TAIWANESE JOURNAL OF MATHEMATICS Vol. 13, No. 3, pp. 973-981, June 2009 This paper is available online at http://www.tjm.nsysu.edu.tw/

BOUNDEDNESS OF g-FUNCTIONS ON TRIEBEL-LIZORKIN SPACES

Chunjie Zhang¹ and Jiecheng Chen²

Abstract. We prove that the g-function operator g_{ϕ} , where $\phi(x) = h(|x|)\Omega(x)$ with $\Omega(x) = \Omega(x') \in H^1(S^{n-1})$ and h(s) satisfing certain continuity hypothesis, is bounded on Triebel-Lizorkin space $F_p^{\alpha,q}(\mathbb{R}^n)$ when $0 < \alpha < 1$ and $1 < p, q < \infty$. In particular, we get that the Marcinkiewicz integral operator μ_{Ω} with H^1 -kernel is bounded on $F_p^{\alpha,q}$.

1. INTRODUCTION

Recently, the boundedness of singular integral operators on Sobolev sapces and Triebel-Lizorkin spaces is investigated widely, for example, see [2], [3], [4] and [7]. It was proved in [3] that

$$T_{\Omega,\alpha}f(x) = P. V. \int_{\mathbb{R}^n} b(|y|)\Omega(y)|y|^{-n-\alpha}f(x-y)dy$$

is bounded on $F_p^{\beta,q}$ for $\Omega \in L^r(S^{n-1})$ and $\alpha = 0$, and bounded from $F_p^{\beta+\alpha,q}$ to $F_p^{\beta,q}$ for $\alpha > 0$ and $\Omega \in H^s(S^{n-1})$ where r > 1, $s = (n-1)/(n-1+\alpha)$, $n \ge 2$, $\beta \in R$, $1 < p, q < +\infty$, $b \in L^{\infty}(R^+)$ and Ω satisfies some cancellation condition. When Ω satisfies

$$\sup_{\theta \in S^{n-1}} \int_{S^{n-1}} |\Omega(y')| (\ln |y' \cdot \theta|^{-1})^{1+\gamma} d\sigma(y') < \infty, \ \forall \ \gamma > 0,$$

a condition firstly introduced by Grafakos and Stefanov in [8], we proved in [6] that T_{Ω} (with $b(|y|) \equiv 1$ and $\alpha = 0$) is bounded on $F_p^{\beta,q}$.

Received February 2, 2007, accepted October 10, 2007.

Communicated by Yongsheng Han.

2000 Mathematics Subject Classification: 42B25, 46E35.

Key words and phrases: g-function, Marcinkiewicz integral, Triebel-Lizorkin space.

¹Supported partially by NSFC (No. 10601046) and NSFC (No. 10701064).

²Supported by NSFC (No. 10571156), RSDP (No. 20030335019) and ZJNSF (RC97017).

In this paper we shall consider the g-function and the Marcinkiewicz integral. Recall that the g-function is defined by

$$g_{\phi}(f)(x) = \left(\int_{0}^{+\infty} |\phi_t * f(x)|^2 \frac{dt}{t}\right)^{1/2} \tag{1}$$

where $\phi_t(x) = t^{-n}\phi(x/t)$. For $\phi(x) = \Omega(x)|x|^{1-n}\chi_{|x|<1}(x)$ with $\Omega \in L^1(S^{n-1})$ and $\int_{S^{n-1}} \Omega(x') d\sigma(x') = 0$, g_{ϕ} is just the Marcinkiewicz integral μ_{Ω} . The most common assumptions imposed on $\phi(x)$ to ensure the L^p boundedness of g_{ϕ} are the following:

(i) $|\phi(x)| \leq C(1+|x|)^{-n-\epsilon}$, (ii) $\int_{\mathbb{R}^n} \phi(x) dx = 0$, (iii) $\int_{\mathbb{R}^n} |\phi(x+y) - \phi(x)| dx \leq C|y|^{\epsilon}, \ \epsilon > 0$.

