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CHARACTERIZATIONS OF PREINVEX AND
PREQUASIINVEX SET-VALUED MAPS

T. Jabarootian and J. Zafarani

Abstract. The purpose of this paper is to characterize in terms of scalar
preinvexity (resp. prequasiinvexity) the set-valued maps which are K-preinvex
(resp. K-prequasiinvex) with respect to a closed convex cone K. Moreover,
as applications of our results some conditions under which a local solution of
set-valued scalar optimization for (VP) is a global supper efficient solution for
(VP) are given.

1. INTRODUCTION

In recent years several extensions and generalizations have been considered for
classical convexity. A significant generalization of convex functions is that of invex
functions introduced by Hanson [6]. His initial result inspired a great deal of sub-
sequent work which has greatly expanded the role and applications of invexity in
nonlinear optimization and other branches of pure and applied sciences. In fact he
has shown that the Kuhn-Tuker conditions are sufficient for optimality of nonlinear
programming problems under invexity conditions. Kaul and Kaur [8] presented the
notions of strictly pseudoinvex, pseudoinvex, and quasinvex functions, and investi-
gated their applications in nonlinear programming. Weir and Mond [16], and Weir
and Jeyakumar [15] have studied the basic properties of preinvex functions and their
applications in optimization. Pini [13] introduced the concepts of prepseudoinvex
and prequasiinvex functions and established the relationships between invexity and
generalized invexity. Mohan and Neogy [12] showed that under certain assump-
tions, an invex function is preinvex and a quasiinvex function is prequasiinvex.
More recently, characterizations and applications of preinvex functions, semistrictly
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preinvex functions, prequasiinvex functions, and semistrictly prequasiinvex func-
tions were studied by Yang et al. [18], Yang and Li [17] and Jabarootian and
Zafarani[7].

On the other hand, various generalizations of the classical notion of quasiconvex
real-valued function have been given for vector-valued functions, their importance
in vector optimization being nowadays recognized( see e.g. [10] and references
therein). Among them, the concept of cone-quasiconvexity, introduced by Luc [9]
is of special interest since it can be characterized in terms of convex level sets. The
natural way to characterize cone-convexity via scalar quasiconvexity seems to be
that indicated by Luc [10] in the particular case when the ordering cone is gen-
erated by an algebraic base of a finite-dimensional space, which consists to use
the extreme directions of the nonnegative polar cone. In a series of the articles
Benoist, Borwein and Popovic([2], [3] and [4]) obtained that similar characteriza-
tion of cone convexity, cone-quaiconvexity, weak cone convexity and weak cone-
quaiconvexity are still true for any closed convex cone with nonempty interior in a
Banach space. Motivated, by their works, we characterize in terms of scalar prein-
vexity (resp. prequasiinvexity) the vector-valued functions which are K-preinvex
(resp. K-prequasiinvex) with respect to a closed convex cone K. Moreover, as ap-
plications of our results some conditions under which a local solution of set-valued
scalar optimization (SP)l is a global supper efficient solution for vector optimiza-
tion problem (VP) are given. The paper is organized as follows. In section 2, we
present some basic definitions and results that are required in the sequel. Some
characterizations of K-preinvex and K-prequasiinvex are given in sections 3 and 4,
respectively. Equivalence between weak K-preinvex (resp. weak K-prequasiinvex)
with K-preinvex (resp. K-prequasiinvex) are obtained in section 5. Some appli-
cations of K-preinvex and K-prequasiinvex set-valued maps in optimization are
mentioned in section 6.

2. PRELIMINARIES

Let X be a vector space and η : X × X → X a vector-valued function.

Definition 2.1. A subset U of X is said to be invex with respect to η : X×X →
X if, for any x1, x2 ∈ U and t ∈ [0, 1],

x2 + tη(x1, x2) ∈ U.

A subset K of a topological vector space Y is said to be a cone if R+K ⊆ K ,
cone K is said to be convex if K + K ⊆ K, and it is said to be pointed if
K ∩ (−K) = {0}. Let F : U −→ 2Y be a set-valued map defined on a nonempty
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invex subset U of vector space X with values in a topological vector space Y en-
dowed with a convex cone K ⊂ Y .

Definition 2.2. A set-valued map F : U −→ 2Y is said to be:

(a) K-preinvex with respect to η on U , if for all x1, x2 ∈ U and t ∈ [0, 1], we
have

tF (x1) + (1− t)F (x2) ⊂ F (x2 + tη(x1, x2)) + K;

(b) K-prequasiinvex with respect to η on U , if for all x1, x2 ∈ U and t ∈ [0, 1],
we have

(F (x1) + K) ∩ (F (x2) + K) ⊂ F (x2 + tη(x1, x2)) + K.

(c) If intK �= ∅ then F is said to be strictly K-prequasiinvex with respect to η
on U , if for all x1, x2 ∈ U , x1 �= x2 and t ∈ (0, 1), we have

(F (x1) + K) ∩ (F (x2) + K) ⊂ F (x2 + tη(x1, x2)) + intK.

Example 2.1. Let X = R2, Y = R, K = R+, and

U = {(x1, x2) ∈ R2 : x2
1 + x2

2 ≥ 1, x1 ≥ 0, x2 ≥ 0}.

we define η : X×X −→ X , by η((x1, x2), (y1, y2)) = (x1, x2) and F1 : X −→ 2Y

defined by
F1(x1, x2) = [0, x2

1 + x2
2] if x2

1 + x2
2 ≥ 1.

= [4, 6] if x2
1 + x2

2 < 1.

Then the set U is invex with respect to η and the function F1 is K-preinvex with
respect to η on U . If we define F2 : X −→ 2Y , by F2(x1, x2) = [−x2

1−x2
2, 0] then

function F2 is K- prequasiinvex with respect to η on U . If we define F3 : X −→ 2Y ,
by F3(x1, x2) = (0, x2

1 + x2
2) then function F3 is strictly K- prequasiinvex with

respect to η on U .
The following lemma gives a characterization of K-preinvex and K-prequasiinvex

set valued maps in terms of their epigraphs and generalized level sets, respectively.

Lemma 2.1. Let F : U −→ 2Y be a set-valued map

(a) F is K-preinvex with respect to η on U , if and only if epigraph of F

epi(F ) = {(x, y) ∈ U × Y : y ∈ F (x) + K},

is invex with respect to η ′ where, η′((x1, y1), (x2, y2)) = (η(x1, x2), y1−y2).
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(b) F is K-prequasiinvex with respect to η on U , if and only if for each y ∈ Y

the following generalized level set is invex with respect to η,

F−1(y − K) = {x ∈ U : y ∈ F (x) + K}.

Proof. It is similar to the convex cases [3].

Remark 2.1.

(1) Obviously, K-preinvex set-valued maps are K-prequasiinvex, since the cone
K is convex.

(2) If F is K-preinvex with respect to η on U , then Dom(F )= {x ∈ U : F (x) �=
∅}, is invex with respect to η, but if F is K-prequasiinvex then Dom(F ) is
not necessary invex with respect to η. However, if Y is directed with respect
to K, i.e. (y1 +K)∩ (y2 +K) �= ∅ for all y1, y2 ∈ Y , then Dom(F ) is invex
with respect to η whenever F is K-prequasiinvex with respect to η.

