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THE CHARACTERIZATIONS OF WEIGHTED SOBOLEV SPACES
BY WAVELETS AND SCALING FUNCTIONS

Mitsuo Izuki

Abstract. We prove that suitable wavelets and scaling functions give char-
acterizations and unconditional bases of the weighted Sobolev space Lp,s(w)
with Ap or Aloc

p weights. In the case of w ∈ Ap, we use only wavelets with
proper regularity. Meanwhile, if we assume w ∈ Aloc

p , not only compactly
supported Cs+1-wavelets but also compactly supported Cs+1-scaling func-
tions come into play. We also establish that our bases are greedy for Lp,s(w)
after normalization.

1. INTRODUCTION

We can characterize the L2-norm of f ∈ L2(Rn) in terms of the wavelet coeffi-
cients appearing in the wavelet expansion of f with the wavelet basis. In particular,
if we use the wavelets with proper decay, proper smoothness or compact support,
then they give characterizations and unconditional bases of various function spaces
(cf. [1, 8, 9, 14, 17, 22]).

Now we make a brief view of the study on weighted Lp spaces Lp(w) :=
Lp(Rn, w(x)dx) (1 < p < ∞). Lemarié-Rieusset showed that the Daubechies
wavelets give a characterization and an unconditional basis of Lp(w) with w ∈ Ap.
Here Ap means the Muckenhoupt Ap class. He also considered for the case of Aloc

p ,
which is an extension of Ap. As a result, he proved that a characterization and an
unconditional basis of Lp(w) with w ∈ Aloc

p were given by means of the Daubechies
wavelets and the Daubechies scaling functions ([14]). After that, Aimar, Bernardis
and Mart´n-Reyes showed that the result similar to [14] was valid for 1-regular
wavelets in the case of Ap ([1]).

Received January 25, 2007, accepted September 13, 2007.
Communicated by H. M. Srivastava.
2000 Mathematics Subject Classification: Primary 42C40, Secondary 42B35, 42C15, 46B15.
Key words and phrases: A p weight, Aloc

p weight, Wavelet, Scaling function, Weighted Sobolev space,
Unconditional basis, Greedy basis.

467



468 Mitsuo Izuki

In this paper we study the weighted Sobolev spacesLp,s(w) := Lp,s(Rn, w(x)dx)
(1 < p < ∞, s ∈ N) with w ∈ Ap or w ∈ Aloc

p . We shall need smoother wavelets
and scaling functions in order to get the characterizations and the unconditional
bases of Lp,s(w). As a consequence, we have the similar results to the studies on
Lp(w) shown by [1] and [14].

Additionally we would like to comment on the construction of greedy bases.
As is noted in [9], if we characterize Lp(w) by wavelets and scaling functions and
if we obtain unconditional bases in terms of wavelets and scaling functions, then
we can construct the greedy bases in Lp(w). The same method is applicable to
Lp,s(w), that is, we can construct the greedy bases in Lp,s(w) using wavelets and
scaling functions.

Let us explain the outline of this article. Section 2 consists of preliminaries.
We describe the fundamental theory on wavelets, two classes of weights, some
bases, weighted function spaces, and some known results on Lp(w). Our results
are contained in Sections 3, 4 and 5. We characterize Lp,s(w) with w ∈ Ap by
wavelets in Section 3. On the other hand, we characterize Lp,s(w) with w ∈ Aloc

p

in terms of wavelets and scaling functions in Section 4. Lastly, in Section 5, we
construct the unconditional bases and the greedy bases in Lp,s(w) by applying the
results in Sections 3 and 4.

Throughout this paper, s means a positive integer. We let 1 < p < ∞ and
denote by p′ the conjugate exponent of p, i.e., p′ satisfies 1/p + 1/p′ = 1. χF

means the characteristic function of a measurable set F ⊂ Rn. Z+ denotes the
set of all non-negative integers. We shall also note that the Fourier transform of a

function f is defined by F [f ](ξ) :=
∫

Rn

f(x)e−ix·ξ dx.

2. PRELIMINARIES

2.1. Wavelets and scaling functions

First let us recall the definition of wavelet ([17, 22]).

2.1. Notation
1. Given a function f defined on Rn , we denote fj,k(x) := 2jn/2f(2jx − k)

for j ∈ Z and k ∈ Zn.
2. We define the index set E by E := {1, 2, . . . , 2n − 1}.

Definition 2.2. A set of functions {ψe}e∈E ⊂ L2(Rn) is called a wavelet set
if {ψe

j,k : e ∈ E, j ∈ Z, k ∈ Zn} forms an orthonormal basis in L2(Rn). Then
{ψe

j,k : e ∈ E, j ∈ Z, k ∈ Zn} is said to be a wavelet basis in L2(Rn) and each
ψe is said to be a wavelet.
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By way of multiresolution analysis ([17, 22]), we can construct a wavelet set
{ψe}e∈E and a function ϕ ∈ L2(Rn) such that the sequence {ϕm,k}k∈Zn ∪ {ψe

j,k :
e ∈ E, j ≥ m, k ∈ Zn} forms an orthonormal basis in L2(Rn) for each m ∈ Z.
The function ϕ is called a scaling function.

We give remarkable examples of scaling functions and wavelets obtained by
tensor products (cf. [17, 22]).

Example 2.3.
1. The first example introduced here was constructed by Y. Meyer. There exist

a scaling function ϕ and a wavelet set {ψe}e∈E such that ϕ and each ψe are
in the Schwartz class S(Rn), real-valued and band-limited with suppF [ϕ] ⊂[
− 4

3π,
4
3π
]n

and suppF [ψe] ⊂
([

− 8
3π,−2

3π
]
∪
[

2
3π,

8
3π
])n

. We call
{ψe}e∈E the Meyer wavelet set (cf. [17, 22]).

2. The next one is I. Daubechies’. For each positive integers N ≥ 2, we can
construct a scaling function ϕ and a wavelet set {ψe}e∈E such that ϕ and each
ψe are in Cr(N)(Rn), real-valued and compactly supported with suppϕ =
suppψe = [0, 2N−1]n. In our actual construction, r(N ) > 0 is an increasing
function of N . We say that ϕ is the Daubechies scaling function, {ψe}e∈E is
the Daubechies wavelet set associated with ϕ, and each ψ e is the Daubechies
wavelet (cf. [6, 15]).

2.2. Ap weights and Aloc
p weights

By “weight” we mean a non-negative and locally integrable function.

2.4. Notation For a weight w and a measurable set F ⊂ Rn, we denote

w(F ) :=
∫

F
w(x) dx, while |F | means the Lebesgue measure of F .

We consider the following two classes of weights in this paper.

Definition 2.5. Let w be a weight such that w−1/(p−1) ∈ L1
loc(R

n).
1. The class of weights Ap consists of all w satisfying

Ap(w) := sup
Q:cube

1
|Q|w(Q)

(
1
|Q|w

−1/(p−1)(Q)
)p−1

<∞,

and each w ∈ Ap is called an Ap weight.
2. The class of weights Aloc

p consists of all w satisfying

Aloc
p (w) := sup

|Q|≤1,
Q:cube

1
|Q|w(Q)

(
1
|Q|w

−1/(p−1)(Q)
)p−1

<∞, (0.1)

and each w ∈ Aloc
p is called an Aloc

p weight.
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Several helpful remarks may be in order.

Remark 2.6.
1. For example, |x|a ∈ Ap for −n < a < n(p− 1) (cf. [21, Section IX. 4]).
2. The class of Aloc

p weights is independent of the upper bound for the cube size
used in its definitions. Namely we can replace |Q| ≤ 1 by |Q| ≤ r in (1) for
any 0 < r <∞. In fact, if we define

Aloc,r
p (w) := sup

|Q|≤r,
Q:cube

1
|Q|w(Q)

(
1
|Q|w

−1/(p−1)(Q)
)p−1

for each r > 0, then it clearly follows that Aloc,r
p (w) ≤ Aloc

p (w) if 0 <

r ≤ 1. On the other hand, Rychkov gave the estimation that Aloc,r
p (w) ≤

r−pecrAloc
p (w) if r > 1, where c > 0 is a constant depending only on n, p

and Aloc
p (w) (cf. [19]).

