
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 13, No. 2A, pp. 559-583, April 2009
This paper is available online at http://www.tjm.nsysu.edu.tw/

EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS OF SEMILINEAR
ELLIPTIC EQUATIONS IN ESTEBAN-LIONS DOMAINS WITH HOLES

Tsing-San Hsu

Abstract. In this article, we consider the semilinear elliptic equation

(∗)λ −∆u+ u = λK(x)up + h(x) in Ω, u > 0 in Ω , u ∈ H1
0 (Ω),

where λ ≥ 0, N ≥ 2, 1 < p < 2∗ − 1 and Ω is the upper semi-strip domain
with a hole in R

N . Under some suitable conditions on K and h, we show
that there exists a positive constant λ∗ such that equation (∗)λ has at least
two solutions if λ ∈ (0, λ∗), a unique solution if λ = 0 or λ = λ∗ and no
solution if λ > λ∗. We also establish the asymptotic behavior and some further
properties of positive solutions of equation (∗)λ.

1. INTRODUCTION

Throughout this article, let N ≥ 2, 2∗ = 2N
N−2 for N ≥ 3, 2∗ = ∞ for N = 2,

q0 be a given constant such that q0 > N/2 if N ≥ 4 and q0 = 2 if N = 2, 3, and
(y, z) be the generic point of RN with y ∈ RN−1, z ∈ R. Denote by BN (x0;R) the
N−ball, S the strip domain, S

+ the upper semi-strip domain, Ω the upper semi-strip
domain with a hole as follows:

BN (x0;R) = {x ∈ R
N : |x− x0| < R};

S = {(y, z) : |y| < r0};
S

+ = {(y, z) ∈ S : z > 0} ∪ BN (0; r0);

Ω = S
+ \D,where D ⊂⊂ S

+ is a smooth bounded domain in R
N .

where r0 is a fixed positive constant and R is a positive constant.
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Consider the semilinear elliptic equation{ −∆u+ u = up in Θ,

u > 0 in Θ , u ∈ H1
0 (Θ),

(1.1)

where Θ is a smooth domain in RN and 1 < p < 2∗ − 1.
The existence and nonexistence of solutions of equation (1.1) have been the

focus of a great deal of research in recent years. By the Rellich compactness theorem,
it is easy to obtain a solution of (1.1) in a bounded domain. For general unbounded
domain Θ, because of the lack of compactness, the existence of solutions of (1.1) in
Θ is very difficult and unclear. The breakthrough was made by Esteban-Lions [5].
They asserted that (1.1) does not admit any nontrivial solution in Esteban-Lions
domain, where the definition of Esteban-Lions domain is: For a proper unbounded
domain Θ in RN , there exists a χ ∈ RN , ‖χ‖ = 1 such that n(x) · χ ≥ 0 and
n(x) · χ �≡ 0 on ∂Θ, where n(x) is the unit outward normal vector to ∂Θ at the
point x. A typical example is the upper semi-strip S

+.
Thus, perturb (1.1) to obtain the existence of solutions in Esteban-Lions domain

is of great interest to research. In this paper, we study a more general equation for
the full range λ ∈ [0,∞){ −∆u+ u = λK(x)up + h(x) in Ω,

u > 0 in Ω, u ∈ H1
0 (Ω),

(1.2)λ

where λ ≥ 0, Ω is the upper semi-strip domain with a hole, K(x) is a positive,
bounded and continuous function on S and h(x) ∈ L2(Ω). Moreover, K(x) and
h(x) satisfy the following conditions:

(k1) There exists a positive constant K∞ such that

lim
|z|→∞

K(y, z) = K∞ uniformly for y ∈ BN−1(0; r0);

(k2) There exist some constants γ > p+1
p and ϑ > 0 such that

K(y, z) ≥ K∞ − ϑ exp(−γ√1 + µ1|z|) as |z| → ∞, uniformly for

y ∈ BN−1(0; r0),

where µ1 is the first eigenvalue of the Dirichlet problem −∆ in BN−1(0; r0);

(h1) h(x) ≥ 0, h(x) �≡ 0, h(x) ∈ L2(Ω) ∩ Lq0(Ω).

Our main results are as follows:

Theorem 1.1. Assume u0 is the unique solution of (1.2) 0 and conditions (k1),
(k2) and (h1) hold, then there exists a constant λ ∗ > 0 such that
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(i) equation (1.2)λ has at least two positive solutions, uλ, Uλ and uλ < Uλ if
λ ∈ (0, λ∗);

(ii) equation (1.2)λ has a unique positive solution uλ if λ = 0 or λ = λ∗;
(iii) equation (1.2)λ has no positive solutions if λ > λ∗,

Furthermore,

(1.3)

λ1 ≡ (p+ 1)(p− 1)p−1M
p+1
2

(2p)p‖K‖L∞(Ω)‖h‖p−1
L2(Ω)

≤ λ∗ ≤ inf
w∈H1

0 (Ω)\{0}

( ‖w‖2

p

∫
Ω
Ku

p−1
0 w2dx

)
≡ λ2

≤
p‖h‖2

L2(Ω)

(p− 1)2
∫

Ω
Kup+1

0 dx

≡ λ3

where M = inf{∫
S
(|∇u|2 + |u|2)dx :

∫
S
|u|p+1dx = 1}, uλ is the unique minimal

solution of equation (1.2)λ, Uλ is the second solution of equation (1.2)λ constructed
in Section 5.

Theorem 1.2. Under the assumptions of Theorem 1.1. Then

(i) uλ is strictly increasing with respect to λ and uniformly bounded in L∞(Ω)∩
H1

0 (Ω) for all λ ∈ [0, λ∗] and

uλ → u0 in L∞(Ω) ∩H1
0 (Ω) as λ → 0+.

(ii) Uλ is strictly decreasing with respect to λ and unbounded in L∞(Ω)∩H1
0(Ω)

for λ ∈ (0, λ∗), that is

lim
λ→0+

‖Uλ‖ = lim
λ→0+

‖Uλ‖L∞(Ω) = ∞.

This paper is organized as follows. In section 2, we establish a decomposition
lemma of Lions which will be used later. In section 3, we establish several lemmas
for the regularity and asymptotic behavior of the solution of equation (1.2)λ. In
section 4, we apply Ekeland′s variational principle [6] to show that equation (1.2)λ

has a solution for small λ > 0, then, by the standard barrier method to show that
there is a constant λ∗ > 0 such that (1.1)λ has a minimal solution uλ for all
λ ∈ [0, λ∗]. In section 5, we assert that there is the second solution of equation
(1.2)λ for all λ ∈ (0, λ∗). In section 6, we shall give some further properties of the
solution of equation (1.2)λ.
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2. PRELIMINARIES

In this paper, we denote by c and ci (i = 1, 2, . . .) the universal constants, unless
otherwise specified. We set

‖u‖ =
(∫

Ω
(|∇u|2 + |u|2)dx

)1/2

,

‖u‖Lq(Ω) =
(∫

Ω

|u|qdx
)1/q

, 1 ≤ q <∞,

‖u‖L∞(Ω) = sup
x∈Ω

|u(x)|,

M = inf{
∫

S

(|∇u|2 + |u|2)dx :
∫

S

|u|p+1dx = 1}.

