
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 13, No. 1, pp. 137-155, February 2009
This paper is available online at http://www.tjm.nsysu.edu.tw/

ON EXISTENCE AND APPROXIMATION OF SOLUTIONS
OF ABSTRACT CAUCHY PROBLEM

Chung-Cheng Kuo

Abstract. Let A be the generator of a nondegenerate α-times integrated C-
semigroup T (·) on a complex Banach space X for some α ≥ 0, x ∈ X and
f ∈ L1

loc([0,∞), X)∩C((0,∞), X). We first show that the abstract Cauchy
problem ACP (A, Cf, Cx): u′(t) = Au(t) + Cf(t) for t > 0 and u(0) =
Cx has a strong solution is equivalent to the function v(·) = T (·)x + T ∗
f(·) ∈ Cα([0,∞), X) and Dαv(·) ∈ C1((0,∞), X), and then use it to prove
some new existence and approximation theorems concerning strong solutions
of ACP (A, Cy + jα−1 ∗ Cg, Cx) in C1([0,∞), X) and mild solutions of
ACP (A, Cy + jα−2 ∗ Cg, Cx) (for α ≥ 1) in C([0,∞), X) when vectors
x and y both satisfy some suitable regularity assumptions and T (·) is locally
Lipschitz continuous.

1. INTRODUCTION

Let X be a complex Banach space with norm ‖ · ‖, and let B(X) denote
the family of all bounded linear operators from X into itself. For α > 0 and
C ∈ B(X), a family T (·)(= {T (t)|t ≥ 0}) in B(X) is called an α-times integrated
C-semigroup on X if

(1.1) T (·) is strongly continuous, that is,
for each x ∈ X, T (·)x : [0,∞) → X is continuous,

(1.2) T (·)C = CT (·), that is, T (t)C = CT (t)
on X for each t ≥ 0 and

Received January 18, 2007, accepted July 4, 2007.
Communicated by Sen-Yen Shaw.
2000 Mathematics Subject Classification: 47D60, 47D62.
Key words and phrases: α-Times integrated C-semigroup, Generator, Abstract Cauchy problem.
Research supported in part by the National Science Council of R.O.C.

137



138 Chung-Cheng Kuo

(1.3)
T (t)T (s)x = 1

Γ(α) [
∫ t+s
0 − ∫ t

0 −
∫ s
0 ](t + s − r)α−1T (r)Cxdr

for each x ∈ X and t, s ≥ 0( see [9]);

or called a (0-times integrated) C-semigroup on X if it satisfies (1.1), (1.2) and
(1.4)

T (t)T (s)x = T (t + s)Cx for each x ∈ X and t, s ≥ 0 (see [4,12,18,20]).

Here Γ(·) denotes the Gamma function. Moreover, we say that T (·) is
(i) nondegenerate, if x = 0 whenever T (t)x = 0 for all t ≥ 0. In this case,

its (integrated) generator A : D(A) ⊂ X → X is a closed linear operator
in X defined by D(A) = {x ∈ X | there exists a yx ∈ X such that T (t)x −

tα

Γ(α+1)Cx =
∫ t
0 T (r)yxdr for t ≥ 0} and Ax = yx for each x ∈ D(A);

(ii) locally Lipschitz continuous if for each t0 > 0 there exists a Kt0 > 0 such
that

(1.5) ‖T (t + h) − T (t)‖ ≤ Kt0h for all 0 ≤ t, h ≤ t + h ≤ t0;

(iii) exponentially bounded if there exist M, ω ≥ 0 such that

(1.6) ‖T (t)‖ ≤ Meωt for all t ≥ 0.

In this case, we write T (·) ∈ g(M, ω);

(iv) exponentially Lipschitz continuous, if there exist M, ω ≥ 0 such that

(1.7) ‖T (t + h) − T (t)‖ ≤ Meω(t+h)h for all t, h ≥ 0.

In this case, we write T (·) ∈ ε(M, ω).

In general, a (0-times integrated) IX -semigroup on X is also called a semigroup
on X(see [1,5-6]) and an α-times integrated IX -semigroup on X is also called
an α-times integrated semigroup on X (see[1-3,7-8,13-19]). Here IX denotes the
identity operator on X .

In this paper we consider the following abstract Cauchy problem :

ACP (A, f, x)

{
u′(t) = Au(t) + f(t) for t > 0,

u(0) = x,

where x ∈ X is given, A : D(A) ⊂ X → X is a closed linear operator in X
with domain D(A) and range R(A) and f is an X-valued function defined on a
subset of R . The concept of α-times integrated C-semigroups has been extensively
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applied to discuss the existence of (strong, mild or weak) solutions of ACP (A, f, x)
when C = IX or α ∈ N ∪ {0}(see [1,4-6,9-10,15-16,18-19]). Some equivalence
conditions between the existence of an α-times integrated C-semigroup and the
unique existence of (strong or weak) solutions of ACP (A, f, x) are also discussed
in [9,10]. As an application of Arendt [2,Proposition 5.1 and Theorem 5.2], Hilber
[8] first presented some meaningful sufficient conditions for the existence of strong
solutions of ACP (A, Cy + jα−1 ∗ Cg, Cx) when g ∈ L1

loc([0,∞), X) the set
of all locally Bochner integrable functions from [0,∞) into X, vectors x and y
both satisfy some suitable regularity assumptions and A generates an exponentially
Lipschitz continuous (α + 1)-times integrated semigroup on X . Here jβ(t) =
tβ/Γ(β + 1) for t > 0 and β > −1, and j−1 denotes the Dirac measure at 0. That

is, j−1(t) = { 1 for t = 0
0 for t �= 0.

