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CRITICAL EXPONENT FOR A SYSTEM OF SLOW DIFFUSION
EQUATIONS WITH BOTH REACTION AND ABSORPTION TERMS

Sheng-Chen Fu

Abstract. Let Ω is a bounded domain in RN with a smooth boundary ∂Ω,
m, n > 1 and p, q, r, s, a, b are positive constants. For the initial and boundary
value problem

ut = �um + vp − aur, x ∈ Ω, t > 0,

vt = �vn + uq − bvs, x ∈ Ω, t > 0,

u = v = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

we prove that all solutions are globally bounded if pq < max{n, r}max{n, s};
while there are finite time blowing up solutions if pq < max{n, r}max{n, s}
and the initial data are sufficiently large. For the critical case pq = max{m, r}
max{n, s}, the existence or nonexistence of global solutions depends on the
relation between the exponentsm, n, r, s, and also the range of the parameters
a, b.

1. INTRODUCTION

In this paper, we consider the following degenerate parabolic system

(1.1) ut = �um + vp − aur, x ∈ Ω, t > 0,
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(1.2) vt = �vn + uq − bvs, x ∈ Ω, t > 0,

with boundary condition

(1.3) u = v = 0, x ∈ ∂Ω, t > 0,

and initial condition

(1.4) u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

where Ω is a bounded domain in RN with a smooth boundary ∂Ω, m, n > 1,
p, q, r, s, a, b are positive constants. It is well-known that when m, n > 1 the prob-
lem (1.1)-(1.4) admits solutions only in some weak sense. Since we are interested
only in nonnegative solutions, we therefore assume that the initial functions u0 and
v0 are nonnegative and u0, v0 ∈ L∞(Ω).

The system (1.1)-(1.4) can be used to model as the cooperative reaction of two
species in an ecological system. The presence of the u-population species encourages
the growth of the v-population species but reduces its own growth and vice versa.
The choice of m, n > 1 describes the density dependent diffusion phenomenon.

We say that the solution (u, v) of the problem (1.1)-(1.4) blows up in finite time
if there exists a finite time T > 0 such that the solution is defined in (0, T ), and

lim sup
t↗T

{||u(·, t)||∞ + ||v(·, t)||∞} = +∞.

The motivation of this study is from [2] in which Bedjaoui and Souplet studied
(1.1)-(1.4) for the casem = n = 1. By comparing with some suitable supersolutions
and subsolutions, they obtained optimal conditions on the exponents p, q, r, s for
the existence of blowing up solutions and the global boundedness of all solutions,
respectively.

The main purpose of this paper is to study the existence or nonexistence of
global solutions for the problem (1.1)-(1.4) when m, n > 1. Indeed, we show
that all solutions are globally bounded if pq < max{m, r}max{n, s}; while there
are finite time blowing up solutions if pq > max{m, r}max{n, s} and the initial
data are sufficiently large. For the critical case pq = max{m, r}max{n, s}, the
existence or nonexistence of global solutions depends on the relation between the
exponents m, n, r, s, and also the range of the parameters a, b.

We mention here that the problem (1.1)-(1.4) with a = b = 0 has been investi-
gated by many authors, see for example [1, 9] and the reference cited therein. The
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case for a slow diffusion equation with absorption of the type ut = �um − aur,
we refer to, for example, [3-8] and the reference cited therein.

This paper is organized as follows. We study the case pq �= max{m, r}max{n, s}
in §2 and the critical case pq = max{m, r}max{n, s} in §3.

2. THE CASE pq �= max{m, r}max{n, s}
For convenience, we denote Ω× (0, T ) and ∂Ω× (0, T ) by QT and ST , respec-

tively. Based on [9], we use the following definition of (weak) solution throughout
this paper.

