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EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS OF SEMILINEAR
ELLIPTIC EQUATIONS IN ESTEBAN-LIONS DOMAINS WITH HOLES

Tsing-San Hsu

Abstract. In this article, we consider the semilinear elliptic equation
(%) —Au+u=AK(z)uP +h(z) in Qu>0in Q ,uec H(Q),

where A >0, N > 2,1 < p<2*—1and  is the upper semi-strip domain
with a hole in RY. Under some suitable conditions on K and h, we show
that there exists a positive constant A* such that equation (), has at least
two solutions if A € (0, A*), a unique solution if A = 0 or A = A\* and no
solution if A > A*. We also establish the asymptotic behavior and some further
properties of positive solutions of equation (x)y.

1. INTRODUCTION

Throughout this article, let N > 2, 2* = 28 for N > 3, 2* = oo for N =2,
go be a given constant such that ¢o > N/2 if N >4 and go =2 if N = 2,3, and
(y, z) be the generic point of RY with y € RV~1, 2 € R. Denote by BY (zg; R) the
N —Dball, S the strip domain, ST the upper semi-strip domain, 2 the upper semi-strip
domain with a hole as follows:

BN(zg;R) = {z e RN : |z — zo| < R};
S ={(y,2) : [yl <rok;
St ={(y,2) €S: 2> 0}UBY(0;7);
Q =S*\ D,where D CC ST is a smooth bounded domain in RY.

where rg is a fixed positive constant and R is a positive constant.
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Consider the semilinear elliptic equation
{ —Au+u=uPin O,

) (1.1)
u>0in 0O ,u e H(O),

where © is a smooth domain in RY and 1 < p < 2* — 1.

The existence and nonexistence of solutions of equation (1.1) have been the
focus of a great deal of research in recent years. By the Rellich compactness theorem,
it is easy to obtain a solution of (1.1) in a bounded domain. For general unbounded
domain ©, because of the lack of compactness, the existence of solutions of (1.1) in
O is very difficult and unclear. The breakthrough was made by Esteban-Lions [5].
They asserted that (1.1) does not admit any nontrivial solution in Esteban-Lions
domain, where the definition of Esteban-Lions domain is: For a proper unbounded
domain © in RY, there exists a y € RY, |x|| = 1 such that n(z) - x > 0 and
n(x) - x Z 0 on 90, where n(x) is the unit outward normal vector to 0© at the
point . A typical example is the upper semi-strip S+.

Thus, perturb (1.1) to obtain the existence of solutions in Esteban-Lions domain
is of great interest to research. In this paper, we study a more general equation for
the full range \ € [0, c0)

—Au+u = AK(z)uP 4+ h(z) in Q, L
{u>0inQ,u€H01(Q), (1-2)x

where A > 0, Q is the upper semi-strip domain with a hole, K(z) is a positive,
bounded and continuous function on S and h(z) € L2(£2). Moreover, K(zx) and
h(z) satisfy the following conditions:

(k1) There exists a positive constant K, such that
| 1|im K(y, z) = Ko uniformly for y € BN71(0;70);
Z|—00

(k2) There exist some constants v > ’%1 and 9 > 0 such that
K(y,2) > Koo — 9 exp(—y+/1 + u1|2]) as |z] — oo, uniformly for
y € BN71(0;70),
where 1 is the first eigenvalue of the Dirichlet problem —A in BV =1(0; 7¢);
(h1) h(z) >0, h(x) Z0, h(z) € L*(Q) N LP°(Q).
Our main results are as follows:

Theorem 1.1. Assume uy is the unique solution of (1.2) o and conditions (k1),
(k2) and (k1) hold, then there exists a constant A* > 0 such that
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(i) equation (1.2), has at least two positive solutions, wy, Uy and uy < Uy if
A€ (0,1%);
(if) equation (1.2) has a unique positive solution uy if A =0 or A = \*;
(iii) equation (1.2) has no positive solutions if A > A\*,
Furthermore,

p+1

p+D(p—-1)P M=
2p)P[| K |l oo (o) HhHZ(IQ)

<AL inf < o] ) =)o
(1.3) weH (2)\{0} » Kug_ledx

)\15

plIRIZ2q)

= A3
(p—1)?2 | Kub'da
Q
where M = inf{ [((|Vu|? + |u|?)dz : [g|u[PT dz = 1}, uy is the unique minimal
solution of equation (1.2), U, is the second solution of equation (1.2), constructed
in Section 5.

Theorem 1.2. Under the assumptions of Theorem 1.1. Then

(i) wy is strictly increasing with respect to A and uniformly bounded in L>°(2)N
HZ(Q) for all X € [0, \*] and

uy — ug in L®(Q) N HOI(Q) as A — 0T,

(i) U, is strictly decreasing with respect to A and unbounded in L>°(Q) N HE(€2)
for A € (0, \), that is

lim [|Uy]| = lim ||U = 0.
Jim UM = lim [[UN] o) = 00

This paper is organized as follows. In section 2, we establish a decomposition
lemma of Lions which will be used later. In section 3, we establish several lemmas
for the regularity and asymptotic behavior of the solution of equation (1.2)y. In
section 4, we apply Ekeland’s variational principle [6] to show that equation (1.2) »
has a solution for small A > 0, then, by the standard barrier method to show that
there is a constant A* > 0 such that (1.1), has a minimal solution w) for all
A € [0, A*]. In section 5, we assert that there is the second solution of equation
(1.2) for all A € (0, A*). In section 6, we shall give some further properties of the
solution of equation (1.2).
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2. PRELIMINARIES

In this paper, we denote by cand ¢; (: = 1, 2, .. .) the universal constants, unless
otherwise specified. We set