(3) Note that vector-valued functions may be studied in the same framework.
Actually a function f : U −→ Y defined on a nonempty invex subset U

of X with respect to η is K-preinvex (resp. K-prequasiinvex, strictly K-
prequasiinvex) with respect to η on U if the set-valued map F : U −→
2Y , defined for all x ∈ U by F (x) = {f(x)} is K-preinvex (resp. K-
prequasiinvex, strictly K-prequasiinvex) with respect to η on U .

Let ϕ : U −→ R̄ = R ∪ {−∞, +∞} be an extended real-valued function. As
usual in convex analysis, we adopt the following conventions:

(+∞) + (−∞) = +∞, 0 . (+∞) = +∞ and 0 . (−∞) = 0.

Recall that ϕ is said to be:

(a) preinvex with respect to η on U , if for all x1, x2 ∈ U and t ∈ [0, 1], we have

ϕ(x2 + tη(x1, x2)) ≤ tϕ(x1) + (1− t)ϕ(x2).

(b) prequasiinvex with respect to η on U , if for all x1, x2 ∈ U and t ∈ [0, 1], we
have

ϕ(x2 + tη(x1, x2)) ≤ max{ϕ(x1), ϕ(x2)}.

By a similar method as in Lemma 2.1, we can obtain the following characterization
of preinvex and prequasiinvex functions.

Lemma 2.2. Function ϕ : U −→ R̄ is:
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(a) preinvex with respect to η if and only if ϕ has a invex epigraph with respect
to η ′ where

epi(ϕ) = {(x, λ) ∈ U × R : ϕ(x) ≤ λ},
and if and only if its strict epigraph, i.e. the set epi s(ϕ) = {(x, λ) ∈ U ×R :
ϕ(x) < λ}, is invex with respect to η ′.

(b) prequasiinvex if and only if for every λ ∈ R the following level set is invex
with respect to η:

ϕ−1([−∞, λ]) = {x ∈ U : ϕ(x) ≤ λ}.

and if and only if the strict level set ϕ−1([−∞, λ[) = {x ∈ U : ϕ(x) < λ},
is invex with respect to η, for all λ ∈ R.

In the next result we present a necessary and sufficient condition for being a real
set valued R+-preinvex or R+-prequasiinvex in terms of preinvexity or prequasiin-
vexity of its marginal function.

Lemma 2.3. Let φ : U −→ 2R be a set-valued map, defined on some vector
space X , and let ϕ : U −→ R be its marginal function, defined for all x ∈ U by
ϕ(x) = inf φ(x), where inf ∅ = +∞. Then the following assertions hold:

(1) If the map φ is R+-preinvex (R+-prequasiinvex) with respect to η on U , then
its marginal function ϕ is preinvex (resp. prequasiinvex) with respect to η on
U .

(2) if φ(x) is closed for all x ∈ U , then the map φ is R+-preinvex (R+-
prequasiinvex) with respect to η on U , if and only if its marginal function ϕ

is preinvex (resp. prequasiinvex) with respect to η on U .

Proof. It is similar to the proof of Lemma 1.1 of [3].

Remark 2.2. If φ(x) is not closed for all x ∈ U , assertion (2) in Lemma 2.3
fails to be true [3].

3. CHARACTERIZATION OF K-PREINVEX SET-VALUED MAPS

In what follows we will characterize the K-pre(quasi)invex set-valued maps F :
U −→ 2Y where U is a nonempty invex subset of X , in terms of pre(quasi)-invexity
of certain extended real-valued functions. In order to get these characterizations,
we have to endow the image space Y with a good enough linear topology, and we
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need to impose some additional hypotheses on the partial order induced by K and
also on the structure of the values of F . Supposing that Y is a topological vector
space partially ordered by a convex cone K. We denote by

K+ = {� ∈ Y ∗ : �(y) ≥ 0, ∀y ∈ K}

the nonnegative polar cone of K in the topological dual Y ∗ of Y . By extd K+ we
denote the set of extreme directions of K+. Recall that � ∈ extd K+ if and only
if � ∈ K+\{0} and for all �1, �2 ∈ K+ such that � = �1 + �2 we actually have
�1, �2 ∈ R+�.
For any set-valued map F : U −→ 2Y and for every � ∈ Y ∗, we denote by � ◦ F :
U −→ 2R the composite set-valued map given for all x ∈ U by �◦F (x) = �(F (x)),
and we denote by � � F : U −→ R̄ the marginal function of � ◦ F , defined for all
x ∈ U by � � F (x) = inf �(F (x)).

Theorem 3.1. Let U be a nonempty invex subset of a vector space X and let
Y be a locally convex space over real, partially ordered by a convex cone K. If
F : U −→ 2Y is a set-valued map such that F (x) + K is a closed convex set for
all x ∈ U , then the following assertions are equivalent:

(1) F is K-preinvex with respect to η on U .
(2) � ◦ F is R+-preinvex with respect to η on U , for every � ∈ K+.
(3) � � F is preinvex with respect to η on U , for every � ∈ K+.

Proof. With some modifications in the proof of Theorem 2.1 and Proposition
2.1 of [3], one can deduce the proof.

Example 3.1. Consider X , Y , K, U , and F = F1 of Example 2.1, if � ∈ K+ =
R+,then we have

� ◦ F (x1, x2) = [0, �(x2
1 + x2

2)] if x2
1 + x2

2 ≥ 1;

� ◦ F (x1, x2) = [4�, 6�] if x2
1 + x2

2 < 1.

It is easy to see that � ◦ F is R+-preinvex with respect to η on U , and

� � F (x1, x2) = 0 if x2
1 + x2

2 ≥ 1;

� � F (x1, x2) = 4� if x2
1 + x2

2 < 1.

Then � � F is preinvex with respect to η on U .

In order to obtain our next result, we need some assumptions:
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Assumption A. Let F : U −→ 2Y is a set-valued map. Then

F (x) ⊂ F (y + η(x, y)) + K for all x, y ∈ U.

Assumption C. Let η : X × X → X . Then, for any x, y ∈ X and for any
λ ∈ [0, 1],

η(y, y + λη(x, y)) = −λη(x, y),

η(x, y + λη(x, y)) = (1− λ)η(x, y).

Remark 3.1. Let η : X ×X → X satisfy Assumption C. Then, it is shown that
[19]

η(y + λη(x, y), y) = λη(x, y).

Example 3.2. Let X = R, Y = R2, F1, F2 : X −→ 2Y , η1, η2, η3 : X×X −→
Xbe defined as follows:

F1(x) = {0} × [0,−x] if x ≤ 0;

= [0, x]× [0, x] if x > 0;

F2(x) = max{0, x}× [0, |x|];

η1(x, y) = x − y if x ≥ 0, y ≥ 0;

= x − y if x ≤ 0, y ≤ 0;

= y − x if x > 0, y < 0;

= y − x if x < 0, y > 0.

η2(x, y) = x − y if x ≥ 0, y ≥ 0;

= x − y if x ≤ 0, y ≤ 0;

= 1 − y if x > 0, y < 0;

= −1 − y if x < 0, y > 0;

and

η3(x, y) = x − y if x ≥ 0, y ≥ 0;

= x − y if x ≤ 0, y ≤ 0;

=
−y

2
if x > 0, y < 0;

= −1 − y if x < 0, y > 0.
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One can show that F1 with respect to η1, η2 and η3 is K-preinvex and therefore, it
satisfies Assumption A. η1 dose not satisfy Assumption C, while η2 dose [18]. F2

with respect to η1 and η2 is not K-prequasiinvex and therefore it is not K-preinvex.
In fact it is enough to consider , x = −1, y = 1

2 , t = 1. F2 with respect to η3 is
K-prequasiinvex but it is not K-preinvex, it is enough to consider , x = −2, y = 2,
t = 1

2 . Let U = [−7,−2] ∪ [2, 10] and

η4(x, y) = x − y if x ≥ 0, y ≥ 0;

= x − y if x ≤ 0, y ≤ 0;

= 2 − y if x > 0, y < 0;

= −7 − y if x < 0, y > 0.

