk)Nk+1 + k2Bk(Nk − Nk+1).

is still uniformly bounded by assumption and Lemma 2.4. Thus (BkNk)k∈Z is a
Bs

p,q-multiplier by Theorem 2.3.
Since (Fu·)∧(k) = F (ekû(k)) = Bkû(k) = BkNkf̂(k), we obtain that Fu· ∈

Bs
p,q(T, X) (BkNk)k∈Z is a Bs

p,q-multiplier.
We have û(k) ∈ D(A) and Aû(k) = ikû(k)−Bkû(k)− f̂(k) by (2.8). By [1,

Lemma 3.1], we conclude that u(t) ∈ D(A) and u′(t) = Au(t) + Fut + f(t) for
a.e. t ∈ [0, 2π] by the uniqueness theorem of Fourier coefficients [1, Page 134 ],
and Au ∈ Bs

p,q(T, X). Thus u is a strong Bs
p,q-solution of (2.1). This proves the

existence.
To show the uniqueness, let u ∈ Bs+1

p,q (T, X) be such that u′(t) = Au(t)+Fut,
Fu·, Au ∈ Bs

p,q(T, X). Then taking Fourier transform on both sides we obtain that
û(k) ∈ D(A) by [1, Lemma 3.1], and (ik − A − Bk)û(k) = 0 for k ∈ Z. Since
Z∩σ(∆) = ∅ , this implies that û(k) = 0 for all k ∈ Z and thus u = 0. This proof
is

When the underlying Banach space X is B-convex and 1 ≤ p, q ≤ ∞, s ∈ R,
the first order condition (2.2) is sufficient for the sequence (Mk)k∈Z to be a Bs

p,q-
multiplier by Theorem 2.3. From this fact and the proof of Theorem 2.7, we easily
deduce the following result on Bs

p,q-maximal regularity of the problem (2.1) when
X is B-convex.

Corollary 2.8. Let X be a B-convex Banach space. Then the following state-
ments are equivalent:

(i) the problem (2.1) has Bs
p,q-maximal regularity for all (equivalently, for some)

1 ≤ p, q ≤ ∞ and s > 0.
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(ii) σ(∆) = ∅ and (Mk)k∈Z is uniformly bounded.

Periodic Hölder continuous function space is a particular case of periodic Besov
space Bs

p,q(T, X). From [2, Theorem 3.1], we have Bα∞,∞(T, X) = Cα
per(T, X)

whenever 0 < α < 1, where Cα
per(T, X) is the space of all X-valued functions

f defined on T satisfying f(0) = f(2π) and supx �=y
‖f(x)−f(y)‖

|x−y|α < ∞. Moreover

the norm ‖f‖Cα
per

:= maxt∈T ‖f(t)‖ + supx �=y
‖f(x)−f(y)‖

|x−y|α on Cα
per(T, X) is an

equivalent norm of Bα∞,∞(T, X). If 0 < α < 1, we say that the problem (2.1)
has Cα

per-maximal regularity if for every f ∈ Cα
per(T, X), there exists a unique

u ∈ Cα+1
per (T, X) such that u(t) ∈ D(A) and equation (1.1) holds true for all

t ∈ T, and Au, Fu· ∈ Cα
per(T, X), where Cα+1

per (T, X) is the space of all functions
u ∈ C1(T, X) such that u′ ∈ Cα

per(T, X). Theorem 2.7 and Theorem 2.8 have the
following corollary.

Corollary 2.9. Let X be a Banach space, 0 < α < 1. Then

1. if (k(Bk+2 −2Bk+1 +Bk))k∈Z is uniformly bounded, then the problem (2.1)
has Cα

per-maximal regularity for all (equivalently, for some) 0 < α < 1 if
and only if σ(∆) = ∅ and (Mk)k∈Z is uniformly bounded.

2. if X is B-convex, then the problem (2.1) has C α
per-maximal regularity for all

(equivalently, for some) 0 < α < 1 if and only if σ(∆) = ∅ and (M k)k∈Z is
uniformly bounded.