Definition 2.1. A pair of functions (u, v) is called a solution of (1.1)-(1.4) in
QT , 0 < T < ∞, if

(i) u, v ∈ L∞(QT )
⋂

C([0, T ]; L2(Ω)) and um, vn ∈ L2(0, T ; H1(Ω)),
(ii) u and v satisfy the identities∫

Ω

ϕ(x, T )u(x, T )dx+
∫ ∫

QT

�ϕ · �umdxdt

=
∫ ∫

QT

[ϕ(vp − aur) + ϕtu]dxdt +
∫

Ω
ϕ(x, 0)u0(x)dx,∫

Ω
ϕ(x, T )v(x, T )dx+

∫ ∫
QT

�ϕ · �vndxdt

=
∫ ∫

QT

[ϕ(uq − bvs) + ϕtv]dxdt +
∫

Ω
ϕ(x, 0)v0(x)dx,

for any ϕ ∈ C1(QT ) such that ϕ = 0 on ST .
(iii) um = 0, vn = 0 on ST in the trace sense.

Definition 2.2. A pair of functions (u, v) is called a (weak) supersolution of
(1.1)-(1.3) in QT , 0 < T < ∞, with initial data (u0, v0), if

(i) u, v ∈ L∞(QT )
⋂

C([0, T ]; L2(Ω)) and um, vn ∈ L2(0, T ; H1(Ω)),
(ii) u and v satisfy the inequalities∫

Ω
ϕ(x, T )u(x, T )dx +

∫ ∫
QT

�ϕ · �umdxdt

≥
∫ ∫

QT

[ϕ(vp − aur) + ϕtu]dxdt +
∫

Ω
ϕ(x, 0)u0(x)dx,∫

Ω
ϕ(x, T )v(x, T )dx +

∫ ∫
QT

�ϕ · �vndxdt

≥
∫ ∫

QT

[ϕ(uq − bvs) + ϕtv]dxdt +
∫

Ω
ϕ(x, 0)v0(x)dx,
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for any nonnegative function ϕ ∈ C1(QT ) such that ϕ = 0 on ST .

(iii) um ≥ 0, vn ≥ 0 on ST in the trace sense.

A (weak) subsolution is defined by replacing ≥ in (ii) and (iii) by ≤.

We shall use the following comparison principle to prove the existence or nonex-
istence of global solutions. The proof can be found in [9] and we omit it.

Lemma 2.1. Let (u, v) and (u, v) be a supersolution and a subsolution of (1.1)-
(1.3) in QT , T > 0, with initial data satisfying u(x, 0) ≥ u(x, 0) and v(x, 0) ≥
v(x, 0). Then u ≥ u and v ≥ v in QT .

We remark here that the global existence of solutions for (1.1)-(1.4) when p < m

and q < n has been obtained in [9]. Using the super-sub-solution method, we can
also recover this known results. Indeed, we have the following theorem for the
subcritical case.

Theorem 2.2. Suppose that pq < max{m, r}max{n, s}. Then all solutions
of (1.1)-(1.4) are globally bounded.

Proof. TakeR>0 such thatΩ⊂B(0; R). Let (u, v)=(C1e
−L1|x|2, C2e

−L2|x|2),
where L1, L2, C1, C2 are positive constants satisfying

L1 ≤ N/(4mR2), L2 ≤ N/(4nR2), C1 ≥ eL1R2 |u0|∞, C2 ≥ eL2R2|v0|∞,

and

Cpq
2 eq|rL1−pL2|R2 ≤ aqCqr

1 ≤ aqbre−r|qL1−sL2|R2
Crs

2 , if pq < rs,

C
pq
2 eq|mL1−pL2|R2 ≤ (NmL1)qC

mq
1

≤ (NmL1)q(NnL2)me−m|qL1−nL2|R2
Cmn

2 , if pq<mn,

Cpq
2 eq|rL1−pL2|R2 ≤ aqCqr

1 ≤ aq(NnL2)re−r|qL1−nL2|R2
Cnr

2 , if pq < nr,

C
pq
2 eq|mL1−pL2|R2 ≤ (NmL1)qC

mq
1

≤ bm(NmL1)qe−m|qL1−sL2|R2
Cms

2 , if pq < ms.