3. We shall also remark that Ap � Aloc
p . In fact, exp(b|x|) ∈ Aloc

p \ Ap for
b ∈ R \ {0}

4. We have that w ∈ Ap if and only if w−1/(p−1) ∈ Ap′ . In fact, it clearly
follows that Ap(w) = Ap′(w−1/(p−1))p−1. The same result is true for the
case of Aloc

p .

The next lemma serves as a tool for reducing the matter to the case when
w ∈ Ap.

Lemma 2.7. ([19, Proof of Lemma 1.1]). Let a ∈ R, r, t > 0 and w ∈ Aloc
p .

We define

τm(u) :=

{
u if u ∈ [t(m+ a), t(m+ a+ r))

2t(m+ a+ r)− u if u ∈ [t(m+ a+ r), t(m+ a+ 2r))

for m∈Z and u∈ [t(m + a), t(m+a+2r)). We also define {wl}l∈Zn to fulfill that

wl(x) = w(τl1(x1), . . . , τln(xn)) if x ∈
n∏

ν=1

[t(lν + a), t(lν + a+ 2r)) ,

and that each wl is a 2trZn-periodic function on Rn for all l ∈ Zn. Then it follows
that {wl}l∈Zn ⊂ Ap with Ap(wl) ≤ 3npAloc,tnrn

p (w) for every l ∈ Zn.

2.3. Bases

Let X be a Banach space. Let us make a view of Schauder basis and uncondi-
tional basis first.
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Definition 2.8.

1. {xk}∞k=1 ⊂ X is said to be a Schauder basis if there exists a unique sequence
{ck(x)}∞k=1 ⊂ C such that for all x ∈ X ,

x =
∞∑

k=1

ck(x)xk in X. (0.2)

2. A Schauder basis {xk}∞k=1 ⊂ X is said to be an unconditional basis if the
convergence (2) is always unconditional.

It is known that there are several equivalent definitions of unconditional basis
in Banach spaces ([10, 16, 22]). Next we introduce two kinds of bases defined by
Konyagin and Temlyakov ([12]).

Definition 2.9. Let {xk}∞k=1 be a normalized Schauder basis in X . We call
{xk}∞k=1 a greedy basis for X if there exists a constant C > 0 such that for every
x ∈ X there exists a permutation ρ of N which satisfies

∣∣cρ(1)(x)
∣∣ ≥ ∣∣cρ(2)(x)

∣∣ ≥
. . . ≥ ∣∣cρ(N)(x)

∣∣ and∥∥∥∥∥x−
N∑

k=1

cρ(k)(x)xρ(k)

∥∥∥∥∥
X

≤ C inf
y∈ΣN

‖x− y‖X ,

for every N ∈ N, where ΣN :=

{∑
ν∈Λ

ανxν : αν ∈ C, 	Λ ≤ N, Λ ⊂ N

}
.

Definition 2.10. Let {xk}∞k=1 be a normalized Schauder basis inX . We say that
{xk}∞k=1 is a democratic basis for X if there exists a constant D > 0 independent

of P and Q such that

∥∥∥∥∥∑
k∈P

xk

∥∥∥∥∥
X

≤ D

∥∥∥∥∥∥
∑
k∈Q

xk

∥∥∥∥∥∥
X

for any finite subsets P,Q ⊂ N

with the same cardinality 	P = 	Q.
Theorem 2.11 we describe next becomes the key in Section 5 later.

Theorem 2.11. [[12, Theorem 1]] Let {xk}∞k=1 be a normalized Schauder
basis in X . Then {xk}∞k=1 is a greedy basis if and only if it is an unconditional
and democratic basis.

Remark 2.12. [[ 12, Section 3]]. Konyagin and Temlyakov give some ex-
amples of bases, showing that “democratic” and “unconditional” are independent
notions.
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2.4. Weighted Lp spaces and weighted Sobolev spaces

Definition 2.13. Let w be a weight.

1. The weighted Lp space Lp(w) is the space of all measurable functions f with

‖f‖Lp(w) :=
(∫

Rn
|f(x)|pw(x) dx

)1/p

<∞.

2. Suppose w−1/(p−1) ∈ L1
loc(R

n). The weighted Sobolev space Lp,s(w) is the
space of all measurable functions f satisfying that f ∈ Lp(w) and weak
derivatives Dαf ∈ Lp(w) for every α = (α1, . . . , αn) ∈ Z n

+ with |α| ≤ s.

If a weight w satisfies w−1/(p−1) ∈ L1
loc(R

n), then Lp(w) ⊂ L1
loc(R

n). We also
remark thatLp,s(w) is a Banach space with the norm ‖f‖Lp,s(w) :=

∑
|α|≤s

‖Dαf‖Lp(w).

Remark 2.14. [cf. [21, Section IX. 4]]. For any w ∈ Ap, we have (1 +
|x|)−npw(x) ∈ L1(Rn). Thus we see that S(Rn) ⊂ Lp,s(w).

In the case of w ∈ Ap, we can replace ‖ · ‖Lp,s(w) as follows.

Theorem 2.15. Let w ∈ Ap. Then ‖·‖Lp(w)+
∑
|β|=s

‖Dβ( · )‖Lp(w) is equivalent

to ‖ · ‖Lp,s(w), where the embedding constants depend only on n, p, Ap(w) and s.

We can obtain Theorem 2.15 above by the same arguments as [8, Theorem 6.4
in Chapter 6] applying the next result given by Kurtz ([13, Theorem 4]).

Proposition 2.16. Let w ∈ Ap and m ∈ Cn(Rn \ {(0, . . . , 0)}). Suppose that

sup
R>0

R2|α|−n

∫
R≤|x|≤2R

|Dαm(x)|2dx <∞

for all α ∈ Z+
n with |α| ≤ n. Then the operator T defined by F [Tf ] = mF [f ]

is bounded on Lp(w).

Now we consider two maximal functions and the boundedness on Lp(w).

Proposition 2.17. [cf . [2]] Let 1 < q <∞ and w ∈ Ap. Then there exists a
constant C > 0 depending only on n, p, q and Ap(w) such that

‖‖(Mfν)∞ν=1‖lq‖Lp(w) ≤ C ‖‖(fν)∞ν=1‖lq‖Lp(w)
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for all (fν)∞ν=1 with

‖‖(fν)∞ν=1‖lq‖Lp(w) :=

∫
Rn

( ∞∑
ν=1

|fν(x)|q
)p/q

w(x) dx

1/p

<∞.

Here M is the Hardy-Littlewood maximal function defined by

Mf(x) := sup
Q

1
|Q|
∫

Q

|f(y)| dy (x ∈ Rn),

where the supremum is taken over the cubes Q centered at x.
Next we state for the local case. Rychkov proved the following boundedness for

the local Hardy-Littlewood maximal function ([19]). Remark that he gave the result
for vector-valued case. In this paper we have only to apply it for scalar-valued case.

Proposition 2.18. Let r > 0 and w ∈ Aloc
p . Then there exists a constant C > 0

depending only on r, n, p and A loc
p (w) such that

∥∥M loc,rf
∥∥

Lp(w)
≤ C ‖f‖Lp(w)

for all f ∈ Lp(w). Here M loc,r is the local Hardy-Littlewood maximal function
defined by

M loc,rf(x) := sup
Q

1
|Q|
∫

Q

|f(y)| dy (x ∈ Rn),

where the supremum is taken over the cubesQ centered at x and satisfying |Q| ≤ r.

2.5. Density of C∞
c (Rn) in Lp,s(w)

We will need the following density to obtain characterizations of Lp,s(w).

