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SOME GENERALIZED KY FAN’S INEQUALITIES

Gu-Sheng Tang!, Cao-Zong Cheng and Bor-Luh Lin?

Abstract. In this paper, we generalize Ky Fan’s minimax inequality to vector-
valued function with values in a topological vector space acting on the product
of two other topological vector spaces which are connected by another function.
In these results, the concavity or convexity on a function is transferred to
another function. And a sufficient condition for the existence of solution for
a variational inclusion is given.

1. INTRODUCTION

Let X and Y be nonempty sets and f : X X Y — R be a function. The
minimax theorem implies that the equality

inf sup f(x,y) = sup inf f(x,
erme?cf( y) megyeyf( y)
holds under certain conditions.

The minimax inequalities are special forms of minimax theorem. In 1972, Ky
Fan [1] proved the following minimax inequality and discussed its geometrical form
and applications to fixed point theory.

Ky Fan’s Inequality

Let X be a compact convex subset in a topological vector space F and let
f: X x X — R be a function such that

(1) f(z,-) is lower semicontinuous on X for every = € X;
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(2) f(-,y) is quasiconcave for every y € X. Then

min sup £(z, ) < sup f(z, ).
YeX zeX z€X

By relaxing the compactness, the closedness or the convexity, many general-
izations of Ky Fan’s Inequality were given ([2]-[6]) and numerous applications of
this inequality were obtained. Also, by introducing varieties of characterization on
the convexity of the set-valued mappings ([7]-[11], [13]), many minimax theorems
involving scalar functions have been extended to minimax theorems for set-valued
mappings ([8]-[12]).

Inspired and motivated by these works, in this paper, we give new generalizations
of Ky Fan’s minimax inequality for set-valued mappings from the following aspects:
(1) the set-valued mappings act on the product space X xY of two topological vector
spaces X and Y connected by a mapping (; (2) the concavity or convexity on a
mapping is transferred to another function; (3) the range of the set-valued mapping
is extended from normed space to topological vector space. Finally, we give a
sufficient condition on the existence of solution for a variational inclusion .

2. PRELIMINARIES

Definition 2.1. Let X and Y be topological spaces, S : ¥ — 2X be a
set-valued mapping with nonempty values. Then S is said to be

(i) upper semicontinuous (usc) at y € Y if for any neighborhood U of S(y),
there exists a neighborhood V' of y such that we have S(y') C U for every
yev.

(ii) lower semicontinuous (Isc) at y € Y if for any x € S(y) and for any sequence
of elements {y,,} in Y converging to y, there exists a sequence of elements
xn € S(yp) converging to x.

(iii) upper(resp. lower) semicontinuous on Y if S is upper(resp. lower) semicon-
tinuous at every point y € Y.

Proposition 2.1. [13, Proposition 1.4.4] Let X and Y be topological spaces,
and let S : Y — 2% be a set-valued mapping with nonempty values. Then

(1) S is upper semicontinuous on Y if and only if for any closed subset M of
X, the inverse image of M

STHM) ={y € Y|S(y) N M # 0}

is closed;
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(2) S is lower semicontinuous on Y if and only if for any closed subset M of
X, the core of M

ST (M) ={y e Y|S(y) c M}
is closed.

Definition 2.2. [13, pp. 57] Let Y be a convex subset of a vector spaces GG
and let S:Y — 2¢ be a set-valued mapping. S is said to be convex on Y (resp.
concave on Y) if for all 41,92 € Y and X € [0, 1],

AS(y1) + (1 = A)S(x2) C (resp., 2)S(Ayr + (1 — A)yg).