First, the above three conditions imply an L^2 estimate of g_{ϕ} . In addition, one can obtain a Hörmander-type condition:

$$\int_{|x|>2|y|} \left(\int_0^\infty |\phi_t(x+y) - \phi_t(x)|^2 \frac{dt}{t} \right)^{\frac{1}{2}} dx \le C, \ \forall \ y \ne 0.$$
(2)

And at last the L^p boundedness of g_{ϕ} is reached by using the famous BCP method.

Let us recall the fundamental result of BCP. Let F be a Banach space and K(x) be a strongly measurable, locally integrable function from $\mathbb{R}^n \setminus \{0\}$ to F. An operator U is called a BCP operator if

(1) there is a $p_0 \in (1, +\infty)$ such that for any $f \in L^{p_0}(\mathbb{R}^n)$,

$$\int_{R^n} \|U(f)\|_F^{p_0} dx \le C \int_{R^n} |f|^{p_0} dx$$

(2) for every continuous function with compact support supp(f) ⊂ Rⁿ, U(f)(x) coincides with K * f(x) outside supp(f) and there exists a constant M ≥ 0 such that

$$\int_{|x|>2|y|} \|K(x-y) - K(x)\|_F dx \le M, \ \forall y \ne 0.$$

Under these assumptions, U can be extended to a bounded operator from $L^p(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n, F)$ for every $p \in (1, +\infty)$, see [1].

Note that g_{ϕ} commutes with translation (i.e. $\tau_y g_{\phi} = \phi \tau_y$ for each $y \in \mathbb{R}^n$), but it is not linear, which brings difficulties in studying its boundedness on $F_p^{\beta,q}$.

In [9], using the BCP method, Korry proved that g_{ϕ} is bound on Sobolev space $H_p^{\alpha}(\mathbb{R}^n)$, $0 < \alpha < 1$ with ϕ satisfying (i)-(iii). In fact, by Korry's method, the space H_p^{α} can easily be replaced by the more general space $F_p^{\alpha,q}$ with $0 < \alpha < 1$ and $1 < p, q < +\infty$. As a corollary, we get the $F_p^{\alpha,q}$ boundedness of μ_{Ω} when $\Omega \in Lip_r(S^{n-1})$ ($0 < r \le 1$), $0 < \alpha < 1$ and $1 < p, q < \infty$. It is natural to ask whether μ_{Ω} is bounded on $F_p^{\alpha,q}$ for a rough Ω . In this paper, we shall search for some rough conditions on $\phi(x)$ such that the g-function operator is bounded on $F_p^{\alpha,q}$.

Below we always assume $\phi(x) = h(|x|)\Omega(x)$ where $\Omega(x') \in L^1(S^{n-1})$ and h(s) is a function on R^+ . The method we shall use is the BCP method developed in [9] and the rotation method developed in [5] and [11]. Our main result is

Theorem 1. Let $\Omega \in H^1(S^{n-1})$ which satisfies $\int \Omega(x') d\sigma(x') = 0$. Suppose there exists an $\epsilon > 0$ such that $|h(s)| \leq C \frac{s^{-n+\epsilon}}{(1+s)^{2\epsilon}}$, and a $\gamma > 0$ such that

$$\int_{R} \left| (s+m)^{n-1} h(s+m) - s^{n-1} h(s) \right| ds \le C |m|^{\gamma}.$$

Then g_{ϕ} is bounded on $F_p^{\alpha,q}$, $0 < \alpha < 1$, $1 < p, q < +\infty$.

Corollary 2. When $\Omega \in H^1(S^{n-1})$ satisfies $\int_{S^{n-1}} \Omega(x') d\sigma(x') = 0$, μ_{Ω} is bounded on $F_p^{\alpha,q}$, $0 < \alpha < 1$, $1 < p, q < +\infty$.

It is unknown whether μ_{Ω} is bounded on $F_p^{\alpha,q}(\mathbb{R}^n)$ for $\alpha \geq 1$ and $1 < p, q < +\infty$.

