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ALMOST SOLUTIONS OF EQUATIONS IN PERMUTATIONS

Lev Glebsky and Luis Manuel Rivera

Abstract. We will say that the permutations f1, ..., fn are an ε-solution of
an equation if the normalized Hamming distance between its l.h.p. and r.h.p.
is ≤ ε. We give a sufficient conditions when near to an ε-solution exists an
exact solution and some examples when there does not exist such a solution.

1. INTRODUCTION AND FORMULATION OF MAIN RESULTS

Let Sn denote the group of all permutations of the finite set {n} = {1, ..., n}.
For f, g ∈ Sn let h(f, g) = |{a:(a)f �=(a)g}|

n . It is easy to check that h(·, ·) is a bi-
invariant metric on Sn [2]. In the article we are going to study almost solutions of
equations in Sn. For example, fix p ∈ N and for f ∈ Sn consider equation

xp = f. (1)

Such an x, if exists, is called to be p-root of f . Not every f ∈ Sn has a p-root, but
any f ∈ Sn has an almost p-root for sufficiently large n. Precisely, the following
theorem is true

Theorem 1. For any p ∈ N there exists a sequence δn > 0, limn→∞δn = 0
such that for any f ∈ Sn there exists a permutation g ∈ Sn with h(gp, f) ≤ δn.

One of the motivations to consider such a question is studying sofic groups, a
class of groups that was introduced by Gromov and Weiss [6, 12]. Later G. Elek
and E. Szabó [3] define a family of sofic groups that they called universal sofic
groups. Every sofic group is isomorphic to a subgroup of an universal sofic group.

Theorem 1 imply the following
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Corollary 1. An universal sofic group U is an N-root group. In other words:
any g ∈ U has a p-root for any p ∈ N.

The other set of questions is about stability of a system of equations in per-
mutations. In order to give the precise formulation of the problem we present the
following definitions. Let w(x1, ..., xk), u(x1, ..., xk), be expressions using xj ,
x−1

j and multiplications (due to associativity we may think that w, u are words in
{x1, x

−1
1 , ..., xk, x

−1
k }).

Definition 1.

1. We say that permutations f1, .., fk are an ε-solution of an equation (ε-satisfy
an equation) w(x1, ..., xk) = u(x1, ..., xk), iff
h(w(f1, ..., fk), u(f1, ..., fk)) ≤ ε

2. We say that permutations f1, .., fk are an ε-solution of a system (ε-satisfy a
system) of equations

wi(x1, ..., xk) = ui(x1, ..., xk), i = 1, .., r (2)

iff f1, .., fk ε-satisfy every equation of the system.

3. System (2) is called stable (in permutations) iff there exists δε, lim
ε→0

δε = 0
such that for any ε-solution f1, f2, ..., fk ∈ Sn of the system (2) there exists
an exact solution f̃1, f̃2, ..., f̃k ∈ Sn of the system (2) such that d(fi, f̃i) < δε

for i = 1, ..., k. (Note, that δε is independent of n.)

There are some relations of stability of the system (2) and the properties of the
group G = 〈x1, ..., xk | wi(x1, ..., xk) = ui(x1, ..., xk), i = 1, ..., r〉.

Theorem 2. Let G = 〈x1, ..., xk | wi(x1, ..., xk) = ui(x1, ..., xk), i = 1, ..., r〉.
• If the group G is finite then the system (2) is stable in permutations.
• If the group G is sofic but not residually finite, then the system (2) is unstable

in permutations.

So, for example the equation x3
1 = x−1

2 x2
1x2 is unstable in permutations because

the Baumslag-Soliter group G = 〈x1, x2 | x3
1 = x−1

2 x2
1x2〉 is sofic but not residually

finite [7, 9, 10]. On the other hand the system:

x3 = y3 = (xy)3 = (x2y)3 = id

is unstable in permutations, because the corresponding group is finite. Of course,
in most cases, Theorem 2 says nothing about stability of a system of equations and
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generally the question seems to be very difficult. Particularly, we believe that the
commutator relation

xy = yx (3)

is unstable but do not have a proof yet. In [5] the similar but easier question about
commutator relation was considered.