In 2000, together with solving Nicaise’s problem ([17])

in essence, Xiao and Liang [19] extended considerably previous Laplace transform
versions of the Trotter-Kato theorem and established some significant existence and
approximation theorems of mild solutions of ACP (A, Cy + jα−2 ∗ Cg, Cx) (for
α ≥ 1). The purpose of this paper is to explore if the aforementional results
in [8, Theorem 4.6] and in [19, Lemma 4.1] are still true when the exponential
Lipschitz continuity of an α-times integrated semigroup is replaced by the local
Lipschitz continuity, and also to investigate if some approximation theorems in [19]
concerning mild solutions of ACP (A, Cy+jα−2 ∗Cg, Cx) (for α ≥ 1) are still true
when the considered integrated semigroups are replaced by integrated C-semigroups
(see Theorems 3.8 and 3.9 below).

In section 2, we first prove that ACP (A, Cf, Cx) has a strong solution in
C([0,∞), X) is equivalent to v(·) = T (·)x + T ∗ f(·) ∈ Cα([0,∞), X) and
Dαv ∈ C1((0,∞), X) when x ∈ X , f ∈ L1

loc([0,∞), X) ∩ C((0,∞), X) and
A generates an α-times integrated C-semigroup T (·) on X for some α ≥ 0. In
this case, u = Dαv the αth order derivative of v on [0,∞)(see Theorem 2.5 and
Corollary 2.6 below). Then, assuming A generates a locally Lipschitz continuous
α-times integrated C-semigroup on X , g ∈ L1

loc([0,∞), X) and x, y ∈ X ,we show
ACP (A, Cy+ jα−1 ∗Cg, Cx) has a unique strong solution in C1([0,∞), X) when
either 0 ≤ α < 1; or α ≥ 1, x ∈ D(A) with Ax + y ∈ D(Ak−1) and

Ak−1(Ax + y) ∈ { D(A) for α ∈ N

D(A) for α /∈ N

(see Theorem 2.10 below), and ACP (A, Cy + jα−2 ∗ Cg, Cx) has a unique mild
solution in C([0,∞), X) when x ∈ D(A) and either 1 ≤ α < 2; or α ≥ 2 with
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Ax + y ∈ D(Ak−2) and

Ak−2(Ax + y) ∈ { D(A) for α ∈ N

D(A) for α /∈ N

(see Theorem 2.11 below). Here k = [α] the Gauss integer of α. Applying these
results we can also deduce some new approximation theorems(see Theorems 3.6
and 3.7 below) concerning strong solutions of ACP (A, Cy + jα−1 ∗ Cg, Cx) and
mild solutions of ACP (A, Cy + jα−2 ∗Cg, Cx)(for α ≥ 1).

2. EXISTENCE THEOREMS

From now on we always write [α] to denote the largest integer that is less than
or equal to the real number α and set f ∗ g(·) =

∫ ·
0 f(· − s)g(s)ds on [0, t0] for

each t0 > 0, f ∈ L1([0, t0]) the set of all complex Lebesgue integrable functions
on [0, t0] and g ∈ L1([0, t0], X) the set of all complex Bochner integrable functions
from [0, t0] into X .

Definition 2.1. Let α > 0, k = [α] + 1 and v : I → X for some subinterval
of [0,∞) containing {0}. We write v ∈ Cα(I, X) if v = v(0) + jα−k ∗ u on I
for some u ∈ Ck−1(I, X). In this case, we say that v is α-times continuously
differentiable on I , the (k − 1)th order derivative u(k−1) of u on I is called the
αth order derivative of v on I and denoted by Dαv(on I) or Dαv : I → X . Here
Ck(I, X) denotes the set of all k-times continuously differentiable functions from
I into X and C0(I, X) = C(I, X) the set of all continuous functions from I into
X .

Next we state some basic properties concerning nondegenerateα-times integrated
C-semigroups, which have been obtained in [9] and are frequently applied in the
following.

Proposition 2.2. Let α ≥ 0, and A be the generator of a nondegenerate
α-times integrated C-semigroup T (·) on X . Then

(2.1) C is injective and C−1AC = A;

(2.2) T (t)x ∈ D(A) and AT (t)x = T (t)Ax for all x ∈ D(A) and t ≥ 0;

(2.3)

∫ t

0
T (r)xdr ∈ D(A) and A

∫ t

0
T (r)xdr = T (t)x − jα(t)Cx

for all x ∈ X and t ≥ 0;
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(2.4) T (0) = C on X if α=0, and T (0)=0 the zero operator on X if α>0.

Definition 2.3. For a closed linear operator A : D(A)⊂X→X , f : [0,∞) →
X and x ∈ X , a function u : [0,∞) → X is called a (strong) solution of
ACP (A, f, x), if u ∈ C1((0,∞), X) ∩ C([0,∞), X) ∩ C((0,∞), [D(A)]) and
satisfies ACP (A, f, x), where [D(A)] denotes the Banach space D(A) with the
graph norm |x|A = ‖x‖+ ‖Ax‖.

The next lemma is a direct consequence of Definition 2.1, and so its proof is
omitted.

Lemma 2.4. Let α ≥ 0, v ∈ Cα(I, X) for some subinterval I of [0,∞)
containing {0} with v(0) = 0 and k = [α] + 1. Then jk−α−1 ∗ v ∈ Ck(I, X),
v ∈ Cα−i(I, X) and Dα−iv = (jk−α−1 ∗ v)(k−i) on I for each integer 0 ≤ i ≤
k − 1. In particular, for each x ∈ X , we have jα(·)x ∈ Cα([0,∞), X) and
Dα−ijα(·)x = Dk−ijk(·)x = ji(·)x on [0,∞) for each integer 0 ≤ i ≤ k − 1.

Combining Proposition 2.2 with Lemma 2.4, we can deduce the following result
which is a generalization of Hieber [8, Proposition 4.5] and Arendt [2, Proposition
5.1 and Theorem 5.2].

Theorem 2.5. Let A be the generator of a nondegenerate α-times integrated
C-semigroup T (·) on X for some α ≥ 0, x ∈ X and f ∈ L1

loc([0,∞), X) ∩
C((0,∞), X). Assume that v(·) = T (·)+ T ∗ f(·) on [0,∞). Then ACP (A, f, x)
has a strong solution u if and only if v(t) ∈ R(C) for each t ≥ 0, C −1v(·) ∈
Cα([0,∞), X) and DαC−1v(·) ∈ C1((0,∞), X). Here T ∗ f(t) =

∫ t
0 T (t −

s)f(s)ds for t ≥ 0. In this case, we have u = DαC−1v. Moreover, C−1v ∈
Cα+1([0,∞), X) (resp., C−1v ∈ Cα([0,∞), [D(A)])) if and only if u ∈ C1([0,∞),
X) (resp., u ∈ C([0,∞), [D(A)])).