Theorem 2.19. C∞
c (Rn) is dense in Lp,s(w) whenever w ∈ Aloc

p .
E. Nakai, N. Tomita and K. Yabuta proved Theorem 2.19 for w ∈ Ap ([18,

Theorem 1.1]). We can easily prove Theorem 2.19 by the same arguments as the
proof of [18, Theorem 1.1] with the following uniformly boundedness stated in
Lemma 2.20.

Lemma 2.20. Let w ∈ Aloc
p and η be a function on Rn which is bounded,

compactly supported, non-negative, and radial decreasing as a function on (0,∞).
Define ηt(x) := t−nη(x/t) for t > 0. Then there exists a constantC > 0 depending
on n, p, Aloc

p (w) and η such that ‖ηt ∗ f‖Lp(w) ≤ C ‖f‖Lp(w) for all 0 < t ≤ 1
and f ∈ Lp(w).

Proof of Lemma 2.20. Let us take J ∈ N so that supp η ⊂ [−J, J]n. Following
the same calculations as [21, Proof of Proposition 2.3 in Chapter IV], we have

|ηt ∗ f(x)| ≤ 22n‖η‖L1(Rn)M
loc,(2tJ)n

f(x) ≤ 22n‖η‖L1(Rn)M
loc,(2J)n

f(x)



474 Mitsuo Izuki

for all 0 < t ≤ 1 and f ∈ Lp(w). By Proposition 2.18, there exists a constant C > 0
depending on J , n, p and Aloc

p (w) such that ‖M loc,(2J)n
f‖Lp(w) ≤ C‖f‖Lp(w).

Hence we get ‖ηt ∗ f‖Lp(w) ≤ C22n‖η‖L1(Rn) ‖f‖Lp(w).

2.6. Wavelets, scaling functions and Lp(w)

We recall known results on the characterizations and the constructions of bases
of Lp(w).

2.21. Notation For j ∈ Z and k ∈ Zn, we define a dyadic cube Qj,k :=
n∏

ν=1

[
2−jkν, 2−j(kν + 1)

)
and denote χj,k := 2jn/2χQj,k

.

Definition 2.22. Let r ∈ N. A function f on Rn is r-regular if for all m ∈ N
there exists a constant Cm > 0 such that |Dαf(x)| ≤ Cm(1+|x|)−m for all x ∈ Rn

and α ∈ Z n
+ with |α| ≤ r.

For example, the Meyer wavelet set consists of r-regular wavelets. Moreover if
we take a large N ∈ N sufficiently, the Daubechies wavelet becomes r-regular.

Lemarié-Rieusset gave a characterization and an unconditional basis of Lp(w)
with w ∈ Ap by the Daubechies wavelets in the case of one-variable. His proof is
due to the boundedness of Calderón-Zygmund operators on Lp(w). Following the
same method, Aimar, Bernardis and Mart´n-Reyes showed that the result given by
Lemarié-Rieusset was valid for 1-regular wavelets. More precisely, they obtained
the next theorem.

Theorem 2.23. [cf . [1, 14]] Let w ∈ Ap and {ψe}e∈E be a wavelet set
constructed by a multiresolution analysis such that each ψ e is 1-regular. Then
there exist two constants 0 < c ≤ C < ∞ depending only on n, p, A p(w) and
{ψe}e∈E such that for every f ∈ Lp(w),

c ‖f‖Lp(w) ≤

∥∥∥∥∥∥∥
∑

e∈E

∞∑
j=−∞

∑
k∈Zn

∣∣〈f, ψe
j,k〉χj,k

∣∣21/2
∥∥∥∥∥∥∥

Lp(w)

≤ C ‖f‖Lp(w) .

Additionally the wavelet basis {ψ e
j,k : e ∈ E, j ∈ Z, k ∈ Zn} forms an uncondi-

tional basis in Lp(w).

On the other hand, Lemarié-Rieusset gave the next result. The result shows that
we need not only wavelets but also scaling functions which construct wavelets if we
consider Lp(w) with w ∈ Aloc

p . Although he proved it in the case of one-variable,
it is true in the case of several-variables with obvious modifications applying tensor
products.
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Theorem 2.24. [cf . [14, Proposition 2 (ii)]] Let w ∈ Aloc
p , m ∈ Z, ϕ be the

Daubechies scaling function and {ψ e}e∈E be the Daubechies wavelet set associated
with ϕ. Define

Mp,w,m(f) :=

(∑
k∈Zn

∣∣∣〈f, ϕm,k〉 ‖ϕm,k‖Lp(w)

∣∣∣p)1/p

+

∥∥∥∥∥∥∥
∑

e∈E

∞∑
j=m

∑
k∈Zn

∣∣〈f, ψe
j,k〉χj,k

∣∣21/2
∥∥∥∥∥∥∥

Lp(w)

.

Then there exist two constants 0 < c ≤ C < ∞ depending only on n, p, A loc
p (w),

m and ϕ such that c‖f‖Lp(w) ≤ Mp,w,m(f) ≤ C‖f‖Lp(w) for all f ∈ Lp(w).
Additionally the sequence {ϕm,k}k∈Zn ∪{ψe

j,k : e ∈ E, j ≥ m, k ∈ Zn} forms an
unconditional basis in L p(w).

Applying the characterizations and the constructions of the unconditional bases
above, we can construct the greedy bases for Lp(w). Namely the next theorem
follows (cf. [9, Section 6]).

Theorem 2.25.

1. Let w ∈Ap and {ψe}e∈E be a wavelet set constructed by a multiresolution
analysis such that each ψ e is 1-regular. Define ψ̃e

j,k := ψe
j,k/‖ψe

j,k‖Lp(w) for

e∈E , j∈Z and k∈Zn. Then the sequence
{
ψ̃e

j,k : e ∈ E, j ∈ Z, k ∈ Zn
}

forms a greedy basis for Lp(w).

2. Let w ∈ Aloc
p , ϕ be the Daubechies scaling function and {ψ e}e∈E be the

Daubechies wavelet set associated with ϕ. Define ϕ̃m,k := ϕm,k/‖ϕm,k‖Lp(w)

and ψ̃e
j,k := ψe

j,k/‖ψe
j,k‖Lp(w) for e∈E , j ≥m and k ∈Zn. Then the se-

quence {ϕ̃m,k}k∈Zn ∪ {ψ̃e
j,k : e∈E, j ≥m, k ∈Zn} forms a greedy basis

for Lp(w).

In Section 5, we will construct the greedy bases for Lp,s(w) by means of wavelets
and scaling functions following the similar method.

3. THE CHARACTERIZATION OF Lp,s(w) WITH w ∈ Ap BY WAVELETS

Following statements in [8, Chapter 6], we can obtain the next characterization
of Lp,s(w) with w ∈ Ap by wavelets.
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Theorem 3.1. Let w ∈ Ap and {ψe}e∈E be a wavelet set constructed from a
multiresolution analysis such that each wavelet ψ e is (s + 1)-regular. Then there
exist two constants 0 < c ≤ C < ∞ depending only on n, p, A p(w), s and
{ψe}e∈E such that for all f ∈ Lp,s(w),

c‖f‖Lp,s(w) ≤

∥∥∥∥∥∥∥
∑

e∈E

∞∑
j=−∞

∑
k∈Zn

(1+22js)
∣∣〈f, ψe

j,k〉χj,k

∣∣21/2
∥∥∥∥∥∥∥

Lp(w)

≤ C‖f‖Lp,s(w).

Remark that we need some improvements on [8] to obtain Theorem 3.1. We use
Theorem 2.15, [18, Theorem 1.1] and Theorem 2.23 described already, in addition,
Lemma 3.3 and Proposition 3.4 as follows. We shall introduce the class of functions
Rr(Rn) in order to state them.

Definition 3.2. Let r ∈ Z+. The set Rr(Rn) consists of all f ∈ Cr+1(Rn)
satisfying that there exist constants ε, γ > 0 and Cα > 0 for each α ∈ Z+

n with
|α| ≤ r + 1 such that

1.
∫

Rn

xαf(x) dx = 0 for every |α| ≤ r + 1,

2. |f(x)| ≤ C(0,...,0)(1 + |x|)−(2+r+γ)n,

3. |Dαf(x)| ≤ Cα(1 + |x|)−(1+ε)n for every 1 ≤ |α| ≤ r + 1.

