TAIWANESE JOURNAL OF MATHEMATICS Vol. 13, No. 1, pp. 137-155, February 2009 This paper is available online at http://www.tjm.nsysu.edu.tw/

ON EXISTENCE AND APPROXIMATION OF SOLUTIONS OF ABSTRACT CAUCHY PROBLEM

Chung-Cheng Kuo

Abstract. Let A be the generator of a nondegenerate α -times integrated C-semigroup $T(\cdot)$ on a complex Banach space X for some $\alpha \geq 0, x \in X$ and $f \in L^1_{loc}([0,\infty),X) \cap C((0,\infty),X)$. We first show that the abstract Cauchy problem ACP(A,Cf,Cx): u'(t)=Au(t)+Cf(t) for t>0 and u(0)=Cx has a strong solution is equivalent to the function $v(\cdot)=T(\cdot)x+T*f(\cdot)\in C^\alpha([0,\infty),X)$ and $D^\alpha v(\cdot)\in C^1((0,\infty),X)$, and then use it to prove some new existence and approximation theorems concerning strong solutions of $ACP(A,Cy+j_{\alpha-1}*Cg,Cx)$ in $C^1([0,\infty),X)$ and mild solutions of $ACP(A,Cy+j_{\alpha-2}*Cg,Cx)$ (for $\alpha \geq 1$) in $C([0,\infty),X)$ when vectors x and y both satisfy some suitable regularity assumptions and $T(\cdot)$ is locally Lipschitz continuous.

1. Introduction

Let X be a complex Banach space with norm $\|\cdot\|$, and let B(X) denote the family of all bounded linear operators from X into itself. For $\alpha>0$ and $C\in B(X)$, a family $T(\cdot)(=\{T(t)|t\geq 0\})$ in B(X) is called an α -times integrated C-semigroup on X if

(1.1)
$$T(\cdot)$$
 is strongly continuous, that is, for each $x \in X, T(\cdot)x : [0, \infty) \to X$ is continuous,

(1.2)
$$T(\cdot)C = CT(\cdot), \text{ that is, } T(t)C = CT(t)$$
 on X for each $t \ge 0$ and

Received January 18, 2007, accepted July 4, 2007.

Communicated by Sen-Yen Shaw.

2000 Mathematics Subject Classification: 47D60, 47D62.

Key words and phrases: α -Times integrated C-semigroup, Generator, Abstract Cauchy problem. Research supported in part by the National Science Council of R.O.C.

(1.3)
$$T(t)T(s)x = \frac{1}{\Gamma(\alpha)} \left[\int_0^{t+s} - \int_0^t - \int_0^s \right] (t+s-r)^{\alpha-1} T(r) Cx dr$$
 for each $x \in X$ and $t, s \ge 0$ (see [9]);

or called a (0-times integrated) C-semigroup on X if it satisfies (1.1), (1.2) and (1.4)

$$T(t)T(s)x = T(t+s)Cx$$
 for each $x \in X$ and $t, s \ge 0$ (see [4,12,18,20]).

Here $\Gamma(\cdot)$ denotes the Gamma function. Moreover, we say that $T(\cdot)$ is

- (i) nondegenerate, if x=0 whenever T(t)x=0 for all $t\geq 0$. In this case, its (integrated) generator $A:D(A)\subset X\to X$ is a closed linear operator in X defined by $D(A)=\{x\in X|$ there exists a $y_x\in X$ such that $T(t)x-\frac{t^\alpha}{\Gamma(\alpha+1)}Cx=\int_0^t T(r)y_xdr$ for $t\geq 0\}$ and $Ax=y_x$ for each $x\in D(A)$;
- (ii) locally Lipschitz continuous if for each $t_0>0$ there exists a $K_{t_0}>0$ such that

$$(1.5) ||T(t+h) - T(t)|| \le K_{t_0}h \text{for all } 0 \le t, h \le t+h \le t_0;$$

(iii) exponentially bounded if there exist $M, \omega \geq 0$ such that

(1.6)
$$||T(t)|| \le Me^{\omega t} \quad \text{for all } t \ge 0.$$

In this case, we write $T(\cdot) \in g(M, \omega)$;

(iv) exponentially Lipschitz continuous, if there exist $M, \omega \geq 0$ such that

(1.7)
$$||T(t+h) - T(t)|| \le Me^{\omega(t+h)}h$$
 for all $t, h \ge 0$.

In this case, we write $T(\cdot) \in \epsilon(M, \omega)$.

In general, a (0-times integrated) I_X -semigroup on X is also called a semigroup on X(see [1,5-6]) and an α -times integrated I_X -semigroup on X is also called an α -times integrated semigroup on X (see[1-3,7-8,13-19]). Here I_X denotes the identity operator on X.