Proof. We consider only the case α > 0, for the case α = 0 can be treated
similarly. Now let u be a strong solution of ACP (A, f, x). For each 0 < t < ∞,
we set w(·) = T (t− ·)u(·) on [0, t]. Since u ∈ C1(0,∞), X)∩C((0,∞), [D(A)])
we have

d

ds
T (t − s)u(s)|s=s0

= −jα−1(t − s0)Cu(s0)− T (t − s0)Au(s0) + T (t − s0)u′(s0)

= −jα−1(t − s0)Cu(s0) + T (t − s0)f(s0)
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for each 0 < s0 ≤ t, which together with the continuity of u on [0,∞) implies that

T (t)x = w(0)− w(t)

= − lim
s0→0+

∫ t

s0

w′(r)dr

= lim
s0→0+

[
∫ t

s0

jα−1(t − r)Cu(r)dr −
∫ t

s0

T (t − r)f(r)dr]

= jα−1 ∗ Cu(t) − T ∗ f(t),

so that v(t) = Cjα−1 ∗u(t) ∈ R(C). Hence C−1v(·) = jα−1 ∗u(·) = jα−k ∗ jk−2 ∗
u ∈ Cα([0,∞), X) and DαC−1v = u ∈ C1((0,∞), X). Conversely, if v(t) ∈
R(C) for all t ≥ 0, C−1v(·) ∈ Cα([0,∞), X) and DαC−1v(·) ∈ C1((0,∞), X).
Then from (2.3) and (2.4) with α > 0, we have v(0) = 0, j0 ∗ v(t) ∈ D(A) and

Aj0 ∗ v(t) = T (t)x − jα(t)Cx + T ∗ f(t) − jα ∗ Cf(t)

= v(t) − C[jα(t)x + jα ∗ f(t)]

for all t ≥ 0, so that ACj0 ∗ C−1v(t) = Aj0 ∗ v(t) ∈ R(C) and

Aj0 ∗ C−1v(t) = C−1ACj0 ∗ C−1v(t)

= C−1v(t)− [jα(t)x + jα ∗ f(t)]

for all t ≥ 0. Now if we set k = [α] + 1, then from Lemma 2.4, we have
Dα−ijα(t)x = ji(t)x and Dα+1jα(t)x = 0 for all integer 0 ≤ i ≤ k − 1 and all
t ≥ 0. Combining this, and the closedness ofA with the fact that jk−α−1∗C−1v(·) ∈
Ck+1((0,∞), X)∩ Ck([0,∞), X), we have

Aj0 ∗ jk−α−1 ∗C−1v(t)=jk−α−1 ∗C−1v(t)−[jk(t)x + jk ∗ f(t)] for all t≥0,

ADi(jk−α−1∗C−1v)(·)=Di+1(jk−α−1 ∗ C−1v)(·)−[jk−(i+1)(·)x+jk−(i+1)∗f(·)]

on [0,∞) for each integer 0 ≤ i ≤ k−1 andADkjk−α−1∗C−1v(t) = Dk+1jk−α−1∗
C−1v(t)−f(t) for each t > 0. By induction, we also haveDijk−α−1∗C−1v(0) = 0
for each integer 0 ≤ i ≤ k − 1 and Dkjk−α−1 ∗ C−1v(0) − x = 0. Consequently,
Dkjk−α−1 ∗ C−1v(·) is a strong solution of ACP (A, f, x).

By slightly modifying the proof of Theorem 2.5 the next corollary is also
attained.

Corollary 2.6. Under assumptions of Theorem 2.5, the following statements
are equivalent:

(i) ACP (A, Cf, Cx) has a strong solution u;
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(ii) v ∈ Cα([0,∞), X) and Dαv ∈ C1((0,∞), X).

In this case, we have u = Dαv. Moreover, v ∈ Cα+1([0,∞), X) (resp., v ∈ Cα

([0,∞), [D(A)])) if and only if u ∈ C1([0,∞), X)(resp., u ∈ C([0,∞), [D(A)])).

Proposition 2.7. Let α ≥ 1, and T (·) be a locally Lipschitz continuous α-
times integrated C-semigroup on X with generator A. Then A 1 the part of A in
X1(= D(A)) generates an (α − 1)-times integrated C1-semigroup T1(·) on X1.
Here C1 denotes the part of C in X1 and T1(t)x = d

dtT (t)x for each x ∈ X1 and
t ≥ 0.

Proof. We first show that A1 = C−1
1 A1C1. Indeed, if x ∈ D(C−1

1 A1C1) is
given, then x ∈ D(C−1AC) = D(A) and Ax = C−1ACx = C−1

1 A1C1x ∈ D(A),
so that x ∈ D(A1) and A1x = Ax = C−1

1 A1C1x ∈ D(A). Hence C−1
1 A1C1 ⊂

A1, which together with the inclusion A1 ⊂ C−1
1 A1C1 implies that C−1

1 A1C1 =
A1. Similarly, we can show that A1 : D(A1) ⊂ X1 → X1 is a closed linear
operator in X . Since {x ∈ X |T (·) is coninuously differentiable on [0,∞)} is a
closed subspace of X containing D(A), we also have, for x ∈ D(A), T (·)x is
continuously differentiable on [0,∞) and d

dtT (t)x ∈ D(A) for each t ≥ 0. It
follows from the closedness of A and (2.3) that we have

T1(t)x − jα−1(t)C1x =
d

dt
T (t)x − jα−1(t)Cx

= A1

∫ t

0
T1(r)xdr

for each x ∈ D(A) and t ≥ 0. The uniqueness of solutions of ACP (A, jα−1Cx, 0)
implies that T (·)x =

∫ t
0 T1(r)xdr is the unique strong solution of ACP (A1, jα−1

C1x, 0) in C1([0,∞), X1) ∩ C([0,∞), [D(A1)]). We conclude from [9, Theorem
2.3] that T1(·) is an (α − 1)-times integrated C1-semigroup on X1 with generator
A1.

