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EXPLICIT BOUNDS ON SOME NEW NONLINEAR RETARDED
INTEGRAL INEQUALITIES AND THEIR APPLICATIONS

Qing-Hua Ma and Josip Pecari¢

Abstract. In this paper, some new explicit bounds on solutions to a class of
new nonlinear retarded integral inequalities are established, which can be used
as effective tools in the study of certain nonlinear retarded integral equations.
Applications examples are also indicated.

1. INTRODUCTION

It is well known that integral inequalities play a fundamental role in the theory
of differential and integral equations. Among various types of integral inequalities,
the Gronwall-Bellman type is particularly useful in that they provide explicit bounds
for the unknown functions( see e.g. [1-3]). A specific branch of this type integral
inequalities is originated by Ou-lang. In his study of boundedness of solutions to
linear second order differential equations, Ou-lang [19] established and used the
following nonlinear integral inequality which is now known as Ou-lang’s inequality
in the literature.

Theorem A. ([19]). Let u and f be real-valued, nonnegative, and continuous

Sfunctions defined on R, = [0,+00) and let ¢ > 0 be a real constant. Then the
nonlinear integral inequality

t
W2(t) < 2 42 / F(s)uls)ds,  te Ry
0
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implies
t
u(t) <c —|—/ f(s)ds, teRy.
0

While Ou-lang’s inequality is having a neat form and is interesting in its own
right as an integral inequality, its importance lies equality heavily on its many beau-
tiful applications in differential and integral equations( see, e.g., [24]). Since this,
over the years, many generalizations of Ou-lang’s inequality to various situations
have been established ; see for examples [4-7, 10, 12-14, 17-18, 20-22, 25-27] and
the references cited therein.

Recently, in [23], Pachpatte has established the following useful linear Volterra-
Fredholm type integral inequalities with retardation:

Theorem B. ([23]). Let u(t) € C(I,Ry), a(t, s),b(t,s),c(t,s) € C(D,Ry),
a(t,s),b(t,s) are nondecreasing in t for each s € I,h(t) € C*(I,I) be non-
decreasing with h(t) < t on I,k > 0 be a constant, where I = [o, 3], R =
[0,00), D ={(t,s) € I?:a < s <t < 3} and suppose that

h(t)

S

u(t) Sk—f—/

h(a)

a(t, s) [f(s)u(s) +/h( |

c(s, U)U(J)dd] ds

h(B)
—|—/ b(t, s)u(s)ds,
h(a)

forte L If
h(B)
plt) = / b, s) exp(A(s))ds < 1,
h(a)

fort € I, where

fort eI, then

fortel

When a(t, s)f(s) = a(s),c(t,s) = 0,b(t,s) = b(s), and h(t) = ¢ the re-
sult in Theorem B will deduce the conclusion appeared in [2]. The aim of the
present paper is to give some explicit bounds to some new nonlinear retarded inte-
gral inequalities involving which on the one hand generalize Ou-lang’s inequality
to Volterra-Fredholm form at the first time to literatures and on the other hand give
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a handy and effective tool for the study of quantitative properties of solutions of
differential and integral equations. We illustrate the usefulness of these inequalities
by applying them to study the boundedness, uniqueness, and continuous dependence
of the solutions of certain nonlinear retarded integral equations.

2. NONLINEAR RETARDED INTEGRAL INEQUALITIES

In what follows, R denotes the set of real numbers,R; = [0,+00), Ry =
[1,4+00),I = [tg, T]; C*(M, S) denotes the class of all i-times continuously dif-
ferentiable functions defined on set M with range in the set S(i = 1,2,--+) and
C%'(M, S) = C(M,S).