Jull = ( RO \uP)dx)l/Q,

1/q
lll oy = ( / \u\%zx) l<g<oo
Q

[[ull oo () = sup [u()],
€S

M= mf{/(\vu\? + uf2)da /\u\p+1dx — 1.
S S

Now we give some notations and some known results. In order to get the existence
of positive solutions of equation (1.2),, we consider the energy functional I :
H}(Q) — R defined by

1 A
D) = [ [590P + [uf) = 25K @)~ hia)u]da.
where u* (x) = max{+u(z), 0}. It is well-known that the critical points of I are
the positive solutions of equation (1.2),.
Now, we introduce the following elliptic equation on S:

—Au+u=A K uP inS,
. (2.1)x
uwe Hy(S), N>2.
Associated with (2.1), we consider the energy functional I3° defined by
~ 1 A
I (u) = 3 /S <\Vu\2 —|—u2> dx — o1 /SKOO(u+)p+1dx, u € HY(S).

By Lions [13] and Lien-Tzeng-Wang [12], we know that (2.1) , has a ground state
solution ) (x) > 0 in S such that

M = I (wy) = sup I (twy). (2.2)
t>0

Now, we give the following decomposition lemma for later use.

Proposition 2.1. Let condition (k1) be satisfied and {u} be a (P.S) 3—sequence
of I, in H}(Q):
I(ug) =B +o(l) as k — oo,
I\ (ug) = o(1) strongly in H~1(9).
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Then there exist an integer I > 0, sequence {xz}} C R of the form (0, z;) € S,
functions w € HZ(Q), w; € H(S), 1 < <1, such that for some subsequence (still
denoted by) {ux}, we have

ur — u weakly in H}(Q);
!
B =@+ I (m);
i=1

—AU +u = MK (x)@ + h(z) in H1(Q);
—AU; +u; = AKut in H71(S), 1<i <1

’x};’—mx), x}%—xi‘%oo, 1<i#£5<I1.

where we agree that in the case I = 0 the above holds without @;, xz

Proof. The proof can be obtained by using the arguments in Bahri-Lions [3]
(also see Lien-Tzeng-Wang [12], Theorem 4.1). [ ]

Now, we combine Hsu [9], Proposition 3.4 and [11], Lemma 3.6, we obtain a
precise asymptotic behavior result for positive solutions of (2.1), at infinity.

Proposition 2.2 Let w) be a positive solution of (2.1), in an unbounded
cylinder S = w x R* C R™™, m > 2, n > 1 and ¢ be the first positive
eigenfunction of the Dirichlet problem —Ay = p1¢ in w, then for any ¢ > 0,
there exist positive constants ¢. and ¢ such that

_n—1
@Ay, 2) < ccp(y) exp(—v/I+ u |2]) |27 = *°

_n—1
wr(y, 2) > cp(y) exp(—/1+ p1 |2]) 2] 2

as |z| — o0, yew

Remark 2.3. Now, we apply Proposition 2.2 to equation (2.1)y in S =
BN=1(0;79) x R, then we can easily deduce that for any 0 < ¢ < 1 + yy, there
exist positive constants c. and ¢ such that

{ w(y, 2) < cep(y) exp(—/T+ 1 — € z|)
w(y, 2) > co(y) exp(—v/T+ p1 |2])

where ¢ is the first positive eigenfunction of the Dirichlet problem —Ap = ¢ in
BN_l(O; 7"0).

forall z = (y,2) €S (2.3)
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3. AsymMpPTOTIC BEHAVIOR OF SOLUTIONS

In this section, we present two asymptotic behavior of each solution of equation
(1.2)>\ in Q.

Lemma 3.1. Let conditions (k1), (k2) and (h1) be satisfied and suppose that
u € H}() is a weak solution of equation (1.2) , in . Then we have the following
results.

(i) uwe Li(Q) for ¢ € [2,00).

(ii) There exist some positive constants ¢, and ¢, depending on go and K, such
that u € C%*(Q) N W?2%(Q) and

lullzoe(e) < lullgon@y < cllullwzm@) < c2(Mllullfom ) + 170 @),

—9_N_ |9 N
where ¢ > N/2 and oo = 2 — [2 qo].

(iif) lim wu(y, z) = 0 uniformly in y, where (y, z) € .

Z—00

Proof. (i) See Hsu [10] for the proof.

(ii) Since u € H}(R) is a weak solution of equation (1.2) in , by part (i)
and (h1), AK (z)u? + h(z) € L%(Q) for some ¢y > N/2. By Gilbarg-Trudinger
[8], Theorem 9.15 and Lemma 9.17, the Dirichlet problem

—Av+ v = AK(z)uP + h(z) in Q,
v e Wy™(Q) N HL(Q),
has a unique strong solution v € W29 () N W, () N H(Q) and
[ollwza0 ) < | AK (2)u? + h(2) ]| Lao (0)-
Thus, v and v satisfy weakly
—Av+ v = AK(z)uP + h(z) in Q,
—Au~+u = MK (z)uP + h(x) in .