Proposition 2.8. Let α ≥ 1, and T (·) be a locally Lipschitz continuous α-times
integrated C-semigroup on X with generator A. Then for each 0 < θ < 1 there
exists an (α − 1 + θ)-times integrated C-semigroup T̃ (·) on X with generator A
such that for each t0 > 0, we have

(2.5) ‖T̃ (t + h) − T̃ (t)‖ ≤ Kt0h
θ for all 0 ≤ t, h ≤ t + h ≤ t0,

where Kt0 is given as in (1.5).

Proof. Clearly, −1 < θ − 1 < 0. It follows that T ∗ jθ−1(·)x ∈ C1([0,∞), X)
for each x ∈ X and T ∗ jθ−1(·) is an (α + θ)-times integrated C-semigroup on X
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with generator A. Now let T̃ (t) : X → X be defined by

(2.6) T̃ (t)x =
d

dt
T ∗ jθ−1(t)x

for each x ∈ X . As in the proof of Proposition 2.7, we can show that T̃ (·) is
an (α − 1 + θ)-times integrated C-semigroup on X with generator A and (2.5) is
satisfied.

Remark 2.9. If A generates a locally Lipschitz continuous α-times integrated
C-semigroup T (·) on X for some 0 ≤ α < 1, then A also generates a C-semigroup
T̃ (·) on X which is defined by

(2.7) T̃ (t)x =
d

dt
T ∗ j−α(t)x for each x ∈ X and t ≥ 0.

The next result is an extension of [8, Theorem 4.6] in which α ≥ 1 and expo-
nentially Lipschitz continuous integrated semigroups are replaced , respectively, by
α ≥ 0 and locally Lipschitz continuous integrated C-semigroups here.

Theorem 2.10. Let α ≥ 0, k = [α], and T (·) be a locally Lipschitz continuous
α-times integrated C-semigroup on X . Assume that x ∈ D(A), y ∈ X and
g ∈ L1

loc([0,∞), X). Then ACP (A, Cy + jα−1 ∗ Cg, Cx) has a unique strong
solution u in C 1([0,∞), X) when 0 ≤ α < 1 ; or α ≥ 1, z(= Ax+y) ∈ D(Ak−1)
and

Ak−1z ∈
{

D(A) if α ∈ N

D(A) if α /∈ N.

In this case, we have

(2.8) u(·) = T ∗ g(·) + Cx +


j0 ∗ T̃ (·)z if k = 0

T̃ (·)z if k = 1

T̃ (·)Ak−1z +
k−2∑
i=0

ji+1(·)CAiz if k ≥ 2

on [0,∞) and

(2.9) u′(t) =
d

dt
T ∗ g(t) +


T̃ (t)z if k = 0
d
dt T̃ (t)z if k = 1

d
dt T̃ (t)Ak−1z +

k−2∑
i=0

ji(t)CAiz if k ≥ 2
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for each t ≥ 0, where T̃ (·) denotes the k-times integrated C-semigroup on X with
generator A which is given as in Remark 2.9 when 0 ≤ α < 1 or in Proposition
2.8 with θ = k − (α − 1) when α ≥ 1.

Proof. From (2.3) and Corollary 2.6, we need only to show that T̃ (·)x +
T̃ ∗ f(·) = jk(·)Cx + j0 ∗ T̃ (·)z + jα−1 ∗ T̃ ∗ g(·) ∈ Ck+1([0,∞), X) if we
set f = y + jα−1 ∗ g on [0,∞). Indeed, if 0 ≤ α < 1, then k = 0, so that
jα−1 ∗ T̃ ∗ g = T̃ ∗ g ∈ C1([0,∞), X). Hence v ∈ Ck+1([0,∞), X). Next if
α ≥ 1, then k ≥ 1, dk

dtk
jα−1 ∗ T̃ ∗ g(t) = jα−k−1 ∗ T̃ ∗ g(t) = T ∗ g(t) and

dk

dtk
j0 ∗ T̃ (t)z =

dk−1

dtk−1
T̃ (t)z =


T̃ (t)z if k = 1

T̃ (t)Ak−1z +
k−2∑
i=0

ji+1(t)CAiz if k ≥ 2

for all t ≥ 0. Clearly,
k−2∑
i=0

ji+1(·)CAiz, T ∗g(·) ∈ C1([0,∞), X), and T̃ (·)Ak−1z ∈
C1([0,∞), X) when z ∈ D(Ak). Now if α ∈ N, then k = α and T̃ = T is locally
Lipschitz continuous, so that T̃ (·)Ak−1z is continuously differentiable on [0,∞)
when Ak−1z ∈ D(A). Hence v ∈ Ck+1([0,∞), X). We conclude from Corollary
2.6 that v(k) = u is the unique strong solution of ACP (A, Cy + jα−1 ∗Cg, Cx) in
C1([0,∞), X).

Similarly we can obtain the next result which has been established by Xiao and
Liang [19] when α ≥ 1, C = IX and T (·) is exponentially Lipschitz continuous.

Theorem 2.11. Let α ≥ 0, k = [α], and T (·) be a locally Lipschitz continuous
α-times integrated C-semigroup on X with generator A. Assume that x, y ∈ X
and g ∈ L1

loc([0,∞), X). Then ACP (A, Cx + j1Cy + jα−1 ∗Cg, 0) has a unique
strong solution u in C 1([0,∞), X) when 0 ≤ α < 1; or 1 ≤ α < 2, x ∈ D(A)
with z = Ax + y; or α ≥ 2, x ∈ D(A), z(= Ax + y) ∈ D(Ak−2) and

Ak−2z ∈
{

D(A) if α ∈ N

D(A) if α /∈ N.