The similar questions about matrices was widely studied and solved (at least for
commutator relation), see for example [1, 8, 11]. Let us discuss these results in more
details. First of all to formulate the problem we can generalize Definition 1 from Sn

to any family of sets, where metrics and multiplications are defined. Particularly, we
may ask f1, f2, ..., fk in the definition 1 to be unitary (self-adjoint) matrices, with
the metrics d(A, B) = ‖A − B‖, ‖X‖ = sup‖x‖=1 ‖Xx‖. So, we can speak about
stability of the system (2) in unitary (self-adjoint) matrices. In this case it is also
important that δε is independent of the size of the matrices. The results of [8, 11]
say that the commutator relation is stable in self-adjoint matrices and unstable in
unitary matrices.

Although permutations have natural representations by unitary matrices, insta-
bility of the commutator relation for unitary matrices seems to say nothing about
stability of the commutator relation in permutations. One of the difficulty here is
that the representations of permutations by unitary matrices is not uniformly contin-
uous for the distances defined above. It looks like that the following distances for
matrices are more relevant for the study of stability in permutations.

1. d(A, B) = ‖A − B‖T , where ‖X‖T =
√

1
n trace(XX∗), or

2. d(A, B) = rank(A−B)
n ,

where n × n is the size of the matrices. We do not know any results about sta-
bility of commutator relations in matrices for those distances, but there are some
related works around von Neumann algebras, where perturbations by compact oper-
ators is considered. (Calkin algebras, essentially normal operators, see [4] and the
bibliography in it.)

2. PROOFS OF THE THEOREMS

In this section we present the proofs of theorems 1 and 2, in order to proof
theorem 1 we use two propositions.

Proof of Theorem 1. Some important facts. From the right and left invariance
of the metric d its follows that d(xn, yn) ≤ nd(x, y), the proof by induction:
d(x(n+1), y(n+1)) ≤ d(xnx, xny) + d(xny, yny) = d(x, y) + d(xn, yn)
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So, it is enough to prove Theorem 1 for prime p. Indeed, if d(fp1
1 , g) ≤ ε1 and

d(fp2
2 , f1) ≤ ε2 then d(f p1p2

2 , g) ≤ ε1 + p1ε2.

Proposition 1. Let f ∈ Sn, let p be a prime number. The equation xp = f
has an exact solution if and only if for any k ∈ N the number of kp-cycles in f is
divisible by p.

Proof. ⇒ If xp = f , the m-cycles in x with (p, m) = 1 become m-cycles
in f . For the kp-cycles in x, we obtain p cycles of length k in f . Therefore, the
kp-cycles in f can be obtained only by the kp2-cycles in x, so, in f we will have
p cycles of length kp for every kp2-cycle in x.

⇐ Given the permutation f we will construct a permutation x that satisfies the
equation. Suppose that the permutation f has the following cyclic representation:
f = C1 . . .ChD1 . . .Di, where Ci are all i-cycles, with i relatively prime to p and
Dk are all cycles of length kp. For any Cr in f we can write Cαr

r in x where
αrp = 1 mod r. Now, as for any k, the number m of kp-cycles is divisible by p,
we can divide the cycles Dk in disjoint groups of size p, Dk = d1d2...dm/p. For
each group dl

dl = (a0
0, a

0
1, · · · , a0

kp−1)(a
1
0, a

1
1, · · · , a1

kp−1) · · · (ap−1
0 , ap−1

1 , · · · , ap−1
kp−1)

in f we can take

xl = (a0
0, a

1
0, · · ·, ap−1

0 , a0
1, a

1
1, · · ·, ap−1

1 , a0
2, · · ·, ap−1

2 , · · ·, a0
kp−1, a

1
kp−1, · · ·, ap−1

kp−1),

as the corresponding cycle of the permutation x.

Proposition 2. Let p be a prime number, let f ∈ Sn, then there exist permu-
tations f̃ , g ∈ Sn, such that gp = f̃ , and h(f̃ , f) ≤ 2

√
2(p−1)√

pn .

Proof. In order to prove the proposition it is enough to construct f̃ satisfying
Proposition 1. Let the permutation f has the following cyclic representation: f =
C1 . . .ChD1 . . .Dj , where the Ci are all i-cycles, with (p, i) = 1 and Di are all ip-
cycles. Let no be the number of all elements that belongs to the cycles C1, · · · , Ch,
let mi be the number of all ip-cycles. Because some of the mi can be zero, we
consider the following set S := {i | mi �= 0}.