Proposition 2.2. Let Y be a convex subset of a vector spaces G and let
S Y — 2C be a set-valued mapping. Then S is convex on'Y (resp., concave on
Y) if and only if for all n > 2 and for all X1, Xa, ..., Ay > 0 with >0 | A\ =1
and for all y1,y2,...,yn €Y,

> XiS(yi) € (resp., D) Aiyi)-
i=1 i=1

Definition 2.3. Let Y be a convex subset of a vector space and let X be a
convex subset of a vector space with an order relation <. A mapping ¢ : ¥ — X
is said to be convex (resp., concave) if for any A € [0,1] and y,y2 € Y,

e(Ay1 + (1= N)yo) < (resp., >)Ap(y1) + (1 — N)e(y2)-

Definition 2.4. Let (Y, <) be an ordered topological vector space and let X
be a nonempty set. A set-valued mapping S : Y — 2% is said to be monotone
increasing (resp., decreasing) if for any ¢ < yo,

S(y1) C (resp., D)S(y2).

3. THE MAIN RESULTS
The following lemma is one of the most fundamental result in nonlinear analysis.

Ky Fan Lemma

Let Y be a nonempty subset of a Hausdorff topological vector space G. If
S :Y — 2% is a set-valued mapping with closed values, and has the following
properties:
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(i) there exists yp € Y such that S(yo) is compact;

(ii) S is a KK M set-valued map (i.e., for each finite set {y1,y2,...,yn} in Y,
the convex hull of {y1,y2, ..., yn}, conv{yi, y2, ..., yn} C U ;S(yi)), then

Nyey S(y) # 0.

As a generalization of Ky Fan Lemma, Cheng [14] gave the following result.

Lemma 3.1. ([14]). Let E, G be Hausdorff topological vector spaces. If Y C
G, ¢ : Y — FE is a mapping, and S : Y — 2F is a nonempty closed-valued
mapping such that

(i) there exists yo € Y such that S(yo) is compact;

(i) conv{p(y1), ¢(y2), .-, ¢(yn)} C Uiy S(y;) for each finite set {y1, Y2, - - ., Yn}
inY, then

Nyey S(y) # 0.

Our main results can be formulated as follows.

Theorem 3.1. Let E, G, Z be Hausdorff topological vector spaces where E
is endowed with an order relation <. Assume X is a nonempty compact convex
subset of E, Y is a convex subset of G and M is a nonempty closed subset of Z
with Z\M is convex. Let ¢:Y — X be a convex (resp. concave) mapping and let
F:X xY — 2% be a set-valued mapping with the following properties:

(i) F (-,y) is lower semicontinuous on X for all y in'Y.
(ii) there exists a set-valued mapping H:X x Y — 2% such that
(a) H(p(y),y) C M forally ey,
(b) H (z,y) C M implies that F (x,y) C M forallx € X andy €Y,
(¢) H (x,-) is convex on Y forall z € X,
(d) H (-,y) is monotone decreasing (resp. increasing) on X forally € Y.

Then there exists ¢ € X such that F' (xg,y) C M forall y € Y.

Proof. Forally eV, let S(y) ={x € X : F(z,y) C M}.By (a) and (b) in
(i), for all y € Y, S (y) # 0, since ¢ (y) € S (y) . By (i) and Proposition 2.1, for
all y € Y, S(y) is closed in X, therefore, S(y) is compact. It remains to prove that
(ii) in Lemma 3.1 holds.

Suppose no. Then there exists {y1,y2,...,yn} and {A1, Ao,..., A\,} C R,
Xi>00@=1,2,...,n), Y "y A = 1 such that

=1
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That is "
F(Z)\iap(yi),yj) M, j=1,2,...,n.
=1
By (i), )
H(Z)\iap(yi),yj) ¢ M, j=1,2,...,n.
=1
Hence

HOY  Nip(yi),y) N (Z\ M) #0, Vi =1,2,....n.
i=1

Since Z\ M is convex set and H (z, -) is convex on Y, by Proposition 2.2, it follows
that

0 #> NHO i), vi) N (Z\ M)
(1) L
C H(ZAM(%‘),ZM%) N(Z\ M).