Theorem 2.1.  Let u(t),a(t),b(t) and c(t) € C(I,Ry),a € CY(I,1) be
nondecreasing with o(t) < t on I;¢o € CY(Ry, Ry) with ' nondecreasing and
¢'(u) >0 foru > 0; w e C(R4+, Ry) be a nondecreasing function with w(u) >

0 for u > 0 and G1(v) = /v %,v > g > 0,G1(400) = /+OO wcii’) = 400,
function UO UO
(2.1) Hi(t) =Giop Y (2t —k) — Giop (t)
is increasing for t > k. If u(t) satisfies

p(u(t))

a(t) s
(2.9) <k+ /Mtw a(s)¢'(u(s)) [b(s)w(u(s)) + /Mtw C(T)w(u(’i'))d’i'] ds
a(T) s
—|—/Mt0> a(s)¢'(u(s)) [b(s)w(u(s)) —|—/Mt0> C(T)w(u(’i'))d’i'] ds

fort € I, where k > 0 is a constant, then

. a(T) s
H: ( /a ) B /a N c(T)dT]dsM

—f—/;(t) a(s)[b(s) + /8 c(T)dT]ds}

(to) a(to)

u(t) < Gyt {01

(2.3)

fort € I, where G1_1 and H| L are inverse functions of G1 and H,, respectively.

Proof. Let k > 0 and define a positive nondecreasing function z(t), ¢ € I by
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p(z(1))

a(t)
(2.4) :k+/a(to) a(s)¢' (u(s)) [b(s)w(u(s))Jr/a

S

c(T)w(u(T))dT] ds
(to)

a(T) .
+/o<(to) a(s)¢'(u(s)) [b(S)w(u(s))Jr/oé(tO) C(T)w(u(r))dT] ds.
then

u(t) < Z(t), tel

(2.5) a(T)

plalto) =kt [ o AO(5) [b<s>w<u<s>>+

By differentiation, we derive from (2.4) that

a(t)

w(2(1)) =, =<P’(U(a(t)))a(a(t))[b(a(t))w(u(a(t)))+/ C(T)w(U(T))dT]a’(t)

(to)
a(t)
< ¢'(2(a(t))ala(t)) [b(a(t))w(z(a(t)))+ /(t | C(T)w(Z(T))dT] o/ (t)
a(t)
< ¢'(z(t)ala(t))w(=(1)) [b(a(t)) +/ C(T)dT] o (t)
a(to)

or

a(t)

(2.6) < a(a(t)) [b(a(t)) +

C(T)d’i'] o (t)dt.
(o)

since z(t) > 0,a(t) <t for ¢t € I, ¢ is nondecreasing with ¢’ (u) > 0 for u > 0
and (2.5) holds.

By the definition of G, setting ¢ = s in (2.6) , integrating it with respect to s
from ty to ¢ and making change of variable we get

b(s)+ /jt )C(T)d’i‘] ds

a(t)

21 Giel) < Gileto) + [ als)

a(to)

fortel.
Observing that

a(T) s

dem»—k:k+2/

a(to)
= ¢(2(1)),

a(s) [b(s)w(u(s)) +/ C(T)’u)(u(’i'))d’i'] ds

(to)
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and then from (2.7) we have

G100 [20(2(t0)) — k] = Gy 0 o [o(2(T))]

a(T) s
G1o o Yo(z a(s) |b(s c(t)dr| ds
< Grop (to))]+A(tO) (s) <>+/a<t0)<> ]
Gy 0 o [20(=(to)) — K] — Gy 0 o~ p(2(t0))]
(28) a(T) s
a(s) |b(s c(T)dr| ds.
S/aw (s) ”*/W“ ]

Since H;(t) = G1op (2t — k) — Gy o ¢~ 1(t) is increasing for t > k, H;(t) has
inverse function H; ' (t) and then from (2.8) we get

a(T) s
(2.9) 2(t) < H{? </ a(s) |b(s)+ /(t )C(T)d’i‘] ds> .