Now we give some notations and some known results. In order to get the existence
of positive solutions of equation (1.2)λ, we consider the energy functional Iλ :
H1

0 (Ω) → R defined by

Iλ(u) =
∫

Ω

[1
2
(|∇u|2 + |u|2) − λ

p+ 1
K(x)(u+)p+1 − h(x)u

]
dx,

where u±(x) = max{±u(x), 0}. It is well-known that the critical points of Iλ are
the positive solutions of equation (1.2)λ.

Now, we introduce the following elliptic equation on S:{ −∆u+ u = λK∞up in S,

u ∈ H1
0 (S), N ≥ 2.

(2.1)λ

Associated with (2.1)λ, we consider the energy functional I∞λ defined by

I∞λ (u) =
1
2

∫
S

(
|∇u|2 + u2

)
dx− λ

p+ 1

∫
S

K∞(u+)p+1dx, u ∈ H1
0 (S).

By Lions [13] and Lien-Tzeng-Wang [12], we know that (2.1)λ has a ground state
solution �λ(x) > 0 in S such that

M∞
λ = I∞λ (�λ) = sup

t≥0
I∞(t�λ). (2.2)

Now, we give the following decomposition lemma for later use.

Proposition 2.1. Let condition (k1) be satisfied and {u k} be a (PS)β−sequence
of Iλ in H1

0 (Ω) :
Iλ(uk) = β + o(1) as k → ∞,

I ′λ(uk) = o(1) strongly in H−1(Ω).
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Then there exist an integer l ≥ 0, sequence
{
xi

k

} ⊆ RN of the form (0, zi
k) ∈ S,

functions u ∈ H1
0 (Ω), ui ∈ H1

0 (S), 1 ≤ i ≤ l, such that for some subsequence (still
denoted by) {uk} , we have



uk ⇀ u weakly in H1
0 (Ω);

β = Iλ(u) +
l∑

i=1

I∞λ (ui);

−∆u + u = λK(x)up + h(x) in H−1(Ω);

−∆ui + ui = λK∞u
p
i in H−1(S), 1 ≤ i ≤ l;∣∣xi

k

∣∣ → ∞,
∣∣∣xi

k − xj
k

∣∣∣ → ∞, 1 ≤ i �= j ≤ l.

where we agree that in the case l = 0 the above holds without ui, x
i
k .

Proof. The proof can be obtained by using the arguments in Bahri-Lions [3]
(also see Lien-Tzeng-Wang [12], Theorem 4.1).

Now, we combine Hsu [9], Proposition 3.4 and [11], Lemma 3.6, we obtain a
precise asymptotic behavior result for positive solutions of (2.1)λ at infinity.

Proposition 2.2 Let �λ be a positive solution of (2.1)λ in an unbounded
cylinder S = ω × Rn ⊆ Rm+n, m ≥ 2, n ≥ 1 and ϕ be the first positive
eigenfunction of the Dirichlet problem −∆ϕ = µ 1ϕ in ω, then for any ε > 0,
there exist positive constants c ε and c such that


�λ(y, z) ≤ cεϕ(y) exp(−√

1 + µ1 |z|) |z|−
n−1

2
+ε

�λ(y, z) ≥ cϕ(y) exp(−√
1 + µ1 |z|) |z|−

n−1
2

as |z| → ∞, y ∈ �

Remark 2.3. Now, we apply Proposition 2.2 to equation (2.1)λ in S =
BN−1(0; r0) × R, then we can easily deduce that for any 0 < ε < 1 + µ1, there
exist positive constants cε and c such that{

�λ(y, z) ≤ cεϕ(y) exp(−√
1 + µ1 − ε |z|)

�λ(y, z) ≥ cϕ(y) exp(−√
1 + µ1 |z|)

for all x = (y, z) ∈ S (2.3)

where ϕ is the first positive eigenfunction of the Dirichlet problem −∆ϕ = µ1ϕ in
BN−1(0; r0).
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3. ASYMPTOTIC BEHAVIOR OF SOLUTIONS

In this section, we present two asymptotic behavior of each solution of equation
(1.2)λ in Ω.

Lemma 3.1. Let conditions (k1), (k2) and (h1) be satisfied and suppose that
u ∈ H1

0 (Ω) is a weak solution of equation (1.2)λ in Ω. Then we have the following
results.

(i) u ∈ Lq(Ω) for q ∈ [2,∞).

(ii) There exist some positive constants c1 and c2, depending on q0 and K, such
that u ∈ C0,α(Ω) ∩W 2,q0(Ω) and

‖u‖L∞(Ω) ≤ ‖u‖C0,α(Ω) ≤ c1‖u‖W 2,q0 (Ω) ≤ c2(λ‖u‖p
Lpq0(Ω)

+ ‖h‖Lq0(Ω)),

where q0 > N/2 and α = 2 − N
q0

−
[
2 − N

q0

]
.

(iii) lim
z→∞ u(y, z) = 0 uniformly in y, where (y, z) ∈ Ω.

Proof. (i) See Hsu [10] for the proof.
(ii) Since u ∈ H1

0 (Ω) is a weak solution of equation (1.2)λ in Ω, by part (i)
and (h1), λK(x)up + h(x) ∈ Lq0(Ω) for some q0 > N/2. By Gilbarg-Trudinger
[8], Theorem 9.15 and Lemma 9.17, the Dirichlet problem

{ −∆v + v = λK(x)up + h(x) in Ω,

v ∈W
1,q0
0 (Ω) ∩H1

0 (Ω),

has a unique strong solution v ∈W 2,q0(Ω) ∩W 1,q0
0 (Ω) ∩H1

0 (Ω) and

‖v‖W 2,q0(Ω) ≤ c1‖λK(x)up + h(x)‖Lq0(Ω).

Thus, u and v satisfy weakly{ −∆v + v = λK(x)up + h(x) in Ω,

−∆u+ u = λK(x)up + h(x) in Ω.

By Gilbarg-Trudinger [8], Corollary 8.2, u = v ∈ W2,q0(Ω) ∩W 1,q0
0 (Ω) ∩H1

0 (Ω)
and

‖u‖W 2,q0 (Ω) ≤ c1‖λK(x)up + h(x)‖Lq0(Ω) ≤ c2(λ‖u‖p
Lpq0(Ω) + ‖h‖Lq0(Ω)).



Esteban-Lions Domains with Holes 565

Let α = 2− N
q0

−
[
2− N

q0

]
. Since q0 > N/2 and by Brezis [4], p.168, we have

u ∈ C0,α(Ω) and

‖u‖L∞(Ω) ≤ ‖u‖C0,α(Ω) ≤ c1‖u‖W 2,q0 (Ω) ≤ c2(λ‖u‖p
Lpq0(Ω) + ‖h‖Lq0 (Ω)).

(iii) Since u ∈ H1
0 (Ω) is a weak solution of equation (1.2)λ, by part (ii),

u ∈ C0,α(Ω) ∩W 2,q0(Ω). For each R > 0, apply Brezis [4], p.168 to obtain

‖u‖L∞(ΩR) ≤ cq0‖u‖W 2,q0(ΩR),

where ΩR = {x = (y, z) ∈ Ω||z| > R}. Since ‖u‖W 2,q0 (ΩR) = o(1) as R → ∞,
we have limz→∞ u(y, z) = 0 uniformly in y, where (y, z) ∈ Ω.