In this paper we consider the following abstract Cauchy problem:

$$ACP(A, f, x) \quad \begin{cases} u'(t) = Au(t) + f(t) & \text{for } t > 0, \\ u(0) = x, \end{cases}$$

where $x\in X$ is given, $A:D(A)\subset X\to X$ is a closed linear operator in X with domain D(A) and range R(A) and f is an X-valued function defined on a subset of $\mathbb R$. The concept of α -times integrated C-semigroups has been extensively

applied to discuss the existence of (strong, mild or weak) solutions of ACP(A,f,x) when $C=I_X$ or $\alpha\in\mathbb{N}\cup\{0\}$ (see [1,4-6,9-10,15-16,18-19]). Some equivalence conditions between the existence of an α -times integrated C-semigroup and the unique existence of (strong or weak) solutions of ACP(A,f,x) are also discussed in [9,10]. As an application of Arendt [2,Proposition 5.1 and Theorem 5.2], Hilber [8] first presented some meaningful sufficient conditions for the existence of strong solutions of $ACP(A,Cy+j_{\alpha-1}*Cg,Cx)$ when $g\in L^1_{loc}([0,\infty),X)$ the set of all locally Bochner integrable functions from $[0,\infty)$ into X, vectors x and y both satisfy some suitable regularity assumptions and A generates an exponentially Lipschitz continuous $(\alpha+1)$ -times integrated semigroup on X. Here $j_{\beta}(t)=t^{\beta}/\Gamma(\beta+1)$ for t>0 and $\beta>-1$, and j_{-1} denotes the Dirac measure at 0. That is, $j_{-1}(t)=\{1 \text{ for } t=0 \text{ } 0 \text{ for } t\neq 0.$

in essence, Xiao and Liang [19] extended considerably previous Laplace transform versions of the Trotter-Kato theorem and established some significant existence and approximation theorems of mild solutions of $ACP(A, Cy + j_{\alpha-2} * Cg, Cx)$ (for $\alpha \geq 1$). The purpose of this paper is to explore if the aforementional results in [8, Theorem 4.6] and in [19, Lemma 4.1] are still true when the exponential Lipschitz continuity of an α -times integrated semigroup is replaced by the local Lipschitz continuity, and also to investigate if some approximation theorems in [19] concerning mild solutions of $ACP(A, Cy+j_{\alpha-2}*Cg, Cx)$ (for $\alpha \geq 1$) are still true when the considered integrated semigroups are replaced by integrated C-semigroups (see Theorems 3.8 and 3.9 below).

In section 2, we first prove that ACP(A,Cf,Cx) has a strong solution in $C([0,\infty),X)$ is equivalent to $v(\cdot)=T(\cdot)x+T*f(\cdot)\in C^{\alpha}([0,\infty),X)$ and $D^{\alpha}v\in C^{1}((0,\infty),X)$ when $x\in X,\ f\in L^{1}_{loc}([0,\infty),X)\cap C((0,\infty),X)$ and A generates an α -times integrated C-semigroup $T(\cdot)$ on X for some $\alpha\geq 0$. In this case, $u=D^{\alpha}v$ the α th order derivative of v on $[0,\infty)$ (see Theorem 2.5 and Corollary 2.6 below). Then, assuming A generates a locally Lipschitz continuous α -times integrated C-semigroup on $X,\ g\in L^{1}_{loc}([0,\infty),X)$ and $x,y\in X$, we show $ACP(A,Cy+j_{\alpha-1}*Cg,Cx)$ has a unique strong solution in $C^{1}([0,\infty),X)$ when either $0\leq \alpha<1$; or $\alpha\geq 1,\ x\in D(A)$ with $Ax+y\in D(A^{k-1})$ and

$$A^{k-1}(Ax+y) \in \{ \begin{array}{c} \overline{D(A)} \text{ for } \alpha \in \mathbb{N} \\ D(A) \text{ for } \alpha \notin \mathbb{N} \end{array}$$

(see Theorem 2.10 below), and $ACP(A,Cy+j_{\alpha-2}*Cg,Cx)$ has a unique mild solution in $C([0,\infty),X)$ when $x\in D(A)$ and either $1\leq \alpha < 2$; or $\alpha \geq 2$ with

 $Ax + y \in D(A^{k-2})$ and

$$A^{k-2}(Ax+y) \in \{ \begin{array}{c} \overline{D(A)} \text{ for } \alpha \in \mathbb{N} \\ D(A) \text{ for } \alpha \notin \mathbb{N} \end{array}$$

(see Theorem 2.11 below). Here $k = [\alpha]$ the Gauss integer of α . Applying these results we can also deduce some new approximation theorems(see Theorems 3.6 and 3.7 below) concerning strong solutions of $ACP(A, Cy + j_{\alpha-1} * Cg, Cx)$ and mild solutions of $ACP(A, Cy + j_{\alpha-2} * Cg, Cx)$ (for $\alpha \ge 1$).

2. Existence Theorems

From now on we always write $[\alpha]$ to denote the largest integer that is less than or equal to the real number α and set $f*g(\cdot)=\int_0^{\cdot}f(\cdot-s)g(s)ds$ on $[0,t_0]$ for each $t_0>0,\ f\in L^1([0,t_0])$ the set of all complex Lebesgue integrable functions on $[0,t_0]$ and $g\in L^1([0,t_0],X)$ the set of all complex Bochner integrable functions from $[0,t_0]$ into X.