By Gilbarg-Trudinger [8], Corollary 8.2, u = v € W24 (Q) N WOI’QO(Q) N H}(Q)
and

lullwzao 0y < e |AK (@)u” + h(2)|| Loy < caMullTpa ) + 17l Loo(2)-
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Leta=2— T — [2 — qﬂo] Since gy > N/2 and by Brezis [4], p.168, we have
u € C%(Q) and
[ull Lo (o) < Nlullco.a @) < cillullwzao @) < ca(Allwllfom ) + 17]lLo @)-
(iii) Since uw € HL(Q) is a weak solution of equation (1.2),, by part (i),
u € CO(Q) N W29(Q). For each R > 0, apply Brezis [4], p.168 to obtain
[ull oo (07) < cqollllzao (),

where Qr = {z = (y, 2) € Q|z] > R}. Since [|ully 240 (q,) = o(1) as R — oo,
we have lim,_,, u(y, z) = 0 uniformly in y, where (y, z) € Q. [ ]

Lemma 3.2. Let u be a positive solution of equation (1.2)  and ¢ be the first
positive eigenfunction of the Dirichlet problem —Ap = 110 in BN=1(0; ), then
there exists a constant ¢ > 0 such that

(3.1)  u(y,2) > co(y)exp(—+/1+ p1z) forall y € BN7L(0;70), 2 > po.

where pp = 2max{ sup z,1}.
(y,2)eD

Proof. Let
V() = p(y) exp(—/1+ pul2]) for z = (y,2) € Q.
It is very easy to show that
—A¥(z)+ U(x) =0 for z € Q

From the proof of Hsu [9], Proposition 3.4, we can deduce that u(z)p~'(y) >
0 for z € U,, and u(z)p~(y) € C*(U,,), Where U,, = {& = (y,2) : y €
BN=L(0;79), 2 > po} If we set

o = sup (u(z) U (2)),
yeBN~1(0;70),2=po

then a7 > 0 and
o1 ¥(z) > u(z) fory € BN=1(0;70), 2 = po.
Let ®1(x) = a1¥(x), for 2 € Q. Then, for z > pg, we have
APy —u)(x) — (D1 —u)(z) = AK (2)uP(z) + h(z) > 0.

Therefore, by means of the strong maximum principle implies that u(z) — ®1(x) > 0
for 2 € U,,. This completes the proof of Lemma 3.2. n
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4, EXISTENCE OF MINIMAL SOLUTION

In this section, by the barrier method, we will establish the existence of minimal
positive solution uy for all A in some finite interval [0, A*] (i.e. for any positive
solution u of equation (1.2), then u > uy).

Lemma4.1. Assume condition (k1) holds. Then equation (1.2) 5 has a solution
uy if 0 < X\ < Ay where )\ is given by (1.3).

Proof. For A = 0, the existence question is equivalent to the existence of
ug € H() such that

(4.1) /QVuo-V¢+uo¢:/Qh¢

for all ¢ € H}(). Since

|Aﬂsmmﬁwmﬁsmmﬁww

Hence, according to the Lax-Milgram theorem, there exists a unique uy € HE ()
satisfies (4.1). Since 0 # h > 0 in §2, by strong maximum principle (see Gilbarg-
Trudinger [8]), we conclude that ug > 0 in .

We consider next the case A > 0. We show first that for sufficiently small A,
say A = )\, there exists ¢ty = t(\g) > 0 such that I,(u) > 0 for ||u|| = t. From
the definition of I, we have

1 A _ptl
Ii(u) > §HuH2 - mHKHL‘X’(Q)M [P = (A 2 lull

where M = inf{ [o(|Vu|*+|ul?)dz : [ [ulPT dz =1} = inf{ [((|Vul?+|u?*)dz :
Js luPttdz = 1} (see Wang [14], Proposition 14).
Set )
f(t) = 575 — )\Cltp — C9,
+1

where ¢; = ﬁHKHLOO(Q)M z and ¢y = HhHLQ(Q)

It then follows that f(¢) achieves a maximum at ¢y = (2pAci)~ D", Set
By ={ue€ HYQ) : |Jul| <tr}. Thenforallu € 9By = {u € HL() : [Jul| = t\},
In(u) > tah(ty) > taltalp—1)/2p — 2] > 0

provided that co < tx(p —1)/2p, which is satisfied for A < A;. Fix such a value of
A, say Ao, and set tg = t(Xo). Let 0 # ¢ > 0, ¢ € C3°(Q2) such that [, hodz > 0.
Then

t2 A
Dlt) = S0l = et [ Kot = [ o <o
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for sufficiently small ¢ > 0, and it is easy to see that I, is bounded below on By,.
Set § = inf{l\,(u) : u € By,}. Then g < 0, and since I,(u) > 0 on 0By,
the continuity of I, on Hol(Q) implies that there exists 0 < t; < ty such that
Iy (u) > B forall uw € H}(Q) and #; < |lu|| < to. By the Ekeland’s variational
principle [6], there exists a sequence {u},-, C By, such that I, (ux) = 8+ o(1)
and I} (ux) = o(1) strongly in H~1(Q), as k — oo. By Proposition 2.1, we have
that there exist a subsequence {uy}, aninteger [ > 0, w; >0, 1 <i <1 (if [ > 1),
ug > 0 in Q and ug in By, such that

ug — ug weakly in H} (),
—Aug + ug = MoK (z)uf + h(z) in H1(),
—AU; + 7 = MK in HHRY), 1<i <1

Moreover,
l
Do (ur) = Dng(uo) + Y ISS(W;) + o(1) as k — oo.
i=1
Note that I3°(w;) > My > 0 for ¢ = 1,2,---,1. Since ug € B, we have
I, (up) > . We conclude that [ = 0, I),(up) = and I&O(uo) =0,ie,upisa
weak positive solution of equation (1.2)y,. ]

Now, by the standard barrier method, we get the following Lemma.

Lemma 4.2. Assume condition (k1) holds. Then there exists a constant A * > 0
such that for each A € [0, A*), equation (1.2) has a minimal positive solution w
and wuy is strictly increasing in \.

Proof. Denoting
A* =sup{A > 0: equation (1.2), has a positive solution }.