By Proposition 1, in order to construct the permutation f̃ , we only need to
change some cycles in Di. We have mi = αip + ri, 0 ≤ ri < p and construct
f̃ equal to f but delete one element for the last ri ip-cycles, and make it fixed
point ((a1, a2, ..., aip−1, aip) → (a1, a2, ..., aip−1)(aip)). Then the distance between
f and f̃ will be

h(f, f̃) =
2

∑
i∈S ri

n
≤ 2(p− 1)|S|

n
,
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So, we only need to estimate k = |S| for n fixed. To make the estimation let us put
in order S = {s1, s2, ..., sk}, where 1 ≤ s1 < s2 < ... < sk . It follows that si ≥ i.
Now

n = n0 + p
∑
i∈S

mii ≥ p

k∑
i=1

si ≥ p

k∑
i=1

i = p
k(k + 1)

2
> p

k2

2
.

So, | S |= k <
√

2n/p and the proposition follows.

Proof of Theorem 2 First Part. Let V be a finite set of finite words in
x1, x2, ..., xk that represent each element of the group G. Without loss of generality
we will assume that {x±1

1 , x±1
2 , ..., x±1

n } ⊆ V . For v1, v2 ∈ V , the juxtaposed
product v1 · v2 form a finite word, which does not necessarily belong to V . By the
method of insertion and deletion of trivial and defining relators of G, the word v1 ·v2

can be reduced to a word v1,2 ∈ V . Let m be the maximum length of the words
appearing during these reduction processes for all triples of words v1, v2, v1,2 ∈ V ,
v1v2 = v1,2 in G.

Let f = 〈f1, f2, ..., fk〉 ∈ Sk
n be an ε solution of System 2. We think that the

language of graphs is the most appropriate to expose our proof. So, we can consider
f1, f2, ..., fk ∈ Sn as an edge-colored graph Γ(f) with vertex set V (Γ) = {n} and
edge set E(Γ) = E1 ∪E2 ∪ ...∪Ek , where Ei = {(a, (a)fi), a ∈ {n}} is the edges
of color i. Let N (a) be the m-neighborhood of a vertex a in Γ, where m is the
maximum length defined above. We call a ∈ {n} to be a good vertex iff for any
c ∈ N (a) f satisfies System 2 in c:

(c)wi(f1, ..., fk) = (c)ui(f1, ..., fk), i = 1, .., r. (4)

A vertex is bad if it is not good.

Claim 1. Let a ∈ {n} be a good vertex, then (c)xi = (c)fi, for c ∈ N (a)
defines an action of G = 〈x1, ..., xk | wi(x1, ..., xk) = ui(x1, ..., xk), i = 1, ..., r〉
on N (a). It implies that any c ∈ N (a) is also a good vertex, N (c) = N (a) and the
set of good vertexes is disconnected from the set of bad vertexes.

Proof. Indeed, let p1 = v1v2, p2, ..., pn = v1,2 be the reduction from v1v2

to v1,2. Then, (a)p1(f) = (a)p2(f) = ... = (a)pn(f) by the definition of good
vertexes and the claim follows.

We may construct (a)f̃i = (a)fi if a is good vertex and (a)f̃i = a if a is
bad vertex. It follows that f̃i satisfy System 2, because the set of bad vertexes is
separated from the set of good vertexes. So it is enough to show that the set of bad
vertexes is small. Let M = {a ∈ {n} | aui(f) �= awi(f) for some i}, it is clear
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that |M | ≤ εkn. Then the set of bad points is M ∗ =
⋃

b∈M N (b), so

|M∗| ≤
∑
b∈M

|N (b)| ≤ εkn

(
1 + k

((2k − 1)m−1 − 1)
k − 1

)

So h(fi, f̃i) ≤ Cε, where C depends only on the group G.

Proof of the Second Part of Theorem 2. For a group X we will denote by
eX the unity in X , some times we will write just e. For the second part of the
theorem 2 we recall the following definitions.

Definition 2. Let G be a group, F ⊆ G be a finite subset, ε ≥ 0, and α > 0.
An (F, ε, α)-representation in (Sn, h) is a map φ : F → Sn with the following
properties

(1.) For any two elements a, b ∈ F , with a · b ∈ F , h(φ(a)φ(b), φ(a · b)) < ε

(2.) If e ∈ F , then φ(e) = id

(3.) For any a �= e, h(φ(a), id) > α

Definition 3. The group G is sofic if there exists α0 > 0 such that for any
finite set F ⊆ G and for any ε > 0 there exists an (F, ε, α0)-representation in
(Sn, h).