In this case, we have

(2.10) u(·)=T ∗g(·)+j1(·)Cx+



j0 ∗ T̃ (·)z if k = 1

T̃ (·)z if k = 2

T̃ (·)Ak−2z +
k−3∑
i=0

ji+1(·)CAiz if k ≥ 3
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on [0,∞) and

(2.11) u′(t) =
d

dt
T ∗g(t)+Cx+



T̃ (t)z if k = 1

d

dt
T̃ (t)z if k = 2

d

dt
T̃ (t)Ak−2z +

k−3∑
i=0

ji(t)CAiz if k ≥ 3

for each t ≥ 0.

Remark 2.12. If α ≥ 1, and u is the unique strong solution of ACP (A, Cx+
j1Cy + jα−1 ∗ Cg, 0) in C1([0,∞), X) given as in Theorem 2.11. Then u′ is the
unique mild solution of ACP (A, Cy + jα−2 ∗ Cg, Cx), that is, u′ is the unique
function w ∈ C([0,∞), X) satisfying the integral equation w = A(j0 ∗w) + Cx +
j0 ∗ [Cy + jα−2 ∗ Cg] on [0,∞).

Corollary 2.13. Let α ≥ 0, k = [α], and T (·) be a locally Lipschitz continuous
α-times integrated C-semigroup on X with generator A. Assume that x ∈ D(A),
y ∈ X and g ∈ L1

loc([0,∞), X). Then ACP (A, Cy + jα−1 ∗ Cg, Cx) has a
unique strong solution u in C 1([0,∞), X) when 0 ≤ α < 1; or α ≥ 1 and
z(= Ax + y) ∈ D(Ak).

Corollary 2.14. Let α ≥ 0, k = [α], and T (·) be a locally Lipschitz continuous
α-times integrated C-semigroup on X with generator A. Assume that x, y ∈ X
and g ∈ L1

loc([0,∞), X). Then ACP (A, Cx + j1Cy + jα−1 ∗Cg, 0) has a unique
strong solution u in C 1([0,∞), X) when 0 ≤ α < 1; or α ≥ 1, x ∈ D(A) and
z(= Ax + y) ∈ D(Ak−1).

Corollary 2.15. Let T (·) be an α-times integrated C-semigroup on X with
the densely defined generator A for some α ∈ N∪{0} and k = α+1. Assume that
x ∈ D(A), y ∈ X and g ∈ L1

loc([0,∞), X). Then ACP (A, Cy + jα ∗ Cg, Cx)
has a unique strong solution u in C 1([0,∞), X) when z(= Ax + y) ∈ D(Ak−1).
In this case, we have

(2.12) u(·)=j0∗T ∗g(·)+Cx+


j0 ∗ T (·)z if k=1

j0 ∗ T (·)Ak−1z+
k−2∑
i=0

ji+1(·)CAiz if k≥2

and

(2.13) u′(·) = T ∗ g(·) +


T (·)z if k=1

T (·)Ak−1z+
k−2∑
i=0

ji(·)CAiz if k≥2
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on [0,∞).

Corollary 2.16. Let T (·) be an α-times integrated C-semigroup on X with
the densely defined generator A for some α ∈ N∪{0} and k = α+1. Assume that
x ∈ D(A), y ∈ X and g ∈ L1

loc([0,∞), X). Then ACP (A, Cx+j1Cy+jα∗Cg, 0)
has a unique strong solution u in C 1([0,∞), X) when α = 0; or α ≥ 1 and
z(= Ax + y) ∈ D(Ak−2). In this case, we have

(2.14) u(·)=j0∗T∗g(·)+j1(·)Cx+


j1 ∗ T (·)z if k=1

j0 ∗ T (·)z if k=2

j0 ∗ T (·)Ak−2z+
k−3∑
i=0

ji+1(·)CAiz if k≥3

and

(2.15) u′(·) = T ∗ g(·) +


j0 ∗ T (·)z if k = 1

T (·)z if k = 2

T (·)Ak−2z +
k−3∑
i=0

ji(·)CAiz if k ≥ 3

on [0,∞).

3. APPROXIMATION THEOREMS

In this section we first extend the well known properties on convergence and
approximation of integrated semigroups and resolvent sets due to Lizama [13], Xiao
and Liang [19] to the context of integrated C-semigroups.

Proposition 3.1. Let C ∈ B(X) be an injection, and let A and Am form ∈ N,
be closed linear operators in X . Assume that (λ − A m)−1Cy → (λ − A)−1Cy in
X for each y ∈ X and for some fixed λ ∈ ⋂

m∈N

ρC(Am) ∩ ρC(A). Then for each

w ∈ (λ − A)−1C(X) there exists a wm ∈ (λ − Am)−1C(X) such that wm → w

and Amwm → Aw in X . Here ρC(A) denotes the C-resolvent set of A. That is,
ρC(A) = {λ ∈ C|λ − A is injective and R(C) ⊂ R(λ − A)}.

Proof. Indeed, if w ∈ (λ − A)−1C(X) is given, then we set wm = (λ −
Am)−1C(C−1(λ−A)w) form ∈ N, so thatwm → (λ−A)−1C(C−1(λ−A)w) = w
and Amwm = −(λ−A)w+λ(λ−Am)−1C (C−1(λ−A)w) → −(λ−A)w+λw =
Aw in X .
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Combining [11, Theorem 2.4] with [19, Theorem 2.2], we can obtain the follow-
ing Trotter-Kato type approximation theorem concerning integrated C-semigroups

Proposition 3.2. Let α ≥ 0, T (·) and Tm(·) for m ∈ N, be α-times integrated
C-semigroups on X generated by A and Am, respectively. Assume that T (·),
Tm(·) ∈ g(M, ω) for m ∈ N. Then Tm(·)v → T (·)v uniformly on compact subsets
of [0,∞) for each v ∈ X if and only if {Tm(·)w}m∈N is equicontinuous at t and
(λ − Am)−1Cw → (λ − A)−1Cw in X for each w ∈ X , t ≥ 0 and λ > ω.