Definition 2.1. Let $\alpha>0$, $k=[\alpha]+1$ and $v:I\to X$ for some subinterval of $[0,\infty)$ containing $\{0\}$. We write $v\in C^\alpha(I,X)$ if $v=v(0)+j_{\alpha-k}*u$ on I for some $u\in C^{k-1}(I,X)$. In this case, we say that v is α -times continuously differentiable on I, the (k-1)th order derivative $u^{(k-1)}$ of u on I is called the α th order derivative of v on I and denoted by $D^\alpha v$ (on I) or $D^\alpha v:I\to X$. Here $C^k(I,X)$ denotes the set of all k-times continuously differentiable functions from I into X and $C^0(I,X)=C(I,X)$ the set of all continuous functions from I into X.

Next we state some basic properties concerning nondegenerate α -times integrated C-semigroups, which have been obtained in [9] and are frequently applied in the following.

Proposition 2.2. Let $\alpha \geq 0$, and A be the generator of a nondegenerate α -times integrated C-semigroup $T(\cdot)$ on X. Then

(2.1)
$$C$$
 is injective and $C^{-1}AC = A$;

(2.2)
$$T(t)x \in D(A)$$
 and $AT(t)x = T(t)Ax$ for all $x \in D(A)$ and $t \ge 0$;

(2.3)
$$\int_0^t T(r)xdr \in D(A) \text{ and } A \int_0^t T(r)xdr = T(t)x - j_\alpha(t)Cx$$
 for all $x \in X$ and $t \ge 0$;

(2.4) T(0) = C on X if $\alpha = 0$, and T(0) = 0 the zero operator on X if $\alpha > 0$.

Definition 2.3. For a closed linear operator $A:D(A)\subset X\to X$, $f:[0,\infty)\to X$ and $x\in X$, a function $u:[0,\infty)\to X$ is called a (strong) solution of ACP(A,f,x), if $u\in C^1((0,\infty),X)\cap C([0,\infty),X)\cap C((0,\infty),[D(A)])$ and satisfies ACP(A,f,x), where [D(A)] denotes the Banach space D(A) with the graph norm $|x|_A=\|x\|+\|Ax\|$.

The next lemma is a direct consequence of Definition 2.1, and so its proof is omitted.

Lemma 2.4. Let $\alpha \geq 0$, $v \in C^{\alpha}(I,X)$ for some subinterval I of $[0,\infty)$ containing $\{0\}$ with v(0) = 0 and $k = [\alpha] + 1$. Then $j_{k-\alpha-1} * v \in C^k(I,X)$, $v \in C^{\alpha-i}(I,X)$ and $D^{\alpha-i}v = (j_{k-\alpha-1} * v)^{(k-i)}$ on I for each integer $0 \leq i \leq k-1$. In particular, for each $x \in X$, we have $j_{\alpha}(\cdot)x \in C^{\alpha}([0,\infty),X)$ and $D^{\alpha-i}j_{\alpha}(\cdot)x = D^{k-i}j_{k}(\cdot)x = j_{i}(\cdot)x$ on $[0,\infty)$ for each integer $0 \leq i \leq k-1$.

Combining Proposition 2.2 with Lemma 2.4, we can deduce the following result which is a generalization of Hieber [8, Proposition 4.5] and Arendt [2, Proposition 5.1 and Theorem 5.2].

Theorem 2.5. Let A be the generator of a nondegenerate α -times integrated C-semigroup $T(\cdot)$ on X for some $\alpha \geq 0$, $x \in X$ and $f \in L^1_{loc}([0,\infty),X) \cap C((0,\infty),X)$. Assume that $v(\cdot) = T(\cdot) + T * f(\cdot)$ on $[0,\infty)$. Then ACP(A,f,x) has a strong solution u if and only if $v(t) \in R(C)$ for each $t \geq 0$, $C^{-1}v(\cdot) \in C^{\alpha}([0,\infty),X)$ and $D^{\alpha}C^{-1}v(\cdot) \in C^1((0,\infty),X)$. Here $T*f(t) = \int_0^t T(t-s)f(s)ds$ for $t \geq 0$. In this case, we have $u = D^{\alpha}C^{-1}v$. Moreover, $C^{-1}v \in C^{\alpha+1}([0,\infty),X)$ (resp., $C^{-1}v \in C^{\alpha}([0,\infty),[D(A)])$) if and only if $u \in C^1([0,\infty),X)$ (resp., $u \in C([0,\infty),[D(A)])$).

Proof. We consider only the case $\alpha > 0$, for the case $\alpha = 0$ can be treated similarly. Now let u be a strong solution of ACP(A, f, x). For each $0 < t < \infty$, we set $w(\cdot) = T(t - \cdot)u(\cdot)$ on [0, t]. Since $u \in C^1(0, \infty), X) \cap C((0, \infty), [D(A)])$ we have

$$\frac{d}{ds}T(t-s)u(s)|_{s=s_0}
= -j_{\alpha-1}(t-s_0)Cu(s_0) - T(t-s_0)Au(s_0) + T(t-s_0)u'(s_0)
= -j_{\alpha-1}(t-s_0)Cu(s_0) + T(t-s_0)f(s_0)$$

for each $0 < s_0 < t$, which together with the continuity of u on $[0, \infty)$ implies that