It is shown that U is invex with respect to η4 which satisfying Assumption C [12].
F1 is upper semicontinuous on U and K-preinvex with respect to η4.

Definition 3.1. Let X and Y be normed linear spaces. A set-valued map
F : U ⊂ X −→ Y is upper semi-continuous at x0 ∈ U if

∀ε > 0, ∃δ > 0 such that ∀x ∈ BU (x0, δ), F (x) ⊂ F (x0) + εBY .

F is upper hemi-continuous at x0 if

∀p ∈ Y ∗, x �→ σ(F (x), p) = sup
y∈F (x)

〈p, y〉 is upper semi-continuous at xo.

F is lower semi-continuous at x0 if, for any sequence xn converging to x0 and for
all y0 ∈ F (x0), there exists a sequence of elements yn ∈ F (xn) converging to y0.
F is lower hemi-continuous at x0 if

∀p ∈ Y ∗, x �→ σ(F (x), p) = sup
y∈F (x)

〈p, y〉 is lower semi-continuous at xo.

Remark 3.2. It is trivial that any upper semi-continuous set-valued map is
upper hemi-continuous, and any lower semi-continuous set-valued map is lower
hemi-continuous [1].

We need the following infinite dimensional version of Theorem 3.2 of [17] for
establishing our next result:

Lemma 3.1. Suppose that X is a normed linear space and U ⊂ X is a
nonempty invex set with respect to η such that η satisfies Assumption C. Assume
that f : U −→ R is a lower semi continuous real valued function and that satisfies

f(y + η(x, y)) ≤ f(x), for all x, y ∈ U.
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Then f is a preinvex function on U if and only if for all x, y ∈ U , there exists an
α ∈ (0, 1) such that

f(y + αη(x, y)) ≤ αf(x) + (1− α)f(y).

Proof. One can deduce easily from the proof of Theorem 3.2 of [16].

In the sequel we obtain a necessary and sufficient condition for an upper hemi-
continuos set valued map to be K-preinvex.

Theorem 3.2. Let U be a nonempty invex subset of a normed linear space
X , Y a normed linear space partially ordered by a convex cone K and η satisfy
Assumption C. Suppose that F : U −→ 2Y is an upper hemi-continuous set-valued
map such that satisfies Assumption A and F (x) + K is a closed convex set for all
x ∈ U . Then F is K-preinvex on U if and only if for every x, y ∈ U , there exists
an α ∈ (0, 1) such that

αF (x) + (1 − α)F (y) ⊂ F (y + αη(x, y)) + K.

Proof. The necessity follows directly from the definition of the K-preinvex
function. Suppose that F is upper hemi-continuous, then for all p ∈ Y ∗ we have
x �→ supy∈F (x)〈p, y〉 is upper semi continuous. Hence if x0 ∈ U ,

lim sup
x→x0

sup
z∈F (x)

〈p, z〉 ≤ sup
z∈F (x0)

〈p, z〉, for all p ∈ Y ∗.

Now we consider −� = p ∈ Y ∗ for every � ∈ K+, then we have

− lim inf
x→x0

inf
z∈F (x)

〈�, z〉 ≤ − inf
z∈F (x0)

〈�, z〉, for all � ∈ K+.

Hence
lim inf
x→x0

(� � F )(x) ≥ (� � F )(x0), for all � ∈ K+.

Therefore � � F is lower semi continuous for every � ∈ K+. By our assumptions
for every x, y ∈ U there exist an α ∈ (0, 1) such that

αF (x) + (1 − α)F (y) ⊂ F (y + αη(x, y)) + K.

If � ∈ K+, we have

inf
z∈F (y+αη(x,y))+K

〈�, z〉 ≤ inf
z∈αF (x)+(1−α)F (y)

〈�, z〉,
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then

inf
z∈F (y+αη(x,y))

〈�, z〉+ inf
k∈K

〈�, k〉 ≤ α inf
z1∈F (x)

〈�, z1〉+ (1− α) inf
z2∈F (y)

〈�, z2〉.

Since � ∈ K+, we deduce

(� � F )(y + αη(x, y)) ≤ α(� � F )(x) + (1 − α)(� � F )(y).

On the other hand by Assumption A, we have

F (x) ⊂ F (y + η(x, y))+ K, for all x, y ∈ U.

Then in similar way we deduce

(� � F )(y + η(x, y)) ≤ (� � F )(x) for all x, y ∈ U.

Thus, the function � � F : U −→ R satisfies all of the conditions of Lemma 3.1
for all � ∈ K+ and therefore � � F is preinvex function with respect to η and by
Theorem 3.1, F is K-preinvex with respect to η on U .

Example 3.3. Let X = R, Y = R, K = R+, U = [−2, 2], and define

η(x, y) = x − y if x ≥ 0, y ≥ 0;

= x − y if x ≤ 0, y ≤ 0;

= −2 − y if x > 0, y < 0;

= 2 − y if x < 0, y > 0.

Then η satisfies in assumption C on U , and if we define F : X −→ 2Y by
F (x) = [−|x| + 2, 2], this function satisfies in assumption A, and F , is a K-
preinvex with respect to η on U .

Now, we obtain the following infinite dimensional version of Theorem 3.1 of
[17].

Lemma 3.2. Suppose that X is a normed linear space and U ⊂ X is an invex
set with respect to η such that η satisfies Assumption C. Assume that f : U −→ R

is an upper semi continuous real valued function satisfying

f(y + η(x, y)) ≤ f(x), for all x, y ∈ U.

Then f is a preinvex function on U if and only if there exists an α ∈ (0, 1) such
that

f(y + αη(x, y)) ≤ αf(x) + (1− α)f(y), for all x, y ∈ U.
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Proof. Similar to the proof of Theorem 3.1 of [17].

Theorem 3.3. Suppose that U is a nonempty invex subset of a normed linear
space X , Y is a normed linear space partially ordered by a convex cone K and η
satisfies Assumption C. Let F : U −→ 2Y be a lower hemi-continuous set-valued
map satisfying Assumption A, and F (x) + K be a closed convex set for all x ∈ U .
Then F is a K-preinvex function on U if and only if there exists an α ∈ (0, 1) such
that for every x, y ∈ U ,

αF (x) + (1 − α)F (y) ⊂ F (y + αη(x, y)) + K.

Proof. The necessity follows directly from the definition of the K-preinvex
function. Suppose that F is lower hemi-continuous, then for all p ∈ Y ∗, we have
x �→ supy∈F (x)〈p, y〉 is lower semi continuous. Hence if x0 ∈ U ,

sup
z∈F (x0)

〈p, z〉 ≤ lim inf
x→x0

sup
z∈F (x)

〈p, z〉, for all p ∈ Y ∗.

Now we consider −� = p ∈ Y ∗ for every � ∈ K+, then we have

− inf
z∈F (x0)

〈�, z〉 ≤ − lim sup
x→x0

inf
z∈F (x)

〈�, z〉, for all � ∈ K+.

Hence
lim sup

x→x0

(� � F )(x) ≤ (� � F )(x0), for all � ∈ K+.