Lemma 3.2. Let u be a positive solution of equation (1.2) λ and ϕ be the first
positive eigenfunction of the Dirichlet problem −∆ϕ = µ 1ϕ in BN−1(0; r0), then
there exists a constant c > 0 such that

(3.1) u(y, z) ≥ cϕ(y) exp(−
√

1 + µ1z) for all y ∈ BN−1(0; r0), z ≥ ρ0.

where ρ0 = 2 max{ sup
(y,z)∈D

z, 1}.

Proof. Let

Ψ(x) = ϕ(y) exp(−
√

1 + µ1|z|) for x = (y, z) ∈ Ω.

It is very easy to show that

−∆Ψ(x) + Ψ(x) = 0 for x ∈ Ω

From the proof of Hsu [9], Proposition 3.4, we can deduce that u(x)ϕ−1(y) >
0 for x ∈ Uρ0 and u(x)ϕ−1(y) ∈ C1(Uρ0), where Uρ0 = {x = (y, z) : y ∈
BN−1(0; r0), z ≥ ρ0} If we set

α1 = sup
y∈BN−1(0;r0),z=ρ0

(u(x)Ψ−1(x)),

then α1 > 0 and

α1Ψ(x) ≥ u(x) for y ∈ BN−1(0; r0), z = ρ0.

Let Φ1(x) = α1Ψ(x), for x ∈ Ω. Then, for z ≥ ρ0, we have

∆(Φ1 − u)(x)− (Φ1 − u)(x) = λK(x)up(x) + h(x) ≥ 0.

Therefore, by means of the strong maximum principle implies that u(x)−Φ1(x) ≥ 0
for x ∈ Uρ0 . This completes the proof of Lemma 3.2.
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4. EXISTENCE OF MINIMAL SOLUTION

In this section, by the barrier method, we will establish the existence of minimal
positive solution uλ for all λ in some finite interval [0, λ∗] (i.e. for any positive
solution u of equation (1.2)λ, then u ≥ uλ).

Lemma 4.1. Assume condition (k1) holds. Then equation (1.2) λ has a solution
uλ if 0 ≤ λ < λ1 where λ1 is given by (1.3).

Proof. For λ = 0, the existence question is equivalent to the existence of
u0 ∈ H1

0 (Ω) such that

(4.1)
∫

Ω
∇u0 · ∇φ + u0φ =

∫
Ω
hφ

for all φ ∈ H1
0 (Ω). Since∣∣∣∣

∫
Ω
hφ

∣∣∣∣ ≤ ‖h‖L2(Ω)‖φ‖L2(Ω) ≤ ‖h‖L2(Ω)‖φ‖.

Hence, according to the Lax-Milgram theorem, there exists a unique u0 ∈ H1
0 (Ω)

satisfies (4.1). Since 0 �≡ h ≥ 0 in Ω, by strong maximum principle (see Gilbarg-
Trudinger [8]), we conclude that u0 > 0 in Ω.

We consider next the case λ > 0. We show first that for sufficiently small λ,
say λ = λ0, there exists t0 = t(λ0) > 0 such that Iλ0(u) > 0 for ‖u‖ = t0. From
the definition of Iλ, we have

Iλ(u) ≥ 1
2
‖u‖2 − λ

p+ 1
‖K‖L∞(Ω)M

−p+1
2 ‖u‖p+1 − ‖h‖L2(Ω)‖u‖

whereM = inf{∫Ω(|∇u|2+|u|2)dx :
∫
Ω |u|p+1dx = 1} = inf{∫

S
(|∇u|2+|u|2)dx :∫

S
|u|p+1dx = 1} (see Wang [14], Proposition 14).
Set

f(t) =
1
2
t− λc1t

p − c2,

where c1 = 1
p+1‖K‖L∞(Ω)M

−p+1
2 and c2 = ‖h‖L2(Ω).

It then follows that f(t) achieves a maximum at tλ = (2pλc1)−(p−1)−1
. Set

Bλ = {u ∈ H1
0 (Ω) : ‖u‖ < tλ}. Then for all u ∈ ∂Bλ = {u ∈ H1

0 (Ω) : ‖u‖ = tλ},
Iλ(u) ≥ tλh(tλ) ≥ tλ[tλ(p− 1)/2p− c2] > 0

provided that c2 < tλ(p−1)/2p, which is satisfied for λ < λ1. Fix such a value of
λ, say λ0, and set t0 = t(λ0). Let 0 �≡ φ ≥ 0, φ ∈ C∞

0 (Ω) such that
∫
Ω hφdx > 0.

Then
Iλ0(tφ) =

t2

2
‖φ‖2 − λ0

p+ 1
tp+1

∫
Ω
Kφp+1 − t

∫
Ω
hφ < 0
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for sufficiently small t > 0, and it is easy to see that Iλ0 is bounded below on Bt0 .
Set β = inf{Iλ0(u) : u ∈ Bt0}. Then β < 0, and since Iλ0(u) > 0 on ∂Bt0 ,
the continuity of Iλ0 on H1

0 (Ω) implies that there exists 0 < t1 < t0 such that
Iλ0(u) > β for all u ∈ H1

0 (Ω) and t1 ≤ ‖u‖ ≤ t0. By the Ekeland′s variational
principle [6], there exists a sequence {uk}∞k=1 ⊂ Bt1 such that Iλ0(uk) = β + o(1)
and I ′λ0

(uk) = o(1) strongly in H−1(Ω), as k → ∞. By Proposition 2.1, we have
that there exist a subsequence {uk}, an integer l ≥ 0, ui > 0, 1 ≤ i ≤ l (if l ≥ 1),
u0 > 0 in Ω and u0 in Bt1 such that


uk ⇀ u0 weakly in H1

0 (Ω),

−∆u0 + u0 = λ0K(x)up
0 + h(x) in H−1(Ω),

−∆ui + ui = λ0K∞u
p
i in H−1(RN), 1 ≤ i ≤ l.

Moreover,

Iλ0(uk) = Iλ0(u0) +
l∑

i=1

I∞λ0
(ui) + o(1) as k → ∞.

Note that I∞λ0
(ui) ≥ M∞

λ0
> 0 for i = 1, 2, · · · , l. Since u0 ∈ Bt0, we have

Iλ0(u0) ≥ β. We conclude that l = 0, Iλ0(u0) = β and I ′λ0
(u0) = 0, i.e., u0 is a

weak positive solution of equation (1.2)λ0.

Now, by the standard barrier method, we get the following Lemma.

Lemma 4.2. Assume condition (k1) holds. Then there exists a constant λ ∗ > 0
such that for each λ ∈ [0, λ∗), equation (1.2)λ has a minimal positive solution u λ

and uλ is strictly increasing in λ.

Proof. Denoting

λ∗ = sup{λ ≥ 0 : equation (1.2)λ has a positive solution }.

By Lemma 4.1, we have λ∗ > 0. Now, consider λ ∈ [0, λ∗). By the definition of
λ∗, we know that there exists λ′ > λ such that λ′ < λ∗ and equation (1.1)λ′ has a
positive solution uλ′ > 0, i.e.,

−∆uλ′ + uλ′ = λ′K(x)up
λ′ + h(x)

> λK(x)up
λ′ + h(x).