$$\begin{split} T(t)x &= w(0) - w(t) \\ &= -\lim_{s_0 \to 0^+} \int_{s_0}^t w'(r) dr \\ &= \lim_{s_0 \to 0^+} [\int_{s_0}^t j_{\alpha - 1}(t - r) Cu(r) dr - \int_{s_0}^t T(t - r) f(r) dr] \\ &= j_{\alpha - 1} * Cu(t) - T * f(t), \end{split}$$

so that $v(t) = Cj_{\alpha-1} * u(t) \in R(C)$. Hence $C^{-1}v(\cdot) = j_{\alpha-1} * u(\cdot) = j_{\alpha-k} * j_{k-2} * u \in C^{\alpha}([0,\infty),X)$ and $D^{\alpha}C^{-1}v = u \in C^{1}((0,\infty),X)$. Conversely, if $v(t) \in R(C)$ for all $t \geq 0$, $C^{-1}v(\cdot) \in C^{\alpha}([0,\infty),X)$ and $D^{\alpha}C^{-1}v(\cdot) \in C^{1}((0,\infty),X)$. Then from (2.3) and (2.4) with $\alpha > 0$, we have v(0) = 0, $j_0 * v(t) \in D(A)$ and

$$Aj_0 * v(t) = T(t)x - j_\alpha(t)Cx + T * f(t) - j_\alpha * Cf(t)$$
$$= v(t) - C[j_\alpha(t)x + j_\alpha * f(t)]$$

for all $t \geq 0$, so that $ACj_0 * C^{-1}v(t) = Aj_0 * v(t) \in R(C)$ and

$$Aj_0 * C^{-1}v(t) = C^{-1}ACj_0 * C^{-1}v(t)$$
$$= C^{-1}v(t) - [j_{\alpha}(t)x + j_{\alpha} * f(t)]$$

for all $t\geq 0$. Now if we set $k=[\alpha]+1$, then from Lemma 2.4, we have $D^{\alpha-i}j_{\alpha}(t)x=j_{i}(t)x$ and $D^{\alpha+1}j_{\alpha}(t)x=0$ for all integer $0\leq i\leq k-1$ and all $t\geq 0$. Combining this, and the closedness of A with the fact that $j_{k-\alpha-1}*C^{-1}v(\cdot)\in C^{k+1}((0,\infty),X)\cap C^{k}([0,\infty),X)$, we have

$$Aj_0*j_{k-\alpha-1}*C^{-1}v(t)=j_{k-\alpha-1}*C^{-1}v(t)-[j_k(t)x+j_k*f(t)] \text{ for all } t\geq 0,$$

$$AD^i(j_{k-\alpha-1}*C^{-1}v)(\cdot)=D^{i+1}(j_{k-\alpha-1}*C^{-1}v)(\cdot)-[j_{k-(i+1)}(\cdot)x+j_{k-(i+1)}*f(\cdot)]$$

on $[0,\infty)$ for each integer $0 \le i \le k-1$ and $AD^k j_{k-\alpha-1} * C^{-1} v(t) = D^{k+1} j_{k-\alpha-1} * C^{-1} v(t) - f(t)$ for each t > 0. By induction, we also have $D^i j_{k-\alpha-1} * C^{-1} v(0) = 0$ for each integer $0 \le i \le k-1$ and $D^k j_{k-\alpha-1} * C^{-1} v(0) - x = 0$. Consequently, $D^k j_{k-\alpha-1} * C^{-1} v(\cdot)$ is a strong solution of ACP(A,f,x).

By slightly modifying the proof of Theorem 2.5 the next corollary is also attained.

Corollary 2.6. Under assumptions of Theorem 2.5, the following statements are equivalent:

(i) ACP(A, Cf, Cx) has a strong solution u;

(ii)
$$v \in C^{\alpha}([0,\infty), X)$$
 and $D^{\alpha}v \in C^{1}((0,\infty), X)$.

In this case, we have $u = D^{\alpha}v$. Moreover, $v \in C^{\alpha+1}([0,\infty),X)$ (resp., $v \in C^{\alpha}([0,\infty),[D(A)])$) if and only if $u \in C^1([0,\infty),X)$ (resp., $u \in C([0,\infty),[D(A)])$).

Proposition 2.7. Let $\alpha \geq 1$, and $T(\cdot)$ be a locally Lipschitz continuous α -times integrated C-semigroup on X with generator A. Then A_1 the part of A in $X_1(=\overline{D(A)})$ generates an $(\alpha-1)$ -times integrated C_1 -semigroup $T_1(\cdot)$ on X_1 . Here C_1 denotes the part of C in X_1 and $T_1(t)x = \frac{d}{dt}T(t)x$ for each $x \in X_1$ and $t \geq 0$.