By Lemma 4.1, we have \* > 0. Now, consider A € [0, \*). By the definition of
A*, we know that there exists A’ > X\ such that \’ < \* and equation (1.1) has a
positive solution uy > 0, i.e.,

—Auy +uy = NK(2)u, + h(z)
> MK (z)uf, + h(z).

Then wy/ is a supersolution of equation (1.2),. From h(z) > 0 and h(x) # 0, it
is easily verified that 0 is a subsolution of equation (1.2) . By the standard barrier
method, there exists a solution ) of equation (1.2), such that 0 < uy < uys. Since
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0 is not a solution of equation (1.2), and A’ > X, the maximum principle implies

that 0 < u) < wy . Again using a result of Amann [1], we can choose a minimum

positive solution u) of equation (1.2),. This completes the proof of Lemma 4.2.
Now, we consider a solution « of equation (1.2),. Let o(u) be defined by

(12)  orfu) = int{ [ (V6 + oo ¢ € HYQ), [ pwrtgPae = 1)

By the standard direct minimization procedure, we can show that o (u) is attained
by a function ¢ > 0, p) € H(Q), satisfying

(4.3) —Apy + ) = J,\(u)pKup_lapk in Q.

Lemma 4.3. Assume condition (k1) holds. For A\ € [0, A*), let uy be the
minimal solution of equation (1.2) x and o (u)) be the corresponding number given
by (4.2). Then

(i) oa(ux) > A and is strictly decreasing in A, A € [0, \*);
(if) A* < oo, and (1.2)x~ has a minimal solution w .

Proof. Consider uy/, uy, where \* > X > X\ > 0. Let ¢, be a minimizer of
ox(uy), then by Lemma 4.2, we obtain that

/QpKui/_lap?\dx > /QpKui_lap?\dx =1,
and there is a constant ¢, 0 < ¢ < 1 such that
/pKuI;/_l(tapk)Q =1.
Q
Therefore,

(4.4) ox(un) < Blleall* < lleall? = oa(un),

showing the monotonicity of oy (uy), A € [0, A*).
Consider now A € (0, \*). Let A < X' < \*. From (4.3) and the monotonicity
of uy, we get

Ux(ux)p/g(ux —un) Kuf prd
= / V(uy —uy) - Vrdx + /Q(u,\/ — uy)prdx
Q
=\ =X / Kuf,prdx + )\/ K(u, — u})prdx (4.5)
Q Q

Uy’
> )\p/ K@A/ P~ dtdx
Q u)

> Ap/ Kb (uy — up)pade,
Q
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which implies that o(uy) > A, A € (0, \*). This completes the proof of (7).
We show next that \* < co. Let \g € (0, \*) be fixed. For any XA > Xy, (4.4)
and (4.5) imply
Tao(Ung) = oa(un) > A

for all A € [Ag, \*). Thus, \* < oo.
By (4.2) and o (uy) > A, we have

/(\Vu,\\Q + Jup?)dz — )\p/ Kuﬁ“dx > 0.
Q Q
and also we have
/(\Vu,\\Q + Jup?)dz — / MKW da — / huy = 0.
Q Q Q
Thus

/(\Vu,\\Q—i—\u,\\Q)dx: /)\Kuﬁﬂdx—i—/hu,\dx
) Q Q

1
<3 /Q (IVurl? + [ur2)dz + 1A 2oy s -
This implies that, for all A € (0, A*),
(4.6) luall < LAl 20
- (@)

By (4.6) and part (i) of Lemma 4.3, the solution w, is strictly increasing with
respect to A; we may suppose that

uy — uy- weakly in H} () as A — \*.

This implies that

/(VUA -V +urp)dr — /(VUA* Vo +uy-p)de,
Q Q .
as\— A\

/()\Kui + h)pdr — /()\*Kui* + h)edz,
Q )

for all ¢ € HE(Q). Hence, uy« is a minimal positive solution of (1.2),. This
completes the proof of Lemma 4.3.

Lemma 4.4. If condition (k1) holds, then A1 < A* < Xy < A3, where \q, Ao
and Az are given by (1.3).
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Proof. By Lemma 4.1 and the definition of A*, we conclude that A* > \;.
As in Lemma 4.3, we have oy (uy) > X for all A € (0, %), so for any w €
H(Q)\ {0}, we have

(4.7) /(\Vw + |w|*)dx > )\p/ Kol wide.
Q )

Let ug is the unique solution of (1.2), then by (4.7) and uy, > ug for all A € (0, A*],
we obtain that

/(\Vw + |w|?)dz > )\p/ Kub ™ wde,
) Q

i.e.

(4.8) A< inf ( ol ) =\

weHE()\{0} pr Kug_ledx

This implies that A* < \s.
Take w = wy in (4.7), and by (4.6) and the monotonicity of w,, we get that

e a2
- prKug_lu?\dx

pllAlZ2 0

5. EXISTENCE OF SECOND SOLUTION

The existence of a second solution of equation (1.2)), A € (0,\*), will be
established via the mountain pass theorem. When 0 < A < A*, we have known
that equation (1.2), has a minimal positive solution u, by Lemma 4.2, then we
need only to prove that equation (1.2), has another positive solution in the form of
Uy = uy + vy, where v, is a solution of the following equation:

{ —Av+v = AK[(v+uy)? —u] in Q,

1 - (5'1)>\
ve Hy(2),v>0in .

The corresponding variational functional of (5.1)y is

Jr(v) = %/Q(\VU\Q + %) — )\/Q/Ov K[(s +ux)? — uf]dsdz, v € HJ(Q).