Then uλ′ is a supersolution of equation (1.2)λ. From h(x) ≥ 0 and h(x) �≡ 0, it
is easily verified that 0 is a subsolution of equation (1.2)λ. By the standard barrier
method, there exists a solution uλ of equation (1.2)λ such that 0 ≤ uλ ≤ uλ′ . Since
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0 is not a solution of equation (1.2)λ and λ′ > λ, the maximum principle implies
that 0 < uλ < uλ′ . Again using a result of Amann [1], we can choose a minimum
positive solution uλ of equation (1.2)λ. This completes the proof of Lemma 4.2.

Now, we consider a solution u of equation (1.2)λ. Let σλ(u) be defined by

(4.2) σλ(u) = inf{
∫

Ω
(|∇ϕ|2 + |ϕ|2)dx : ϕ ∈ H1

0 (Ω),
∫
Ω
pKup−1ϕ2dx = 1}

By the standard direct minimization procedure, we can show that σλ(u) is attained
by a function ϕλ > 0, ϕλ ∈ H1

0 (Ω), satisfying

(4.3) −∆ϕλ + ϕλ = σλ(u)pKup−1ϕλ in Ω.

Lemma 4.3. Assume condition (k1) holds. For λ ∈ [0, λ ∗), let uλ be the
minimal solution of equation (1.2) λ and σλ(uλ) be the corresponding number given
by (4.2). Then

(i) σλ(uλ) > λ and is strictly decreasing in λ, λ ∈ [0, λ∗);
(ii) λ∗ <∞, and (1.2)λ∗ has a minimal solution uλ∗.

Proof. Consider uλ′ , uλ, where λ∗ > λ′ > λ ≥ 0. Let ϕλ be a minimizer of
σλ(uλ), then by Lemma 4.2, we obtain that∫

Ω

pKup−1
λ′ ϕ2

λdx >

∫
Ω

pKup−1
λ ϕ2

λdx = 1,

and there is a constant t, 0 < t < 1 such that∫
Ω
pKup−1

λ′ (tϕλ)2 = 1.

Therefore,

(4.4) σλ′(uλ′) ≤ t2‖ϕλ‖2 < ‖ϕλ‖2 = σλ(uλ),

showing the monotonicity of σλ(uλ), λ ∈ [0, λ∗).
Consider now λ ∈ (0, λ∗). Let λ < λ′ < λ∗. From (4.3) and the monotonicity

of uλ, we get
σλ(uλ)p

∫
Ω
(uλ′ − uλ)Kup−1

λ ϕλdx

=
∫

Ω
∇(uλ′ − uλ) · ∇ϕλdx+

∫
Ω
(uλ′ − uλ)ϕλdx

= (λ′ − λ)
∫

Ω
Kup

λ′ϕλdx+ λ

∫
Ω
K(up

λ′ − up
λ)ϕλdx

> λp

∫
Ω

Kϕλ

∫ uλ′

uλ

tp−1dtdx

≥ λp

∫
Ω
Ku

p−1
λ (uλ′ − uλ)ϕλdx,

(4.5)
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which implies that σλ(uλ) > λ, λ ∈ (0, λ∗). This completes the proof of (ii).
We show next that λ∗ < ∞. Let λ0 ∈ (0, λ∗) be fixed. For any λ ≥ λ0, (4.4)

and (4.5) imply
σλ0(uλ0) ≥ σλ(uλ) > λ

for all λ ∈ [λ0, λ
∗). Thus, λ∗ <∞.

By (4.2) and σλ(uλ) > λ, we have∫
Ω
(|∇uλ|2 + |uλ|2)dx− λp

∫
Ω
Kup+1

λ dx > 0.

and also we have∫
Ω
(|∇uλ|2 + |uλ|2)dx−

∫
Ω
λKup+1

λ dx−
∫

Ω
huλ = 0.

Thus ∫
Ω
(|∇uλ|2 + |uλ|2)dx =

∫
Ω
λKup+1

λ dx+
∫

Ω
huλdx

<
1
p

∫
Ω
(|∇uλ|2 + |uλ|2)dx+ ‖h‖L2(Ω)‖uλ‖.

This implies that, for all λ ∈ (0, λ∗),

(4.6) ‖uλ‖ ≤ p

p− 1
‖h‖L2(Ω)

By (4.6) and part (i) of Lemma 4.3, the solution uλ is strictly increasing with
respect to λ; we may suppose that

uλ ⇀ uλ∗ weakly in H1
0 (Ω) as λ→ λ∗.

This implies that


∫
Ω
(∇uλ · ∇ϕ+ uλϕ)dx→

∫
Ω
(∇uλ∗ · ∇ϕ+ uλ∗ϕ)dx,∫

Ω

(λKup
λ + h)ϕdx→

∫
Ω

(λ∗Kup
λ∗ + h)ϕdx,

as λ→ λ∗

for all ϕ ∈ H1
0 (Ω). Hence, uλ∗ is a minimal positive solution of (1.2)λ. This

completes the proof of Lemma 4.3.

Lemma 4.4. If condition (k1) holds, then λ1 ≤ λ∗ ≤ λ2 ≤ λ3, where λ1, λ2

and λ3 are given by (1.3).



570 Tsing-San Hsu

Proof. By Lemma 4.1 and the definition of λ∗, we conclude that λ∗ ≥ λ1.
As in Lemma 4.3, we have σλ(uλ) > λ for all λ ∈ (0, λ∗), so for any w ∈

H1
0 (Ω) \ {0}, we have

(4.7)
∫

Ω
(|∇w+ |w|2)dx > λp

∫
Ω
Kup−1

λ w2dx.

Let u0 is the unique solution of (1.2)0, then by (4.7) and uλ > u0 for all λ ∈ (0, λ∗],
we obtain that ∫

Ω

(|∇w+ |w|2)dx > λp

∫
Ω

Kup−1
0 w2dx,

i.e.

(4.8) λ ≤ inf
w∈H1

0(Ω)\{0}

( ‖w‖2

p
∫
ΩKu

p−1
0 w2dx

)
= λ2.

This implies that λ∗ ≤ λ2.
Take w = uλ in (4.7), and by (4.6) and the monotonicity of uλ, we get that

λ2 ≤ ‖uλ‖2

p
∫
ΩKu

p−1
0 u2

λdx

≤
p‖h‖2

L2(Ω)

(p− 1)2
∫

Ω

Kup+1
0 dx

= λ3.

5. EXISTENCE OF SECOND SOLUTION

The existence of a second solution of equation (1.2)λ, λ ∈ (0, λ∗), will be
established via the mountain pass theorem. When 0 < λ < λ∗, we have known
that equation (1.2)λ has a minimal positive solution uλ by Lemma 4.2, then we
need only to prove that equation (1.2)λ has another positive solution in the form of
Uλ = uλ + vλ, where vλ is a solution of the following equation:{ −∆v + v = λK[(v+ uλ)p − up

λ] in Ω,

v ∈ H1
0 (Ω), v > 0 in Ω.

(5.1)λ

The corresponding variational functional of (5.1)λ is

Jλ(v) =
1
2

∫
Ω
(|∇v|2 + v2) − λ

∫
Ω

∫ v+

0
K[(s+ uλ)p − up

λ]dsdx, v ∈ H1
0 (Ω).