Proposition 3.3. Let C ∈ B(X) be an injection, and let A and Am form ∈ N,
be closed linear operators in X . Assume that {(λ −A m)−1C|m ∈ N} is bounded
in B(X) for some λ ∈ ⋂

m∈N

ρC(Am) ∩ ρC(A) and D is a core of A such that for

each w ∈ Dλ(= D ∩ (λ − A)−1C(X)), we have wm → w and Amwm → Aw in
X for some wm ∈ D(Am). Then (λ − Am)−1Cy → (λ − A)−1Cy in X for each
y ∈ R(C).

Proof. Indeed, if w ∈ Dλ is given, then we set y = (λ − A)w and ym =
(λ − Am)wm for m ∈ N, so that ym → y and (λ − Am)−1Cym(= Cwm) →
(λ − A)−1Cy(= Cw) in X . Hence

(3.1)

‖(λ − Am)−1Cy − (λ − A)−1Cy‖
≤ ‖(λ − Am)−1C(y − ym)‖+ ‖(λ − Am)−1Cym − (λ − A)−1Cy‖
≤ ‖(λ − Am)−1C‖‖y − ym‖ + ‖(λ − Am)−1Cym − (λ − A)−1Cy‖

→ 0 as m → ∞.

Now if y ∈ R(C) is given, then y = Cx for some x ∈ X . By hypotheses, we
have zn → (λ − A)−1Cx and Azn → A(λ − A)−1Cx in X for some sequence
{zn}∞n=1 in Dλ, so that (λ − A)zn → Cx in X . Hence (λ − A)(Dλ) is dense in
R(C), which together with (3.1) and the boundedness of {(λ − Am)−1C|m ∈ N}
in B(X) implies that (λ−Am)−1Cy → (λ−A)−1Cy in X for each y ∈ R(C).

Proposition 3.4. Let α ≥ 0, T (·) and Tm(·) for m ∈ N, be α-times integrated
C-semigroups on X generated by A and Am, respectively. Assume that T (·),
Tm(·) ∈ g(M, ω) for m ∈ N, and (λ−Am)−1Cw → (λ−A)−1Cw in X for each
w ∈ X and λ > ω. Then Tm(·)v → T (·)v uniformly on compact subsets of [0,∞)
for each λ > ω and v ∈ (λ − A)−1C(X).

Proof. Clearly, j0 ∗ T (·), j0 ∗ Tm(·) ∈ ε(M, ω) for m ∈ N. It follows from
Proposition 3.2 that we have j0∗Tm(·)x → j0∗T (·)x uniformly on compact subsets
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of [0,∞) for each x ∈ X . Now if λ > ω is fixed, then for each w ∈ X we set
z = (λ − A)−1Cw and zm = (λ − Am)−1Cw for m ∈ N, so that

Tm(t)z − T (t)z = Tm(t)(z − zm) + Tm(t)zm − T (t)z,

Tm(t)zm − T (t)z = jα(t)(Czm − Cz) + j0 ∗ Tm(t)Amzm − j0 ∗ T (t)Az,

j0 ∗ Tm(t)Amzm − j0 ∗ T (t)Az

= λ(j0 ∗ Tm(t)zm − j0 ∗ T (t)z) − (j0 ∗ Tm(t)Cw − j0 ∗ T (t)Cw)

and
j0 ∗ Tm(t)zm − j0 ∗ T (t)z

= j0 ∗ Tm(t)(zm − z) + (j0 ∗ Tm(t)z − j0 ∗ T (t)z)

for each t ≥ 0 and m ∈ N. Hence Tm(·)z → T (·)z uniformly on compact subsets
of [0,∞), which together with the uniform boundedness of {Tm(·)|m ∈ N} on
compact subsets of [0,∞) implies that Tm(·)v → T (·)v uniformly on compact
subsets of [0,∞) for each v ∈ (λ − A)−1C(X).

Definition 3.5. A sequence of α-times integrated C-semigroups {Tm(·)}∞m=1

on X is said to be uniformly locally Lipschitz continuous, if for each t0 > 0 there
exists a Kt0 > 0 such that

(3.2) ‖Tm(t + h) − Tm(t)‖ ≤ Kt0h

for each m ∈ N and 0 ≤ t, h ≤ t + h ≤ t0.

Theorem 3.6. Let the hypotheses of Corollary 2.13 hold for T (·), A, g, x, y
and z(= Ax + y), and also for Tm(·), Am, gm, xm, ym and zm(= Amxm + ym)
in place of T (·), A, g, x, y and z, respectively. Assume that

(i) {Tm(·)}∞m=1 is uniformly locally Lipschitz continuous and lim
m→∞Tm(·)v =

T (·)v uniformly on compact subsets of [0,∞) for each v ∈ X;
(ii) xm → x in X and Ai

mzm → Aiz in X for each integer 0 ≤ i ≤ k;
(iii) gm → g in L1

loc([0,∞), X). That is, ‖gm − g‖L1([0,t0],X)(=
∫ t0
0 ‖gm(s) −

g(s)‖ds) → 0 in R for each t0 > 0.

Then the strong solution um of ACP (Am, Cym + jα−1 ∗Cgm, Cxm) converges to
the strong solution u of ACP (A, Cy + jα−1 ∗ Cg, Cx) in C1([0,∞), X), that is,
um → u and u′

m → u′ uniformly on compact subsets of [0,∞).