For example, if ψe is an (r + 1)-regular wavelet constructed from a multireso-
lution analysis for some r ∈ Z+, then ψe ∈ Rr(Rn) (cf. [17]).

Lemma 3.3. Theorem 1.1. Let r ∈ Z+, {Φe}e∈E, {ψe}e∈E ⊂ Rr(Rn) and
w ∈ Ap. Define

W [r, {Φe}e] (f) :=

∑
e∈E

∞∑
j=−∞

∑
k∈Zn

∣∣2jr〈f,Φe
j,k〉χj,k

∣∣21/2

.

If {ψe}e∈E is a wavelet set, then there exists a constant C > 0 depending only on
n, p, Ap(w), r, {Φe}e∈E and {ψe}e∈E such that for all f ∈ Lp(w),

‖W [r, {Φe}e] (f)‖Lp(w) ≤ C ‖W [r, {ψe}e] (f)‖Lp(w) .

Hernández and Weiss proved Lemma 3.3 for the non-weighted case using the
non-weighted version of Proposition 2.17 ([8, Theorem 4.9 and Theorem 6.21 in
Chapter 6]). Going through the same arguments as [8] with Proposition 2.17, we
can get Lemma 3.3.
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We also have the following proposition.

Proposition 3.4. Let w ∈ Ap and {Φe}e∈E ⊂ Rs(Rn). Then there exists a
constant C > 0 depending only on n, p, Ap(w), s and {Φe}e∈E such that for all
f ∈ Lp,s(w),

‖W [s, {Φe}e] (f)‖Lp(w) ≤ C‖f‖Lp,s(w).

The next proposition and Lemma 3.3 are important in order to show Proposition
3.4.

Proposition 3.5. [[4, Theorem 1.2] , cf . [3, 11]] Let w ∈ Ap, λ > n and
{φj}j∈Z ⊂ S(Rn). Define φ∗∗j,λ(f)(x) := sup

y∈Rn

{
|φj ∗ f(x− y)|(1 + 2j|y|)−λ

}
and assume the following:

1. There exists a constant a > 0 independent of j such that suppF [φ j] ⊂{
2j−a ≤ |ξ| ≤ 2j+a

}
for all j ∈ Z.

2. For each α ∈ Z+
n, there exists a constant Cα > 0 such that |DαF [φj](ξ)| ≤

Cα2−j|α| for all ξ ∈ Rn and j ∈ Z.

Then there exists a constant C > 0 depending only on n, p, A p(w), s, λ and
{φj}j∈Z such that for every f ∈ Lp,s(w),∥∥∥∥∥∥∥


∞∑

j=−∞

(
2jsφ∗∗j,λ(f)

)2
1/2
∥∥∥∥∥∥∥

Lp(w)

≤ C ‖f‖Lp,s(w) .

Proof of Proposition 3.4. Let {ψ e}e∈E be the Meyer wavelet set described in
Example 2.3.1. By Lemma 3.3, there exists a constant C0 > 0 depending only on
n, p, Ap(w), s, {Φe}e and {ψe}e such that for every f ∈ Lp,s(w),

‖W [s, {Φe}e] (f)‖Lp(w) ≤ C0 ‖W [s, {ψe}e] (f)‖Lp(w) .

Denote φe
j(y) := 2jnψe(−2jy) for j ∈ Z and e ∈ E . Take λ > n arbitrarily.

Following the same calculations as [8, Proof of Theorem 4.2 in Chapter 6], we
have ∑

k∈Zn

∣∣〈f, ψe
j,k〉χj,k(x)

∣∣2 ≤ (1 +
√
n
)2λ

φe∗∗
j,λ (f)(x)2.

Namely we obtain that

W [s, {ψe}e] (f) ≤ (1 +
√
n
)λ ∑

e∈E


∞∑

j=−∞

(
2jsφe∗∗

j,λ (f)
)2

1/2

.
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Now remark that {φe
j}j∈Z ⊂ S(Rn) satisfies the assumptions of Proposition 3.5 .

Hence there exists a constant C1 > 0 depending only on n, p, Ap(w), s, λ and
{ψe}e∈E such that

‖W [s, {ψe}e] (f)‖Lp(w) ≤
(
1 +

√
n
)λ (2n − 1)C1 ‖f‖Lp,s(w) .

Therefore we get ‖W [s, {Φe}e] (f)‖Lp(w) ≤ (1 +
√
n)λ (2n − 1)C0C1 ‖f‖Lp,s(w).

Proof of Theorem 3.1. Theorem 2.23 and Proposition 3.4 prove the right-hand
side inequality. We will prove the left-hand side inequality. By Theorems 2.15 and
2.23, we have only to estimate

∥∥Dβf
∥∥

Lp(w)
for all β ∈ Z+

n with |β| = s and
f ∈ Lp,s(w). By the duality, it follows that∥∥∥Dβf

∥∥∥
Lp(w)

= sup
g

{∣∣∣∣∫
Rn

Dβf(x)g(x) dx
∣∣∣∣ : ‖g‖Lp′(v) ≤ 1

}
,

where v := w−1/(p−1). As a result of [18, Theorem 1.1] and the right-hand side
inequality, it suffices to prove that∣∣∣∣∫

Rn

Dβf(x)g(x) dx
∣∣∣∣≤ C ‖W [s, {ψe}e] (f)‖Lp(w)

for all f, g ∈ S(Rn) with ‖g‖Lp′(v) ≤ 1, where C > 0 is a constant independent of
β, f and g. Because the wavelet basis {ψe

j,k : e ∈ E, j ∈ Z, k ∈ Zn} forms an
orthonormal basis in L2(Rn), we obtain that∣∣∣∣∫

Rn

Dβf(x)g(x) dx
∣∣∣∣= ∣∣∣∣∫

Rn

f(x)Dβg(x) dx
∣∣∣∣

=

∣∣∣∣∣∣
∫

Rn

∑
e∈E

∞∑
j=−∞

∑
k∈Zn

〈f, ψe
j,k〉ψe

j,k(x)


·
∑

e∈E

∞∑
j=−∞

∑
k∈Zn

〈Dβg, ψe
j,k〉ψe

j,k(x)

 dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
e∈E

∞∑
j=−∞

∑
k∈Zn

〈f, ψe
j,k〉〈Dβg, ψe

j,k〉
∣∣∣∣∣∣

≤
∑
e∈E

∞∑
j=−∞

∑
k∈Zn

∣∣∣〈f, ψe
j,k〉〈g, 2js(Dβψe)j,k〉

∣∣∣ · ∫
Rn

χj,k(x)2 dx

=
∫

Rn

∑
e∈E

∞∑
j=−∞

∑
k∈Zn

∣∣∣2js〈f, ψj,k〉χj,k(x) · 〈g, (Dβψe)j,k〉χj,k(x)
∣∣∣ dx.
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Therefore by the Cauchy-Schwartz inequality and Hölder’s inequality, we have that∣∣∣∣∫
Rn
Dβf(x)g(x) dx

∣∣∣∣ ≤ ∫
Rn

W [s, {ψe}e] (f)(x) · W
[
0,
{
Dβψe

}
e

]
(g)(x) dx

≤ ‖W [s, {ψe}e] (f)‖Lp(w)

∥∥∥W [0,{Dβψe
}

e

]
(g)
∥∥∥

Lp′ (v)
.

Now let {Ψe}e∈E be a wavelet set constructed from a multiresolution analysis such
that each Ψe is 1-regular. In view of Lemma 3.3 and Theorem 2.23, we get∥∥∥W [0,{Dβψe

}
e

]
(g)
∥∥∥

Lp′ (v)
≤ C0 ‖W [0, {Ψe}e] (g)‖Lp′(v) ≤ C1‖g‖Lp′(v) ≤ C1,

where C0, C1 > 0 are constants depending only on n, p, Ap(w), s, {ψe}e∈E and
{Ψe}e∈E.