It is easy to check that (u, v) is a supersolution of (1.1)-(1.3) with u(x, 0) ≥ u0(x)
and v(x, 0) ≥ v0(x). Thus, by Lemma 2.1, we obtain that u ≤ u and v ≤ v as long
as the solution (u, v) exists. Therefore, (u, v) is globally bounded. This completes
the proof.



Critical Exponent for a System of Slow Diffusion Equations 311

Borrowing an idea from [2] and [10], we will construct a self-similar subsolution
to prove the existence of blowing up solutions.

Theorem 2.3. Suppose that pq > max{m, r}max{n, s}. Then the solution of
the problem (1.1)− (1.4) blows up in finite time for initial data large enough.

Proof. We first consider the case m ≤ r and n ≤ s. Without loss of generality,
we may assume that 0 ∈ Ω. Since pq > rs, we have either s/q < (p + 1)/(q + 1)
or r/p < (q + 1)/(p + 1). Therefore, we may without loss of generality assume
that s/q < (p + 1)/(q + 1) (otherwise, we exchange the roles of u and v).

We choose λ and β such that

s

q
< λ < min

{
p + 1
q + 1

,
p

r

}
,

1
λq − 1

< β <
1

s − 1
.

Set α = λβ. Then it is easy to check that

(2.1) βp > α + 1, βp > αr ≥ αm, αq > β + 1 > βs ≥ βn.

Pick a positive number l such that

(2.2) l <
1
2

min{βp − αm, β + 1 − βn, αq − βn}.

We seek a subsolution of the following form

u(x, t) = (T − t)−αU

( |x|
(T − t)l

)
, v(x, t) = (T − t)−βV

( |x|
(T − t)l

)
,

whereU(y) = (A2−y2)1/m
+ , V (y) = (A2−K−2y2)1/n

+ ,K ∈ (1,
√

(βn + 2l)/(βn))
is a constant, and A, T > 0 are constants to be determined later. To show (u, v) is
a subsolution of (1.1)-(1.3), it suffices to show that

(2.3)

(T − t)−(α+1){αU(y) + lyU ′(y)}+ a(T − t)−αrU r(y)

−(T − t)−(αm+2l)[(Um)′′(y) + (N − 1)/y(Um)′(y)]

≤ (T − t)−βpV p(y)

and

(2.4)

(T − t)−(β+1){βV (y) + lyV ′(y)}+ b(T − t)−βsV s(y)

−(T − t)−(βn+2l)[(V n)′′(y) + (N − 1)/y(V n)′(y)]

≤ (T − t)−αqU q(y)
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hold pointwisely for y > 0, y �= A, KA.
For y > A, it is clear that (2.3) holds. For 0 < y < A, (2.3) is equivalent to

(2.5)

(T − t)−(α+1)

{
α(A2 − y2)1/m − 2l

m
y2(A2 − y2)1/m−1

}

+2N (T − t)−(αm+2l) + a(T − t)−αr(A2 − y2)r/m

≤ (T − t)−βp(A2 − y2/K2)p/n.

Since A2 − y2/K2 ≥ A2(1− 1/K2) > 0, it follows from (2.1) and (2.2) that (2.5)
holds provided that T is sufficiently small.

For y > KA, it is clear that (2.4) holds. Let θ ∈ (
√

(βn)/(βn + 2l)K, 1) be
fixed. For θA < y < KA, (2.4) holds provided that

(2.6)

{
β(A2 − y2/K2) − 2l

n
(y2/K2)

}

+2N (T − t)β+1−βn−2l(A2 − y2/K2)1−1/n

+b(T − t)β+1−βs(A2 − y2/K2)1−1/n+s/n ≤ 0.