Definition 4. A group G is residually finite iff for any g ∈ G, g �= eG, there
exists a homomorphism φ to a finite group H such that φ(g) �= eH .

We need the following lemma:

Lemma 1. If d(·, ·) is a bi-invariant metric, and d(x i, yi) ≤ δi, i=1,...,r, then
d(x1 · · ·xr, y1 · · ·yr) ≤

∑r
i=1 δi

Proof. By induction and by the bi-invariance of the metric, we have that

d(x1 · · ·xr+1, y1 · · ·yr+1) ≤ d(x1 · · ·xr+1, y1 · · ·yr · xr+1)
+ d(y1 · · ·yr · xr+1, y1 · · ·yr · yr+1)

≤ d(x1 · · ·xr, y1 · · ·yr) + d(xr+1, yr+1)

≤
r∑

i=1

δi + δr+1 =
r+1∑
i=1

δi

In order to proof the second part of theorem 2, we will prove the following.

Proposition 3. If G = 〈x1, . . . , xk | wi(x1, . . . , xk) = ui(x1, . . . , xk), i =
1, . . . , r〉 is sofic and System 2 is stable, then G is residually finite.
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Proof. Let p(x̄) be any word in G, p �= eG. We need to construct a ho-
momorphism φ to a finite group, such that φ(p) �= e. We denote by V ∗ the set
of the words wi(x1, . . . , xk), ui(x1, . . . , xk), i = 1, ..., r and all its subwords
and let p∗ denote the set of all subwords of p. Let F be the following set:
F := {1, x1, x

−1
1 , . . . , xk, x

−1
k } ∪ V ∗ ∪ p∗. It is clear, that F is finite and for

any word in F all its subwords belongs to F . As the group G is sofic, there exists
α > 0 such that for any ε > 0 there exists an (F, ε, α)-representation ϕ. We denote
ai := ϕ(xi).

Claim 2. For any word v(x̄) ∈ F , h
(
ϕ
(
v(x̄)

)
, v(ā)

)
< (2 | v(x̄) | −1)ε

Proof. As h
(
ϕ(x−1

i ), a−1
i

)
< ε, by induction and Lemma 1 we have

h
(
ϕ
(
x±1

i v(x̄)
)
, a±1

i v(ā)
)

< h
(
ϕ
(
x±1

i v(x̄)
)
, ϕ

(
x±1

i

)
ϕ
(
v(x̄)

))

+ h
(
ϕ
(
x±1

i

)
ϕ
(
v(ā)

)
, a±1

i v(ā)
)

≤ ε + (ε + (2 | v(x̄) | −1)ε) = (2(1+ | v(x̄) |)− 1)ε.

So, ai = ϕ(xi) is an ε∗-solution of the system 2 with ε∗ = max{2(| wi | + |
ui |)ε}. As the system 2 is stable, we can find an exact solution b1, ..., bn of the
system 2, with h(ai, bi) ≤ δε∗ for any i. Then φ(xi) = bi, can be extended to a
homomorphism G → Sn.

Claim 3. For any word w ∈ F , w �= eG one has h
(
φ
(
w(x̄)

)
, id

)
≥ α − δ∗ε∗ |

w(x̄) | −2 | w(x̄) | ε

Proof. Because φ(xi) is a homomorphism φ
(
w(x̄)

)
= w(b̄), and by Lemma 1,

h
(
w(ā), w(b̄)

) ≤ δ∗ε∗ |w(x̄)| then

h
(
φ
(
w(x̄)

)
, ϕ

(
w(x̄)

)) ≤ h
(
φ
(
w(x̄)

)
, w(b̄)

)
+ h

(
w(b̄), ϕ

(
w(x̄)

))

≤ h
(
w(b̄), w(ā)

)
+ h

(
w(ā), ϕ

(
w(x̄)

))
≤ δ∗ε∗ | w(x̄) | +2 | w(x̄) | ε

as h
(
ϕ
(
w(x̄)

)
, id

)
≤ h

(
φ
(
w(x̄)

)
, ϕ

(
w(x̄)

))
+ h

(
φ
(
w(x̄)

)
, id

)
, then

h
(
φ
(
w(x̄)

)
, id

)
≥ α − δ∗ε∗ | w(x̄) | −2 | w(x̄) | ε = α0

So, φ(p) �= id for sufficiently small ε > 0.
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