4. THE CHARACTERIZATION OF Lp,s(w) WITH w ∈ Aloc
p BY WAVELETS AND SCALING

FUNCTIONS

In this section, we characterize Lp,s(w) with w ∈ Aloc
p by wavelets and scaling

functions with proper smoothness and compact support. We have the next main
result.

Theorem 4.1. Let w ∈ Aloc
p , ϕ be the Daubechies scaling function and

{ψe}e∈E be the Daubechies wavelet set associated with ϕ. Suppose ϕ ∈ C s+1(Rn)
and {ψe}e∈E ⊂ Cs+1(Rn). Define

V [s, {ψe}e] (f) :=

∑
e∈E

∞∑
j=0

∑
k∈Zn

∣∣2js〈f, ψe
j,k〉χj,k

∣∣21/2

N s
p,w(f) :=

(∑
k∈Zn

∣∣〈f, ϕ0,k〉‖ϕ0,k‖Lp(w)

∣∣p)1/p

+ ‖V [s, {ψe}e] (f)‖Lp(w) .

Then there exist two constants c, C > 0 depending only on n, p, A loc
p (w), s and ϕ

such that c‖f‖Lp,s(w) ≤ N s
p,w(f) ≤ C‖f‖Lp,s(w) for all f ∈ Lp,s(w).

We need the following proposition in order to prove the characterization above.

Proposition 4.2. Let w ∈ Aloc
p and {Ψe}e∈E be a set of functions in R s(Rn)

with compact support. Then there exists a constant C > 0 depending only on n, p,
Aloc

p (w), s and {Ψe}e∈E such that ‖V [s, {Ψe}e] (f)‖Lp(w) ≤ C‖f‖Lp,s(w) for all
f ∈ Lp,s(w).
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Proof of Proposition 4.2. Let ϕ be the Daubechies scaling function in C s(Rn)
with suppϕ = [0, 2N − 1]n for some positive integer N ≥ 2 and write fl(x) :=
f(x)ϕ(x− l) for each l ∈ Zn. Then we have

∑
l∈Zn

ϕ(x− l) = 1 by [8, Proposition

3.14 in Chapter 5] or [22, Proposition 2.17]. Thus we get the decomposition that
f =

∑
l∈Zn

fl. Let us choose m ∈ N so that supp Ψ ⊂ [−m,m]n. Then we see that

suppV [s, {Ψe}e] (fl) ⊂
n∏

ν=1

[lν −m, lν + 2N +m] =: Dl for each l ∈ Zn. On the

other hand, for all x ∈ Rn, there exists a uniqueL = L(x) ∈ Zn such that x ∈ Q0,L.
Denoting A(L) :=

{
l ∈ Zn : Lν +1−2N−m ≤ lν ≤ Lν +m for all 1 ≤ ν ≤ n

}
,

we get that

|V [s, {Ψe}e] (f)(x)|p ≤
∣∣∣∣∣∑
l∈Zn

V [s, {Ψe}e] (fl)(x)

∣∣∣∣∣
p

=

∣∣∣∣∣∣
∑

l∈A(L)

V [s, {Ψe}e] (fl)(x)

∣∣∣∣∣∣
p

≤
∑

l∈A(L)

|V [s, {Ψe}e] (fl)(x)|p · 	A(L)p/p′

≤ (2m+ 2N )n(p−1)
∑
l∈Zn

|V [s, {Ψe}e] (fl)(x)|p .

Therefore it follows that

‖V [s, {Ψe}e] (f)‖p
Lp(w)

≤ (2m+ 2N )n(p−1)

∫
Rn

∑
l∈Zn

|V [s, {Ψe}e] (fl)(x)|p w(x) dx

= (2m+ 2N )n(p−1)
∑
k∈Zn

∫
Q0,k

∑
l∈Zn

|V [s, {Ψe}e] (fl)(x)|p w(x) dx

= (2m+ 2N )n(p−1)
∑
k∈Zn

∫
Q0,k

∑
l∈A(k)

|V [s, {Ψe}e] (fl)(x)|pw(x) dx

≤ (2m+ 2N )n(p−1)
∑
k∈Zn

∑
l∈A(k)

∫
Dl

|V [s, {Ψe}e] (fl)(x)|p w(x) dx.

If we invoke Lemma 2.7, we get {wl}l∈Zn ⊂ Ap such thatAp(wl) ≤ 3npA
loc,2n(m+N)n

p

(w) and wl = w on Dl for all l ∈ Zn. Thus we obtain that

‖V [s, {Ψe}e] (f)‖p
Lp(w)

≤ (2m+ 2N )n(p−1)
∑
k∈Zn

∑
l∈A(k)

‖V [s, {Ψe}e] (fl)‖p
Lp(wl)

.
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Denote Gl :=
n∏

ν=1

[lν, lν + 2N − 1] = suppϕ(x − l). Then we see that wl = w

on Gl for every l ∈ Zn. Additionally by Proposition 3.4, there exists a constant
C0 > 0 depending only on n, p, Aloc

p (w), s and {Ψe}e such that for each k ∈ Zn

and l ∈ A(k),

‖V [s, {Ψe}e] (fl)‖p
Lp(wl)

≤ ‖W [s, {Ψe}e] (fl)‖p
Lp(wl)

≤ C0 ‖fl‖p
Lp,s(wl)

≤ C1

∑
|α|≤s

∫
Gl

|Dαf(x)|pwl(x) dx

= C1

∑
|α|≤s

∫
Gl

|Dαf(x)|pw(x) dx,

where C1 > 0 is a constant depending only on n, p, s, C0 and ϕ. Thus we obtain
that

‖V [s, {Ψe}e] (f)‖Lp(w)

≤
(2m+ 2N )n(p−1) ·C1 · (2N − 1)n(2m+ 2N )n

∑
|α|≤s

‖Dαf‖p
Lp(w)


1/p

≤ C2‖f‖Lp,s(w),

where C2 > 0 is a constant depending only on n, p, Aloc
p (w), s, {Ψe}e and ϕ.

Proof of Theorem 4.1. First we show the right-hand side inequality of the
characterization. The estimate of ‖V [s, {ψe}e] (f)‖Lp(w) is shown by Proposition
4.2. We estimate the first term of N s

p,w(f). Let N ≥ 2 be the positive integer
such that suppϕ = suppψe = [0, 2N − 1]n for every e ∈ E . Denote Gk :=
n∏

ν=1

[kν, kν + 2N − 1] = suppϕ0,k and v := w−1/(p−1). By Hölder’s inequality, we

obtain that∑
k∈Zn

∣∣〈f, ϕ0,k〉‖ϕ0,k‖Lp(w)

∣∣p
=
∑
k∈Zn

|〈f, ϕ0,k〉|p · ‖ϕ0,k‖p
Lp(w)

≤
∑
k∈Zn

∫
Gk

|f(x)|p w(x) dx ·
(∫

Gk

|ϕ0,k(x)|p′v(x) dx
)p−1

· ‖ϕ‖p
L∞(Rn)

w(Gk)
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≤ ‖ϕ‖2p
L∞(Rn)

∑
k∈Zn

∫
Gk

|f(x)|p w(x) dx · w(Gk)v(Gk)p−1

≤ ‖ϕ‖2p
L∞(Rn)(2N − 1)npAloc,(2N−1)n

p (w)
∑
k∈Zn

∫
Gk

|f(x)|pw(x) dx

≤ ‖ϕ‖2p
L∞(Rn)

(2N − 1)n(p+1)Aloc,(2N−1)n

p (w)‖f‖p
Lp(w)

.