Since β(A2−y2/K2)−2l/n(y2/K2) ≤ A2(β−θ2/K2(β +2l/n)) < 0, it follows
from (2.1) and (2.2) that (2.6) holds provided that T is sufficiently small. For
0 < y < θA, (2.4) is equivalent to

(2.7)

(T−t)−(β+1)

{
β(A2 − y2/K2)1/n− 2l

n
(y2/K2)(A2−y2/K2)1/n−1

}

+2N (T − t)−βn−2l + b(T − t)−βs(A2 − y2/K2)s/n

≤ (T − t)−αq(A2 − y2)q/m.

Since A2 − y2 ≥ A2(1 − θ2) > 0, it follows from (2.1) and (2.2) that (2.7) holds
provided that T is sufficiently small.

Now, we fix T so that (u, v) is a subsolution of (1.1)-(1.3). For any t ∈ [0, T ),
supp u(·, t) ⊂ supp v(·, t) ⊂ B(0; KAT l) ⊂ Ω if A > 0 is sufficiently small.
Hence it follows from Lemma 2.1 that the solution (u, v) of (1.1)-(1.4) blows up in
finite time if u0 ≥ u(x, 0) and v0 ≥ v(x, 0).

For m > r or n > s, we shall only consider the casem > r and n ≤ s since the
proof for the other two cases is similar. Since ηr ≤ ηm + 1 if η ≥ 0, the solution
of (1.1)-(1.3) is a supersolution of

(2.8) ut = �um + vp − a(um + 1), x ∈ Ω, t > 0,
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(2.9) vt = �vn + uq − bvs, x ∈ Ω, t > 0,

(2.10) u = v = 0, x ∈ ∂Ω, t > 0.

Proceeding all steps in the previous case with a slight modification, we can show
that (u, v) is a subsolution of (2.8)-(2.10) and that the solution (u, v) of (1.1)-(1.4)
blows up in finite time if u0 ≥ u(x, 0) and v0 ≥ v(x, 0). Hence the proof is
complete.

3. THE CASE pq = max{m, r}max{n, s}

Following the proofs of Theorems 2.2 and 2.3 with a slight modification, we
get the following results for the critical case.

Theorem 3.1. Let pq = max{m, r}max{n, s}.
(i) Suppose that r > m and s > n and suppose also that a and b are sufficiently

small. Then the solution of the problem (1.1)-(1.4) blows up in finite time for
initial data large enough.

(ii) Suppose that r ≥ m, s ≥ n, and suppose also that a qbr ≥ 1. Then all
solutions of (1.1)-(1.4) are globally bounded.

Proof. (i) Without loss of generality, we may assume that 0 ∈ Ω. Since pq = rs,
we have either s/q ≤ (p + 1)/(q + 1) or r/p ≤ (q + 1)/(p + 1). Therefore, we
may without loss of generality assume that s/q ≤ (p + 1)/(q + 1) (otherwise, we
exchange the roles of u and v).

Set α = s/[(s − 1)q] and β = 1/(s − 1). It is easy to check that

(3.1) βp ≥ α + 1, βp = αr > αm, αq = β + 1 = βs > βn.

Pick a positive number l such that

(3.2) l ≤ 1
2

min{βp − αm, β + 1 − βn, αq − βn}.

We seek a subsolution of the following form

u(x, t) = C1(T − t)−αU

( |x|
(T − t)l

)
, v(x, t) = C2(T − t)−βV

( |x|
(T − t)l

)
,
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where U(y) = (A2 − y2)1/m
+ , V (y) = (A2 − K−2y2)1/n

+ , K , C1, C2 are positve
constants satisfying

(3.3)

1 ≤ K ≤
√

βn + 2l

βn
,

αA2/mC1 < [A2(1 − 1
K2

)]p/nCp
2

< (βA2/n)−p[A2(1− 1
K2

]p/n[A2(1 − θ2)]pq/mCpq
1

and A, T > 0 are constants to be determined later. To show (u, v) is a subsolution
of (1.1)-(1.3), it suffices to show that