(to)
Substituting (2.9) into (2.7) and combing with (2.5) we obtain the desired inequality
(2.3). If £ = 0, we carry out the above procedure with ¢ > 0 instead of £ and
subsequently let ¢ — 0. ]

Theorem 2.1. Let u(t), a(t), a(t), b(t), c(t), w(u), G1(u) and k be as in The-
orem 2.1. If u(t) satisfying (2.2) for t € I, and

_ o(T)
Hi(t) = Grow (2t — k) — Gr oL (t) — / a(s)

a(to)

b(s) + /jt )C(T)d’i‘] ds

is increasing and H, (t) = 0 has a solution c; for t > k, then

b(s)+ /jt )C(T)d’i‘] ds}

a(t)

(2.10) u(t) < Gyt {Gl(cl) - /(t | a(s)

fortel

Proof. By the same steps from (2.4)-(2.8) in the proofs of Theorem 2.1, we
have

(2.11) u(t) < z(t),

a(t)

(2.12)  z(t) <Gt {Gl(z(to)) - /(t | a(s)
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and
a(T) s
(2.13) Giop 12t —k) —Grop (1) < / a(s) |b(s) +/ c(r)dr| ds.
a(to) a(to)
fort e I.

From the assumption of Theorem 2.1" and (2.13), we have
Hy(2(t0)) < 0= Hy(cy).

Since fh is increasing, I:Tl has inverse function I:Tf 1 and hence from the last
inequality we get
z(tg) < c;.

Substituting the last inequality into (2.12) and combing with (2.11) we get the
desired inequality (2.10). ]

When ¢ = uP(p > 1 is a constant) in Theorem 2.1, we have following

Corollary 2.2. Let u(t), a(t), w(t), a(t),b(t) and k be as in Theorem 2.1,
p > 1 be a constant. If u(t) satisfies

uP(t) <k

a(t)
(2.14) + / a(s)uP~!(s) [b(s)w(u(s)) + / c(w(u(r))dr | ds

(to) a(to)

a(T)
+ / a(s)u=1(s) |b(s)w(u(s)) + / o(F)w(u(r))dr | ds

(to) a(to)

fortel, and

(2.15) Hiy(t) = G1((2t — k)7) — G (t7)

. a(T) s
H ( /a OO /a " c(T)dT]ds>]

—f—/:(t) a(s)[b(s) + /8 c(T)dr]ds

(to) a(to)

is increasing for t > k ,then

u(t) < Gt {01

(2.16)

fortel

Remark 2.1. When p = 2, (2.14) is a Volterra-Fredholm-Ou-lang type retarded
inequality.
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Corollary 2.3. Let w(t), a(t), b(t) and a(t) be as in Theorem 2.1, p and k > 0
be constants.If u(t) € C(I, Ry) and satisfies

u(t) <k
at) s
(2.17) +/a(to) a(s)uP(s) | b(s)w(logu(s)) +A(t0) c(r)w(logu(r))dr | ds

a(T)
—|—/ a(s)uP(s) b(s)w(logu(s))—i—/ c(r)w(logu(r))dr | ds

(to) a(to)

fortel, and

is increasing for t > k, then

. a(T) s
H ( /a o AR /a " c(T)dT]ds>]

—f—/;(t) a(s)[b(s) + /8 c(T)dr]ds

(to) a(to)

u(t) < Gyt {G1

(2.18)

fortel

Proof. Taking v(t) = logu(t), then (2.17) reduces to

'™ < —|—/

a(to)

a(t) s

a(s)eP’) [b(s)w(v(s))—i— / c(T)w(v(T))dT] ds

(to)

a(T) s
a(s)eP?®) s)w(v(s c(Hw(v(m))dr| ds
+/M (s) [”““))*/a(to)“(“)d]d

for ¢ € I, which is a special case of inequality (2.2) when p(v) = exp(pv) and
Hy(t) = His(t) = Gy (%log(Qt — k)) -Gy (%logt) By Theorem 2.1, we get
the desired inequality (2.18) directly. ]

Corollary 2.4. Let u(t),a(t),b(t),a(t) and p, k be as in Theorem 2.1. If u(t)
satisfies