Next we prove the left-hand side inequality. By the duality, we see that

‖Dαf‖Lp(w) = sup
g

{∣∣∣∣∫
Rn

Dαf(x)g(x) dx
∣∣∣∣ : ‖g‖Lp′(v) ≤ 1

}
,

for all f ∈ Lp,s(w) and α ∈ Z+
n with |α| ≤ s. Thus, in view of Theorem 2.19

and the right-hand side inequality, it suffices to show that∣∣∣∣∫
Rn

Dαf(x)g(x) dx
∣∣∣∣≤ CN s

p,w(f)

for all f, g ∈ C∞
c (Rn) with ‖g‖Lp′(v) ≤ 1, where C > 0 is a constant independent

of α, f and g. Because {ϕ0,k}k∈Zn ∪ {ψe
j,k : e ∈ E, j ∈ Z+, k ∈ Zn} forms an

orthonormal basis in L2(Rn), we obtain that∣∣∣∣∫
Rn

Dαf(x)g(x) dx
∣∣∣∣= ∣∣∣∣∫

Rn

f(x)Dαg(x) dx
∣∣∣∣

=

∣∣∣∣∣
∫

Rn

∑
k∈Zn

〈f, ϕ0,k〉ϕ0,k(x) +
∑
e∈E

∞∑
j=0

∑
k∈Zn

〈f, ψe
j,k〉ψe

j,k(x)


×
∑

k∈Zn

〈Dαg, ϕ0,k〉ϕ0,k(x) +
∑
e∈E

∞∑
j=0

∑
k∈Zn

〈Dαg, ψe
j,k〉ψe

j,k(x)

 dx

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
k∈Zn

〈f, ϕ0,k〉〈Dαg, ϕ0,k〉 +
∑
e∈E

∞∑
j=0

∑
k∈Zn

〈f, ψe
j,k〉〈Dαg, ψe

j,k〉
∣∣∣∣∣∣ .

We estimate

∣∣∣∣∣∑
k∈Zn

〈f, ϕ0,k〉〈Dαg, ϕ0,k〉
∣∣∣∣∣ first. By Hölder’s inequality, we see that

1 =
∫

Rn
|ϕ0,k(x)|2 dx ≤ ‖ϕ0,k‖Lp(w)‖ϕ0,k‖Lp′(v)
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for every k ∈ Zn. We shall also remark that |〈Dαg, ϕ0,k〉| = |〈g, (Dαϕ)0,k〉|. Using
Hölder’s inequality again, we are led to∣∣∣∣∣∑

k∈Zn

〈f, ϕ0,k〉〈Dαg, ϕ0,k〉
∣∣∣∣∣

≤
∑
k∈Zn

∣∣∣〈f, ϕ0,k〉‖ϕ0,k‖Lp(w) · 〈g, (Dαϕ)0,k〉‖ϕ0,k‖Lp′(v)

∣∣∣
≤
(∑

k∈Zn

∣∣〈f, ϕ0,k〉‖ϕ0,k‖Lp(w)

∣∣p)1/p

·
(∑

l∈Zn

∣∣∣〈g, (Dαϕ)0,l〉‖ϕ0,l‖Lp′(v)

∣∣∣p′)1/p′

.

Note that suppϕ0,l, supp(Dαϕ)0,l ⊂ Gl for each l ∈ Zn. The same calculation as
the proof of the right-hand side inequality works and we obtain∑

l∈Zn

∣∣∣〈g, (Dαϕ)0,l〉‖ϕ0,l‖Lp′(v)

∣∣∣p′ ≤ Cp′
1 ‖g‖p′

Lp′(v)
,

where C1 := max
|α|≤s

‖Dαϕ‖2
L∞(Rn)(2N − 1)n(1+1/p′)A

loc,(2N−1)n

p′ (v)1/p′. Hence we

get∣∣∣∣∣∑
k∈Zn

〈f, ϕ0,k〉〈Dαg, ϕ0,k〉
∣∣∣∣∣ ≤ C1

(∑
k∈Zn

∣∣〈f, ϕ0,k〉‖ϕ0,k‖Lp(w)

∣∣p)1/p

‖g‖Lp′(v).

Next we estimate

∣∣∣∣∣∣
∑
e∈E

∞∑
j=0

∑
k∈Zn

〈f, ψe
j,k〉〈Dαg, ψe

j,k〉
∣∣∣∣∣∣. By straightforward calcula-

tions and Hölder’s inequality, we obtain that∣∣∣∣∣∣
∑
e∈E

∞∑
j=0

∑
k∈Zn

〈f, ψe
j,k〉〈Dαg, ψe

j,k〉
∣∣∣∣∣∣

≤
∑
e∈E

∞∑
j=0

∑
k∈Zn

∣∣∣〈f, ψe
j,k〉〈g, 2j|α|(Dαψe)j,k〉

∣∣∣ · ∫
Rn

χj,k(x)2 dx

=
∫

Rn

∑
e∈E

∞∑
j=0

∑
k∈Zn

∣∣∣2js〈f, ψe
j,k〉χj,k(x) · 2j(|α|−s)〈g, (Dαψe)j,k〉χj,k(x)

∣∣∣ dx
=
∫

Rn

∑
e∈E

∞∑
j=0

∑
k∈Zn

∣∣2js〈f, ψe
j,k〉χj,k(x) · 〈g, (Dαψe)j,k〉χj,k(x)

∣∣ dx
≤
∫

Rn

V [s, {ψe}e] (f)(x) · V [0, {Dαψe}e] (g)(x) dx

≤ ‖V [s, {ψe}e] (f)‖Lp(w) ‖V [0, {Dαψe}e] (g)‖Lp′(v) .
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Now remark that supp V [0, {Dαψe}e] (g ·χQ0,l
) ⊂

n∏
ν=1

[lν−2N+1, lν+2] =: El for

each l ∈ Zn. On the other hand, for all x ∈ Rn, there exists a unique L = L(x) ∈
Zn such that x ∈ Q0,L. Denote B(L) := {l ∈ Zn : Lν − 1 ≤ lν ≤ Lν + 2N − 1
for all 1 ≤ ν ≤ n}. Then we get

|V [0, {Dαψe}e] (g)(x)|p
′ ≤

∣∣∣∣∣∑
l∈Zn

V [0, {Dαψe}e] (g · χQ0,l
)(x)

∣∣∣∣∣
p′

=

∣∣∣∣∣∣
∑

l∈B(L)

V [0, {Dαψe}e] (g · χQ0,l
)(x)

∣∣∣∣∣∣
p′

≤
∑

l∈B(L)

∣∣V [0, {Dαψe}e] (g · χQ0,l
)(x)
∣∣p′ · 	B(L)p′/p

≤ (2N + 1)n(p′−1)
∑
l∈Zn

∣∣V [0, {Dαψe}e] (g · χQ0,l
)(x)
∣∣p′ .

Therefore it follows that

‖V [0, {Dαψe}e] (g)‖p′

Lp′(v)

≤ (2N + 1)n(p′−1)

∫
Rn

∑
l∈Zn

∣∣V [0, {Dαψe}e] (g · χQ0,l
)(x)
∣∣p′ v(x) dx

= (2N + 1)n(p′−1)
∑
k∈Zn

∫
Q0,k

∑
l∈Zn

∣∣V [0, {Dαψe}e] (g · χQ0,l
)(x)
∣∣p′ v(x) dx

= (2N + 1)n(p′−1)
∑
k∈Zn

∫
Q0,k

∑
l∈B(k)

∣∣V [0, {Dαψe}e] (g · χQ0,l
)(x)
∣∣p′ v(x) dx

≤ (2N + 1)n(p′−1)
∑
k∈Zn

∑
l∈B(k)

∫
El

∣∣V [0, {Dαψe}e] (g · χQ0,l
)(x)
∣∣p′ v(x) dx.