To verify the conditions of the mountain pass theorem, we need the following
lemmas.
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Lemma 5.1. For any ε > 0, there is a positive constant c ε such that

(uλ + s)p − up
λ − pup−1

λ s ≤ εup−1
λ s+ cεs

p for all s ≥ 0.

Proof. From the fact

lim
s→0

(uλ + s)p − up
λ − pup−1

λ s

s
= 0 and lim

s→∞
(uλ + s)p − up

λ − pup−1
λ s

sp
= 1,

it is easy to see that the assertion is correct.

Lemma 5.2. If condition (k1) holds, then there exist positive constants ρ and
β, such that

(5.2) Jλ(v) ≥ β > 0, v ∈ H1
0 (Ω), ‖v‖ = ρ.

Proof. By Lemma 5.1, we have

(5.3)

Jλ(v) =
1
2

∫
Ω
(|∇v|2 + v2)dx− 1

2
λp

∫
Ω
Kup−1

λ (v+)2dx

−λ
∫

Ω

∫ v+

0
K[(uλ + s)p − up

λ − pup−1
λ s]dsdx

≥ 1
2

[∫
Ω

(|∇v|2 + v2)dx− λp

∫
Ω

Kup−1
λ (v+)2dx

]

−λ
∫

Ω
K

[ ε
2
up−1

λ (v+)2 + cε
(v+)p+1

p+ 1

]
dx.

Furthermore, from the definition σλ(uλ) in (4.3), we have∫
Ω
(|∇v|2 + v2)dx ≥ σλ(uλ)p

∫
Ω
Kup−1

λ (v+)2dx,

and, therefore, by (5.3) we obtain

(5.4) Jλ(v) ≥ 1
2
σλ(uλ)−1(σλ(uλ)−λ− ε

2
λ)‖v‖2−λcε(p+1)−1

∫
Ω
K(v+)p+1

dx.

Since σλ(uλ) > λ, by part (i) of Lemma 4.3, the boundedness of K, and the
Sobolev inequality imply that for small ε > 0,

Jλ(v) ≥ 1
4
σλ(uλ)−1(σλ(uλ) − λ)‖v‖2 − λc‖v‖p+1,

and the conclusion in Lemma 5.2 follows.
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Similar to Proposition 2.1, for the energy functional Jλ, we also have the fol-
lowing result:

Lemma 5.3. Assume condition (k1) holds. Let {vk} be a (PS)β sequence of
Jλ in H1

0 (Ω):

(5.5)
Jλ(vk) = β + o(1) as k → ∞,

J ′
λ(vk) = o(1) strong in H−1(Ω).

Then there exist an integer l ≥ 0, sequence
{
xi

k

} ⊆ R
N of the form (0, z i

k) ∈ S,
functions vλ ∈ H1

0 (Ω), vi ∈ H1
0 (S), 1 ≤ i ≤ l, such that for some subsequence

(still denoted by) {vk} , we have


vk ⇀ vλ weakly in H1
0 (Ω);

β = Jλ(vλ) +
l∑

i=1

I∞λ (vp
i );

−∆vλ + vλ = λK[(vλ + uλ)p − up
λ] in H−1(Ω);

−∆vp
i + vp

i = λK∞v
p
i in H−1(S), 1 ≤ i ≤ l;∣∣xi

k

∣∣ → ∞,
∣∣∣xi

k − xj
k

∣∣∣ → ∞, 1 ≤ i �= j ≤ l.

where we agree that in the case l = 0 the above holds without v i, x
i
k.

Now, let δ be small enough, Dδ a δ-tubular neighborhood of D such that
Dδ ⊂⊂ Ω. Let η : S → [0, 1] be a C∞ cut-off function such that 0 ≤ η ≤ 1 and

η(x) =
{ 0, if x ∈ D ∪ (S \ S+);

1, if x ∈ (Ω \Dδ) ∩ {x = (y, z) ∈ S|z ≥ r0}.

Let τ ≥ 0, eN = (0, 0, · · · , 0, 1) ∈ RN and �λ be a ground state solution of (2.1)λ
, denote

τ0 = 2 sup
x∈Dδ

|x|+ r0 + 1,

z0 = max{τ0, r0},
U0 = {(y, z) ∈ S : 0 ≤ z ≤ z0},
�λ,τ (x) = �λ(x− τeN),

ητ (x) = η(x+ τeN ).

Clearly, η�λ,τ ∈ H1
0 (Ω).
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Lemma 5.4. Assume conditions (k1), (k2) and (h1) hold, then there exist
t0 > 0, τ∗ ≥ τ0 such that Jλ(tη�λ,τ) < 0 for all τ ≥ τ∗, t ≥ t0.

Proof. By �λ is a ground state solution of (2.1)λ, then we have

Jλ(tη�λ,τ)

=
1
2
t2

∫
Ω
(|∇(η�λ,τ)|2+|η�λ,τ|2)dx− 1

p+1
tp+1

∫
Ω
λK(x)(η�λ,τ)p+1dx

−
∫

Ω

∫ tη
λ,τ

0
λK(x)[(s+ uλ)p − up

λ − sp]dsdx

≤ 1
2
t2

∫
S

(−∆�λ +�λ)(η2
τ�λ)dx+

1
2
t2

∫
S

|∇ητ |2|�λ|2dx

− 1
p + 1

tp+1

∫
S

λK(x)η(x)�p+1
λ (x− τeN )dx

≤ 1
2
t2

∫
S

λK∞�
p+1
λ dx+

1
2
t2(max

x∈S

|∇η|2)
∫

S

|�λ|2dx

− tp+1

p + 1

∫
S

λK(x)η(x)�p+1
λ (x− τeN )dx,

(5.6)

Set B1(τeN) = {x = (y, z) ∈ S : y ∈ BN−1(0; r0/2), |z − τ | < 1}. By condition
(k1), there exists τ∗ ≥ τ0 such that K(x) ≥ K∞

2 for x ∈ B1(τeN) for all τ ≥ τ∗
and note that η(x) ≡ 1 on B1(τeN) for τ ≥ τ∗, then we obtain that

(5.7)

∫
S

λK(x)η(x)�p+1
λ (x− τeN )dx

≥
∫

B1(τeN )

λ

2
K∞�

p+1
λ (x− τeN)dx

=
∫
{x=(y,z)∈S:y∈BN−1(0;r0),|z|≤1}

λ

2
K∞�

p+1
λ (x)dx

= c > 0

where c independent of τ . Combining (5.6) and (5.7), there exist c1, c2, independent
of τ , such that

(5.8) Jλ(tη�λ,τ) ≤ c1t
2 − c2t

p+1 for all τ ≥ τ∗.

From (5.8), we conclude the result.
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Lemma 5.5. Assume condition (k1), (k2) and (h1) hold, then there exists
τ∗ > 0, such that the following inequality holds for τ ≥ τ ∗,

(5.9) 0 < sup
t≥0

Jλ(tη�λ,τ) < I∞λ (�λ) = M∞
λ .

Proof. From (5.2), we easily see that the left hand of (5.9) holds and we need
only to show that the right hand of (5.9) holds. By Lemma 5.4, we have that there
exists a constant t2 > 0 such that

sup
t≥0

Jλ(tη�λ,τ) = sup
0≤t≤t2

Jλ(tη�λ,τ), for any τ ≥ τ∗.