S

a(t)

uP(t) <k —|—/ a(s)uP1(s) [b(s)u(s) +/ c(T)u(T)dT] ds

afto) (to)

a(T) . s
+/o<(to) a(s)uP™(s) [b(s)u(s) +~/0<(t0) c(T)u(T)dT] ds

(2.19)
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fortel, and

a(T) s
A,(T) = exp/ pa(s) |b(s) —|—/ c(r)dr|ds <2,

a(to) a(to)

then

(2200 w(t)<—t e o)+ [ etrran| d

. ut_iexp/ al(s 3+/ c(t)dt | ds
2 - Ap(T) a(to) a(to)
fortel

Proof. In Corollary 2.2, by letting w(u) = u we obtain

vd vd
Gl(v):/ ° —Szlni,v2v0>0,
vo W(s) w S Vo
1 1 1. 2t—k
Hn(t)=G1((2t—k)P)—G1(tp)=—ln ,tZk
p
and hence
G (v) = vgexpu,
k
Hi'(t) = ————.
nl) =5 exp(pt)
From inequality (2.16), we obtain inequality (2.20). ]

Corollary 2.5. Let u(t), a(t),a(t),b(t),c(t),p and k be as in Theorem 2.1,
0 < g < 1 be a constant. If u(t) satisfies

a(t) s

uP(t) <k —|—/ a(s)uP1(s) [b(s)uq(s) +/ c(T)uq(T)dT] ds

a(to) (to)

a(T) . . s . 1
—|—/Mt0> a(s)uP [b(s)u (s) +/a(t0) c(r)ui(r)dr| ds

(2.21)

fort eI, then

a(t) s i T—q
(2.22) wu(t) < {(cll)l_q +(1-19q) /(t | a(s) |b(s) +/ c(t)dr ds}

fort € I, where c11 is the solution of equation

1—

Hi(t) = i—q [(Qt—k) z —t%q}

(2.23) a(T)
-/ W o

b(s) + /jt )C(T)d’i‘] ds =0




Some New Nonlinear Retarded Integral Inequalities and Their Applications 295

fort > k.

Proof. By Theorem 2.1’, we only need prove (2.23) has a solution ¢;; for
t > k. In fact, (2.21) is a special case of (2.2) with ¢ = u?, w = u?, so in Theorem
2.1" we have (2.23). Taking r = lp%q and by computation we have

1 (2T 4)7 — (2t — k)

H(t) = - 0
1) 2tk
for t > k,
~ a(T) s
Hy(k) = —/ a(s) |b(s —|—/ (r)dr|ds <0
a(to) a(to)
and .
1—r -r
lim Hy(t) = lim {t [(2—ﬁ> -1
t——+oo t——+oo t
a(T)
e
a(to) af
S0 I:h(t) = 0 has a unique solution c¢11 > k. n

Using Theorem 2.1, we can get some more generalized results as following.

Theorem 2.4. Let u(t), a(t), b(t), c(t), a(t), w(t), Gy, GT, Hy, H{ ' and k be
as in Theorem 2.1, d(t), f(t) and g(t) € C(R4, Ry). If u(t) satzsfes
(2.24)

a(t) s
o) <k [ alo)elu(s) [b<s>w<u<s>> Lo c<7>w<u<7>>dT] ds
a(T) s
S CEE) [f(S)w(u(S)) o g<7>w<u<v>>dT] ds

fort € I,then

u(t) < G {01

—1 oc(T) * * s *
H: ( /a BRGCGOR /a K (ﬂdﬂ@)]

a(t) s
+ /a RGCGCR /a e (T)dT]ds}

Jor t € I, where a*(t),b*(t) and c*(t) € C(R4, Ry) such that both a(t) and d(t)
are less than or equal to a*(t), b(t) and f(t) are less than or equal to b*(t) and
c(t) and g(t) are less than or equal to c*(t), respectively.