By Lemma 2.7, we can construct {vl}l∈Zn ⊂ Ap′ such that vl = v on El and
Ap′(vl) ≤ 3np′A

loc,(2N+1)n

p′ (v) for every l ∈ Zn. In addition, let {Ψe}e∈E be a
wavelet set constructed from a multiresolution analysis such that each Ψe is 1-
regular. By virtue of Lemma 3.3 and Theorem 2.23, we have that∥∥V [0, {Dαψe}e] (g · χQ0,l

)
∥∥p′

Lp′ (vl)
≤ ∥∥W [0, {Dαψe}e] (g · χQ0,l

)
∥∥p′

Lp′(vl)

≤ C2

∥∥W [0, {Ψe}e] (g · χQ0,l
)
∥∥p′

Lp′(vl)

≤ C3

∥∥g · χQ0,l

∥∥p′

Lp′(vl)
= C3

∥∥g · χQ0,l

∥∥p′

Lp′(v)
,
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where C2, C3 > 0 are constants depending only on n, p, Aloc
p (w), s, {ψe}e∈E and

{Ψe}e∈E. Now write C4 := (2N + 1)n/pC
1/p′
3 . Then it follows that

‖V [0, {Dαψe}e] (g)‖p′

Lp′ (v)

≤ (2N + 1)n(p′−1)
∑
k∈Zn

∑
l∈B(k)

C3

∥∥g · χQ0,l

∥∥p′

Lp′ (v)
= Cp′

4 ‖g‖p′

Lp′(v)
.

Namely we get∣∣∣∣∣∣
∑
e∈E

∞∑
j=0

∑
k∈Zn

< f, ψe
j,k >< Dαg, ψe

j,k >

∣∣∣∣∣∣ ≤ C4 ‖V [s, {ψe}e] (f)‖Lp(w) ‖g‖Lp′(v).

Consequently we have∣∣∣∣∫
Rn

Dαf(x)g(x) dx
∣∣∣∣≤max{C1, C4}N s

p,w(f)‖g‖Lp′(v)≤max{C1, C4}N s
p,w(f).

5. THE GREEDY BASES OF Lp,s(w)

As is mentioned in [9], in the case of weighted Lp spaces Lp(w), if we have
the characterization and the unconditional basis of Lp(w) by wavelets and scaling
functions, then we can establish the greedy basis given by them following the same
statements as [5]. In this section, we show the similar arguments are applicable to
Lp,s(w).

Theorem 5.1.

1. Let w ∈ Ap and {ψe}e∈E be a wavelet set constructed from a multiresolution
analysis such that each ψ e is (s+ 1)-regular. Then the following (a) and (b)
hold:

(a) The wavelet basis {ψe
j,k : e ∈ E, j ∈ Z, k ∈ Zn} forms an uncondi-

tional basis for Lp,s(w).
(b) Define ψ̃e

j,k := ψe
j,k/‖ψe

j,k‖Lp,s(w) for e ∈ E , j ∈ Z and k ∈ Zn. Then

the sequence
{
ψ̃e

j,k : e ∈ E, j ∈ Z, k ∈ Zn
}

forms a greedy basis
for Lp,s(w).

2. Let w ∈ Aloc
p , ϕ be the Daubechies scaling function and {ψ e}e∈E be the

Daubechies wavelet set associated with ϕ such that ϕ ∈ C s+1(Rn) and
{ψe}e∈E ⊂ Cs+1(Rn). Then the following (a) and (b) hold:
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(a) The sequence {ϕ0,k}k∈Zn ∪ {ψe
j,k : e ∈ E, j ∈ Z+, k ∈ Zn} forms an

unconditional basis for L p,s(w).
(b) Define ϕ̃0,k := ϕ0,k/‖ϕ0,k‖Lp,s(w) and ψ̃e

j,k := ψe
j,k/‖ψe

j,k‖Lp,s(w) for
e ∈ E , j ∈ Z+ and k ∈ Zn. Then the sequence {ϕ̃0,k}k∈Zn ∪ {ψ̃e

j,k :
e ∈ E, j ∈ Z+, k ∈ Zn} forms a greedy basis for Lp,s(w).

Proof of Theorem 5.1. We shall concentrate on 2, 1 being proved similarly.
To begin with, we shall prove (a). It suffices to check the following two con-

ditions:

(I) There exists a constantC>0 independentoff , AandB such that ‖TA,Bf‖Lp,s(w)

≤ C ‖f‖Lp,s(w) for all f ∈ Lp,s(w) and all finite subsets A ⊂ Zn and B ⊂
E × Z+ × Zn, where TA,Bf :=

∑
k∈A

〈f, ϕ0,k〉ϕ0,k +
∑

(e,j,k)∈B

〈
f, ψe

j,k

〉
ψe

j,k.

(II) The set span{ϕ0,k}k∈Zn ∪ span{ψe
j,k : e ∈ E, j ∈ Z+, k ∈ Zn} is dense in

Lp,s(w).

We show the condition (I) first. By the orthonormality and Theorem 4.1, we
obtain

c ‖TA,Bf‖Lp,s(w) ≤ N s
p,w(TA,Bf) ≤ N s

p,w(f) ≤ C‖f‖Lp,s(w),

where 0 < c ≤ C <∞ are the constants appearing in Theorem 4.1.
Next we check (II). We give an outline of the proof. It suffices to prove that

for all f ∈ Lp,s(w),

lim
A↗Zn,B↗E×Z+×Zn

N s
p,w(f − TA,Bf) = 0,

since c ‖f − TA,Bf‖Lp,s(w) ≤ N s
p,w(f−TA,Bf) by Theorem 4.1. We split N s

p,w(f−
TA,Bf) by N s

p,w(f − TA,Bf) = N1(f − TA,Bf) + N2(f − TA,Bf) with

N1(f) :=

(∑
k∈Zn

∣∣∣〈f, ϕ0,k〉 ‖ϕ0,k‖Lp(w)

∣∣∣p)1/p

and N2(f) := ‖V [s, {ψe}e] (f)‖Lp(w) .

The orthonormality of the system {ϕ0,k}k∈Zn ∪ {ψe
j,k : e ∈ E, j ∈ Z+, k ∈ Zn}

with regard to the L2-inner product, the boundedness of Nν(f − TA,Bf) for each
ν = 1, 2 and Lebesgue’s dominated convergence theorem give us the desired result.

Next we prove (b). The proof we give here is essentially the same as [9, Section
5.3], and based on [5, the proof of Lemma 4.1]. We prepare the following two
lemmas.



Sobolev Spaces by Wavelets 487

Lemma 5.2. Let w ∈ Aloc
p . Then w satisfies the dyadic reverse doubling

condition, i.e., there exists a constant d > 1 independent of I and I ′ such that
dw(I ′) ≤ w(I) for all dyadic cubes I, I ′ with I ′ � I .

The proof of Lemma 5.2 is found in [7, p. 141] or [20, Proof of Corollary 1.1].
We also have the next estimate.

Lemma 5.3. Let w ∈ Aloc
p , ϕ be the Daubechies scaling function and {ψ e}e∈E

be the Daubechies wavelet set associated with ϕ such that ϕ ∈ C s+1(Rn) and
{ψe}e∈E ⊂ Cs+1(Rn). Define

Ṽ [s, {ψe}e] (f) :=

∑
e∈E

∞∑
j=0

∑
k∈Zn

∣∣∣w(Qj,k)−1/p
∥∥ψe

j,k

∥∥
Lp,s(w)

〈f, ψe
j,k〉χQj,k

∣∣∣2
1/2

.

Then we have

c
∥∥∥Ṽ [s, {ψe}e] (f)

∥∥∥
Lp(w)

≤ ‖V [s, {ψe}e] (f)‖Lp(w) ≤ C
∥∥∥Ṽ [s, {ψe}e] (f)

∥∥∥
Lp(w)

for all f ∈ Lp,s(w), where 0 < c ≤ C < ∞ are the constants appearing in
Theorem 4.1.

Proof of Lemma 5.3. For each e ∈ E , j ∈ Z+ and k ∈ Zn, we have that

N s
p,w(ψe

j,k) =
∥∥2jsχj,k

∥∥
Lp(w)

= 2js+jn/2w(Qj,k)1/p.