To verify the conditions of the mountain pass theorem, we need the following
lemmas.
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Lemma 5.1. For any € > 0, there is a positive constant ¢, such that

(ux+ s)P —ub — puﬁ_ls < eu{(_ls + c.sP for all s > 0.

Proof. From the fact

1

(ur + s)P —ub — pul~

D _ P _ p—
i AT U TP S g tim

s—0 S §—00 sP

it is easy to see that the assertion is correct.
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)

Lemma 5.2. If condition (k1) holds, then there exist positive constants p and

0, such that

(5.2) Ja(v) = B> 0, v e Hy(Q), [lv]l = p.
Proof. By Lemma 5.1, we have

1 1 _
Ja(v) = 5/9(\Vv\2—|—v2)dx— §Ap/QKu§ Lwh)’de

ot
—)\/ / K[(ux + )P — uf — pub " s]dsdx
aJo

> 1[/(‘V’U‘2+’02)d$—)\p/K’U,i_l(’l)—’—)de}
2Ll/q Q

+)p+1
o E p—1 +2 (’U )
)\/QK[Q’U,)\ (vT)" 4+ ce DT }dw.

Furthermore, from the definition o (uy) in (4.3), we have
/(\VU\Q +v?)dz > J,\(u,\)p/ Kui_l(v'F)de,
Q Q

and, therefore, by (5.3) we obtain

(5:4) (o) 2 5r(02) o) A= EN [olP Al t) ™! [ K@

Since ox(uy) > A, by part (i) of Lemma 4.3, the boundedness of K, and the

Sobolev inequality imply that for small € > 0,

1 .
Ia(©) = Joa(un) " (oa(ua) = V[ll* = Acfo ",

and the conclusion in Lemma 5.2 follows.
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Similar to Proposition 2.1, for the energy functional .J\, we also have the fol-
lowing result:

Lemma 5.3. Assume condition (k1) holds. Let {v,} be a (PS)s sequence of
Jyin H}(Q):

Ja(vkg) =pB+o(1)as k — oo,

(5.5) .
Ji(vg) = o(1) strong in H~1(Q).

Then there exist an integer > 0, sequence {z}} C RY of the form (0,z}) € S,
functions vy € H} (), v; € HL(S), 1 < i < I, such that for some subsequence
(still denoted by) {vy}, we have

v, — vy weakly in H(Q);
I
B=Ja(vx) + > _IF(@);
i=1

—Avy 4 vy = AK[(vx + upn)? — uf] in H1(Q);
—AV + 0 = AK o in HTX(S), 1 <i <1

k| = e,

x}%—xi‘%oo, 1<ij<lL
where we agree that in the case [ = 0 the above holds without &7, xz

Now, let § be small enough, D° a §-tubular neighborhood of D such that
D% cc Q. Letn:S —[0,1] be a C* cut-off function such that 0 < n < 1 and

0, ifzeDU(S\ST);
oo ={ -
1, ifze(Q\D)n{z=(y,2)€S|lz>rp}.
LetT >0, ey = (0,0,---,0,1) € RY and @, be a ground state solution of (2.1),

, denote

7o =2 sup x|+ ro+ 1,
z€D?

2o = max{7o, 70},
Uo={(y,2) €S:0< 2<%},
Wir(z) = PA(T — Ten),
n-(z) =n(x+ Ten).
Clearly, nwy - € HZ(Q).
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Lemma 5.4. Assume conditions (k1), (k2) and (h1) hold, then there exist
to > 0, 7 > 19 such that Jy(tnwy ) < 0 for all 7 > 7, t > t,.

Proof. By w, is a ground state solution of (2.1),, then we have

Ia(tnwx,r)

1 1
= 5t | (V) P+l e - [ K (@) st do
2 p—|—1 Q

tnwkT
/ / (s + ur)? — ul — sPldsdx

< Z¢2 A 2/ ] 5
= 275 /S( wx +wy) (nFwn)de + =t* | |V, *lwad (5.6)

1
__tp-f—l/)\K p+1 d
ot [ AR~ ren)da
1 1
< Lp / Koo L + L22(max |V P?) / (o5 2dz
2 S 2 €S S

tp+1 pil
_p — /S)\K(x)n(x) w\ ' (r — Ten)dz,
Set Bi(ten) = {z = (y,2) € S:y € BN=Y(0;70/2), |2 — 7| < 1}. By condition
(k1), there exists 7. > 7y such that K (z) > K2°° for © € By(rey) forall 7 > 7,
and note that n(xz) = 1 on B;(rey) for 7 > 7, then we obtain that

/S K (2)n(a)? (@ — rex)da

A
> / Kooz — Ten)dz
(5.7) Bi(ren)

A

/ —Ky p+1(m)dw
{2=(y,2)€S:y€BN=1(070),| 2| <1} 2

=c>0

where ¢ independent of 7. Combining (5.6) and (5.7), there exist ¢y, ¢z, independent
of 7, such that

(5.8) Ia(tnwy ) < c1t? — cotPt for all 7 > 7,

From (5.8), we conclude the result.
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Lemma 5.5. Assume condition (k1), (k2) and (h1) hold, then there exists
7* > 0, such that the following inequality holds for 7 > 7 *,

(5.9) 0 < sup Jy(tnwy ;) < I (wy) = M3°.
>0

Proof. From (5.2), we easily see that the left hand of (5.9) holds and we need
only to show that the right hand of (5.9) holds. By Lemma 5.4, we have that there
exists a constant ¢3 > 0 such that

sup Jx(tnwy ) = sup Jy(tnwy ), for any 7 > 7.
>0 0<t<ts

Since J, is continuous in H4 () and J,(0) = 0, there exists a constant ¢; > 0
such that