(2.25)
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Proof. Form (2.24) and the assumptions we have

a(t) s
i k a*(s)o (u(s)) |b*(s)w(u(s c(mw(u(T))dr | ds
olult)) < +/a<?> (5)4'( <>>[ (5) <<>>+/M (F)w(u(r)) ]
a(T s
a*(s)o (u(s)) |b*(s)w(u(s c(Tw(u(r))dr | ds
+/M <>¢<<>>[ (s) <<>>+/M (F)w(u(r)) ]
An application of Theorem 2.1 to the last inequality yields (2.25). ]

Remark 2.2. (i) In Theorem 2.4, we can choice function a*(t) = a(t) + d(t)
or max{a(t),d(t)} as well as in functions b*(¢) and ¢*(¢); (ii) From Theorem 2.4,
we can get some useful conclusions similar to Theorem 2.1’-Corollary 2.3, but for
space-saving, we omit the details here.

Theorem 2.5. Let u(t), a(t), b(t), c(t),d(t), f(t), g(t)a(t), a*(t), b*(t), c*(t) and
k be as in Theorem 2.4, w; € C(R+, Ry) be nondecreasing functions with w;(u) >
0 for u > 0,i=1,2. If u(t) satisfies

o(u(t))
a(t) s
(226) SHF /a (to)a(é’)«ﬁ (u(s)) |b(s)wi(u(s))+ /a " C(T)’wl(u(T))dT] ds

S

a(T)
[ e e | euatu(sn + [

g(T)wg(u(T))dT] ds
(to) a(to)

fort € I, there is a function W € C(R 4, R..) is nondecreasing such that both w 1
and waq are less than or equal to W, and

v ds Too (s
GQ('U) = T oV Z Vg > 07 G2(+OO) -
v W(s) W (s)

Hy(t) = Gaop Y (2t — k) — Gao o 1(2)

= +OO7
Vo

is increasing for t > k, then

u(t) < Gy { Gy

—1 Oé(T) * * ? *
H, ( /a IRGOIGOR /a e (ﬂdﬂ@)]

—f—/:(t) a*(s)[b*(s) + /8 c*(T)dT]ds}

(to) a(to)

(2.27)

fort € I, where G5 Yand H 5 L are inverse functions of Go and Ho, respectively.



Some New Nonlinear Retarded Integral Inequalities and Their Applications 297

Proof. From (2.26) and the assumptions, we can obtain

p(u(t))
a(t)

(2.28) kT /a (to)a*(s)w%u(s))[b*(s)W(u(s))+ /a

1 )c*(T)W(u(T))dT] ds
a(T) 5
o [ e [b*<s>vv<u<s>>+ /

o c*(T)W(u(T))dT] ds

(to)

fortel.
Now an application of Theorem 2.1 to (2.28) yields the desired inequality
(2.27). ]

By same argument as in the proofs of Theorem 2.1, we have the following
result immediately.

Theorem 2.5 Let u(t), a(t), b(t), c(t), d(t), £(£), g(t)a(t), a*(2), b*(2), (1),
w;(i = 1,2) and k be as in Theorem 2.4. If u(t) satisfies (2.26) for t € I,and

_ o(T)
(t) :G204p_1(2t—k)—G204p_1(t)—/ a*(s)

a(to) (to)

b*(s) + /: c*(T)dT] ds

is increasing and ﬁg(t) = 0 has a solution co > k, then

b*(s) + /:t )C*(T)dT] ds}

a(t)

(2.29)  u(t) < Gy? {Gz(cQ) +/(t | a*(s)

fortel

Corollary 2.6. Let u(t),a(t),b(t),c(t),d(t), a(t),a*(t),b*(t), c*(t) and k be
as in Theorem 2.4, p > 1,0 < q < 1 be constants. If u(t) satisfies

a(t) s
uP(t) <k —|—/ a(s)uP1(s) [b(s)u(s) +/ c(T)u(T)dT] ds
(2.30) s o)
d(s)uP~ | f(s)u?(s T)ul(T)dT | ds
+/M (5) [f() ”+/a(t0>9” (") ]
fortel, and

a(T)
exp/ a*(s)

b*(s)+/ c*(r)dr | ds < 27,
(to) a

(to)
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then

. a(t)
ult) < {(1 st e ((1 0 [ o)1)
a(to)
(2.31) )