2. Some Lemmas

We first recall the definition of $F_p^{\alpha,q}$. Let $\Phi \in C_c^{\infty}(\mathbb{R}^n)$ which satisfies $\supp(f) \subset \{\xi : 1/2 < |\xi| < 2\}$ and $\Phi(\xi) > 1$ if $3/5 < |\xi| < 5/3$. Denote $\hat{\Psi}_k(\xi) = \Phi(2^k\xi)$. We say that f is in the non-homogenous Triebel-Lizorkin space $F_p^{\alpha,q}$, $\alpha > 0$, $1 < p, q < \infty$ if

$$\|f\|_{F_p^{\alpha,q}} = \|f\|_{L^p} + \left\| \left(\sum_{k \in \mathbb{Z}} |2^{-k\alpha} \Psi_k * f|^q \right)^{1/q} \right\|_{L^p} < +\infty.$$

In this paper, we shall use an equivalent norm of $F_p^{\alpha,q}$. Define

$$S_r(f)(x) = \left(\int_0^{+\infty} \left(\int_{B_n} \left|\frac{f(x+l\xi) - f(x)}{l^\alpha}\right|^r d\xi\right)^{q/r} \frac{dl}{l}\right)^{1/q}$$

where B_n is the unit ball of \mathbb{R}^n .

Lemma 1. If $0 < \alpha < 1$, $1 < p, q < +\infty$ and $1 \le r < \min(p, q)$, then

$$N_r(f) = \|f\|_{L^p} + \|S_r(f)\|_{L^p}$$

is an equivalent norm of $F_q^{\alpha,p}$.

This result can be found on page 194 of [10], or in Lemma 1 of [9]. Let $H = L^2(R^+, dt/t)$, we have

$$g_{\phi}(f)(x) = |\phi_t * f(x)|_H.$$

Set $E_k = R^k \times (0, +\infty) \times B_n$ with k = 1 or n, and $\vec{p} = (p_1, p_2, p_3)$ with $1 < p_i < +\infty$ for i = 1, 2, 3. Denote by $L^{\vec{p}}(E_k)$ the space of all measurable functions $F(x, l, \xi)$ defined on E_k such that

$$||F||_{L^{\vec{p}}(E_k)} = \left(\int_{R^k} \left(\int_0^{+\infty} \left(\int_{B_n} |F(x,l,\xi)|^{p_3} d\xi \right)^{p_2/p_3} dl \right)^{p_1/p_2} dx \right)^{1/p_1} < +\infty.$$

Similarly, we define the *H*-valued function space $L^{\vec{p}}(E_k, H)$. We have

Lemma 2. Let $\sigma(s) \in L^1(R)$, $\int_R \sigma(s) ds = 0$ and $|\sigma_t(s)|_H \leq B|s|^{-1}$. If $\sigma(s)$ satisfies

$$\int_{|s|>2|m|} |\sigma_t(s+m) - \sigma_t(s)|_H ds \le B, \ \forall \ m \ne 0,$$
(3)

then for each $F(s, l, \xi) \in L^{\vec{p}}(E_1)$, we have

$$\|g_{\sigma}(F(\cdot, l, \xi))(s)\|_{L^{\vec{p}}(E_{1})} = \|U_{t}(F)\|_{L^{\vec{p}}(E_{1}, H)} \le C(\|\sigma\|_{L^{1}} + B)\|F\|_{L^{\vec{p}}(E_{1})}$$

where $U_t(F)(s, l, \xi) = \sigma_t * (F(\cdot, l, \xi))(s).$

Proof. Note the given conditions imply that g_{σ} is bounded on L^p , see [11], Lemma 1. By Hörmander's condition (3) and the BCP method, we get the Lemma by iteration. See [9], Lemma 2 for details.