3. MAXIMAL REGULARITY ON TRIEBEL-LIZORKIN SPACE

In this section, we study F s
p,q-maximal regularity for (1.1) in Triebel-Lizorkin

spaces. We first recall the definition of these spaces and operator-valued Fourier
multipliers on them. Let X be a Banach space and let φ = (φk)k∈N0 ∈ φ(R) be
fixed (φ(R) was defined in the second section). For 1 ≤ p < ∞, 1 ≤ q ≤ ∞,
s ∈ R, the X-valued periodic Triebel-Lizorkin space is defined by

F s
p,q(T, X) =

{
f ∈ D′

(T, X) :

∥∥f
∥∥

F s
p,q

: =
∥∥∥
( ∑

j≥0

2sjq
∣∣∣∑

k∈Z

ek ⊗ φj(k)f̂(k)
∣∣∣q

)1/q∥∥∥
p

< ∞}

with the usual modification if q = ∞. The space F s
p,q(T, X) is independent from

the choice of φ and different choices of φ lead to equivalent norms ‖ · ‖F s
p,q

on
F s

p,q(T, X). F s
p,q(T, X) equipped with the norm ‖ · ‖F s

p,q
is a Banach space. See

[6] for more information about the spaces F s
p,q(T, X). If f ∈ Fs

p,q(T, X), then we
will identify f with its periodic extension to R. In this way, if r ∈ R is fixed,
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we say that a function f : [r, r + 2π] → X is in F s
p,q([r, r + 2π], X) if and only

if its periodic extension to R is in F s
p,q([0, 2π], X). It is easy to verify from the

definition that if u ∈ F s
p,q(T, X) and t0 ∈ [0, 2π] is fixed, then the function ut0

defined on [−2π, 0] by ut0(t) = u(t0 + t), is still an element of F s
p,q(T, X), and

‖ut0‖F s
p,q

= ‖u‖F s
p,q

.
As in the Besov spaces case, the main tool to study Fs

p,q-maximal regularity for
(3.3) is operator-valued Fourier multiplier theorems on Fs

p,q(T, X).

Definition 3.1. Let X, Y be Banach spaces, 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s ∈ R,
and let (Mk)k∈Z ⊂ L(X, Y ). We will say that (Mk)k∈Z is an F s

p,q-multiplier, if for
each f ∈ F s

p,q(T, X), there exists u ∈ F s
p,q(T, Y ), such that û(k) = Mkf̂(k) for all

k ∈ Z.

The following result has been obtained in [6]:

Theorem 3.2. Let X, Y be Banach spaces, 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s ∈ R

and let (Mk)k∈Z ⊂ L(X, Y ). We assume that

sup
k∈Z

(‖Mk‖ + ‖k(Mk+1 − Mk)‖+ ‖k2(Mk+2 − 2Mk+1 + Mk)‖) < ∞ (3.1)

sup
k∈Z

‖k3(Mk+3 − 3Mk+2 + 3Mk+1 − Mk)‖ < ∞. (3.2)

Then (Mk)k∈Z is an F s
p,q-multiplier. Moreover if 1 < p < ∞, 1 < q ≤ ∞, then

the first condition (3.1) is sufficient for (M k)k∈Z to be an F s
p,q-multiplier.

In this section, we study F s
p,q-maximal regularity of the problem

u′(t) = Au(t) + Fut + f(t), t ∈ T, (3.3)

here as before, A is a closed operator in a Banach space X , F is a bounded linear
operator from Fs

p,q([−2π, 0], X) to X and f ∈ F s
p,q(T, X) is given.

Definition 3.3. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > 0 and let f ∈ F s
p,q(T, X)

be given. A function u ∈ F s+1
p,q (T, X) is called a strong F s

p,q-solution of (3.3), if
u(t) ∈ D(A) and (3.3) holds for a.e. t ∈ T, and Au, Fu· ∈ F s

p,q(T, X). We
say that the problem (3.3) has F s

p,q-maximal regularity, if for each f ∈ Fs
p,q(T, X),

there exists a unique strong F s
p,q-solution of (3.3).

Let F ∈ L(F s
p,q([−2π, 0], X),X) and k ∈ Z, we define the operator Bk by

Bkx = F (ekx) for all x ∈ X . It is clear that Bk ∈ L(X) and ‖Bk‖ ≤ ‖F‖ as
‖ek‖F s

p,q
≤ 1. We define the spectrum of (3.3) by

σ(∆) =
{
k ∈ Z : ikI − Bk − A is not invertible from D(A) to X

}
. (3.4)
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Since A is closed, if k ∈ Z \ σ(∆), then (ikI − Bk − A)−1 is a bounded linear
operator on X . This is an easy consequence of the Closed Graph Theorem. We
will also use the following notations: for k ∈ Z

Ck := ikI − Bk; Nk := (Ck − A)−1; Mk := ikNk. (3.5)

With these notations for (3.3), we remark that Lemma 2.4 remains true in the Triebel-
Lizorkin spaces case. We are going to prove the following proposition, which is the
analogue of Proposition 2.5 in the Triebel-Lizorkin spaces case.