Since ¢ is convex (resp., concave) and H(-,y) is monotone decreasing (resp.,
increasing) on X, we have

(2) H(Zn; Azw(yz‘),ﬁ;&yz‘) - H(«P(Zn; Az‘yz‘),zn;&yi)-
By (ii)(a) andz(l),(2), we ozbtain ) )
0 # S NH( hplu) 1)1 (21 M)
- H@(Zn; Aili), Zn; Ayi) N (Z\ M) C Mn(Z\M)=0.

This contradiction shows that (i) of Lemma 3.1 holds. Therefore 1,y S(y) # 0,
i.e., there exists an element xy € X such that F'(zg,y) C M forall y € Y. ]

Corollary 3.1. Let E, G, Z be Hausdorff topological vector spaces where E is
endowed with an order relation <. Assume that X is a nonempty compact convex
subset of E, Y is a convex subset of G, and M is a nonempty closed subset of Z
with Z\M is convex. Let ¢ : Y — X be a convex (resp., concave) mapping, and
F: X xY — 2% be a set-valued mapping with the following properties:

(i) F(-,y) is lower semi-continuous on X for all y € Y,
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(i1) F(z,)
(ii7) F(-,y) is monotone decreasing (resp., monotone increasing) on X for all

yevy,
(iv) F(o(y),y) C M forallyecY.

is convex on'Y for all x € X,

Then there exists ¢ € X such that F(zg,y) C M forally € Y.

Remark 3.1. From the proof of Theorem 3.1, if the mapping ¢ is linear on
convexity coefficient (that means ¢ (Ay1 + (1 — A)y2) = Ap(y1) + (1 — X)(y2) for
all y1,y2 € Y and A € [0, 1]), then the monotonicity of H and the order structure
on F are not needed in Theorem 3.1 and Corollary 3.1.

Theorem 3.2. Let FE,G, Z be Hausdorff topological vector spaces. Assume
that X is a nonempty compact convex subset of E, Y is a convex subset of G, and
M is a nonempty closed subset of Z with Z\M is convex. Let ¢ : Y — X be a
linear mapping on convexity coefficient and let F : X xY — 2% be a set-valued
mapping with the following properties:

(i) F(-,y) is lower semi-continuous on X for all y €Y,
(ii) F(x,-) is convex on'Y for all x € X,
(iii) F(p(y),y) C M forall y €Y.

Then there exists xo € X such that F(xo,y) C M forally €Y.

Theorem 3.3. Let FE,G, Z be Hausdorff topological vector spaces. Assume
that X is a nonempty convex compact subset of E, Y is a subset of G and M is a
nonempty closed subset of Z. Let ¢ : Y — X be a mappingand let F : X XY —
2% be a set-valued mapping with the following properties:

(i) F(-,y) is lower semicontinuous on X for all y €Y,

(ii) for any finite set {y1,y2,...,yn} in Y, conv{p(y1), o(y2),-..,¢(yn)} C
Uii{r e X : F(z,y;) C M}.

Then there exists xo € X such that F(xo,y) C M forally €Y.
Proof. Define the set-valued mapping S : Y — 2% by
S(y)={r e X:F(z,y) C M}, yeY.

It follows that S(y) # 0 for all y € Y, since F(¢(y),y) C M by (ii). Taking into
account that M is closed and the assumption(i), it follows from Proposition 2.1 that
S has closed values. Since X is a compact set, S(y) is compact for every y € Y.
It is easy to see that the above assumption (ii) implies condition (ii) in Lemma 3.1.
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Consequently, the set-valued mapping S defined above meets with conditions in
Lemma 3.1, and hence Nye xS (y) # 0 and this implies the conclusion. [ ]

Remark 3.2. When weakening slightly the condition (i) in Theorem 3.2 and
Theorem 3.3 to:

(i) S(y)={xz € X : F(x,y) C M} is a closed-valued mapping for all y € Y,

Theorem 3.2 and Theorem 3.3 still hold.

From Theorem 3.3, we obtain the following generalization of Ky Fan’s minimax
inequality.