Therefore, � � F is upper semi continuous for every � ∈ K+. By our assumptions,
there exists an α ∈ (0, 1) such that for every x, y ∈ U

αF (x) + (1 − α)F (y) ⊂ F (y + αη(x, y)) + K.

If � ∈ K+, by the same argument as in the proof of Theorem 3.2 we deduce

(� � F )(y + αη(x, y)) ≤ α(� � F )(x) + (1− α)(� � F )(y).

and
(� � F )(y + η(x, y)) ≤ (� � F )(x) for all x, y ∈ U.

Therefore, the function � � F : U −→ R satisfies all of the conditions of Lemma
3.2 for all � ∈ K+ and therefore � � F is preinvex function with respect to η. Now
Theorem 3.1 implies that F is K-preinvex with respect to η.

4. CHARACTERIZATION OF K-PREQUASIINVEX SET-VALUED MAPS

In this section, we will establish a characterization of a K-prequasiinvex set
valued map in terms of prequasiinvexity of a certain extended real function.
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Lemma 4.1. Suppose that U is a nonempty invex subset of a vector space X

and Y is a Banach space partially ordered by a closed convex cone K which
generates Y . Let F : U −→ 2Y be a K-prequasiinvex set-valued map with respect
to η. Then, for every � ∈ extdK+, the set-valued map � ◦ F is R+-prequasiinvex
with respect to η on U and indeed � � F is prequasiinvex with respect to η on U .

Proof. Similar to the proof of Proposition 3.1 of [3].

Theorem 4.1 Suppose that U is a nonempty invex subset of a vector space X ,
Y is a Banach space partially ordered by a closed convex cone K which generates
Y and K+ is the weak-star closed convex hull of extdK +. Let F : U −→ 2Y be a
set-valued map such that a smallest element exist in each of its nonempty values.
Then the following assertions are equivalent:

(1) F is K-prequasiinvex with respect to η.
(2) � ◦ F is R+-prequasiinvex with respect to η, for every � ∈ extdK +.
(3) � � F is prequasiinvex with respect to η, for every � ∈extdK +.

Proof. One can prove by a similar proof as that of Theorem 3.1 of [3].

The following remarks which are mentioned in [3] are also suitable for our cases.

Remark 4.1. If the interior of the closed convex cone K is nonempty, then K+

has a bounded hence weak-star compact base and K generates Y [2]. As shown
by Theorem 4.2 below, in this case the K-prequasiinvexity may be characterized in
terms of scaler prequasiinvexity in a different manner, under less restrictive assump-
tions on the structure of the values of F .

Remark 4.2. Certain Banach spaces are partially ordered by a closed convex
cone with empty interior, which however generates the space and for which the
nonnegative polar cone is the weak-star closed convex hull of its extreme direc-
tions. For an example, consider the space Y = lp(1 ≤ p < +∞) and the cone
K = lp+ = {(yi)i∈N ∈ lp : yi ≥ 0, ∀i ∈ N}. In these case we have K+ = lq+, where
Y ∗ = (lp)∗ is identified, as usual, with l q (1/p + 1/q = 1).

Remark 4.3. In the particular case where f : U −→ Y is a vector-valued
function, defined on some nonempty invex subset U of X and the set-valued map
F : U −→ 2Y defined for all x ∈ U by F (x) = {f(x)}, then f(x) is actually the
smallest element of F (x), for each x ∈ Dom(F ) = U .

We can obtain a characterization of K-prequasiinvex set-valued map in terms
of its marginal function.
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Theorem 4.2. Suppose that U is a nonempty invex subset of a vector space
X , Y is a topological vector space partially ordered by a convex cone K with
nonempty interior and fix some e ∈ intK. Let F : U −→ 2 Y be a set-valued map
such that F (x)+K be closed for all x ∈ U . For every a ∈ Y , define the set-valued
map φa : U −→ 2R by

φa(x) = {α ∈ R : x ∈ F−1(a + αe − K)} for all x ∈ U,

and denote by ϕa : U −→ R its marginal function, i.e.

ϕa(x) = inf φa(x) for all x ∈ U.

Then F is K-prequasiinvex with respect to η if and only if ϕ a is prequasiinvex with
respect to η for all a ∈ Y .

Proof. It is similar to the proof of convex cases [see Theorem 3.2 of 3].

We need the following infinite dimensional version of Theorem 2.3 of [18], for
establishing our next result.

Lemma 4.2. Suppose that X is a normed linear space, U ⊂ X is a nonempty
invex set with respect to η such that η satisfies Assumption C. Assume that f :
U −→ R is a lower semi continuous real valued function satisfying

f(y + η(x, y)) ≤ f(x), for all x, y ∈ U.

Then f is a prequasiinvex function on U if and only if for all x, y ∈ U , there exists
an α ∈ (0, 1) such that

f(y + αη(x, y)) ≤ max{f(x), f(y)}.
Proof. Similar to the proof of Theorem 2.3 of [18].

In the following theorem we give a characterization of upper hemicontinuous
K-prequasiinvex set valued map.

Theorem 4.3. Suppose that U is a nonempty invex subset of a normed linear
space X , Y is a Banach space, partially ordered by a closed convex cone K which
generates Y , K+ is the weak-star closed convex hull of extdK + and η satisfies
Assumption C. Let F : U −→ 2Y be an upper hemi-continuous set-valued map
such that a smallest element exist in each of its nonempty values and satisfying
Assumption A. Then F is a K-prequasiinvex function on U if and only if for every
x, y ∈ U , there exists an α ∈ (0, 1) such that

(F (x) + K) ∩ (F (y) + K) ⊂ F (y + αη(x, y))+ K.



884 T. Jabarootian and J. Zafarani

Proof. The necessity follows directly from the definition of the K-prequasiinvex
function. Suppose that F is upper hemi-continuous, then similar to the proof of The-
orem 3.2 we deduce that for every � ∈ K+, � � F is lower semi continuous. By
our condition for every x, y ∈ U, there exists an α ∈ (0, 1) such that

(F (x) + K) ∩ (F (y) + K) ⊂ F (y + αη(x, y)) + K.

If � ∈ K+, we have

inf
z∈F (y+αη(x,y))+K

〈�, z〉 ≤ inf
z∈(F (x)+K)∩(F (y)+K)

〈�, z〉.

Hence
inf

z∈F (y+αη(x,y))
〈�, z〉+ inf

k∈K
〈�, k〉 ≤

max{( inf
z1∈F (x)

〈�, z1〉 + inf
k∈K

〈�, k〉), ( inf
z2∈F (y)

〈�, z2〉 + inf
k∈K

〈�, k〉)}.

Since � ∈ K+, we deduce

(� � F )(y + αη(x, y)) ≤ max{(� � F )(x), (� � F )(y)}.
On the other hand by Assumption A we have

F (x) ⊂ F (y + η(x, y))+ K, for all x, y ∈ U.

Then in similar way we deduce

(� � F )(y + η(x, y)) ≤ (� � F )(x) for all x, y ∈ U.

Therefore, the function � � F : U −→ R satisfies all of the conditions of Lemma
4.2 for all � ∈ K+ and therefore � � F is prequasiinvex function with respect to η.
Thus by Theorem 4.1, F is K-prequasiinvex with respect to η.

We obtain the following infinite dimensional extension of Theorem 2.1 of [11].