Proposition 3.4. Let A be a closed linear operator in a Banach space X . Sup-
pose that σ(∆) = ∅ and (k(Bk+2−2Bk+1+Bk))k∈Z, (k2(Bk+3−3Bk+2+3Bk+1−
Bk)k∈Z are uniformly bounded. Then the following assertions are equivalent:

(i) (Mk)k∈Z is an F s
p,q-multiplier for all (equivalently, for some) 1 ≤ p < ∞,

1 ≤ q ≤ ∞ and s ∈ R.

(ii) (Mk)k∈Z is uniformly bounded.

Proof. The implication (i)⇒(ii) follows from [6]. To show that the implication
(ii)⇒(i) remains true, we assume that (Mk)k∈Z is uniformly bounded. We are going
to show that (Mk)k∈Z satisfies the conditions (3.1) and (3.2). (3.1) is clearly true
by the proof of Proposition 2.5. To show (3.2), we claim that

sup
k∈Z

‖k4(Nk+3 − 3Nk+2 + 3Nk+1 − Nk)‖ < ∞. (3.6)

Indeed, by the proof of Lemma 2.4, for k ∈ Z,

Nk+2 − 2Nk+1 + Nk = (Nk+2 − Nk)(Bk+2 − Bk+1 − i)Nk+1

+Nk(Bk+2 − 2Bk+1 + Bk)Nk+1 := J1,k + J2,k.

For J2,k, we have

J2,k+1 − J2,k

= Nk+1(Bk+3 − 2Bk+2 + Bk+1)Nk+2 − Nk(Bk+2 − 2Bk+1 + Bk)Nk+1

= (Nk+1 − Nk)(Bk+3 − 2Bk+2 + Bk+1)Nk+2

+Nk(Bk+3 − 3Bk+2 + 3Bk+1 − Bk)Nk+2

+Nk(Bk+2 − 2Bk+1 + Bk)(Nk+2 − Nk+1).

Therefore supk∈Z ‖k4(J2,k+1 − J2,k)‖ < ∞ by assumption and Lemma 2.4. For
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J1,k, we have

J1,k+1 − J1,k = (Nk+3 − Nk+1)(Bk+3 − Bk+2 − i)Nk+2

−(Nk+2 − Nk)(Bk+2 − Bk+1 − i)Nk+1

= (Nk+3 − Nk+2 − Nk+1 + Nk)(Bk+3 − Bk+2 − i)Nk+2

+(Nk+2 − Nk)(Bk+3 − 2Bk+2 + Bk+1)Nk+2

+(Nk+2 − Nk)(Bk+2 − Bk+1 − i)(Nk+2 − Nk+1).

We conclude that supk∈Z ‖k4(J1,k+1 −J1,k)‖ < ∞ by assumption and Lemma 2.4,
as Nk+3−Nk+2−Nk+1 +Nk = (Nk+3−2Nk+2 +Nk+1)+(Nk+2−2Nk+1 +Nk).
We have shown that (3.6) is valid. Now we are ready to show that (Mk)k∈Z satisfies
(3.2). For k ∈ Z

Mk+3 − 3Mk+2 + 3Mk+1 − Mk

= i(k + 3)Nk+3 − 3i(k + 2)Nk+2 + 3i(k + 1)Nk+1 − ikNk

= ik(Nk+3 − 3Nk+2 + 3Nk+1 − Nk) + 3i(Nk+3 − 2Nk+2 + Nk+1).

Thus supk∈Z ‖k3(Mk+3 − 3Mk+2 + 3Mk+1 − Mk)‖ < ∞ by Lemma 2.4 and
(3.6). We have shown that (Mk)k∈Z satisfies (3.1) and (3.2). Hence (Mk)k∈Z is
an F s

p,q-multiplier by Theorem 3.2. The proof is completed.
Now, we are ready to state the main result of this section.

Theorem 3.5. Let A be a closed linear operator defined in a Banach space X .
Assume that (k(Bk+2−2Bk+1+Bk))k∈Z and (k2(Bk+3−3Bk+2+3Bk+1−Bk)k∈Z

are uniformly bounded. Then the following assertions are equivalent:
(i) the problem (3.3) has F s

p,q-maximal regularity for all (equivalently, for some)
1 ≤ p < ∞, 1 ≤ q ≤ ∞ and s > 0.

(ii) σ(∆) = ∅ and (Mk)k∈Z is uniformly bounded.