Proof. We first show that $A_1=C_1^{-1}A_1C_1$. Indeed, if $x\in D(C_1^{-1}A_1C_1)$ is given, then $x\in D(C^{-1}AC)=D(A)$ and $Ax=C^{-1}ACx=C_1^{-1}A_1C_1x\in \overline{D(A)}$, so that $x\in D(A_1)$ and $A_1x=Ax=C_1^{-1}A_1C_1x\in \overline{D(A)}$. Hence $C_1^{-1}A_1C_1\subset A_1$, which together with the inclusion $A_1\subset C_1^{-1}A_1C_1$ implies that $C_1^{-1}A_1C_1=A_1$. Similarly, we can show that $A_1:D(A_1)\subset X_1\to X_1$ is a closed linear operator in X. Since $\{x\in X|T(\cdot)\text{ is coninuously differentiable on }[0,\infty)\}$ is a closed subspace of X containing D(A), we also have, for $X\in \overline{D(A)}$, $T(\cdot)x$ is continuously differentiable on $[0,\infty)$ and $\frac{d}{dt}T(t)x\in \overline{D(A)}$ for each $t\geq 0$. It follows from the closedness of A and (2.3) that we have

$$T_1(t)x - j_{\alpha-1}(t)C_1x = \frac{d}{dt}T(t)x - j_{\alpha-1}(t)Cx$$
$$= A_1 \int_0^t T_1(r)xdr$$

for each $x\in \overline{D(A)}$ and $t\geq 0$. The uniqueness of solutions of $ACP(A,j_{\alpha-1}Cx,0)$ implies that $T(\cdot)x=\int_0^t T_1(r)xdr$ is the unique strong solution of $ACP(A_1,j_{\alpha-1}C_1x,0)$ in $C^1([0,\infty),X_1)\cap C([0,\infty),[D(A_1)])$. We conclude from [9, Theorem 2.3] that $T_1(\cdot)$ is an $(\alpha-1)$ -times integrated C_1 -semigroup on X_1 with generator A_1 .

Proposition 2.8. Let $\alpha \geq 1$, and $T(\cdot)$ be a locally Lipschitz continuous α -times integrated C-semigroup on X with generator A. Then for each $0 < \theta < 1$ there exists an $(\alpha - 1 + \theta)$ -times integrated C-semigroup $\widetilde{T}(\cdot)$ on X with generator A such that for each $t_0 > 0$, we have

(2.5)
$$\|\widetilde{T}(t+h) - \widetilde{T}(t)\| \le K_{t_0} h^{\theta} \quad \text{for all } 0 \le t, h \le t+h \le t_0,$$

where K_{t_0} is given as in (1.5).

Proof. Clearly, $-1 < \theta - 1 < 0$. It follows that $T * j_{\theta-1}(\cdot)x \in C^1([0,\infty), X)$ for each $x \in X$ and $T * j_{\theta-1}(\cdot)$ is an $(\alpha + \theta)$ -times integrated C-semigroup on X

with generator A. Now let $\widetilde{T}(t): X \to X$ be defined by

(2.6)
$$\widetilde{T}(t)x = \frac{d}{dt}T * j_{\theta-1}(t)x$$

for each $x \in X$. As in the proof of Proposition 2.7, we can show that $\widetilde{T}(\cdot)$ is an $(\alpha - 1 + \theta)$ -times integrated C-semigroup on X with generator A and (2.5) is satisfied.

Remark 2.9. If A generates a locally Lipschitz continuous α -times integrated C-semigroup $T(\cdot)$ on X for some $0 \le \alpha < 1$, then A also generates a C-semigroup $\widetilde{T}(\cdot)$ on X which is defined by

(2.7)
$$\widetilde{T}(t)x = \frac{d}{dt}T * j_{-\alpha}(t)x \quad \text{ for each } x \in X \text{ and } t \ge 0.$$

The next result is an extension of [8, Theorem 4.6] in which $\alpha \geq 1$ and exponentially Lipschitz continuous integrated semigroups are replaced , respectively, by $\alpha \geq 0$ and locally Lipschitz continuous integrated C-semigroups here.

Theorem 2.10. Let $\alpha \geq 0$, $k = [\alpha]$, and $T(\cdot)$ be a locally Lipschitz continuous α -times integrated C-semigroup on X. Assume that $x \in D(A)$, $y \in X$ and $g \in L^1_{loc}([0,\infty),X)$. Then $ACP(A,Cy+j_{\alpha-1}*Cg,Cx)$ has a unique strong solution u in $C^1([0,\infty),X)$ when $0 \leq \alpha < 1$; or $\alpha \geq 1$, $z = Ax + y \in D(A^{k-1})$ and

$$A^{k-1}z \in \left\{ \begin{array}{ll} \overline{D(A)} & \textit{if } \alpha \in \mathbb{N} \\ D(A) & \textit{if } \alpha \notin \mathbb{N}. \end{array} \right.$$

In this case, we have

$$(2.8) \quad u(\cdot) = T * g(\cdot) + Cx + \left\{ \begin{array}{ll} j_0 * \widetilde{T}(\cdot)z & \text{if } k = 0 \\ \widetilde{T}(\cdot)z & \text{if } k = 1 \\ \widetilde{T}(\cdot)A^{k-1}z + \sum\limits_{i=0}^{k-2} j_{i+1}(\cdot)CA^iz & \text{if } k \geq 2 \end{array} \right.$$

on $[0, \infty)$ and

(2.9)
$$u'(t) = \frac{d}{dt}T * g(t) + \begin{cases} \widetilde{T}(t)z & \text{if } k = 0\\ \frac{d}{dt}\widetilde{T}(t)z & \text{if } k = 1\\ \frac{d}{dt}\widetilde{T}(t)A^{k-1}z + \sum_{i=0}^{k-2} j_i(t)CA^iz & \text{if } k \ge 2 \end{cases}$$

for each $t \geq 0$, where $\widetilde{T}(\cdot)$ denotes the k-times integrated C-semigroup on X with generator A which is given as in Remark 2.9 when $0 \leq \alpha < 1$ or in Proposition 2.8 with $\theta = k - (\alpha - 1)$ when $\alpha \geq 1$.