Lemma 4.3. Suppose that X is a normed linear space and U ⊂ X is invex
with respect to η such that η satisfies Assumption C. Assume that f : U −→ R is
an upper semi continuous real valued function satisfying

f(y + η(x, y)) ≤ f(x), for all x, y ∈ U.

Then f is a prequasiinvex function on U if and only if there exist an α ∈ (0, 1)
such that

f(y + αη(x, y)) ≤ max{f(x), f(y)}, for all x, y ∈ U.
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Proof. The proof of Theorem 2.1 of [11] can be easily applied to our case.

Theorem 4.4. Suppose that U is a nonempty invex subset of a normed linear
space X , Y is a Banach space partially ordered by a closed convex cone K which
generates Y , K+ is the weak-star closed convex hull of extdK + and η satisfies
Assumption C. Let F : U −→ 2Y be a lower hemi-continuous set-valued map
such that a smallest element exist in each of its nonempty values and satisfying
Assumption A. Then F is a K-prequasiinvex function on U if and only if there
exists an α ∈ (0, 1) such that for every x, y ∈ U ,

(F (x) + K) ∩ (F (y) + K) ⊂ F (y + αη(x, y))+ K.

Proof. The necessity follows directly from the definition of the K-prequasiinvex
function. Suppose that F is lower hemi-continuous then similar to the proof of The-
orem 3.3 we deduce ��F is upper semi continuous for every � ∈ K+. By condition
of theorem there exists an α ∈ (0, 1) such that for every x, y ∈ U

(F (x) + K) ∩ (F (y) + K) ⊂ F (y + αη(x, y))+ K.

If � ∈ K+, by the same argument as that of the proof of Theorem 4.3 we deduce

(� � F )(y + αη(x, y)) ≤ max{(� � F )(x), (� � F )(y)}.

and
(� � F )(y + η(x, y)) ≤ (� � F )(x) for all x, y ∈ U.

therefore the function � � F : U −→ R satisfies all of the conditions of Lemma 4.3
for all � ∈ K+ and therefore � � F is prequasiinvex function with respect to η and
by Theorem 4.1, F is K-prequasiinvex with respect to η.

Theorem 4.5. Suppose that U is a nonempty invex subset of a normed linear
space X , Y is a Banach space partially ordered by a closed convex cone K with
intK �= ∅, and η satisfies Assumption C. Let F : U −→ 2 Y be a set-valued map
satisfying Assumption A. Then F is strictly K-prequasiinvex function on U if and
only if F is K-prequasiinvex function on U and there exists an α ∈ (0, 1) such that
for every x, y ∈ U , x �= y,

(F (x) + K) ∩ (F (y) + K) ⊂ F (y + αη(x, y))+ intK,

and
(F (x) + K) ∩ (F (y) + K) ⊂ F (y + (1− α)η(x, y))+ intK.
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Proof. The necessity follows directly from the definition of the strictly K-
prequasiinvex function and Assumption A. Conversely suppose that t ∈ (0, 1) and
x, y ∈ U , x �= y. Let z = y + tη(x, y), if t ≤ α we consider

z1 = y +
t

α
η(x, y),

then, by Remark 3.1, we have

y + αη(z1, y) = y + αη(y +
t

α
η(x, y), y) = y + tη(x, y) = z.

Then by our assumptions, we deduce

(F (z1) + K) ∩ (F (y) + K) ⊂ F (y + αη(z1, y)) + intK = F (z) + intK.

On the other hand by K-prequasiinvexity of F , we have

(F (x) + K) ∩ (F (y) + K) ⊂ F (z1) + K.

Thus

(F (x) + K) ∩ (F (y) + K) ⊂ (F (z1) + K) ∩ (F (y) + K) ⊂ F (z) + intK.

If t ≤ 1 − α, in a similar way for

z1 = y +
t

1 − α
η(x, y),

we deduce
(F (x) + K) ∩ (F (y) + K) ⊂ F (z) + intK.

If t > max{α, (1− α)}, then 0 < t−1+α
α < 1, let

z2 = y +
t − 1 + α

α
η(x, y).

Then by Assumption C, we have

z2 + (1−α)η(x, z2) = y +
t − 1 + α

α
η(x, y)+ (1−α)η(x, y +

t − 1 + α

α
η(x, y))

y + [
t − 1 + α

α
+ (1 − α)(1− t − 1 + α

α
)]η(x, y) = y + tη(x, y) = z,

and by our assumptions, we have

(F (x) + K) ∩ (F (z2) + K) ⊂ F (z) + intK.
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On the other hand since F is K-prequasiinvex, we deduce

(F (x) + K) ∩ (F (y) + K) ⊂ F (z2) + K.

Thus

(F (x) + K) ∩ (F (y) + K) ⊂ (F (x) + K) ∩ (F (z2) + K) ⊂ F (z) + intK.

The proof is completed.

5. ALMOST η-SEGMENTARY-VALUED MAPS

Throughout this section we denote by X and Y two vector spaces, the last one
being partially ordered by a convex cone K and U is a nonempty invex subset of
X . Given a set-valued map F : U → 2Y , for every (x, y) ∈ U2,

CF (x, y) = {t ∈ [0, 1] : tF (x)+(1−t)F (y) ⊂ F (y+tη(x, y))+K}, (5.1)

QF (x, y) = {t ∈ [0, 1] : (F (x)+K)∩(F (y)+K) ⊂ F (y+tη(x, y))+K}. (5.2)

By Definition 2.2, F is said to be
(a) K-preinvex with respect to η if CF (x, y) = [0, 1] for all (x, y) ∈ U2;
(b) K-prequasiinvex with respect to η if QF (x, y) = [0, 1] for all (x, y) ∈ U2.

Then F will be called
(a′) weakly K-preinvex with respect to η if CF (x, y)∩ ]0, 1[ �= ∅ for all (x, y) ∈

U2;
(b′) weakly K-prequasiinvex with respect to η if QF (x, y)∩ ]0, 1[ �= ∅ for all

(x, y) ∈ U2.

The aim of this section is to give sufficient conditions for a weakly K-preinvex
(respectively, weakly K-prequasiinvex) set-valued map to be K-preinvex (respec-
tively, K-prequasiinvex). However, we also focus on vector-valued functions. A
vector-valued function f : U −→ Y defined on a nonempty invex subset U of
X will be called weakly K-preinvex (respectively weakly K-prequasiinvex) if the
set-valued map F : U −→ 2Y defined by F (x) = {f(x)}, for x ∈ U, is weakly
K-preinvex (respectively weakly K-prequasiinvex).
For each pair (x, y) ∈ U2, we define the function �x,y : [0, 1] −→ U for all t ∈ [0, 1]
by �x,y(t) = y + tη(x, y). For any points x, y ∈ U , we have

[y, y+η(x, y)] = �x,y([0, 1]), and if η(x, y) �= 0 then ]y, y+η(x, y)[= �x,y(]0, 1[).
The following basic lemma will be often used in the sequel.
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Lemma 5.1. If η satisfies Assumption C, then for every points x, y ∈ X and
for any numbers t, s, r ∈ [0, 1], we have

�u,v(r) = �x,y(rt + (1 − r)s), where u = �x,y(t) and v = �x,y(s).