Ia(tnwy -) < My°, forany 7 € (0,00) and 0 < ¢ < ¢;.
Then, to prove (5.9) we now only to prove the following inequality

sup Jx(tnwy,,) < M3°, for 7 large enough .
t1<t<to

By the definition of Jy, we get

t? tpt1
J,\(t??W/\,T) = 5/(W(77W,\,T)\2 + WD,\,T\QM?C - /)‘Koo(nwA,T)p+1dx
Q p+1Js
it MKy — K plg
2 [ A = K@) (g

tnwkﬁ
—/ / AK (x)[(s + ur)P — ub — sP]dsda.
aJo

Since w, is a ground state solution of (2.1),, then we have

12 !
Jk(tnwk T) < _/(_AW/\+W/\)(?73W>\)dx—— )\Koowi—’—ldx
’ 2 Js p+1Js

2
+—2/\Vn\2\w,\,7\2dx
2 Js

tp+1 1
(5.10) +p2+ . /SAKOOQ — np“)wi,t dx
tp+1

2 K. - K + p+1
2 [N = K@) )

tnwkﬁ
- / / AK (2)[(s + ur)? — ub — sPldsda.
aJo
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It follows from (2.3) that for any 0 < € < 144, there exist some constants 7, > 7,
and c. > 0, independent of 7, such that, for all 7 > 71,

t3 t3
(5:11) 2 [ [VnPlmaclde < 2 [ [VnPlenPds < cexpl-2y/THm—er),
S Ug

! +1y_ptl
/ MK so(1 — 7)ol

p+1
tp+1
< 2 / AK ooht da
(512) p+1 DSU{(y,2)€S:2<ro }
< c/ (y) exp(=(p+ 1)1+ —efz[)d
{(y,2)€S:2<20 }
< ceexp(—2y/1+ pg —e7).

Now, we fix a constant o with 2 S <a< p+
exists 7 > 0 such that, for all 7 > m,

~I=. By condition (k2) and (2.3), there

tp+1

o /S MKoo — K(2)) (g n)P e

c(/ —I—/ )(Koo — K(2)) ot (2 + Ten)dz
Sn{|z|>aT} Sn{|z|<at}
c1 exp(—ayy/1+u7m)+2¢arexp(—(p+1)(1—a)y/1+u —er)

where ¢; and é. are some positive constants independent of

Set Bi(ten) = {z = (y,2) € S : y € BN"Y0;70/2),|z — 7| < 1}. By
the definition of zp, we have that B;(rey) CC Q for all 7 > 2. Noting that
(a+b)P > aP+0bP, foralla > 0,b >0, p > 1. Then for 7 > z, we have n(z) =1
on Bi(tey) and

tﬂwxr
// (s 4+ ux)? — uk — sPldsdx

(5.13)

IN

IN

two,r
/ / (s 4+ ux)? — uk — sPldsdx
Bi(ren)
two,r
/ / s+u>\) -t s”_l]s-i-[(s—ku,\)p_l—u’)’\_l]u,\) dsdz  (5.14)
Bi(ren 0
twx, r

[(s 4 ux)P~t — u’;\_l]uAdsdx
1(Ten)
(twx,r +ux)P — uf

PN, T

=,

—1

:/ — tul " | runde.
B

1(7'61\1)
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By part (iii) of Lemma 3.1, there exist 73 > 2o + 7 and 8 > 0, such that

(twA,T + uy)P — ul/{ B

tui_l > ﬂ, for 7 > T3, T E Bl(TeN), te [tl,tg],
PN+

then by (k1), (3.1) and (5.14), there exist 74 > 73 such that K (z) > L= for
x € Bi(rey) and

tnwkﬁ
/ / MK (z)[(s + ur)? — ub — sPldsdx
o Jo

Y

1
5)\61(00 wx(z — Ten)ur(x)dx

(5.15) Bi(ten)

Y

c/ wx(z — Ten) exp(—(7 + 1)\/1 + p1)dx
Bi(Ten)
cyexp(—y/1+ ),

where co > 0 is independent of 7 for all 7 > 74 and t € [t1, t2].
By (5.10) and use (5.11)-(5.15), we get, for 7 > 7 + 7, and ¢ € [t1, t2],

A\

Ia(tnwy 7) < M° + 2ccexp(—24/1 + p1 — €7) + ¢ exp(—ayy/1 + 1 7)

+2¢catexp(—(p+1)(1—a)\/1+pu1 —er)—caexp(—+/1 + pi7)

where c, é., ¢;, 1 < i < 2, are independent of .

Since 0 < % <a< #, we have that there exists a constant eg > 0 such that

Ve =min{2/14+ 1 — €, ay/1+p,(p+ 1)1 —a)y/1+pu1 — e} > /14

for all positive constant € < .
Therefore, we can find some 7 > 74 + 7, large enough such that for all = > 7*

2¢e, exp(—2y/1+ 1 — €o7) + ¢1 exp(—ay /1T + p7)
+ 2¢,atexp(—(p+ 1)(1 — a)v/1 + p1 — €o7) — caexp(—v/1+ pu17) <0

and (5.9) is proved.

Proposition 5.6. Assume conditions (k1) and (k2) hold, then equation (5.1)
has at least one solution for A € (0, A *).

Proof. For the constant 7* in Lemma 5.5, and by Lemma 5.4, we know that
there is ty > 0 such that J(tonu.+) < 0. We set

I = {y € 0([0,1], Hy(®)) : 7(0) = 0, 7(1) = torus-},
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then, by (5.2) and (5.9) we get

. <c=i o0,
(5.16) 0<f<c=inf max Ia(v(s)) < M3

Applying the mountain pass lemma of Ambrosetti-Rabinowitz [2], there exists a
(PS).—sequence {vy} such that

Jx(vg) — c and J;\(’Uk) —01in H_I(Q).