Now taking $\lambda \in C_c^{\infty}(R)$ with supp $(\lambda) \subset [1, 2]$, defining

$$\sigma^{(u')}(s) = |s|^{n-1} \mathcal{R} \left(\lambda(|\cdot|) |\cdot|^{1-n} \Omega(\cdot) \right) (su')$$

where $\mathcal{R} = (\mathcal{R}_1, \mathcal{R}_2, \cdots, \mathcal{R}_n)$ and \mathcal{R}_j denotes the j-th Riesz transform on \mathbb{R}^n and setting

$$\Omega^*(u') = \sup_{s \in R, j=0,1} (1+|s|)^{2+j} \left| \partial_s^j \sigma^{(u')}(s) \right|,$$

976

we have the following Lemma 3.

Lemma 3. Let $\Omega \in H^1(S^{n-1})$ be an even kernel. Then $\sigma^{(u')}(s) \in L^1(R)$ for a.e. $u' \in S^{n-1}$, $|\sigma_t^{(u')}(s)|_H \leq C\Omega^*(u')|s|^{-1}$ and

$$\int_{|s|>2|m|} \left| \sigma_t^{(u')}(s+m) - \sigma_t^{(u')}(s) \right|_H ds \le C\Omega^*(u').$$

Furthermore,

$$\int_{S^{n-1}} \Omega^*(u') d\sigma(u') \le C(1 + \|\Omega\|_{H^1}),$$

see [11].

3. PROOF OF THEOREM

Proof of Theorem 1. Denote Ω^o , Ω^e the odd and even part of Ω . Then

$$\phi_t * f(x) = \int_{R^n} t^{-n} h(\frac{|u|}{t}) \Omega^o(u) f(x-u) du + \int_{R^n} t^{-n} h(\frac{|u|}{t}) \Omega^e(u) f(x-u) du.$$

The first integral equals

$$\int_{S^{n-1}} \Omega^o(u') \int_0^{+\infty} t^{-n} s^{n-1} h(\frac{s}{t}) f(x - su') ds d\sigma(u')$$
$$= \int_{S^{n-1}} \Omega^o(u') \int_0^{+\infty} g_t(s) f(x - su') ds d\sigma(u')$$

where $g(s) = s^{n-1}h(s)$. Extend h(s) to the whole real line such that h(s) = 0when s < 0. Then if we set $\tilde{g}(s) = g(s) - g(-s)$, the first integral can be written as

$$\frac{1}{2} \int_{S^{n-1}} \Omega^o(u') \int_R \tilde{g}_t(s) f(x - su') ds d\sigma(u').$$
(5)

To rewrite the second integral, we first set $\rho(s) = g(s) - \lambda(s)$ where $\lambda(s)$ is as in the definition of $\sigma^{(u')}$ and further, we require that $\int_R \lambda(s) ds = \int_R g(s) ds$. Then the second integral equals

$$\int_{\mathbb{R}^n} \left(t^{-n} h(\frac{|u|}{t}) - t^{-1} |u|^{1-n} \lambda(\frac{|u|}{t}) \right) \Omega^e(u) f(x-u) du$$
$$+ \int_{\mathbb{R}^n} t^{-1} |u|^{1-n} \lambda(\frac{|u|}{t}) \Omega^e(u) f(x-u) du.$$

Denote the above two terms by I_1 and I_2 respectively. Obviously

$$I_1 = \int_{S^{n-1}} \Omega^e(u') \int_R \rho_t(s) f(x - su') ds d\sigma(u').$$
(6)

Noting that $\mathcal{R}^2 = -\mathrm{Id}$, we have

$$\begin{split} I_2 &= \int_{\mathbb{R}^n} -\mathcal{R}^2 \left[\Omega^e(\cdot) |\cdot|^{1-n} \lambda_t(|\cdot|) \right] (u) f(x-u) du \\ &= \int_{\mathbb{R}^n} \mathcal{R} \left[\Omega^e(\cdot) |\cdot|^{1-n} \lambda_t(|\cdot|) \right] (u) \mathcal{R} f(x-u) du \\ &= \int_{\mathbb{R}^n} t^{1-n} \mathcal{R} \left[(\lambda(|\cdot|)| \cdot |^{1-n})_t \Omega^e(\cdot) \right] (u) \mathcal{R} f(x-u) du \\ &= \int_{S^{n-1}} \int_0^{+\infty} (\frac{s}{t})^{n-1} \mathcal{R} \left[(\lambda(|\cdot|)| \cdot |^{1-n})_t \Omega^e(\cdot) \right] (su') \mathcal{R} f(x-su') ds d\sigma(u') \\ &= \frac{1}{2} \int_{S^{n-1}} \int_{\mathbb{R}} (\frac{|s|}{t})^{n-1} \mathcal{R} \left[(\lambda(|\cdot|)| \cdot |^{1-n})_t \Omega^e(\cdot) \right] (su') \mathcal{R} f(x-su') ds d\sigma(u'). \end{split}$$