Proof. First let t < s, then by Assumption C, we have

�u,v(r) = v + rη(u, v) = y + sη(x, y) + rη(y + tη(x, y), y + sη(x, y))

= y + sη(x, y) + rη(y + tη(x, y), y + tη(x, y) + (s − t)η(x, y))

= y + sη(x, y) + rη(y + tη(x, y), y + tη(x, y) +
s − t

1 − t
η(x, y + tη(x, y)))

= y + sη(x, y) + r

(
t − s

1 − t

)
η(x, y + tη(x, y))

= y + sη(x, y) + r

(
t − s

1 − t

)
(1− t)η(x, y))

= y + (rt + (1 − r)s)η(x, y) = �x,y(rt + (1− r)s).

Now suppose that t > s, then by Remark 3.1 and Assumption C, we have

�u,v(r) = v + rη(u, v) = y + sη(x, y) + rη(y + tη(x, y), y + sη(x, y))

= y + sη(x, y) + rη(y + sη(x, y) + (t − s)η(x, y), y + sη(x, y))

= y + sη(x, y) + rη(y + sη(x, y) +
t−s

1−s
η(x, y + sη(x, y)), y + sη(x, y))

= y + sη(x, y) + r

(
t − s

1 − s

)
η(x, y + sη(x, y))

= y + sη(x, y) + r

(
t − s

1 − s

)
(1− s)η(x, y)

= y + (rt + (1 − r)s)η(x, y) = �x,y(rt + (1− r)s).

and if t = s, then u = v and by Assumption C, we have η(u, v) = 0. Therefore,

�u,v(r) = v = y+rη(x, y) = y+(rt+(1−r)s)η(x, y) = �x,y(rt+(1−r)s).

Definition 5.1. Let S : U 2 −→ 2U be a set-valued map, which assigns to
each pair (x, y) of points of U a subset S(x, y) of U . We say that S is almost
η-segmentary-valued if it satisfies the following conditions:

(C1) {y, y + η(x, y)} ⊂ S(x, y) ⊂ [y, y + η(x, y)] for all x, y ∈ U ;

(C2) S(x, y)∩ ]y, y + η(x, y)[ �= ∅ for all x, y ∈ U with η(x, y) �= 0;

(C3) S(u, v) ⊂ S(x, y) for all x, y ∈ U and u, v ∈ S(x, y).
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Example 5.1. Let T be one of the sets [0,1] or Q ∩ [0, 1]. Then, it can be
easily seen that the set-valued map S : U 2 −→ 2U , defined for all x, y ∈ U by
S(x, y) = �x,y(T ) is almost η-segmentary-valued.

Lemma 5.2. If S : U2 −→ 2U is almost η-segmentary-valued and η satisfies
Assumption C, then for every x, y ∈ U , the following assertion are equivalent:

(A1) S(x, y) = [y, y + η(x, y)];

(A2) �−1
x,y(S(x, y)) is closed in R.

Proof. The proof is similar to the Lemma 2.3 of [4], hence it is omitted.

Note that the proof of Lemma 5.2 shows that (A2) implies the density of
�−1
x,y(S(x, y)) in [0,1]. The converse is not true, as shown by Example 5.1 when

T = Q ∩ [0, 1].
In what follows we shall assume that the space Y is a topological vector space.

Definition 5.2. A set-valued map F : U −→ 2Y is called η-segmentary epi-
closed for all x, y ∈ Dom(F ), the epigraph

Epi(F ◦ �x,y) = {(t, z) ∈ [0, 1]× Y : z ∈ F (y + tη(x, y)) + K}
of the composed set-valued map F ◦ �x,y : [0, 1] −→ 2Y is closed in R × Y .

Note that, in the particular case where X is also a topological vector space,
any set-valued map F : X −→ 2Y which has a closed epigraph is η-segmentary
epi-closed.

Theorem 5.1. Assume that F : U −→ 2Y is η-segmentary epi-closed and η

and F satisfying Assumption C and A, respectively. Then F is K-preinvex with
respect to η if and only if it is weakly K-preinvex with respect to η.

Proof. The proof is similar to the proof of Theorem 3.2 of [4], and the only
major difference is that in the place of property (4) of [4], we use our Lemma 5.1.

Theorem 5.2. Assume that F : U −→ 2Y is η-segmentary epi-closed and η

and F satisfying Assumption C and A, respectively. Then, F is K-prequasiinvex
with respect to η if and only if it is weakly K-prequasiinvex with respect to η.

Proof. Similar to the proof of Theorem 3.3 of [4].

As a consequence of our Theorems 5.1 and 5.2, we show that the notion of K-
preinvex (resp. K-prequasiinvex) is equivalent to the notion of weak K-preinvex
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(resp. weak K-prequasiinvex) for a vector-valued function under some additional
conditions.

Corollary 5.1. Let f : U −→ Y be a function defined on a nonempty invex
subset U of X . Assume that, for every x, y ∈ U , the epigraph of the composed
function f ◦ �x,y : [0, 1] −→ Y , i.e.,

Epi(f ◦ �x,y) = {(t, z) ∈ [0, 1]× Y : z ∈ f(y + tη(x, y)) + K}
is closed in R × Y , η satisfies Assumption C and f satisfies

f(x) ∈ f(y + η(x, y)) + K for all x, y ∈ U.

Then, the following assertions hold:
(i) f is K-preinvex with respect to η if and only if it is weakly K-preinvex with

respect to η.
(ii) f is K-prequasiinvex with respect to η if and only if it is weakly K-prequasiinvex

with respect to η.

Proof. Consider the set-valued map F : U −→ 2Y defined by

F (x) = {f(x)} if x ∈ U,

Then Dom(F ) = U , F is η-segmentary epi-closed, since for all x, y ∈ U the set
Epi(F ◦ �x,y) = Epi(f ◦ �x,y) is closed by hypothesis and F satisfies Assumption A.
Whence (i) and (ii) are direct consequences of Theorem 5.1 and 5.2, respectively.

6. APPLICATIONS OF K-PREINVEX AND K-PREQUASIINVEX MAPS

In this section we give some conditions under which a local solution of set-valued
scalar optimization is a global efficient solution for vector optimization problem.
Let X be a normed linear space and Y and Z be two normed linear spaces with
norm dual spaces Y ∗ and Z∗, respectively. Let K ⊂ Y and D ⊂ Z be pointed
closed convex cones with intK �= ∅ and intD �= ∅. Consider the following vector
optimization problem with set-valued maps:

(VP) minF (x) s. t. x ∈ A = {x ∈ X : G(x) ∩ (−D) �= ∅},
where F : X −→ 2Y and G : X −→ 2Z are two set-valued maps with nonempty
values. The set A is the set of all feasible solutions of (VP).

We associate the following set-valued scalar optimization with (VP). For an
� ∈ Y ∗ \ {0}:

(SP)� min �(F (x)) s. t. x ∈ A = {x ∈ X : G(x) ∩ (−D) �= ∅}.



Characterizations of Preinvex and Prequasiinvex 891

A convex subset B of K is a base of convex cone K if 0 /∈ B and K = ∪λ≥0λB.
For a nonempty subset V of Y , the generated cone of V is given by

con(V ) = {λv|λ ≥ 0, v ∈ V } = ∪λ≥0λV.

Definition 6.1. Let V be a nonempty subset in Y . The set of all efficient
points of V with respect to the convex cone K is defined by

E(V, K) = {y0 ∈ V |V ∩ (y0 − K) = {y0}}
The set of all Borwein’s supper efficient point of V with respect to convex cone K
is defined by

SE(V,K) = {y0 ∈ V |∃N > 0 such that (BY − K) ∩ con(V − y0) ⊂ NBY },
where BY is the closed unit ball of Y .