By Lemma 5.3, there exist a subsequence, still denoted by {vy}, an integer [ > 0,
a solution vy of (5.1), and solutions 53 of (2.1),, for 1 < <, such that

l
(5.17) c=Jy(0a) + D> _ I (@)
i=1
By the strong maximum principle, to complete the proof, we only need to prove
vy Z 0in Q. In fact, by (5.16) and (5.17), we have
c=Jx\(vy)>5>0 ileO,M;\)O>CZJ>\(’U>\)+M§O ifl>1.
This implies vy # 0 in Q.

6. PROPERTIES OF SOLUTIONS

In this section, we always assume that conditions (k1), (k2) and (k1) hold.
Denote by @ = {(\, u) : u solves equation (1.2)x, A € [0, A*]}. By Lemma 3.1,
we have Q C L>®(2) N H ().

For each (A, u) € @, let ox(u) denote the number defined by (4.2), which is
the first eigenvalue of the problem (4.3).

Lemma 6.1. Let (A, u) and (A, uy) € @, where wy is the minimal solution of
equation (1.2), for A € (0, A*). Then

(i) oa(u) > Aifand only if u = uy;
(if) ox(Ux) < A, where U, is the second solution of equation (1.2) constructed
in Section 5.

Proof. (i) Now, let ¢ > 0 and ¢y € H}(2). Since u and u, are the solution
of equation (1.2)), then

/Vw-V(u,\—u)dx—i—/ (uy—u)dx :)\/ K(uf —uP)ipdx
Q Q Q

(6.1) :A/Q</uw tp_ldt>pKwda:

> )\/ pKuP™ (uy — u)ipd.
)



578 Tsing-San Hsu

Let ) = (u—wuy)™ > 0and ¢ € H}(Q). If 1 # 0, then (6.1) implies

~ [(90P + e > = [ pKur 2
Q Q

and, therefore, the definition of o (u) implies

/(\Vw\2+w2)dw < A/pKup_ledx
Q Q
<J,\(u)/pKup_1w2dx
Q
V|2 +¢?)d
< [(vuP +v)da,

which is impossible. Hence ¢y = 0, and v = wuy in . On the other hand, by
Lemma 4.3, we also have that o (uy) > . This completes the proof of (i).

(ii) By part (i), we get that ox(Uy) < X for A € (0, \*). We claim that
ox(Ux) = A can not occur. We proceed by contradiction. Set w = Uy — uy; we
have

(6.2) —Aw+w = AK[U} — (Uy —w)?], w > 0in Q.
By o (Ux) = A, we have that the problem
(6.3) ~Ap+ ¢ =KUY ', ¢e HHQ)

possesses a positive solution ¢1.
Multiplying (6.2) by ¢; and (6.3) by w, integrating and subtracting we deduce
that

0= /Q)\K[Uf\’ — Uy —w)? — pU? " w] ¢y da
1 _
= —5plp— 1)/QAK5§ 2w ¢ di,

where &y € (uy,Uy). Thus w = 0, that is Uy = uy for A € (0, A*). This is a
contradiction. Hence, we have that o (Uy) < A for A € (0, \*).

Remark 6.2. Since ox(Uy) < A, one may employ a similar argument to the
used for u) to show that U, is strictly decreasing in A, A € (0, \*).

Lemma 6.3. Let u) be the minimal solution of equation (1.2) 5 for A € [0, \*]
and o (uy) > . Then for any g(z) € H~1(£2), problem

(6.4) —Aw+w = )\pKui_lw +g(x),w € H}(Q)
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has a solution.

Proof. Consider the functional
1 2 . 2 1 p—1, 2
b(w) == [ ([Vw|* +w)de — A p | Kuy widx — [ g(x)wdz,
2 Ja 2 Q Q

where w € Hg (). From Hélder inequality and Young’s inequality, we have, for
any e > 0, that

1 -1 2 1 o Cey o
®(w) 2 (1 = Aor(un) ) [[w]” = Fellwll” = S llgllz-1q)

(6.5) )
> —=Cliglli-10)

if we choose e small.
Now, let {w,} C H}(2) be the minimizing sequence of variational problem

d = inf{®(w)|w € Hy(Q)}.

From (6.5) and o (uy) > A, we can also deduce that {w,,} is bounded in H3 (),
if we choose ¢ small. So we may suppose that

w, — w weakly in H}(Q) as n — oo,
w, — w a.e. in Q as n — oo.

By Fatou’s Lemma,
lwl|? < lim inf ||w,||?.

The weak convergence and the fact that uy(z) — 0 as |z| — oo imply

/gwndxﬁ/gwdx,/Kug_lwidxﬁ/Kui_ledx as n — oo.
Q Q Q Q

Therefore

n—oo

¢(w) < lim ®(wy,) =d,
and hence ®(w) = d which gives that w is a solution of (6.4) .

Lemma 6.4. Suppose uy« is a solution of (1.1) x«, then oy« (ux«) = A* and
the solution w~ is unique.

Proof. Define F: R x HY(Q) — H1(Q) by

F(\u) = Au—u+ MK (ut)’ + h(z).
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Since ox(uy) > X for A € (0,1*), S0 op«(up<) > A*. If ox«(up-) > N*, the
equation F,(A\*, ux~)¢ = 0 has no nontrivial solution. From Lemma 6.3, F,, maps
R x H}(2) onto H~(Q). Applying the implicit function theorem to F, we can
find a neighborhood (A\* — §, A* 4+ §) of A\* such that equation (1.2), possesses a
solution wy if A € (\* — §, \* + §). This is contradictory to the definition of A\*.
Hence, we obtain that o« (ux+) = A™.