Proof. Indeed, if T̃m(·) denotes the k-times integrated C-semigroup on X

generated by Am which is given as in either (2.6) or (2.7), then from (2.8) and
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(2.9), we have

(3.3) um(t)=Tm∗gm(t)+Cxm+



j0 ∗ T̃m(t)zm if k=0

T̃m(t)zm if k=1

T̃m(t)Ak−1
m zm+

k−2∑
i=0

ji+1(t)CAi
mzm if k≥2

and

(3.4) u′
m(t) =

d

dt
Tm ∗ gm(t) +


T̃m(t)zm if k = 0

T̃m(t)Ak
mzm +

k−1∑
i=0

ji(t)CAi
mzm if k ≥ 1

for each t ≥ 0 and m ∈ N. We observe from (3.3), (3.4) and (i)-(iii) that we need
only to be shown that Tm ∗ gm → T ∗ g, (Tm ∗ gm)′ → (T ∗ g)′ and T̃m(·)Ai

mzm →
T̃ (·)Aiz uniformly on compact subsets of [0,∞) for each integer 0 ≤ i ≤ k, and
shall first show that

(3.5) Tm ∗ φ → T ∗ φ

uniformly on compact subsets of [0,∞) for each φ ∈ L1
loc([0,∞), X). Here T̃ (·)

denotes the k-times integrated C-semigroup on X generated by A. Indeed, if t0 > 0
is fixed, then for each φ ∈ C([0, t0], X) we deduce from the uniform continuity
of φ on [0, t0], the uniform boundedness of {‖Tm(·)‖}∞m=1 on [0, t0] and (i) that
Tm(t − ·)φ(·) → T (t − ·)φ(·) uniformly on [0, t] for each 0 < t < t0, so that
Tm ∗ φ(t) → T ∗ φ(t) in X for each 0 ≤ t ≤ t0. The uniform Lipschitz continuity
of {Tm(·)}∞m=1 on [0, t0] implies that {Tm ∗ φ(·)}∞m=1 is uniformly bounded and
equicontinuous on [0, t0]. It follows from the pointwise convergence of {Tm ∗
φ(·)}∞m=1 to T ∗ φ(·) on [0, t0] and Arzela-Ascoli’s theorem that each subsequence
of {Tm ∗ φ}∞m=1 contains a subsequence which converges to T ∗ φ uniformly on
[0, t0]. Hence Tm ∗ φ → T ∗ φ uniformly on [0, t0] for each φ ∈ C([0, t0], X).
Combining this, and the uniform boundedness of {‖Tm(·)‖}∞m=1 on [0, t0] with the
denseness of C([0, t0], X) in L1([0, t0], X), we have Tm ∗ φ → T ∗ φ uniformly
on [0, t0] for each φ ∈ L1([0, t0], X). Consequently, Tm ∗ φ → T ∗ φ uniformly on
compact subsets of [0,∞) for each φ ∈ L1

loc([0,∞), X). In particular,

Tm ∗ gm = Tm ∗ (gm − g) + Tm ∗ g → 0 + T ∗ g = T ∗ g

uniformly on compact subsets of [0,∞). Next, we shall show that (Tm ∗ φ)′(·) →
(T ∗ φ)′(·) uniformly on compact subsets of [0,∞) for each φ ∈ L1

loc([0,∞), X).
Indeed, if t0 > 0 is fixed, then from (3.5) and (i), we have

(Tm ∗ φ)′(·)=Tm(·) ∗ φ′(·) + Tm(·)φ(0) → T ∗ φ′(·) + T (·)φ(0)=(T ∗ φ)′(·)
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uniformly on [0, t0] for each φ ∈ C1([0, t0], X). Combining this, and the denseness
of C1([0, t0], X) in L1([0, t0], X) with the fact that

(3.6) ‖(Tm ∗ φ)′(t)‖ ≤ Kt0

∫ t

0
‖φ(s)‖ds

for each φ ∈ L1([0, t0], X), m ∈ N and 0 ≤ t ≤ t0, we have (Tm ∗ φ)′ → (T ∗ φ)′

uniformly on [0, t0] for each φ ∈ L1([0, t0], X), where Kt0 is given as in (3.2).
Consequently, (Tm ∗ φ)′ → (T ∗ φ)′ uniformly on compact subsets of [0,∞) for
each φ ∈ L1

loc([0,∞), X). In particular,

T̃m(·)Aiz=(Tm ∗ jk−α(·)Aiz)′ → (T ∗ jk−α(·)Aiz)′= T̃ (·)Aiz

uniformly on compact subsets of [0,∞) for each integer 0 ≤ i ≤ k. Applying
(i)-(iii) and (3.6) again, we have

(Tm ∗ gm)′=(Tm ∗ (gm − g))′ + (Tm ∗ g)′ → 0 + (T ∗ g)′=(T ∗ g)′

and

T̃m(·)Ai
mzm = T̃m(·)(Ai

mzm − Aiz) + T̃m(·)Aiz

= (Tm ∗ jk−α(·)(Ai
mzm − Aiz))′ + T̃m(·)Aiz → T̃ (·)Aiz

uniformly on compact subsets of [0,∞) for each integer 0 ≤ i ≤ k. Hence the
proof of this theorem is complete.

By slightlymodifying the proof of Theorem 3.6 the next result is also attained.

Theorem 3.7. Let the hypotheses of Corollary 2.14 hold for T (·), A, g, x, y

and z(= Ax + y), and also for Tm(·), Am, gm, xm, ym and zm(= Amxm + ym)
in place of T (·), A, g, x, y and z, respectively. Assume that

(i) {Tm(·)}∞m=1 is uniformly locally Lipschitz continuous and lim
m→∞Tm(·)v =

T (·)v uniformly on compact subsets of [0,∞) for each v ∈ X;
(ii) xm → x in X and either ym → y in X if 0 ≤ α < 1; or Ai

mzm → Aiz in
X for each integer 0 ≤ i ≤ k − 1 if α ≥ 1;

(iii) gm → g in L1
loc([0,∞), X).

Then the strong solution um ofACP (Am, Cxm+j1Cym+jα−1∗Cgm, 0) converges
to the strong solution u of ACP (A, Cx+ j 1Cy + jα−1 ∗Cg, 0) in C1([0,∞), X).

Theorem 3.8. Let the hypotheses of Theorem 2.10 hold for T (·), A, g, x, y

and z(= Ax + y), and also for Tm(·), Am, gm, xm, ym and zm(= Amxm + ym) in
place of T (·), A, g, x, y and z, respectively. Assume that α ∈ N and
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(i) Tm(·) ∈ ε(M, ω) for all m ∈ N and lim
m→∞Tm(·)v = T (·)v uniformly on

compact subsets of [0,∞) for each v ∈ X;
(ii) xm → x and Ai

mzm → Aiz in X for each integer 0 ≤ i ≤ k − 1;
(iii) Ak−1z ∈ (λ − A)−1C(X) and (λ − A)−1C(X) ⊂ D(Am) for all m ∈ N

and for some λ > ω;
(iv) gm → g in L1

loc([0,∞), X).