—|—/ J;(T)d’i‘] ds> — 1}
a(to)

fort € I, where co1 is the solution of

1—g
_ 1 1+ Q2t—k) 7
Ha(t) = el Gl

- b
(2.32) 1 1+t

a(T) s
- / a*(s) [b*(s) + / c*(T)dT] ds = 0
a(to) a(to)

fort > k.

Proof. In Theorem 2.5, by letting w; (u) = u, wa(u) = u? and W = wy + wo
we obtain

v d vod 1 1+ o0te
(2.33) GQ(v):/ > :/ S ———m +”1_q, v > vp>0
wo Wi(s)+wa(s) Sy, s+s1 1—¢q 1+,
and hence
1
(2.34) Gy (v) = [(1+ 0y ) exp((1—qpw) —1] 77

By computation, we have

14

- 1 1+2t—k)» oM

Hy(t)= 1_qln ( 11) —/ a*(s)
14+t a(to)

_1=gq 1—1=4q

- E+2t! — (2t —k

H(t) = + el el

26— k+ (20— B) (4 £

b*(s) —|—/: c*(T)dT] ds,

(2.35) (to)

for t > k,

a(T)

(2.36)  Ha(k) = — / a0

b*(s) —|—/ c*(T)dT] ds <0
a(to)
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and
1 1+ (2t—k Ea
lim Hy(t) = lim N Ul
t——+o00 t——+o0 1-— q 1 4t pq
a(T) s
(2.37) —/ a*(s) b*(s)+/ c*(r)dr| ds
a(to) a(to)

1 a(T)
=In2>r —/ a*(s)
a(to)

By (2.35)-(2.37) we obtain that (2.32) has a solution co; > k. Now by (2.29), (2.33)
and (2.34) we can get the desired (2.31). ]

b*(s)+/ ¢(7)dr| ds > 0.
a(to)

3. SOME APPLICATIONS

In this section, we apply our results to study the boundedness, uniqueness,
and continuous dependence of the solutions of certain nonlinear retarded integral
equations. First we consider the nonlinear retarded integral equation of the form

S

2P(t) = 1(1) + /tF<s,x(s —h(s)), | mlra(r— h(T)))dT)ds

(3.1) fo fo

T s
+/ G(s,x(s—h(s)),/ n(r,2(r — h(r)))dr ) ds
to to
for t € I, where x,1 € C(I,R),h € C'(I,I) be nonincreasing with ¢ — h(t)
0, hto) = 0, — h(t) € CY(I, 1), W(t) < 1,F,G € C(I x R R),m,n € C(I
R,R),p > 1is a constant.

>
X

Following Theorem gives the bound on the solution of the equation (3.1).

Theorem 3.1. Assume that the functions I, m,n, F and G in (3.1) satisfies the
conditions

(3.2) l(t)| <k

(3-3) [F(s,2,)| < a(s)|x P~ b(s)]2] 7+ |yl]
(3-4) [m(s, )| < c(s)]a|?

(3.5) |G (s, 2, y)| < d(s)[xlPH[f(s)]z|? + [yl]

(3.6) In(s, )| < g(s)]a|?
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where k,a(s),b(s),c(s),d(t), f(t) and g(s) are as in Theorem 2.4, p > 1 and
0 < g < 1 are constants, and let L = rrtla;({l/(l —B(t)}. If x(t) is a solution of
€

equation (3.1) on I, then
* \1—
2 < { (e

(37) a(t) s ﬁ
+(1 — q)L/ oad(s) | Mys(s) + L/ ocg(T)dT | ds
a(to) a(to)

Jort €I, where 64q4(€) = a({+h(s)) +d(§E+h(s)), 0ce(n) = c(n+h(T))+9(n+
(1)), Mys(s) = max{b(& + h(s)), f(§+ h(s))} and c}, is the solution of

Hi(t) = -1 [(Qt—k) = _tqu}
—L fa((tto Jad |:be +Lf (tO ch )dT dS =0.