(3.4)

C1(T −t)−(α+1){αU(y)+lyU ′(y)}−Cm
1 (T−t)−(αm+2l) � (Um)(y)

+aCr
1 (T − t)−αrU r(y)

≤ Cp
2 (T − t)−βpV p(y)

and

(3.5)

C2(T−t)−(β+1){βV (y)+lyV ′(y)}−Cn
2 (T−t)−(βn+2l) � (V n)(y)

+bCs
2(T − t)−βsV s(y)

≤ Cq
1 (T − t)−αqU q(y)

hold pointwisely for y > 0, y �= A, KA, where � = d2/dy2 + (N − 1)/yd/dy.
For y > A, it is clear that (3.4) holds. For 0 < y < A, (3.4) is equivalent to

(3.6)

C1(T − t)−(α+1)

{
α(A2 − y2)1/m − 2l

m
y2(A2 − y2)1/m−1

}

+2NCm
1 (T − t)−(αm+2l) + aCr

1 (T − t)−αr(A2 − y2)r/m

≤ Cp
2 (T − t)−βp(A2 − y2/K2)p/n.

Since A2 − y2/K2 ≥ A2(1 − 1/K2) > 0, it follows from (3.1), (3.2), and (3.3)
that (3.6) holds provided that a and T are sufficiently small.

For y > KA, it is clear that (3.5) holds. Let θ ∈ (
√

(βn)/(βn + 2l)K, 1) be
fixed. For θA < y < KA, (3.5) holds provided that

(3.7)

C2

{
β(A2 − y2/K2) − 2l

n
(y2/K2)

}

+2NCn
2 (T − t)β+1−βn−2l(A2 − y2/K2)1−1/n

+bCs
2(T − t)β+1−βs(A2 − y2/K2)1−1/n+s/n ≤ 0.
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Since β(A2−y2/K2)−2l/n(y2/K2) ≤ A2(β−θ2/K2(β +2l/n)) < 0, it follows
from (3.1), (3.2), and (3.3) that (3.7) holds provided that b and T are sufficiently
small.

For 0 < y < θA, (3.5) is equivalent to

(3.8)

C2(T−t)−(β+1)

{
β(A2−y2/K2)1/n− 2l

n
(y2/K2)(A2−y2/K2)1/n−1

}

+2NCn
2 (T − t)−βn−2l + bCs

2(T − t)−βs(A2 − y2/K2)s/n

≤ Cq
1 (T − t)−αq(A2 − y2)q/m.

Since A2 − y2 ≥ A2(1 − θ2) > 0, it follows from (3.1), (3.2), and (3.3) that (3.8)
holds provided that b and T is sufficiently small.

Now, we fix T so that (u, v) is a subsolution of (1.1)-(1.3). For any t ∈ [0, T ),
supp u(·, t) ⊂ supp v(·, t) ⊂ B(0; KAT l) ⊂ Ω if A > 0 is sufficiently small.
Hence it follows from Lemma that the solution (u, v) of (1.1)-(1.4) blows up in
finite time if u0 ≥ u(x, 0) and v0 ≥ v(x, 0).

(ii) Let (u, v) = (C1, C2), where C1 and C2 are positive constants satisfying
C1 > |u0|∞, C2 > |v0|∞, and Cpq

2 ≤ aqCqr
1 ≤ aqbrCrs

2 . It is easy to check that
(u, v) is a supersolution of (1.1)-(1.3) with u(x, 0) ≥ u0(x) and v(x, 0) ≥ v0(x).
Thus, by Lemma , we obtain that u ≤ u and v ≤ v as long as the solution (u, v)
exists. Therefore, (u, v) is globally bounded. This completes the proof.

We remark that the remaining of the critical case can be treated if one can con-
struct suitable supersolutions or subsolutions. However, we are unable to construct
such one for these cases. So we left them as open problems.
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