Since Jλ is continuous in H 1
0 (Ω) and Jλ(0) = 0, there exists a constant t1 > 0

such that

Jλ(tη�λ,τ) < M∞
λ , for any τ ∈ (0,∞) and 0 ≤ t < t1.

Then, to prove (5.9) we now only to prove the following inequality

sup
t1≤t≤t2

Jλ(tη�λ,τ) < M∞
λ , for τ large enough .

By the definition of Jλ, we get

Jλ(tη�λ,τ) =
t2

2

∫
Ω
(|∇(η�λ,τ)|2 + |η�λ,τ|2)dx− tp+1

p+ 1

∫
S

λK∞(η�λ,τ)p+1dx

+
tp+1

p+ 1

∫
Ω
λ(K∞ −K(x))(η�λ,τ)p+1dx

−
∫

Ω

∫ tη
λ,τ

0

λK(x)[(s+ uλ)p − up
λ − sp]dsdx.

Since �λ is a ground state solution of (2.1)λ, then we have

(5.10)

Jλ(tη�λ,τ) ≤ t2

2

∫
S

(−∆�λ+�λ)(η2
τ�λ)dx− tp+1

p+1

∫
S

λK∞�
p+1
λ dx

+
t22
2

∫
S

|∇η|2|�λ,τ |2dx

+
tp+1
2

p+ 1

∫
S

λK∞(1− ηp+1)�p+1
λ,τ dx

+
tp+1
2

p+ 1

∫
S

λ(K∞ −K(x))+(η�λ,τ)p+1dx

−
∫

Ω

∫ tη
λ,τ

0
λK(x)[(s+ uλ)p − u

p
λ − sp]dsdx.
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It follows from (2.3) that for any 0 < ε < 1+µ1, there exist some constants τ1 ≥ τ∗
and cε > 0, independent of τ , such that, for all τ ≥ τ1,

(5.11)
t22
2

∫
S

|∇η|2|�λ,τ |2dx ≤ t22
2

∫
U0

|∇η|2|�λ,τ |2dx ≤ cε exp(−2
√

1+µ1−ετ ),

(5.12)

tp+1
2

p+ 1

∫
S

λK∞(1 − ηp+1)�p+1
λ,τ dx

≤ tp+1
2

p+ 1

∫
Dδ∪{(y,z)∈S:z≤r0}

λK∞�
p+1
λ,τ dx

≤ c

∫
{(y,z)∈S:z≤z0}

ϕ(y) exp(−(p+ 1)
√

1 + µ1 − ε|z|)dx

≤ cε exp(−2
√

1 + µ1 − ετ).

Now, we fix a constant α with 1
γ < α < p

p+1 . By condition (k2) and (2.3), there
exists τ2 > 0 such that, for all τ ≥ τ2,

(5.13)

tp+1
2

p+ 1

∫
S

λ(K∞ −K(x))+(η�λ,τ)p+1dx

≤ c
(∫

S∩{|z|≥ατ}
+

∫
S∩{|z|≤ατ}

)
(K∞ −K(x))+�p+1

λ (x+ τeN )dx

≤ c1 exp(−αγ√1+µ1τ)+2c̃εατ exp(−(p+1)(1−α)
√

1+µ1−ετ)
where c1 and c̃ε are some positive constants independent of τ .

Set B1(τeN ) = {x = (y, z) ∈ S : y ∈ BN−1(0; r0/2), |z − τ | < 1}. By
the definition of z0, we have that B1(τeN ) ⊂⊂ Ω for all τ ≥ z0. Noting that
(a+b)p ≥ ap +bp, for all a ≥ 0, b ≥ 0, p > 1. Then for τ ≥ z0, we have η(x) = 1
on B1(τeN) and

∫
Ω

∫ tη�λ,τ

0

λK(x)[(s+ uλ)p − up
λ − sp]dsdx

≥
∫

B1(τeN )

∫ t�λ,τ

0

λK(x)[(s+ uλ)p − up
λ − sp]dsdx

=
∫

B1(τeN )

∫ t�λ,τ

0

λK(x)
(
[(s+uλ)p−1−sp−1]s+[(s+uλ)p−1−up−1

λ ]uλ

)
dsdx

≥
∫

B1(τeN )

∫ t�λ,τ

0

λK(x)[(s+ uλ)p−1 − up−1
λ ]uλdsdx

=
∫

B1(τeN )

λK(x)
[ (t�λ,τ + uλ)p − up

λ

p�λ,τ
− tup−1

λ

]
�λ,τuλdx.

(5.14)
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By part (iii) of Lemma 3.1, there exist τ3 ≥ z0 + τ2 and β > 0, such that

(t�λ,τ + uλ)p − up
λ

p�λ,τ
− tu

p−1
λ ≥ β, for τ ≥ τ3, x ∈ B1(τeN), t ∈ [t1, t2],

then by (k1), (3.1) and (5.14), there exist τ4 ≥ τ3 such that K(x) ≥ K∞
2 for

x ∈ B1(τeN) and

(5.15)

∫
Ω

∫ tη
λ,τ

0

λK(x)[(s+ uλ)p − up
λ − sp]dsdx

≥ 1
2
λβK∞

∫
B1(τeN )

�λ(x− τeN )uλ(x)dx

≥ c

∫
B1(τeN)

�λ(x− τeN ) exp(−(τ + 1)
√

1 + µ1)dx

≥ c2 exp(−
√

1 + µ1τ),

where c2 > 0 is independent of τ for all τ ≥ τ4 and t ∈ [t1, t2].
By (5.10) and use (5.11)-(5.15), we get, for τ ≥ τ4 + τ∗ and t ∈ [t1, t2],

Jλ(tη�λ,τ) ≤ M∞
λ + 2cε exp(−2

√
1 + µ1 − ετ) + c1 exp(−αγ

√
1 + µ1τ)

+2c̃εατ exp(−(p+1)(1−α)
√

1+µ1−ετ)−c2 exp(−
√

1 + µ1τ)

where cε, c̃ε, ci, 1 ≤ i ≤ 2, are independent of τ .
Since 0 < 1

γ < α < p
p+1 , we have that there exists a constant ε0 > 0 such that

νε = min{2
√

1 + µ1 − ε, αγ
√

1 + µ1, (p+ 1)(1− α)
√

1 + µ1 − ε} >
√

1 + µ1

for all positive constant ε ≤ ε0.
Therefore, we can find some τ∗ > τ4 +τ∗ large enough such that for all τ ≥ τ∗

2cε0 exp(−2
√

1 + µ1 − ε0τ) + c1 exp(−αγ√1 + µ1τ)

+ 2c̃ε0ατ exp(−(p+ 1)(1− α)
√

1 + µ1 − ε0τ) − c2 exp(−√
1 + µ1τ) < 0

and (5.9) is proved.

Proposition 5.6. Assume conditions (k1) and (k2) hold, then equation (5.1) λ

has at least one solution for λ ∈ (0, λ ∗).