Proof. From (2.3) and Corollary 2.6, we need only to show that $\widetilde{T}(\cdot)x+\widetilde{T}*f(\cdot)=j_k(\cdot)Cx+j_0*\widetilde{T}(\cdot)z+j_{\alpha-1}*\widetilde{T}*g(\cdot)\in C^{k+1}([0,\infty),X)$ if we set $f=y+j_{\alpha-1}*g$ on $[0,\infty)$. Indeed, if $0\leq\alpha<1$, then k=0, so that $j_{\alpha-1}*\widetilde{T}*g=\widetilde{T}*g\in C^1([0,\infty),X)$. Hence $v\in C^{k+1}([0,\infty),X)$. Next if $\alpha\geq 1$, then $k\geq 1$, $\frac{d^k}{dt^k}j_{\alpha-1}*\widetilde{T}*g(t)=j_{\alpha-k-1}*\widetilde{T}*g(t)=T*g(t)$ and

$$\frac{d^k}{dt^k}j_0*\widetilde{T}(t)z = \frac{d^{k-1}}{dt^{k-1}}\widetilde{T}(t)z = \begin{cases} \widetilde{T}(t)z & \text{if } k=1\\ \\ \widetilde{T}(t)A^{k-1}z + \sum\limits_{i=0}^{k-2}j_{i+1}(t)CA^iz & \text{if } k \geq 2 \end{cases}$$

for all $t \geq 0$. Clearly, $\sum\limits_{i=0}^{k-2} j_{i+1}(\cdot)CA^iz$, $T*g(\cdot) \in C^1([0,\infty),X)$, and $\widetilde{T}(\cdot)A^{k-1}z \in C^1([0,\infty),X)$ when $z \in D(A^k)$. Now if $\alpha \in \mathbb{N}$, then $k=\alpha$ and $\widetilde{T}=T$ is locally Lipschitz continuous, so that $\widetilde{T}(\cdot)A^{k-1}z$ is continuously differentiable on $[0,\infty)$ when $A^{k-1}z \in \overline{D(A)}$. Hence $v \in C^{k+1}([0,\infty),X)$. We conclude from Corollary 2.6 that $v^{(k)}=u$ is the unique strong solution of $ACP(A,Cy+j_{\alpha-1}*Cg,Cx)$ in $C^1([0,\infty),X)$.

Similarly we can obtain the next result which has been established by Xiao and Liang [19] when $\alpha \ge 1$, $C = I_X$ and $T(\cdot)$ is exponentially Lipschitz continuous.

Theorem 2.11. Let $\alpha \geq 0$, $k = [\alpha]$, and $T(\cdot)$ be a locally Lipschitz continuous α -times integrated C-semigroup on X with generator A. Assume that $x,y \in X$ and $g \in L^1_{loc}([0,\infty),X)$. Then $ACP(A,Cx+j_1Cy+j_{\alpha-1}*Cg,0)$ has a unique strong solution u in $C^1([0,\infty),X)$ when $0 \leq \alpha < 1$; or $1 \leq \alpha < 2$, $x \in D(A)$ with z = Ax + y; or $\alpha \geq 2$, $x \in D(A)$, $z = Ax + y \in D(A^{k-2})$ and

$$A^{k-2}z \in \begin{cases} & \overline{D(A)} & \text{if } \alpha \in \mathbb{N} \\ & D(A) & \text{if } \alpha \notin \mathbb{N}. \end{cases}$$

In this case, we have

$$(2.10) \ u(\cdot) = T * g(\cdot) + j_1(\cdot)Cx + \begin{cases} j_0 * \widetilde{T}(\cdot)z & \text{if } k = 1 \\ \widetilde{T}(\cdot)z & \text{if } k = 2 \end{cases}$$
$$\widetilde{T}(\cdot)A^{k-2}z + \sum_{i=0}^{k-3} j_{i+1}(\cdot)CA^iz & \text{if } k \ge 3 \end{cases}$$

on $[0, \infty)$ and

$$(2.11) \ u'(t) = \frac{d}{dt}T*g(t) + Cx + \begin{cases} \widetilde{T}(t)z & \text{if } k = 1 \\ \frac{d}{dt}\widetilde{T}(t)z & \text{if } k = 2 \\ \frac{d}{dt}\widetilde{T}(t)A^{k-2}z + \sum_{i=0}^{k-3} j_i(t)CA^iz & \text{if } k \ge 3 \end{cases}$$

for each $t \geq 0$.