Corollary 3.2. Let X,Y be nonempty compact convex subset of Hausdorff
topological vector spaces E and G respectively. If ¢ :' Y — X is a linear
mapping on convexity coefficient, and f : X x Y — R is a mapping satisfying:

(i) f(-,y) is lower semicontinuous on X for all y € Y,
(ii) f(z,-) is concave on'Y for all x € X,

then there exists xq € X such that

sup f(xo,y) < sup f(e(y),y).
yey yey

Proof.  Let m = sup,cy f(¢(y),y). If m = +oo, take any xp. Consider
m < 4o00. Let Z =R, F = f and M = (—oo0, m]. Then f (-,y) is Isc on X for all
y € Y implies that f has closed lower level sets. Hence S(y) = {x € X : F(z,y) C
M} is closed-valued for all y € Y. It remains to prove that (ii) in Theorem 3.3
holds. Suppose no. Then there exists a finite set {y1,y2,...,y,} C Y and zg €
conv{e(y1), v(y2), - .., ¢(yn)} such that for every i = 1,2, -+, n, f(xo,y;) > m
where zo = > a;(y;), a; are positive numbers with " | o = 1. Let yg =
Yoy a;yi. Then zg = ¢(yo). Since f(z,-) is concave for every z € X, we have
f(¢(yo),y0) > m and this is a contradiction. [

Theorem 3.4. Let E, G, Z be Hausdorff topological vector spaces where E
is endowed with an ovder relation <. Assume that X is a nonempty compact
convex subset of E, Y is a convex subset of G, and M is a nonempty convex open
subset of Z. Let p :' Y — X be a convex (resp., concave) mapping, and let
F: X xY — 22 be a set-valued mapping with the following properties:

(i) F(-,y) is upper semi-continuous on X for all y € Y,
(i) there exists a set-valued mapping H : X x Y — 2% such that
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(a) H(p(y),y)N(Z\ M) #0 forall y €Y,

(b) forallz € X and y €Y, H(xz,y) ¢ M implies that F(x,y) ¢ M,
(¢) H(x,-) is concave on'Y for all x € X;

(d) H(-,y) is monotone increasing (resp., decreasing) on X forall y € Y.

Then there exists ©o € X such that F(xo,y) N (Z\ M) # 0 forally €Y.

Proof. Forally € Y, let S(y) ={z € X : F(z,y)N (Z\ M) # (0}.From
(a) and (b) in (ii), it follows that S(y) # 0 since ¢(y) € S(y). From (i) and
proposition 2.1, for all y € Y, S(y) is a closed subset of X hence is compact
by the compactness of X. Therefore, (i) of Lemma 3.1 is satisfied. It remains to
prove that (ii) in Lemma 3.1 is true. Suppose that there exist y1,yo, ..., y, and
A, Aoy, A >0, Z?:l A; = 1 such that

D Nio(wi) & S(y), §=1,2,...,m.
i=1
By the definition of S(y)

n
F(Z)\iap(yi),yj) C ]\47 jz 1,2,...,7&.

=1

By (ii) (b),

(3) H(Z)\iap(yi),yj)CM, j:1,2,...,n.
=1

From (3) and the convexity of M, it follows that

(4) Z )‘jH(Z Niw(yi), yi) C M

Since H(x,-) is concave on Y, ¢ : Y — X is convex (resp., concave), and
H(-,y) is monotone increasing (resp., monotone decreasing) on X, we have

H(p(30y Aiyi)s Sy M) € HO Xio(wi), Y Ajw)

i=1 j=1
CY NHO  Niplyi),y) € M
j=1 i=1

which contradicts to (ii)(a). This completes the proof. ]
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Corollary 3.3. Let E, G, Z be Hausdorff topological vector spaces where E is
endowed with an order relation <. Assume that X is a nonempty compact convex
subset of E, Y is a convex subset of G, and M is a nonempty open convex subset of
Z. Let ¢ : Y — X be a convex (resp., concave) mapping and F : X xY — 27
be a set-valued mapping satisfying:

(i) F(-,y) is upper semicontinuous on X for all y € Y,

(i) F(

(iif) F(-,y) is monotone increasing (resp., monotone decreasing) on X for all
yEey,

(iv) F(e(y),y)N(Z\M)#0 forallyeY.