Recalling the definition of $\sigma^{(u')}(s)$, we have

$$I_{2} = \frac{1}{2} \int_{S^{n-1}} \int_{R} \sigma_{t}^{(u')}(s) \mathcal{R}f(x - su') ds d\sigma(u').$$
(7)

Below we shall always write f instead of $\mathcal{R}f$ in (7) because we have already known,

for example by [3], that $\mathcal{R}f$ is bounded on $F_q^{\alpha,p}$. Decompose $\mathbb{R}^n = L(u') + L(u')^{\perp}$ where $L(u') = \{au' : a \in \mathbb{R}\}$, then $x = \tilde{x} + su'$ with $\tilde{x} \in L(u')^{\perp}$. Setting $f_{\tilde{x}}^{u'}(s) = f(\tilde{x} + su')$, we have

$$g_{\phi}(f)(x) = |\phi_t * f(x)|_H \le \frac{1}{2} \int_{S^{n-1}} \left| \sigma_t^{(u')} * f_{\tilde{x}}^{u'}(s) \right|_H du' + \frac{1}{2} \int_{S^{n-1}} |\Omega^o(u')| \left| \tilde{g}_t * f_{\tilde{x}}^{u'}(s) \right|_H d\sigma(u') + \int_{S^{n-1}} |\Omega^o(u')| \left| \rho_t * f_{\tilde{x}}^{u'}(s) \right|_H d\sigma(u').$$
(8)

By Lemma 2 and Lemma 3, $|\sigma_t^{(u')} * f_{\tilde{x}}^{u'}(s)|_H$ is bounded on $L^p(R)$. Later we shall prove that both $\tilde{g}(s)$ and $\rho(s)$ satisfy the hypothesis of Lemma 2. So we can use Minkowski's inequality to get the L^p boundedness of g_{ϕ} . Thus by Lemma 1, we only need to show $||S_r(g_\phi(f))||_{L^p(\mathbb{R}^n)} \leq C||S_rf||_{L^p(\mathbb{R}^n)}$. Note that

$$\|S_{r}(g_{\phi}(f))(x)\|_{L^{p}(\mathbb{R}^{n})} = \left\|\frac{g_{\phi}(f)(x+l\xi) - g_{\phi}(f)(x)}{l^{\alpha+1/q}}\right\|_{L^{\vec{p}}(E_{n})}$$
$$\leq \left\|g_{\phi}\left(\frac{\tau_{l\xi}(f) - f}{l^{\alpha+1/q}}\right)(x)\right\|_{L^{\vec{p}}(E_{n})},$$

where $\vec{p} = (p, q, r)$ and $0 < r < \min\{p, q\}$. Set $F(x, l, \xi) = \frac{\tau_{l\xi}(f)(x) - f(x)}{l^{\alpha+1/q}}$ and $F_{\tilde{x}}^{u'}(s, l, \xi) = F(\tilde{x} + su', l, \xi)$. Using (8) with $f(\cdot)$ being replaced by $F(\cdot, l, \xi)$, we