Remark 2.12. If $\alpha \geq 1$, and u is the unique strong solution of $ACP(A, Cx + j_1Cy + j_{\alpha-1}*Cg, 0)$ in $C^1([0,\infty), X)$ given as in Theorem 2.11. Then u' is the unique mild solution of $ACP(A, Cy + j_{\alpha-2}*Cg, Cx)$, that is, u' is the unique function $w \in C([0,\infty), X)$ satisfying the integral equation $w = A(j_0*w) + Cx + j_0*[Cy + j_{\alpha-2}*Cg]$ on $[0,\infty)$.

Corollary 2.13. Let $\alpha \geq 0$, $k = [\alpha]$, and $T(\cdot)$ be a locally Lipschitz continuous α -times integrated C-semigroup on X with generator A. Assume that $x \in D(A)$, $y \in X$ and $g \in L^1_{loc}([0,\infty),X)$. Then $ACP(A,Cy+j_{\alpha-1}*Cg,Cx)$ has a unique strong solution u in $C^1([0,\infty),X)$ when $0 \leq \alpha < 1$; or $\alpha \geq 1$ and $z(=Ax+y) \in D(A^k)$.

Corollary 2.14. Let $\alpha \geq 0$, $k = [\alpha]$, and $T(\cdot)$ be a locally Lipschitz continuous α -times integrated C-semigroup on X with generator A. Assume that $x,y \in X$ and $g \in L^1_{loc}([0,\infty),X)$. Then $ACP(A,Cx+j_1Cy+j_{\alpha-1}*Cg,0)$ has a unique strong solution u in $C^1([0,\infty),X)$ when $0 \leq \alpha < 1$; or $\alpha \geq 1$, $x \in D(A)$ and $z(=Ax+y) \in D(A^{k-1})$.

Corollary 2.15. Let $T(\cdot)$ be an α -times integrated C-semigroup on X with the densely defined generator A for some $\alpha \in \mathbb{N} \cup \{0\}$ and $k = \alpha + 1$. Assume that $x \in D(A)$, $y \in X$ and $g \in L^1_{loc}([0,\infty),X)$. Then $ACP(A,Cy+j_\alpha*Cg,Cx)$ has a unique strong solution u in $C^1([0,\infty),X)$ when $z(=Ax+y) \in D(A^{k-1})$. In this case, we have

$$(2.12) \ \ u(\cdot) = j_0 * T * g(\cdot) + Cx + \left\{ \begin{array}{ll} j_0 * T(\cdot)z & \text{if } k \! = \! 1 \\ \\ j_0 * T(\cdot)A^{k-1}z + \sum\limits_{i=0}^{k-2} j_{i+1}(\cdot)CA^iz & \text{if } k \! \geq \! 2 \end{array} \right.$$

and

$$(2.13) u'(\cdot) = T * g(\cdot) + \begin{cases} T(\cdot)z & \text{if } k = 1 \\ T(\cdot)A^{k-1}z + \sum_{i=0}^{k-2} j_i(\cdot)CA^iz & \text{if } k \ge 2 \end{cases}$$

on $[0,\infty)$.

Corollary 2.16. Let $T(\cdot)$ be an α -times integrated C-semigroup on X with the densely defined generator A for some $\alpha \in \mathbb{N} \cup \{0\}$ and $k = \alpha + 1$. Assume that $x \in D(A)$, $y \in X$ and $g \in L^1_{loc}([0,\infty),X)$. Then $ACP(A,Cx+j_1Cy+j_\alpha*Cg,0)$ has a unique strong solution u in $C^1([0,\infty),X)$ when $\alpha=0$; or $\alpha \geq 1$ and $z(=Ax+y) \in D(A^{k-2})$. In this case, we have

$$(2.14) \ \ u(\cdot) = j_0 * T * g(\cdot) + j_1(\cdot) Cx + \begin{cases} j_1 * T(\cdot)z & \text{if } k = 1 \\ j_0 * T(\cdot)z & \text{if } k = 2 \\ j_0 * T(\cdot) A^{k-2}z + \sum\limits_{i=0}^{k-3} j_{i+1}(\cdot) CA^iz & \text{if } k \geq 3 \end{cases}$$

and

$$(2.15) u'(\cdot) = T * g(\cdot) + \begin{cases} j_0 * T(\cdot)z & \text{if } k = 1 \\ T(\cdot)z & \text{if } k = 2 \end{cases}$$
$$T(\cdot)A^{k-2}z + \sum_{i=0}^{k-3} j_i(\cdot)CA^iz & \text{if } k \ge 3 \end{cases}$$

on $[0,\infty)$.

3. APPROXIMATION THEOREMS

In this section we first extend the well known properties on convergence and approximation of integrated semigroups and resolvent sets due to Lizama [13], Xiao and Liang [19] to the context of integrated C-semigroups.

Proposition 3.1. Let $C \in B(X)$ be an injection, and let A and A_m for $m \in \mathbb{N}$, be closed linear operators in X. Assume that $(\lambda - A_m)^{-1}Cy \to (\lambda - A)^{-1}Cy$ in X for each $y \in X$ and for some fixed $\lambda \in \bigcap_{m \in \mathbb{N}} \rho_C(A_m) \cap \rho_C(A)$. Then for each $w \in (\lambda - A)^{-1}C(X)$ there exists a $w_m \in (\lambda - A_m)^{-1}C(X)$ such that $w_m \to w$ and $A_m w_m \to Aw$ in X. Here $\rho_C(A)$ denotes the C-resolvent set of A. That is, $\rho_C(A) = \{\lambda \in \mathbb{C} | \lambda - A \text{ is injective and } R(C) \subset R(\lambda - A)\}$.