Proof. The implication (i)⇒(ii) follows from the same argument used in the
proof of [1, Theorem 2.3] or [11, Proposition 3.3]. We omit the details. To show
that the implication (ii)⇒(i) is true, we assume that σ(∆) = ∅ and (Mk)k∈Z is
uniformly bounded. We claim that (BkNk)k∈Z is an F s

p,q-multiplier. Indeed, we
know from the proof of Theorem 2.7 that (BkNk)k∈Z, (k(Bk+1Nk+1−BkNk))k∈Z

and (k2(Bk+2Nk+2−2Bk+1Nk+1 +BkNk))k∈Z are uniformly bounded. It remains
to show that supk∈Z ‖k3(Bk+3Nk+3−3Bk+2Nk+2 +3Bk+1Nk+1−BkNk)‖ < ∞.
From the proof of Theorem 2.7, we have

Bk+2Nk+2 − 2Bk+1Nk+1 + BkNk

= [Bk+2(Nk+2 − Nk+1)− Bk(Nk+1 − Nk)] + (Bk+2 − 2Bk+1

+Bk)Nk+1 := L1,k + L2,k.
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Then

L2,k+1 − L2,k

= (Bk+3 − 2Bk+2 + Bk+1)Nk+2 − (Bk+2 − 2Bk+1 + Bk)Nk+1

= (Bk+3 − 3Bk+2 + 3Bk+1 − Bk)Nk+2 + (Bk+2

−2Bk+1 + Bk)(Nk+2 − Nk+1).

Hence supk∈Z ‖k3(L2,k+1 −L2,k)‖ < ∞ by assumption and Lemma 2.4. For L1,k,
we have

L1,k+1 − L1,k = Bk+3(Nk+3 − Nk+2) − Bk+1(Nk+2 − Nk+1)

−Bk+2(Nk+2 − Nk+1) + Bk(Nk+1 − Nk)

= Bk+3(Nk+3 − 2Nk+2 + Nk+1) − Bk+2(Nk+2 − 2Nk+1 + Nk)

+(Bk+3 − Bk+1)(Nk+2 − Nk+1) − (Bk+2 − Bk)(Nk+1 − Nk)

= Bk+3(Nk+3 − 2Nk+2 + Nk+1) − Bk+2(Nk+2 − 2Nk+1 + Nk)

+(Bk+3 − Bk+2 − Bk+1 + Bk)(Nk+2 − Nk+1)

+(Bk+2 − Bk)(Nk+2 − 2Nk+1 + Nk).

Thus supk∈Z ‖k3(L1,k+1−L1,k)‖ < ∞ by assumption and Lemma 2.4, as we have
Bk+3 − Bk+2 −Bk+1 + Bk = (Bk+3 − 2Bk+2 + Bk+1) + (Bk+2 − 2Bk+1 + Bk).

We have shown that (BkNk)k∈Z satisfies (3.1) and (3.2), thus it is an F s
p,q-

multiplier. The rest of the proof follows the same lines as the proof of Theorem
2.7. We omit the details.

Remark 3.6.

(i) When 1 < p < ∞, 1 < q ≤ ∞ and s ∈ R, the Marcinkiewicz condition
of order 2 is already sufficient for a sequence (Mk)k∈Z ⊂ L(X) to be an
F s

p,q-multiplier by Theorem 3.2. This fact together with the proof of Theo-
rem 2.7 implies that under the weaker assumption that (k(Bk+2 − 2Bk+1 +
Bk))k∈Z is bounded, the problem (3.3) has F s

p,q-maximal regularity for some
(equivalently, for all) 1 < p < ∞, 1 < q ≤ ∞ and s > 0 if and only if
σ(∆) = ∅ and (Mk)k∈Z is uniformly bounded.

(ii) Examples of closed operators A and F ∈ L(Bs
p,q(T, X), X) (resp. F ∈

L(F s
p,q(T, X), X)) satisfying (ii) of Theorem 2.7 (resp. Theorem 3.5) can be

found in [11, Example 3.8]. The same proof as in [11, Example 3.8] gives the
following: let X be a Banach space, A be a closed linear operator and F ∈
L(Bs

p,q(T, X), X) (resp. F ∈ L(F s
p,q(T, X), X)), such that iZ ⊂ ρ(A) and

supk∈Z‖A(ik−A)−1‖ =: η < ∞. Assume that (k(Bk+2−2Bk+1 +Bk))k∈Z
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is uniformly bounded (resp. (k(Bk+2 − 2Bk+1 + Bk))k∈Z and (k2(Bk+3 −
3Bk+2 +3Bk+1 −Bk)k∈Z are uniformly bounded) and ‖F‖ < 1

‖A−1‖η
. Then

(2.1) (resp. (3.3)) has Bs
p,q-maximal regularity. We remark that the conditions

iZ ⊂ ρ(A) and supk∈Z ‖A(ik − A)−1‖ < ∞ characterizes Bs
p,q-maximal

regularity (resp. Fs
p,q-maximal regularity) of the problem (2.1) [2] (resp. (3.3)

[6]) in the special case when F = 0.
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