Proof. For the constant τ ∗ in Lemma 5.5, and by Lemma 5.4, we know that
there is t0 > 0 such that Jλ(t0ηuτ∗) < 0. We set

Γ = {γ ∈ C([0, 1], H1
0(Ω)) : γ(0) = 0, γ(1) = t0ηuτ∗},
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then, by (5.2) and (5.9) we get

(5.16) 0 < β ≤ c = inf
γ∈Γ

max
0≤s≤1

Jλ(γ(s)) < M∞
λ .

Applying the mountain pass lemma of Ambrosetti-Rabinowitz [2], there exists a
(PS)c−sequence {vk} such that

Jλ(vk) → c and J ′
λ(vk) → 0 in H−1(Ω).

By Lemma 5.3, there exist a subsequence, still denoted by {vk}, an integer l ≥ 0,
a solution vλ of (5.1)λ and solutions vi

λ of (2.1)λ, for 1 ≤ i ≤ l, such that

(5.17) c = Jλ(vλ) +
l∑

i=1

I∞λ (vi
λ).

By the strong maximum principle, to complete the proof, we only need to prove
vλ �≡ 0 in Ω. In fact, by (5.16) and (5.17), we have

c = Jλ(vλ) ≥ β > 0 if l = 0,M∞
λ > c ≥ Jλ(vλ) +M∞

λ if l ≥ 1.

This implies vλ �≡ 0 in Ω.

6. PROPERTIES OF SOLUTIONS

In this section, we always assume that conditions (k1), (k2) and (h1) hold.
Denote by Q = {(λ, u) : u solves equation (1.2)λ, λ ∈ [0, λ∗]}. By Lemma 3.1,
we have Q ⊂ L∞(Ω) ∩H1

0 (Ω).
For each (λ, u) ∈ Q, let σλ(u) denote the number defined by (4.2), which is

the first eigenvalue of the problem (4.3).

Lemma 6.1. Let (λ, u) and (λ, uλ) ∈ Q, where uλ is the minimal solution of
equation (1.2)λ for λ ∈ (0, λ∗). Then

(i) σλ(u) > λ if and only if u = uλ;
(ii) σλ(Uλ) < λ, where Uλ is the second solution of equation (1.2)λ constructed

in Section 5.

Proof. (i) Now, let ψ ≥ 0 and ψ ∈ H 1
0 (Ω). Since u and uλ are the solution

of equation (1.2)λ, then

(6.1)

∫
Ω
∇ψ · ∇(uλ−u)dx+

∫
Ω
ψ(uλ−u)dx = λ

∫
Ω
K(up

λ − up)ψdx

= λ

∫
Ω

(∫ uλ

u
tp−1dt

)
pKψdx

≥ λ

∫
Ω
pKup−1(uλ − u)ψdx.
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Let ψ = (u− uλ)+ ≥ 0 and ψ ∈ H1
0 (Ω). If ψ �≡ 0, then (6.1) implies

−
∫

Ω
(|∇ψ|2 + ψ2)dx ≥ −λ

∫
Ω
pKup−1ψ2dx

and, therefore, the definition of σλ(u) implies∫
Ω
(|∇ψ|2 + ψ2)dx ≤ λ

∫
Ω
pKup−1ψ2dx

< σλ(u)
∫

Ω
pKup−1ψ2dx

≤
∫

Ω
(|∇ψ|2 + ψ2)dx,

which is impossible. Hence ψ ≡ 0, and u = uλ in Ω. On the other hand, by
Lemma 4.3, we also have that σλ(uλ) > λ. This completes the proof of (i).

(ii) By part (i), we get that σλ(Uλ) ≤ λ for λ ∈ (0, λ∗). We claim that
σλ(Uλ) = λ can not occur. We proceed by contradiction. Set w = Uλ − uλ; we
have

(6.2) −∆w + w = λK[Up
λ − (Uλ −w)p], w > 0 in Ω.

By σλ(Uλ) = λ, we have that the problem

(6.3) −∆φ+ φ = λpKUp−1
λ φ, φ ∈ H1

0 (Ω)

possesses a positive solution φ1.
Multiplying (6.2) by φ1 and (6.3) by w, integrating and subtracting we deduce

that
0 =

∫
Ω

λK[Up
λ − (Uλ −w)p − pUp−1

λ w]φ1dx

= −1
2
p(p− 1)

∫
Ω
λKξp−2

λ w2φ1dx,

where ξλ ∈ (uλ, Uλ). Thus w ≡ 0, that is Uλ = uλ for λ ∈ (0, λ∗). This is a
contradiction. Hence, we have that σλ(Uλ) < λ for λ ∈ (0, λ∗).

Remark 6.2. Since σλ(Uλ) < λ, one may employ a similar argument to the
used for uλ to show that Uλ is strictly decreasing in λ, λ ∈ (0, λ∗).

Lemma 6.3. Let uλ be the minimal solution of equation (1.2) λ for λ ∈ [0, λ∗]
and σλ(uλ) > λ. Then for any g(x) ∈ H−1(Ω), problem

(6.4)λ −∆w +w = λpKup−1
λ w + g(x), w ∈ H1

0 (Ω)



Esteban-Lions Domains with Holes 579

has a solution.

Proof. Consider the functional

Φ(w) =
1
2

∫
Ω
(|∇w|2 +w2)dx− 1

2
λp

∫
Ω
Kup−1

λ w2dx−
∫

Ω
g(x)wdx,

where w ∈ H1
0 (Ω). From Hölder inequality and Young’s inequality, we have, for

any ε > 0, that

(6.5)
Φ(w) ≥ 1

2
(1 − λσλ(uλ)−1)‖w‖2 − 1

2
ε‖w‖2 − Cε

2
‖g‖2

H−1(Ω)

≥ −C‖g‖2
H−1(Ω)

if we choose ε small.
Now, let {wn} ⊂ H1

0 (Ω) be the minimizing sequence of variational problem

d = inf{Φ(w)|w ∈ H1
0 (Ω)}.

From (6.5) and σλ(uλ) > λ, we can also deduce that {wn} is bounded in H 1
0 (Ω),

if we choose ε small. So we may suppose that

wn ⇀ w weakly in H1
0 (Ω) as n→ ∞,

wn → w a.e. in Ω as n→ ∞.

By Fatou’s Lemma,
‖w‖2 ≤ lim inf ‖wn‖2.

The weak convergence and the fact that uλ(x) → 0 as |x| → ∞ imply∫
Ω
gwndx→

∫
Ω
gwdx,

∫
Ω
Ku

p−1
λ w2

ndx→
∫

Ω
Ku

p−1
λ w2dx as n→ ∞.

Therefore
Φ(w) ≤ lim

n→∞ Φ(wn) = d,

and hence Φ(w) = d which gives that w is a solution of (6.4)λ.

Lemma 6.4. Suppose uλ∗ is a solution of (1.1)λ∗, then σλ∗(uλ∗) = λ∗ and
the solution uλ∗ is unique.

Proof. Define F : R ×H 1
0 (Ω) −→ H−1(Ω) by

F (λ, u) = ∆u− u+ λK(u+)p + h(x).
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Since σλ(uλ) ≥ λ for λ ∈ (0, λ∗), so σλ∗(uλ∗) ≥ λ∗. If σλ∗(uλ∗) > λ∗, the
equation Fu(λ∗, uλ∗)φ = 0 has no nontrivial solution. From Lemma 6.3, Fu maps
R × H1

0 (Ω) onto H−1(Ω). Applying the implicit function theorem to F , we can
find a neighborhood (λ∗ − δ, λ∗ + δ) of λ∗ such that equation (1.2)λ possesses a
solution uλ if λ ∈ (λ∗ − δ, λ∗ + δ). This is contradictory to the definition of λ∗.
Hence, we obtain that σλ∗(uλ∗) = λ∗.