get

$$\begin{split} \|S_{r}(g_{\phi}(f))(x)\|_{L^{p}(\mathbb{R}^{n})} &\leq \frac{1}{2} \int_{S^{n-1}} \left\| \sigma_{t}^{(u')} * F_{\tilde{x}}^{u'}(s,l,\xi) \right\|_{L^{\vec{p}}(E_{n},H)} d\sigma(u') \\ &+ \frac{1}{2} \int_{S^{n-1}} |\Omega^{o}(u')| \left\| \tilde{g}_{t} * F_{\tilde{x}}^{u'}(s,l,\xi) \right\|_{L^{\vec{p}}(E_{n},H)} d\sigma(u') \\ &+ \int_{S^{n-1}} |\Omega^{e}(u')| \left\| \rho_{t} * F_{\tilde{x}}^{u'}(s,l,\xi) \right\|_{L^{\vec{p}}(E_{n},H)} d\sigma(u') \end{split}$$

Now we may apply Lemma 2 directly to finish our proof because we can further write, for example, the last integral as

$$\int_{S^{n-1}} |\Omega^e(u')| \left(\int_{L(u')^{\perp}} \left\| \rho_t * F_{\tilde{x}}^{u'}(s,l,\xi) \right\|_{L^{\vec{p}}(E_1,H)}^p d\tilde{x} \right)^{1/p} d\sigma(u').$$

Finally we show that $\rho(s)$ and $\tilde{g}(s)$ satisfy the required condition of Lemma 2. We shall only compute for $\tilde{g}(s)$. It is trivial that $\int_R \tilde{g}(s) ds = 0$ and $\tilde{g}(s) \in L^1(R)$. If s > 0,

$$\begin{split} |\tilde{g}_{t}(s)|_{H}^{2} &= \int_{0}^{+\infty} \left| t^{-1}g(\frac{s}{t}) \right|^{2} \frac{dt}{t} \\ &= \int_{0}^{+\infty} \left| t^{-1}(\frac{s}{t})^{n-1}h(\frac{s}{t}) \right|^{2} \frac{dt}{t} \\ &\leq C \int_{0}^{s} \left| t^{-1}(\frac{s}{t})^{n-1}(\frac{s}{t})^{-n-\epsilon} \right|^{2} \frac{dt}{t} + C \int_{s}^{+\infty} \left| t^{-1}(\frac{s}{t})^{n-1}(\frac{s}{t})^{-n+\epsilon} \right|^{2} \frac{dt}{t} \\ &= Cs^{-2-2\epsilon} \int_{0}^{s} t^{-1+2\epsilon} dt + Cs^{-2+2\epsilon} \int_{s}^{+\infty} t^{-1-2\epsilon} dt \\ &= Cs^{-2}. \end{split}$$

The case s < 0 is similar. To prove the Hörmander's condition (3), we also assume s > 0. Note first that by the assumption of Theorem 1, $|h(s)| \le Cs^{-n-\beta}$ for all s > 0 if we take $0 < \beta < \min\{\epsilon, \gamma\}$. So when s > 2|m|,

$$\left|g(\frac{s+m}{t}) - g(\frac{s}{t})\right| = \left|(\frac{s+m}{t})^{n-1}h(\frac{s+m}{t}) - (\frac{s}{t})^{n-1}h(\frac{s}{t})\right|$$
$$\leq C(\frac{s+m}{t})^{-1-\beta} + C(\frac{s}{t})^{-1-\beta}$$
$$\leq C(\frac{t}{s})^{1+\beta}.$$

On the other hand,

$$\begin{split} &\int_{s>2|m|} |g_t(s+m) - g_t(s)|_H ds \\ &= \int_{s>2|m|} s^{-\frac{1+\beta}{2}} \left(s^{1+\beta} \int_0^{+\infty} |g_t(s+m) - g_t(s)|^2 \frac{dt}{t} \right)^{\frac{1}{2}} ds \\ &\leq \left(\int_{s>2|m|} s^{-1-\beta} ds \right)^{\frac{1}{2}} \left(\int_{s>2|m|} s^{1+\beta} \int_0^{+\infty} |g_t(s+m) - g_t(s)|^2 \frac{dt}{t} ds \right)^{\frac{1}{2}}. \end{split}$$