Then there exists xo € X such that F(xzo,y) N (Z\ M) # 0 forally €Y.

x,-) is concave on' Y for all x € X;

Remark 3.3. Similar to Remark 3.1, the conclusions of Theorem 3.4 and
Corollary 3.3 hold if ¢ : Y — X is a linear mapping on convexity coefficient and
the monotonicity of H and the order structure of E are not needed.

Theorem 3.5. Let FE, G, Z be Hausdorff topological vector spaces. Assume
that X is a nonempty compact convex subset of E, Y is a convex subset of G,
and M is an open convex subset of Z. If ¢ :' Y — X is a linear mapping on
convexity coefficient and F : X xY — 2% is a set-valued mapping satisfying:

(i) F(-,y) is upper semicontinuous on X for all y € Y,
(ii) F(z,-) is concave on'Y for all x € X;
(iii) F(p(y),y) N (Z\ M) #0 forally € Y,

then there exists v € X such that F(xo,y) N (Z\ M) # 0 forally €Y.

In the studies of minimax theory, it is an important topic that how to weaken
the compactness, linearity of the spaces and convexity of functions. By weakening
slightly the compactness of X in Theorem 3.1, we have the following conclusion.

Theorem 3.6. Let E, G, Z be Hausdorff topological vector spaces where E
is endowed with an order relation <. Assume that X is a convex subset of £, Y
is a convex subset of G, and M is a nonempty closed subset of Z with Z \ M is
convex. Let ¢ :' Y — X be a convex (resp., concave) continuous mapping, and
F: X xY — 22 be a set-valued mapping satisfying:
(i) F(-,y) is lower semicontinuous on X for all y € Y,
(ii) there exists a set-valued mapping H : X x Y — 27 such that

(a) H(e(y),y) C M forally €Y,



248 Gu-Sheng Tang, Cao-Zong Cheng and Bor-Luh Lin

(b) Forallx € X andy €Y, H(xz,y) C M implies F(x,y) C M,
(¢) H(x,-) is convex on'Y forall x € X;
(d) H(-,y) is monotone decreasing (resp., monotone increasing) on X for
allyeyY,.
(iii) there exists a compact subset Yy of Y and an element yo € Yy such that
F(z,y0) N (Z\ M) # 0 for all z € X \ ¢(Yp).

Then there exists xo € X such that F(xo,y) C M forally €Y.

Proof. Let S(y) ={x € X : F(z,y) C M} for all y € Y. Then S(y) # 0.
We claim that S(yg) C ¢(Yp). In fact, supposing there exists an element x € S(yo)
such that « ¢ ¢(Yp). Then F(x,y9) C M that contradicts to (iii). Now, ¢(Y)) is
compact since Yy is compact and ¢ is continuous. Hence S(yg) is compact. The
rest of the proof is the same as the proof of Theorem 3.1. ]

Remark 3.4. Different from Theorem 3.1 and 3.4, the mapping ¢ in Theorem
3.6 must be continuous.

Corollary 3.4. Let E,G, Z be Hausdorff topological vector spaces where E
is endowed with an order relation <. Assume that X is a convex subset of £, Y
is a convex subset of G, and M is a nonempty closed subset of Z with Z \ M is
convex. Let ¢ :' Y — X be convex (resp., concave) continuous mapping, and
F: X xY — 2% be a set-valued mapping satisfying

(i) F(-,y) is lower semicontinuous on X for ally €Y,
(ii) F(x,-) is convex on'Y for all v € X;
(iif) F(-,y) is monotone decreasing (resp., monotone increasing) on X for all
yey,
(iv) F(p(y),y) C M forallyeY;

(v) there exist a compact subset Yy of Y and an element yo € Yy such that
F(z,yo) N (Z\ M) # 0 for all z € X \ ¢(Yp).