Then the conclusion of Theorem 3.6 holds.

Proof. Indeed, we observe from (2.8) and (2.9) that um is given as in (3.3) and

u′
m(t) =

d

dt
Tm ∗ gm(t) +


d
dt T̃m(t)z if k = 1

d
dt T̃m(t)Ak−1

m zm +
k−2∑
i=0

ji(t)CAi
mzm if k ≥ 2

for each t ≥ 0 and m ∈ N. Just like in the proof of Theorem 3.6, we need only
to show that (T̃m(·)Ak−1

m zm)′ → (T̃ (·)Ak−1z)′ uniformly on compact subsets of
[0,∞). Since k = α we have T̃ (·) = T (·) and T̃m(·) = Tm(·) for m ∈ N.
Now if w ∈ (λ − A)−1C(X) is given, then from Proposition 3.1, we have wm →
w and Amwm → Aw in X for some wm ∈ D(Am), which together with the
uniform boundedness of {‖Tm(·)‖}∞m=1 on compact subsets of [0,∞) implies that
(Tm(·)wm)′ = jα−1(·)Cwm + Tm(·)Amwm → jα−1(·)Cw + T (·)Aw = (T (·)w)′

uniformly on compact subsets of [0,∞). Combining this with the fact that

(3.7) ‖(Tm(·)v)′‖ ≤ Kt0‖v‖ on [0, t0]

for each m ∈ N, v ∈ D(Am) and t0 > 0, we have

(Tm(·)w)′ = (Tm(·)(w− wm))′ + (Tm(·)wm)′ → (T (·)w)′

uniformly on compact subsets of [0,∞), which together with (3.7) and the dense-
ness of (λ − A)−1C(X) in (λ − A)−1C(X) implies that (Tm(·)w)′ → (T (·)w)′

uniformly on compact subsets of [0,∞) for each w ∈ (λ − A)−1C(X). Combining
this, and (3.7) with the assumption that Ak−1z ∈ (λ − A)−1C(X), we have

(Tm(·)Ak−1
m zm)′ = (Tm(·)(Ak−1

m zm −Ak−1z))′+(Tm(·)Ak−1z)′ → (T (·)Ak−1z)′

uniformly on compact subsets of [0,∞).

Similarly the next theorem is also attained.

Theorem 3.9. Let the hypotheses of Theorem 2.11 hold for T (·), A, g, x, y

and z(= Ax + y), and also for Tm(·), Am, gm, xm, ym and zm(= Amxm + ym)
in place of T (·), A, g, x, y and z, respectively. Assume that α ∈ N \ {1} and
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(i) Tm(·) ∈ ε(M, ω) form ∈ N and lim
m→∞Tm(·)v = T (·)v uniformly on compact

subsets of [0,∞) for each v ∈ X;
(ii) xm → x and Ai

mzm → Aiz in X for each integer 0 ≤ i ≤ k − 2;
(iii) Ak−2z ∈ (λ − A)−1C(X) and (λ − A)−1C(X) ⊂ D(Am) for all m ∈ N

and for some λ > ω; gm → g in L1
loc([0,∞), X).

Then the conclusion of Theorem 3.7 holds.

Remark 3.10. The conclusion of Theorem 3.9 has been deduced by Xiao and
Liang in [19] when C = IX .

Corollary 3.11. Let the hypotheses of Corollary 2.15 hold for T (·), A, g, x, y
and z(= Ax + y), and also for Tm(·), Am, gm, xm, ym and zm(= Amxm + ym)
in place of T (·), A, g, x, y and z, respectively. Assume that

(i) T (·), Tm(·) ∈ g(M, ω) for m ∈ N, R(C) = X and for each λ > ω there
exists a core D of A such that for each w ∈ Dλ(= D ∩ (λ − A)−1C(X)),
we have wm → w and Amwm → Aw in X for some wm ∈ D(Am);

(ii) xm → x and Ai
mzm → Aiz in X for each integer 0 ≤ i ≤ k − 1;

(iii) gm → g in L1
loc([0,∞), X).

Then the strong solution um of ACP (A, Cym + jα ∗Cgm, Cxm) converges to the
strong solution u of ACP (A, Cy + jα ∗ Cg, Cx) in C1([0,∞), X).

Proof. From the denseness of D(A) in X , we have R(C) ⊂ (λ − A)−1C(X)
for each λ > ω. Combining this, and Proposition 3.3 with the assumption that
R(C) = X , we also have (λ−Am)−1Cw → (λ−A)−1Cw in X for each w ∈ X
and λ > ω. Applying Proposition 3.4, we have Tm(·)v → T (·)v uniformly on
compact subsets of [0,∞) for each v ∈ X , which together with (ii)-(iii) and Theorem
3.8 implies that the conclusion of Theorem 3.6 holds.

Similarly the next corollary is also attained.

Corollary 3.12. Let the hypotheses of Corollary 2.16 hold for T (·), A, g, x, y
and z(= Ax + y), and also for Tm(·) Am, gm, xm, ym and zm(= Amxm + ym) in
place of T (·), A, g, x, y and z, respectively. Assume that α ≥ 1 and

(i) T (·), Tm(·) ∈ g(M, ω) for m ∈ N, R(C) = X and for each λ > ω there
exists a core D of A such that for each w ∈ Dλ(= D ∩ (λ − A)−1C(X)),
we have wm → w and Amwm → Aw in X for some wm ∈ D(Am);

(ii) xm → x and Ai
mzm → Aiz in X for each integer 0 ≤ i ≤ k − 2;

(iii) gm → g in L1
loc([0,∞), X).
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Then the strong solution um of ACP (Am, Cxm + j1Cym + jα ∗Cgm, 0) converges
to the strong solution u of ACP (A, Cx + j 1Cy + jα ∗ Cg, 0) in C1([0,∞), X).
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