The first bracket equals $|m|^{-\beta}$, while the second one does not exceed

$$\begin{split} &\int_{s>2|m|} s^{1+\beta} \int_{0}^{+\infty} t^{-2} \left| g(\frac{s+m}{t}) - g(\frac{s}{t}) \right| C(\frac{t}{s})^{1+\beta} \frac{dt}{t} ds \\ &= C \int_{s>2|m|} \int_{0}^{+\infty} \left| g(\frac{s+m}{t}) - g(\frac{s}{t}) \right| t^{-2+\beta} dt ds \\ &= C \int_{0}^{+\infty} t^{-1+\beta} \int_{s>2|m|} \left| g(\frac{s+m}{t}) - g(\frac{s}{t}) \right| \frac{ds}{t} dt \\ &\leq C \int_{0}^{+\infty} t^{-1+\beta} \int_{R} \left| g(s+\frac{m}{t}) - g(s) \right| ds dt \\ &\leq C \int_{0}^{|m|} \|g\|_{L^{1}} t^{-1+\beta} dt + C \int_{|m|}^{+\infty} |\frac{m}{t}|^{\gamma} t^{-1+\beta} dt \\ &= C|m|^{\beta}. \end{split}$$

Therefore we have proved

$$\int_{|s|>2|m|} |g_t(s+m) - g_t(s)|_H ds \le C, \ \forall \ m \ne 0.$$

Proof of Corollary 2. We only need to show that $h(s) = \frac{\chi_{[0,1]}(s)}{s^{n-1}}$ satisfies the assumption in Theorem 1. It is obvious that h(s) has the desired size at 0 with $\epsilon = 1$ and by simple calculation

$$\int_{R} |(s+m)^{n-1}h(s+m) - s^{n-1}h(s)|ds$$

=
$$\int_{R} |\chi_{[0,1]}(s+m) - \chi_{[0,1]}(s)|ds$$

$$\leq 2|m|.$$

980

References

- 1. A. Benedek, A. P. Calderón and R. Panzone, Convolution operators on Banach space valued functions, *Proc. Nat. Acad. Sci.*, **48** (1962), 356-365.
- 2. D. N. Chen, J. C. Chen and D. S. Fan, Rough singular integral operators on Hardy-Sobolev spaces, *Appl. Math. J. Chinese Univ. Ser. B* 25 (2005), 1-9.
- 3. J. C. Chen, D. S. Fan and Y. M. Ying, Singular integral operators on function spaces, *J. Math. Anal. Appl.*, **276** (2002), 691-708.
- 4. J. C. Chen, D. S. Fan and Y. M. Ying, Certain operators with rough singular kernels, *Canad. J. Math.*, **55** (2003), 504-532.
- 5. J. C. Chen and S. L. Wang, Some rough operators on product spaces, *Approx. Theory and its Appl.*, **17** (2001), 48-69.
- J. C. Chen and C. J. Zhang, Boundedness of rough singular integral operators on the Triebel-Lizorkin spaces, J. Math. Anal. Appl., 337, (2008), 1048-1052.
- 7. Q. L. Chen and Z. F. Zhang, Boundedness of a class of super singular integral operators and the associated commutators, *Sci. China Ser. A*, **47** (2004), 842-853.
- 8. L. Grafakos and A. Stefanov, L^p bounds for singular integrals and maximal singular integrals with rough kernels, *Indiana Univ. Math. J.*, **47** (1998), 455-469.
- 9. S. Korry, A class of bounded operators on Sobolev spaces, Arch. Math., 82 (2004), 40-50.
- 10. H. Triebel, *Theory of Function Spaces II*, Monographs in Math. **84**, Birkhäuser-Verlag, 1992.
- 11. H. Xu, J. C. Chen and Y. M. Ying, A note on Marcinkiewicz integrals with H^1 kernels, *Acta. Math. Sci.*, **23** (2003), 133-138.

Chunjie Zhang School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, P. R. China

Jiecheng Chen Department of Mathematics, Zhejiang University, Hangzhou 310027, P. R. China E-mail: purezhang@hdu.edu.cn