Then there exists ¢ € X such that F(zg,y) C M forally € Y.

Theorem 3.7. Let FE,G, Z be Hausdorff topological vector spaces. Assume
that X is a convex subset of E, Y is a convex subset of G, and M is a closed
subset of Z with Z \ M is convex. Let the mapping ¢ : Y — X be continuous
and linear on convexity coefficient, and let F : X x Y — 2% be a set-valued
mapping satisfying:

(i) F(-,y) is lower semicontinuous on X for ally €Y,
(ii) F(x,-) is convex on'Y for all x € X;
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(iii) F(p(y),y) C M forally €Y;
(iv) there exist a compact subset Yy of Y and yo € Yy such that F(x,yo) N (Z\
M) #0 for all x € X \ ¢(Yo).

Then there exists ¢ € X such that F(zg,y) C M forally €Y.

4. AN APPLICATION
In this section, we prove the existence of solution for a variational inclusion.

Theorem 4.1. Let F, G, Z be real normed spaces and let B denote the space
of all bounded linear operators from E to Z. Assume X is a compact convex subset
of E, and M is an open convex subset of Z with 0 € M. Let ¢ : G — FE be
a continuous linear mapping, Y = ¢ Y(X), and let T : X — 28 be an upper
semi-continuous set-valued mapping with card T (x) < +oo for all x € X. For
z,u€ X, let T (z) (u) = Uaer(s) A (u). Then there exists xo € X such that

T (o) (zo — ¢ (y)) N (Z\ M) #0
forallyeY.

Proof. Define F: X xY — 2% by F(x,y) = T(x)(x — ¢(y)) for (z,y) €
X x Y.We verify the hypotheses of Theorem 3.5 hold.

In order to verify (i), fixed x € X and y € Y, let U be a neighborhood of
F(z,y). Since card T'(z) < +oo, there exists € > 0 such that for all A € T ()

() Oz(A(x = ¢(y)),e) C U,

where Oz (A(x—p(y)), €) is the open ball in Z with center A(z — ¢(y)) and radius

e. Let
€ €

e+ 1) 30l + D

Since 1" is upper semicontinuous on X, for U AeT(m)OB(A, e1) (a neighborhood of
T'(x) in B) , there exists 7* > 0 such that for all w € Ox (z,r*)

g1 = mm(3

(6) T(w) C UAET(J;)OB(Av 81).

Since card T (x) < 400, C 2 sup {||A|| : A€ T (z)} < 4o0. Let
5

T = m’m(m,r ,1)

We claim that for all 2’ € Ox(x,r), F(2',y) C U which implies that F(-, y) is usc
on X. Let 2/ € Ox(z,r) and let A; € T'(z). From (6) and the fact that r < r*,
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we have T'(2') C Uaer(n) OB(A, €1). Therefore, there exists Ag € T'(x) such that
Ay € Op(Ag,e1). It is easy to check that

[A1(z" — o(y)) — Ao(z — @(y))| <e.

Therefore A1 (2" —(y)) € Uaer(x)Oz(A(r—p(y)), €) for all Ay € T(z'). Hence
F(z',y) C U by (5).

In order to verify (ii), let A € T(x), y1,y2 € Y, and A € [0,1]. Since A is
linear,

Az = Ap(y1) — (1 = Nep(y2)) = A(z — (1))
+(1 = M)Az — ¢(y2)) € AT (2)(z — (1)) + (1 = )T (2)(z = ¢ (y2))-

From this and linearity of o, F'(x, Ay1 + (1 —A)y2) C AF(z,y1)+ (1 = A\ F(z, y2).
Hence F'(z,-) is concave on X. Finally, since 0 € Z \ M and

Fe(y),y) = T(e) () — o) = T(¢(y))(0) = User(uy)A(0) =0,

the condition (iii) is satisfied.
Therefore, applying Theorem 3.5, we can see that there exists g € X such that
F(xo,y)N(Z\ M) # 0 for all y € Y,which is exactly the desired conclusion. m
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