Next, we are going to prove that wy- is unique. In fact, suppose (1.1),« has
another solution Uy« > uy«. Set w = Uy» — u)«; We have

(6.6) —Aw+w = NK[(w+ux-)P —uh.], w>0inQ.
By o (uy-) = A*, we have that the problem
(6.7) ~Ap+ ¢ =NpKd'o, ¢ e HHQ)

possesses a positive solution ¢1.
Multiplying (6.6) by ¢; and (6.7) by w, integrating and subtracting we deduce
that

0= / NEK[(w+ up-)P —ub, — puﬁflw]qﬁldx
Q

1 e

= Zp(p—1) / N K 2wl de,
Q

where &y« € (upx, ux+ +w). Thus w = 0.

Proposition 6.5. Let u) be the minimal solution of equation (1.2) 5. Then uy
is uniformly bounded in L°°(Q) N Hg(Q) for all X € [0, \*] and

uy — up in L=®(Q) N H () as A — 0,
where vy is the unique positive solution of (1.1) .

Proof. By Lemma3.1, 4.2, and 6.4, we can deduce [|u, || (o) < [luxs

Lo(Q) <
c for A € [0, \*]. By (4.6), we have that ||uy| < %HhHLz(Q). Hence, wy is
p

uniformly bounded in L>°(Q2) N HJ () for A € [0, 7).
Now, let wy = uy — ug, then wy satisfies the following equation

(6.8)>\ —Awy +wy = )\Kuf\ in Q,
and by u,y is uniformly bounded in L>(2) N H}(£2), we have that

|wall® = /)\Kuiwkdx
)
(6.9)

IN

-1
ME N oo luallfee o) luallz2@) wall 22
CA,

IN
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where c is independent of \. Hence, we obtain that uy — ug in Hi(Q) as A — 0.

By Lemma 3.1, uy € L9(Q2) for all ¢ € [2,00) and w) is uniformly bounded
in L>°(Q) N Hg (), then we have that for any ¢ € [2, 00), there exists a positive
constant ¢,, independent of uy, A € [0, A*], such that

(6.10) HK'U,I;\HLQ(Q) < ¢q.

Now, let ¢ = N/2+1 > N/2. Apply the proof of part (i) and (i¢) in Lemma 3.1,
to equation (6.8), and by (6.9) and (6.10), we obtain that
Hw>\”L°°(Q) < Clewaz,q/(Q)
< C2H)‘Ku§HLq/(Q)
CA,

IN

where ¢ is independent of A. Hence, we obtain that uy — ug in L*(Q2) as A — 0.

Proposition 6.6. For A € (0, \*), let U, be the positive solution of equation
(1.2) with Uy > wy, then Uy is unbounded in L°°(Q) N H (), that is

lim |Uy|| = lim ||Ux||foo(qy = o0.
tim [0 = lim [0 oy = o

Proof. First, we show that {U : A\ € (0, A\*)} is unbounded in HJ(2). Since
Uy = uy + vy, we only need to show that {v) : A > 0} is unbounded in Hol(Q). If
not, then

(6.11) [oall < M

for all A € (0, \*). Since for any 6 > 0, {Ux}>s is bounded in H{ (), we may
assume \ € (0, d].

Choose A, | 0 and let vy, be the corresponding solutions constructed by Propo-
sition 5.6. By the Holder inequality and the Sobolev embedding theorem, we obtain
that

/(\Vv,\,f + |oa, |?)dz = / MEK[UY = oy, dx
Q Q

< C)‘nHU/\nle,erl(Q)Hvx\nHLPH(Q)
cAn[|Ux, [Plloa,

A

IN

C1 )\n

for some constant ¢;, independent of vy, where we have used (6.11) and the
boundedness of {uy,} in H}(Q). Hence, we have lim vy, ||> = 0. It implies that
n—oo

(6.12) lim o, 2 = 0.
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On the other hand, we notice that Uy = uy + vy is decreasing and ) is increasing
in A. Therefore, v, is decreasing in A\, which implies

vy, > vs for all n.
Then we obtain that
H’U>\nHL2(Q) > H’U(SHL2(Q) > 0 for all n.

which contradicts (6.12). This implies that {Uy : A € (0, A*)} is unbounded in
HE(Q).

Now, we show that {Uy : A € (0, A*)} is unbounded in L>°(2). We proceed
by contradiction. Assume to the contrary that there exists ¢y > 0 such that

[Ux|lLo (@) < co < oo forall A € (0, X%).

Since U, is a solution of equation (1.2),, we have that

U2 = /)\KUf\’+1dx+/hU,\dx
Q Q

< AC’S_IHKHLOO(Q)HUxHiz(Q) + |2l L2 10Nl 2
< MU + c2l | U,

where ¢; and ¢, are independent of \. If we choose Ay = min{\*, %}, then there
exists ¢ > 0, independent of A, such that |[U,|| < ¢ for all A < Xg. This is a
contradiction to that {Uy : A € (0,\*)} is unbounded in H}(2). This completes
the proof of Proposition 6.6.

Proof of Theorem 1.1 and Theorem 1.2. Theorem 1.1 now follows from Lemma
4.2, 4.3, 4,4, 6.1, 6.4, and Proposition 5.6. The conclusion of Theorem 1.2 follows
immediately from Lemma 4.2, Remark 6.2 and Proposition 6.5, 6.6.
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