Proof. Using the conditions (3.2)-(3.6) to (3.1) we have
lz(t)F < k+ /t a(s)|z(s — h(s))[P~" [b(s)|x(s — h(s))|*
+ /ts e(r)|z(r — h(T))\da] ds
+/t d(s)|x(s = h(s)) [P [f(s)]x(s = h(s))|
+ /ts g(7)|z(T — h(T))\da] ds
. <kt [ al)lels =R Bs)lals =~ hs)
s—h(s)
w0 Letn+ h(T))\w(n)\qdn] is
to—h(to)
+/t d(s)|x(s = h(s)) P [f(s)]x(s = h(s))|
s—h(s)
s [ Lgtn h(T))\w(n)\qdn] ds
to—h(to)

t—h(t)
<k+ /t a(€ + h(s))|z(€)[P~ b(E + h(s))(|=(€)|?

o—h(to)



Some New Nonlinear Retarded Integral Inequalities and Their Applications 301

£
+ / Le(n+ h(T))\w(n)\qdn] e

o0—h(to)

_l’_

T—h(T)
/t d(& + h(s)|z()PH [F(€ + h(s)) |z ()["

o—h(to)

o0—h(to)

£
T / Lo(n+ h(T))\w(n)\qdn] ¢

t—h(t)
(3.8) <k+ / Gad )£ [Myy ()| (€)]1

o—h(to)

3
s [ Logletn Py dg
to—h(to)

T—h(T)
+/t 0aa(€)|2(€) P~ [Mas (5)|2(€)]7

o—h(to)

¢
+ /t Lacg(n)\w(n)\qdn] 3

o—h(to)
fort € I.
Now a suitable applications with of Corollary 2.5 to |z(t)| in (3.8) yields
3.7). ]

Secondly, we consider the uniqueness of the solutions of (3.1).

Theorem 3.2. Assume that the functions m,n, F and G in equation (3.1)
satisfy the conditions

(39) |F(s,2,9)— F(s,7,7)| < als)la? =77 (b(s)|s? = 717 + |y —71)

(3.10) im(s, ) — m(s, T)| < c(s)|a? — T|7
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where a,b,c,d, f, g,0ad, 0ad, My, L and p are defined as in Theorem 3.1, then
(3.1) has at most one positive solution on I.

Proof. Let x(t) and Z(t) be two solutions of (3.1) on I, using the conditions
(3.9)-(3.12) to (3.1) we have

|P(t) = 7" (1)|

g/ a(s)|xP(s — h(s)) — TP (s — h(s))| »

to

[b(s)|7(5 = h(s)) =7 (s — h(s))]?

(3.14) + /ts c(r)[aP (T = h(1)) = TP (T — h(r))\%dr] ds

+ [ d(s)lar(s = h(s)) = 7 — hs)| 7

[£(9)|"(s = h(s)) = T(s — h(s))]?
+ /ts g(7)|zP(r — h(1)) — 2P (1 — h(T))‘%dT] s

Now making a change of variables on the right side of (3.14) and taking the similar
procedure as in the proof of Theorem 3.1 we have

|27 (t) — ¥ (1)]

t—h(t) p—1 1
<[ @l O My Olar6) - )]

o—h(to)
¢ ) o
(3.15) +/to_h(to) Locg(n)|zP(n) — T (n)\pdn}dg
T—h(T) - )
+/ Tad(E)|2P (&) = (&) 7 [be(f)\xp(g) _ TP
to—h(to)

§ 1
s [0 Logmlartn) - 7o)l Fan] de
to—h(to)

A suitable application of Corollary 2.4 to the function |zP(t) —ZP(t) \% in (3.15)
yields that

P () — 2 (1)]7 < 0

fort € I. Hence x =7 on I. []
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Remark 3.1. In special case p = 1, the assumptions (3.9)-(3.12) reduce to
Lipschitz type conditions.