On the other hand, by Theorem 4.1, we obtain

C−1N s
p,w(ψe

j,k) ≤
∥∥ψe

j,k

∥∥
Lp,s(w)

≤ c−1N s
p,w(ψe

j,k).

Namely it follows that C−12js ≤ w(Qj,k)−1/p
∥∥∥ψe

j,k

∥∥∥
Lp,s(w)

2−jn/2 ≤ c−12js. This

estimate shows the desired result.

Now let us return to the proof of Theorem 5.1 (b). In view of Theorem 5.1 (a)
and Theorem 2.12, it is enough to prove that {ϕ̃0,k}k∈Zn ∪ {ψ̃e

j,k : e ∈ E, j ∈
Z+, k ∈ Zn} is democratic. We see that {ϕ0,k}k∈Zn ∪{ψe

j,k : e ∈ E, j ∈ Z+, k ∈
Zn} forms an unconditional basis for Lp,s(w) by (a). Thus for all f ∈ Lp,s(w) we
can write

f =
∑
k∈Zn

ak(f)ϕ̃0,k +
∑
e∈E

∞∑
j=0

∑
k∈Zn

bej,k(f)ψ̃e
j,k,
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where ak(f) := 〈f, ϕ0,k〉‖ϕ0,k‖Lp,s(w) and bej,k(f) := 〈f, ψe
j,k〉‖ψe

j,k‖Lp,s(w). Now
define

Ñ s
p,w(f) :=

(∑
k∈Zn

∣∣〈f, ϕ0,k〉‖ϕ0,k‖Lp,s(w)

∣∣p)1/p

+
∥∥∥Ṽ [s, {ψe}e] (f)

∥∥∥
Lp(w)

.

By Theorem 4.1, we see that c‖ϕ0,k‖Lp,s(w) ≤ N s
p,w(ϕ0,k) = ‖ϕ0,k‖Lp(w) ≤

‖ϕ0,k‖Lp,s(w). Thus Lemma 5.3 gives us c′‖f‖Lp,s(w) ≤ Ñ s
p,w(f) ≤ C′‖f‖Lp,s(w),

where 0 < c′ ≤ C′ < ∞ are constants depending only on n, p, Aloc
p (w), s and ϕ.

Then we have

c′‖f‖Lp,s(w) ≤
(∑

k∈Zn

|ak(f)|p
)1/p

+

∥∥∥∥∥∥∥
∑

e∈E

∞∑
j=0

∑
k∈Zn

∣∣∣w(Qj,k)−1/pbej,k(f)χQj,k

∣∣∣2
1/2

∥∥∥∥∥∥∥
Lp(w)

≤ C′‖f‖Lp,s(w).

(3)

Let us denote ϕ̃Q := ϕ̃j,k and ψ̃e
Q := ψ̃e

j,k for a dyadic cube Q = Qj,k . Now we
take finite subsetsA ⊂ {Q0,k}k∈Zn and Λ ⊂ {(e, Qj,k) : e ∈ E, j ∈ Z+, k ∈ Zn},
and write g :=

∑
I∈A

ϕ̃I +
∑

(e,J)∈Λ

ψ̃e
J . We also denote B :=

{
Qj,k : (e, Qj,k) ∈

Λ for some e ∈ E
}

. Note that 	B ≤ 	Λ ≤ (2n − 1)	B. Using (3), we obtain

c′‖g‖Lp,s(w)

≤ (	A)1/p +

∥∥∥∥∥∥∥
 ∑

(e,J)∈Λ

∣∣∣w(J)−1/pχJ

∣∣∣2
1/2

∥∥∥∥∥∥∥
Lp(w)

≤ (	A)1/p+(2n−1)1/2


∫ ⋃

J ′∈B

J ′

(∑
J∈B

w(J)−2/pχJ (x)

)p/2

w(x) dx


1/p

.

(4)

For each x ∈
⋃

J∈B

J , J1(x) denotes the minimal dyadic cube in B with regard to

the inclusion relation that contains x. Then we get∑
J∈B w(J)−2/pχJ (x) ≤∑∞

r=0w(Jr)−2/p, (5)
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where J0 := J1(x), Jr is a dyadic cube satisfying Jr−1 ⊂ Jr and 2n |Jr−1| = |Jr|
for every r ∈ N. By Lemma 5.2, there exists a constant d > 1 such that w (Jr) ≥
dw (Jr−1) ≥ . . . ≥ dr w (J0) = dr w (J1(x)) for all r ∈ N. Thus we have

∞∑
r=0

w(Jr)−2/p ≤
∞∑

r=0

(drw(J1(x)))−2/p = C0w(J1(x))−2/p, (6)

where C0 := (1− d−2/p)−1. Following (5) and (6), we obtain

∫ ⋃
J ′∈B

J ′

(∑
J∈B

w(J)−2/pχJ (x)

)p/2

w(x) dx

≤
∫ ⋃

J ′∈B

J ′

(
C0w(J1(x))−2/p

)p/2
w(x) dx

= C
p/2
0

∫ ⋃
J ′∈B

J ′ w(J1(x))−1w(x) dx.

(7)

Now we set J̃ :=

{
x ∈

⋃
J ′∈B

J ′ : J1(x) = J

}
for each J ∈ B. Then, since J̃ ⊂ J

and
⋃

J ′∈B

J ′ =
⋃

J∈B

J̃ , it follows that

∫ ⋃
J ′∈B

J ′ w (J1(x))
−1w(x) dx =

∫ ⋃
J∈B

J̃
w (J1(x))

−1w(x) dx

≤
∑
J∈B

∫
J̃
w (J1(x))

−1 w(x) dx

=
∑
J∈B

∫
J
w (J)−1w(x) dx

= 	B.

(8)

Following (4)-(8), we have c‖g‖Lp.s(w) ≤ (	A)1/p+C1/2
0 (2n−1)1/2 (	B)1/p. Hence

there exists a constant C1 > 0 independent of g, A and Λ such that

‖g‖Lp,s(w) ≤ C1 {	A+ 	Λ}1/p . (9)



490 Mitsuo Izuki

On the other hand, applying (3) to f = g again, we have

C′‖g‖Lp,s(w)

≥ (	A)1/p +

∥∥∥∥∥∥∥
 ∑

(e,J)∈Λ

∣∣∣w(J)−1/pχJ

∣∣∣2
1/2

∥∥∥∥∥∥∥
Lp(w)

≥ (	A)1/p +


∫ ⋃

J ′∈B

J ′

(∑
J∈B

w(J)−2/pχJ(y)

)p/2

w(x) dx


1/p

.

(10)

For each x ∈
⋃

J∈B

J , we have

(∑
J∈B

w(J)−2/pχJ (x)

)p/2

≥ w(J1(x))−1. (11)

Now going through the same argument as (5)-(6), we get∑
J∈B

w(J)−1χJ (x) ≤ C′
0w (J1(x))

−1 , (12)

where C′
0 > 0 is a constant depending only on p and d. Following (10)-(12), we

obtain

C′‖g‖Lp,s(w) ≥ (	A)1/p +

∫ ⋃
J ′∈B

J ′ C
′
0
−1
∑
J∈B

w(J)−1χJ (x)w(x) dx


1/p

= (	A)1/p +

(
C′

0
−1
∑
J∈B

w(J)−1

∫
J

w(x) dx

)1/p

= (	A)1/p +C′
0
−1/p (	B)1/p .

Namely there exists a constant C2 > 0 independent of g, A and Λ such that

C2‖g‖Lp,s(w) ≥ {	A+ 	Λ}1/p . (13)

Following (9) and (13), we getC−1
2 {	A+ 	Λ}1/p ≤ ‖g‖Lp,s(w) ≤ C1 {	A+ 	Λ}1/p.

Consequently we have proved that the sequence {ϕ̃0,k}k∈Zn ∪ {ψ̃e
j,k : e ∈ E, j ∈

Z+, k ∈ Zn} is democratic.
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