It was proved by Borwein and Zhuang [5] that SE(V, K) ⊂ E(V, K).
The following lemma was proved by Rong and Wu [13].

Lemma 6.1. If the convex pointed ordering cone K has a closed bounded
base B and if V is a nonempty subset in Y , then SE(V, K) = SE(V + K, K).

The next lemma is due to Borwein and Zhuang [5]

Lemma 6.2. If the convex pointed ordering cone K has a closed bounded
base B and if V is a convex subset in Y , then y0 ∈ SE(V, K) if and only if there
exists � ∈ intK+ such that �(y − y0) ≥ 0 for all y ∈ V .

Definition 6.2. (1) x̄ ∈ A is said to be global super efficient solution of (VP),
if there exists ȳ ∈ F (x̄) such that ȳ ∈ SE(F (A), K).

x̄ ∈ A is said to be local super efficient solution of (VP), if there exist ȳ ∈ F (x̄)
and a neighborhood N (x̄) of x̄ such that ȳ ∈ SE(F (A∩ N (x̄)), K).

Definition 6.3. Let � ∈ Y ∗ \ {0Y ∗}. Consider the problem

(SP )� min
x∈A

�(F (x)).

A point x̄ ∈ A, is said to be a global solution of (SP )� if there exists ȳ ∈ F (x̄)
such that

�(y) ≥ �(ȳ), ∀x ∈ A, ∀y ∈ F (x).

A point x̄ ∈ A, is said to be a local solution of (SP )�, if there exist a neighborhood
N (x̄) and ȳ ∈ F (x̄) such that

�(y) ≥ �(ȳ), ∀x ∈ A ∩ N (x̄), ∀y ∈ F (x).
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A point x̄ ∈ A, is said to be a strict local solution of (SP )� if there exist a
neighborhood N (x̄) and ȳ ∈ F (x̄) such that

�(y) > �(ȳ), ∀x ∈ A ∩ N (x̄) \ {x̄}, ∀y ∈ F (x).

Theorem 6.1. Suppose that the convex pointed ordering cone K has a closed
bounded base B, F is K-preinvex and G is D-prequasiinvex functions with respect
to η. If there exists � ∈ intK+ such that x̄ is a local solution for (SP ) �, then x̄ is
a global super efficient solution for (VP).

Proof. Let there exists � ∈ intK+ such that x̄ is a local solution for (SP )�.
Then by definition, there exist ȳ ∈ F (x̄) and a neighborhood N (x̄) such that

�(y) ≥ �(ȳ), ∀x ∈ A ∩ N (x̄), ∀y ∈ F (x).

If x̂ ∈ A and ŷ ∈ F (x̂), then by K-preinvexity of F for t ∈ (0, 1), we have

tŷ + (1− t)ȳ ∈ tF (x̂) + (1 − t)F (x̄) ⊂ F (x̄ + tη(x̂, x̄)) + K.

Hence, there exist yt ∈ F (x̄+tη(x̂, x̄)) and kt ∈ K such that tŷ+(1−t)ȳ = yt+kt.
On the other hand by Lemma 2.1, A is invex with respect to η. Thus for any
t ∈ (0, 1) small enough, x̄ + tη(x̂, x̄) ∈ N (x̄) ∩A. Then for such t > 0 we deduce

t�(ŷ) + (1− t)�(ȳ) = �(yt) + �(kt) ≥ �(ȳ),

therefore,
�(ŷ) − �(ȳ) ≥ 0.

Since x̂ ∈ A is arbitrary x̄ is a global solution for minx∈A �(F (x)). Let z ∈
F (A) + K, then there exist y ∈ F (A) and k ∈ K such that z = y + k. Hence

�(z) = �(y) + �(k) ≥ �(ȳ),

and as F (A) + K is convex subset of Y , by Lemma 6.2, ȳ ∈ SE(F (A) + K, K)
and by Lemma 6.1, ȳ ∈ SE(F (A), K).

Example 6.1. Let in the above theorem, X = Y = Z = R, K = D = R+,
F : X −→ 2Y , defined by

F (x) = [−|x|+ 1, 1] if − 2 ≤ x ≤ 2;

= [−1, 1] if otherwise,
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and define G : X −→ 2Z , by

G(x) = [−|x|, 0] if − 2 ≤ x ≤ 2;

= [x − 2, x− 1] if − 2 ≤ x ≤ 2;

= [−x − 2,−x− 1] if − 2 ≤ x ≤ 2,

and η : X × X −→ X defined by

η(x, y) = x − y if x ≥ 0, y ≥ 0;

= x − y if x ≤ 0, y ≤ 0;

= −2 − y if x > 0, y ≤ 0;

= 2 − y if x ≤ 0, y > 0.

Then function F is K-preinvex, and Gis not D-preinvex, but that is D-prequasiinvex
with respect to η on X ,

A = {x ∈ X : G(x) ∩ (−D) �= ∅} = [−2, 2],

we consider x̄ = −2, and −1 = ȳ ∈ F (x̄), N (x̄) = (−3,−1). If � ∈ intK+ =
(0, +∞) then for each x ∈ A ∩ N (x̄) = [−2,−1), and each y ∈ F (x) ⊂ [−1, 1],
we deduce, −� = �ȳ ≤ �y therefore x̄ is a local solution for (SP )�. On the other
hand

SE(F (A), K)

= {y0 ∈ [−1, 1] : ∃N > 0 such that (−∞, 1) ∩ [−1 − y0, 1− y0] ⊂ [−N, N ]},

therefore ȳ ∈ SE(F (A), K) and x̄ is a global super efficient solution of (VP).

Theorem 6.2. Suppose that the convex pointed ordering cone K has a closed
bounded base B, F is K-preinvex and G is D-prequasiinvex with respect to η on
X . If x̄ ∈ A is a local super efficient solutions of (VP), then there exists � ∈ intK +

such that x̄ is a global solution of (SP ) �.

Proof. Let x̄ be a local supper efficient solution for (VP). Then there exist
ȳ ∈ F (x̄) and a neighborhood N (x̄) of x̄ such that ȳ ∈ SE(F (A ∩ N (x̄)), K)
and from Lemma 6.1 we derive SE(F (A ∩ N (x̄)), K) = SE(F (A ∩ N (x̄)) +
K, K). Then by Definition 6.1 there exists N > 0 such that (BY − K) ∩
con(F (A ∩ N (x̄)) + K − ȳ) ⊂ NBY . We show that

con(F (A) − ȳ) ⊂ con(F (A ∩ N (x̄)) + K − ȳ).
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Let x ∈ A, y ∈ F (x) for 0 < t < 1 small enough, we have x̄+tη(x, x̄) ∈ A∩N (x̄),
hence

t(y − ȳ) = ty + (1− t)ȳ − ȳ ∈ tF (x) + (1 − t)F (x̄)− ȳ

⊂ F (x̄ + tη(x, x̄)) + K − ȳ ⊂ F (A ∩ N (x̄)) + K − ȳ.

Then
y − ȳ ∈ con(F (A ∩ N (x̄)) + K − ȳ).

Hence, we deduce

con(F (A) − ȳ) ⊂ con(F (A ∩ N (x̄)) + K − ȳ).

Therefore (BY − K) ∩ con(F (A) − ȳ) ⊂ NBY that means ȳ ∈ SE(F (A), K),
hence x̄ is a global super efficient solution of (VP). By Lemma 6.1, ȳ ∈ SE(F (A)+
K, K), and Lemma 6.2 implies that there exists � ∈ intK + such that �(y+k−ȳ) ≥ 0
for all y ∈ F (A) and k ∈ K. Then �(y) ≥ �(ȳ) for all y ∈ F (A). Hence x̄ is a
global solution of (SP )�.