Next, we are going to prove that uλ∗ is unique. In fact, suppose (1.1)λ∗ has
another solution Uλ∗ ≥ uλ∗ . Set w = Uλ∗ − uλ∗ ; we have

(6.6) −∆w + w = λ∗K[(w+ uλ∗)p − up
λ∗], w > 0 in Ω.

By σλ∗(uλ∗) = λ∗, we have that the problem

(6.7) −∆φ+ φ = λ∗pKup−1
λ∗ φ, φ ∈ H1

0 (Ω)

possesses a positive solution φ1.
Multiplying (6.6) by φ1 and (6.7) by w, integrating and subtracting we deduce

that
0 =

∫
Ω
λ∗K[(w+ uλ∗)p − up

λ∗ − pup−1
λ∗ w]φ1dx

=
1
2
p(p− 1)

∫
Ω
λ∗Kξp−2

λ∗ w2φ1dx,

where ξλ∗ ∈ (uλ∗ , uλ∗ +w). Thus w ≡ 0.

Proposition 6.5. Let uλ be the minimal solution of equation (1.2) λ. Then uλ

is uniformly bounded in L∞(Ω) ∩H1
0 (Ω) for all λ ∈ [0, λ∗] and

uλ → u0 in L∞(Ω) ∩H1
0 (Ω) as λ → 0,

where u0 is the unique positive solution of (1.1) 0.

Proof. By Lemma 3.1, 4.2, and 6.4, we can deduce ‖uλ‖L∞(Ω) ≤ ‖uλ∗‖L∞(Ω) ≤
c for λ ∈ [0, λ∗]. By (4.6), we have that ‖uλ‖ ≤ p

p+ 1
‖h‖L2(Ω). Hence, uλ is

uniformly bounded in L∞(Ω) ∩H1
0 (Ω) for λ ∈ [0, λ∗].

Now, let wλ = uλ − u0, then wλ satisfies the following equation

(6.8)λ −∆wλ + wλ = λKup
λ in Ω,

and by uλ is uniformly bounded in L∞(Ω) ∩H1
0 (Ω), we have that

(6.9)

‖wλ‖2 =
∫

Ω
λKup

λwλdx

≤ λ‖K‖L∞(Ω)‖uλ‖p−1
L∞(Ω)

‖uλ‖L2(Ω)‖wλ‖L2(Ω)

≤ cλ,
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where c is independent of λ. Hence, we obtain that uλ → u0 in H1
0 (Ω) as λ→ 0.

By Lemma 3.1, uλ ∈ Lq(Ω) for all q ∈ [2,∞) and uλ is uniformly bounded
in L∞(Ω) ∩ H1

0 (Ω), then we have that for any q ∈ [2,∞), there exists a positive
constant cq, independent of uλ, λ ∈ [0, λ∗], such that

(6.10) ‖Kup
λ‖Lq(Ω) ≤ cq.

Now, let q′ = N/2 + 1 > N/2. Apply the proof of part (i) and (ii) in Lemma 3.1,
to equation (6.8)λ and by (6.9) and (6.10), we obtain that

‖wλ‖L∞(Ω) ≤ c1‖wλ‖W 2,q′ (Ω)

≤ c2‖λKup
λ‖Lq′(Ω)

≤ cλ,

where c is independent of λ. Hence, we obtain that uλ → u0 in L∞(Ω) as λ→ 0.

Proposition 6.6. For λ ∈ (0, λ∗), let Uλ be the positive solution of equation
(1.2)λ with Uλ > uλ, then Uλ is unbounded in L∞(Ω) ∩H1

0 (Ω), that is

lim
λ→0

‖Uλ‖ = lim
λ→0

‖Uλ‖L∞(Ω) = ∞.

Proof. First, we show that {Uλ : λ ∈ (0, λ∗)} is unbounded in H 1
0 (Ω). Since

Uλ = uλ + vλ, we only need to show that {vλ : λ > 0} is unbounded in H 1
0 (Ω). If

not, then

(6.11) ‖vλ‖ ≤M

for all λ ∈ (0, λ∗). Since for any δ > 0, {Uλ}λ≥δ is bounded in H 1
0 (Ω), we may

assume λ ∈ (0, δ].
Choose λn ↓ 0 and let vλn be the corresponding solutions constructed by Propo-

sition 5.6. By the Hölder inequality and the Sobolev embedding theorem, we obtain
that ∫

Ω
(|∇vλn|2 + |vλn |2)dx =

∫
Ω
λnK[Up

λn
− up

λn
]vλndx

≤ cλn‖Uλn‖p
Lp+1(Ω)

‖vλn‖Lp+1(Ω)

≤ cλn‖Uλn‖p‖vλn‖
≤ c1λn

for some constant c1, independent of vλn , where we have used (6.11) and the
boundedness of {uλn} in H1

0 (Ω). Hence, we have lim
n→∞ ‖vλn‖2 = 0. It implies that

(6.12) lim
n→∞ ‖vλn‖L2(Ω) = 0.
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On the other hand, we notice that Uλ = uλ + vλ is decreasing and uλ is increasing
in λ. Therefore, vλ is decreasing in λ, which implies

vλn ≥ vδ for all n.

Then we obtain that

‖vλn‖L2(Ω) ≥ ‖vδ‖L2(Ω) > 0 for all n.

which contradicts (6.12). This implies that {Uλ : λ ∈ (0, λ∗)} is unbounded in
H1

0 (Ω).
Now, we show that {Uλ : λ ∈ (0, λ∗)} is unbounded in L∞(Ω). We proceed

by contradiction. Assume to the contrary that there exists c0 > 0 such that

‖Uλ‖L∞(Ω) ≤ c0 <∞ for all λ ∈ (0, λ∗).

Since Uλ is a solution of equation (1.2)λ, we have that

‖Uλ‖2 =
∫

Ω
λKUp+1

λ dx+
∫

Ω
hUλdx

≤ λcp−1
0 ‖K‖L∞(Ω)‖Uλ‖2

L2(Ω) + ‖h‖L2(Ω)‖Uλ‖L2(Ω)

≤ c1λ‖Uλ‖2 + c2‖Uλ‖,

where c1 and c2 are independent of λ. If we choose λ0 = min{λ∗, 1
2c1

}, then there
exists c > 0, independent of λ, such that ‖Uλ‖ ≤ c for all λ ≤ λ0. This is a
contradiction to that {Uλ : λ ∈ (0, λ∗)} is unbounded in H 1

0 (Ω). This completes
the proof of Proposition 6.6.

Proof of Theorem 1.1 and Theorem 1.2. Theorem 1.1 now follows from Lemma
4.2, 4.3, 4,4, 6.1, 6.4, and Proposition 5.6. The conclusion of Theorem 1.2 follows
immediately from Lemma 4.2, Remark 6.2 and Proposition 6.5, 6.6.
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