Next, we consider the following retarded nonlinear integral equation

T

(3.16) xp(t):l(t)+/tF<s,x(s—h(s))>ds+/ G (s, (s — h(s)) ) ds

to to

0,h(tp) = 0,t — h(t) € CHI,I),W(t) < 1,F,G € C(I x R,R),p > 1is a
constant.

The following theorem investigate the continuous dependence of the solutions
of (3.16) on the functions F' and G. For this we consider the following variation of
(3.106):

for t € I, where x,1 € C(I,R),h € C'(I,I) be nonincreasing with ¢t — h(t) >

(316)  2P(1) :Z(t)+/tf(s,x(s—h(s)))ds+/TE(s,x(s—h(s)))ds

to to

fort € I, where l € C(I,R), F and G € C(I x R, R).

Theorem 3.3. Consider (3.16) and (3.16). If

(i)
[F(s,01)~F(s,02)] < a(s) [ —ol,  |G(s,v1)~G(s,va)| < d(s)[o}—}]
and
|F(s,T) — F(s,7)| < ﬁ IG(s,7) — G(s,7)| < 4(7,57_750);
(i) [I(t) =1(t)] < §;
) o(T)
(iii) A(T) = exp . pLogq(s)ds < 2

forall s,t € I and v1,v9,T € R, where £ > 0 is an arbitrary constant, then

, . P t—h(t)
31D WO~ S G o /t POad(s)ds

fort € 1. Hence xP dependents continuously on F and G. In particular, if
x does not change sign, it depends continuously on F and G.
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Proof. Let x(t) and Z(t) be solutions of (3.16) and (3.16), respectively. Then
x(t) satisfies (3.16) and T(t) satisfies (3.16). Hence

2P (t) =P ()] < |1(t) = I) + [ [F(s,2(s = (s))) — F(s,7(s — h(s)))|ds

—|—/t |G(s,2(5s—h(s))) — G(s,T(s — h(s)))|ds
< % + t |F(s,z(s — h(s))) — F(s,z(s — h(s)))|ds

+ [ |F(s,%(s — h(s))) — F(s,Z(s — h(s)))|ds

to

—|—/ |G(s,z(s— h(s))) — G(s,T(s — h(s)))|ds

to

—|—/ |G(s,Z(s — h(s))) — G(s,T(s — h(s)))|ds

to

<e+ / a(s)|zP(s — h(s)) —zP(s — h(s))|ds

to

T
—|—/ d(s)|zP(s — h(s)) —zP(s — h(s))|ds
to
by assumptions (i)-(iii).

Now by making a change of variable on the right of the last inequality and
taking the similar procedure as in the proofs of Theorem 3.1 we have

t—h(t)
aP() — 7P (1)] < e+ / Gad(€)|2P(€) — T#(€)|de

(3.18) T—h(T)
[ ol - o

to
for t € I. Now by applying Corollary 2.4 with the case ¢(7) = 0 to the function

|27 (t) — TP(t)|” we have

278 — ) < — T (o)
xt—ftpgfexp/ Oadl(s)ds
2—A;§(T) to

or t—h(t)
eP -
2Pt) - 7P| < ———r—r— exp/ poqd(s)ds

for t € I.



Some New Nonlinear Retarded Integral Inequalities and Their Applications 305

t—h(t)
Evidently, if function exp / poad(s)ds is bounded on I, so

to

2P (t) — TP (t)] < PK

for some K > 0 and ¢ € I. Hence 2P depends continuously on F' and G. ]
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