Remark 6.1. Suppose that the convex pointed ordering cone K has a closed
bounded base B, F is K-preinvex and G is D-prequasiinvex with respect to η on
X . Then the following are equivalent.
(a) x̄ ∈ A is a local super efficient solutions of (VP).

(b) There exists � ∈ intK+ such that x̄ is a global solution of (SP )�.
(c) x̄ is a global super efficient solution for (VP).
(d) There exists � ∈ intK+ such that x̄ is a local solution for (SP )�.

Definition 6.4. A point x̄ ∈ A is called a global efficient solution of problem
(VP) if there exists ȳ ∈ F (x̄) such that

(F (A\{x̄})− ȳ) ∩ (−K) = ∅.
A point x̄ ∈ A is called a local efficient solution of problem (VP) if there are a

neighborhood N (x̄) of x̄ and ȳ ∈ F (x̄) such that

(F (A ∩ N (x̄)\{x̄}) − ȳ) ∩ (−K) = ∅.
A point x̄ ∈ A is called a global weakly efficient solution of problem (VP) if

there exists ȳ ∈ F (x̄) such that

(F (A) − ȳ) ∩ (−intK) = ∅.
A point x̄ ∈ A is called a local weakly efficient solution of problem (VP) if

there are a neighborhood N (x̄) of x̄ and ȳ ∈ F (x̄) such that

(F (A ∩ N (x̄)) − ȳ) ∩ (−intK) = ∅.
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Theorem 6.3. Let F be K-prequasiinvex, G be D-prequasiinvex maps with
respect to η, and η(x, y) �= 0 for x �= y. Then, any local efficient solution of (VP)
is a global efficient solution of (VP).

Proof. Let x̄ be a local efficient solution of (VP), then there exist a neighbor-
hood N (x̄) of x̄ and ȳ ∈ F (x̄) such that

(F (A ∩ N (x̄)\{x̄})− ȳ) ∩ (−K) = ∅. (6.1)

If x̄ is not a global efficient solution of (VP), then there exist a u ∈ A, u �= x̄ and
y0 ∈ F (u) such that y0 − ȳ ∈ −K. Therefore, by K-prequasiinvexity of F for each
t ∈ [0, 1] we have

ȳ ∈ (y0 + K) ∩ (ȳ + K) ⊂ F (x̄ + tη(u, x̄)) + K.

This means that for each t ∈ [0, 1], there exists yt ∈ F (x̄ + tη(u, x̄)) such that
yt − ȳ ∈ −K. On the other hand for t ∈ (0, 1) small enough, x̄ + tη(u, x̄) ∈ N (x̄)
and by D-prequasiinvexity of G and Lemma 2.1, A is invex with respect to η.
Then for t ∈ (0, 1) small enough, x̄ + tη(u, x̄) ∈ A ∩ N (x̄)\{x̄}. Thus we deduce
yt − ȳ ∈ (F (A ∩ N (x̄)\{x̄}) − ȳ) ∩ (−K) which contradicts (6.1).

Theorem 6.4. Let F be strictly K-prequasiinvex and G be D-prequasiinvex
maps with respect to η. Then, any local weakly efficient solution of (VP) is a global
weakly efficient solution of (VP).

Proof. Let x̄ be a local weakly efficient solution of (VP), then there exists a
neighborhood N (x̄) of x̄ and ȳ ∈ F (x̄) such that

(F (A ∩ N (x̄))− ȳ) ∩ (−intK) = ∅. (6.2)

If x̄ is not a global weakly efficient solution of (VP). Then there exist a u ∈ A and
y0 ∈ F (u) such that y0 − ȳ ∈ −intK. Therefore, by strict K-prequasiinvexity of F

for each t ∈ (0, 1) we have

ȳ ∈ (y0 + K) ∩ (ȳ + K) ⊂ F (x̄ + tη(u, x̄)) + intK.

This means that for each t ∈ (0, 1) there exists yt ∈ F (x̄ + tη(u, x̄)) such that
yt − ȳ ∈ −intK. On the other hand for t ∈ (0, δ) with δ > 0 small enough,
x̄ + tη(u, x̄) ∈ N (x̄) and by D-prequasiinvexity of G and Lemma 2.1, A is an
invex set with respect to η. Then, x̄ + tη(u, x̄) ∈ A ∩ N (x̄) for t ∈ (0, 1) small
enough, then we deduce yt − ȳ ∈ (F (A∩N (x̄))− ȳ)∩ (−intK), which contradicts
(6.2).
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Theorem 6.5. Let F be strictly K-prequasiinvex and G be D-prequasiinvex
maps with respect to η. If there exists � ∈ K + \ {0Y ∗} such that x̄ ∈ A is a local
solution of (SP )�, then x̄ is a global weakly efficient solution of (VP).

Proof. Since x̄ is a local solution of (SP )�, then there exists a neighborhood
N (x̄) and ȳ ∈ F (x̄) such that

�(y) ≥ �(ȳ), ∀x ∈ A ∩ N (x̄), ∀y ∈ F (x).

If x̄ is not a global weakly efficient solution of (VP), then

(F (A) − ȳ) ∩ (−intK) �= ∅.
Hence there exist x0 ∈ A, and y0 ∈ F (x0), such that ȳ − y0 ∈ intK. Thus by strict
K-prequasiinvexity of F for each t ∈ (0, 1), we have

ȳ ∈ (F (x̄) + K) ∩ (F (x0) + K) ⊂ F (x̄ + tη(x0, x̄)) + intK.

Then for each t ∈ (0, 1), there exists

yt ∈ F (x̄ + tη(x0, x̄)), such that ȳ ∈ yt + intK.

Therefore,
�(ȳ) > �(yt).

On the other hand for t > 0 small enough, x̄ + tη(x0, x̄) ∈ A ∩ N (x̄), which is a
contradiction.

Theorem 6.6. Let F be K-prequasiinvex, G be D-prequasiinvex maps with
respect to η and η(x, y) �= 0 for x �= y. If there exists � ∈ K + \ {0Y ∗} such that
x̄ ∈ A is an strict local solution of (SP ) �, then x̄ is a global efficient solution of
(VP).

Proof. Since x̄ is an strict local solution of (SP )�, then there exist a neigh-
borhood N (x̄) and ȳ ∈ F (x̄) such that

�(y) > �(ȳ), ∀x ∈ A ∩ N (x̄) \ {x̄}, ∀y ∈ F (x).

If x̄ is not a global efficient solution of (VP), then

(F (A \ {x̄})− ȳ) ∩ (−K) �= ∅.
Therefore, there exist x0 ∈ A \ {x̄}, and y0 ∈ F (x0), such that ȳ − y0 ∈ K. Thus
by K-prequasiinvexity of F for each t ∈ (0, 1) we have

ȳ ∈ (F (x̄) + K) ∩ (F (x0) + K) ⊂ F (x̄ + tη(x0, x̄)) + K.
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Then for each t ∈ (0, 1), there exists

yt ∈ F (x̄ + tη(x0, x̄)), such that ȳ ∈ yt + K.

Therefore,
�(ȳ) ≥ �(yt).

On the other hand for t > 0 small enough, x̄ + tη(x0, x̄) ∈ A∩N (x̄) \ {x̄}, which
is a contradiction.
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