Proof. Indeed, if $w \in (\lambda - A)^{-1}C(X)$ is given, then we set $w_m = (\lambda - A_m)^{-1}C(C^{-1}(\lambda - A)w)$ for $m \in \mathbb{N}$, so that $w_m \to (\lambda - A)^{-1}C(C^{-1}(\lambda - A)w) = w$ and $A_m w_m = -(\lambda - A)w + \lambda(\lambda - A_m)^{-1}C(C^{-1}(\lambda - A)w) \to -(\lambda - A)w + \lambda w = Aw$ in X.

Combining [11, Theorem 2.4] with [19, Theorem 2.2], we can obtain the following Trotter-Kato type approximation theorem concerning integrated *C*-semigroups

Proposition 3.2. Let $\alpha \geq 0$, $T(\cdot)$ and $T_m(\cdot)$ for $m \in \mathbb{N}$, be α -times integrated C-semigroups on X generated by A and A_m , respectively. Assume that $T(\cdot)$, $T_m(\cdot) \in g(M,\omega)$ for $m \in \mathbb{N}$. Then $T_m(\cdot)v \to T(\cdot)v$ uniformly on compact subsets of $[0,\infty)$ for each $v \in X$ if and only if $\{T_m(\cdot)w\}_{m \in \mathbb{N}}$ is equicontinuous at t and $(\lambda - A_m)^{-1}Cw \to (\lambda - A)^{-1}Cw$ in X for each $w \in X$, $t \geq 0$ and $\lambda > \omega$.

Proposition 3.3. Let $C \in B(X)$ be an injection, and let A and A_m for $m \in \mathbb{N}$, be closed linear operators in X. Assume that $\{(\lambda - A_m)^{-1}C | m \in \mathbb{N}\}$ is bounded in B(X) for some $\lambda \in \bigcap_{m \in \mathbb{N}} \rho_C(A_m) \cap \rho_C(A)$ and D is a core of A such that for each $w \in D_\lambda(=D \cap (\lambda - A)^{-1}C(X))$, we have $w_m \to w$ and $A_m w_m \to Aw$ in X for some $w_m \in D(A_m)$. Then $(\lambda - A_m)^{-1}Cy \to (\lambda - A)^{-1}Cy$ in X for each $y \in \overline{R(C)}$.

Proof. Indeed, if $w \in D_{\lambda}$ is given, then we set $y = (\lambda - A)w$ and $y_m = (\lambda - A_m)w_m$ for $m \in \mathbb{N}$, so that $y_m \to y$ and $(\lambda - A_m)^{-1}Cy_m (= Cw_m) \to (\lambda - A)^{-1}Cy (= Cw)$ in X. Hence

(3.1)
$$\|(\lambda - A_m)^{-1}Cy - (\lambda - A)^{-1}Cy\|$$

$$\leq \|(\lambda - A_m)^{-1}C(y - y_m)\| + \|(\lambda - A_m)^{-1}Cy_m - (\lambda - A)^{-1}Cy\|$$

$$\leq \|(\lambda - A_m)^{-1}C\|\|y - y_m\| + \|(\lambda - A_m)^{-1}Cy_m - (\lambda - A)^{-1}Cy\|$$

$$\rightarrow 0 \text{ as } m \rightarrow \infty.$$

Now if $y \in R(C)$ is given, then y = Cx for some $x \in X$. By hypotheses, we have $z_n \to (\lambda - A)^{-1}Cx$ and $Az_n \to A(\lambda - A)^{-1}Cx$ in X for some sequence $\{z_n\}_{n=1}^{\infty}$ in D_{λ} , so that $(\lambda - A)z_n \to Cx$ in X. Hence $(\lambda - A)(D_{\lambda})$ is dense in R(C), which together with (3.1) and the boundedness of $\{(\lambda - A_m)^{-1}C|\underline{m} \in \mathbb{N}\}$ in B(X) implies that $(\lambda - A_m)^{-1}Cy \to (\lambda - A)^{-1}Cy$ in X for each $y \in \overline{R(C)}$.

Proposition 3.4. Let $\alpha \geq 0$, $T(\cdot)$ and $T_m(\cdot)$ for $m \in \mathbb{N}$, be α -times integrated C-semigroups on X generated by A and A_m , respectively. Assume that $T(\cdot)$, $T_m(\cdot) \in g(M,\omega)$ for $m \in \mathbb{N}$, and $(\lambda - A_m)^{-1}Cw \to (\lambda - A)^{-1}Cw$ in X for each $w \in X$ and $\lambda > \omega$. Then $T_m(\cdot)v \to T(\cdot)v$ uniformly on compact subsets of $[0,\infty)$ for each $\lambda > \omega$ and $v \in (\lambda - A)^{-1}C(X)$.

Proof. Clearly, $j_0 * T(\cdot)$, $j_0 * T_m(\cdot) \in \epsilon(M, \omega)$ for $m \in \mathbb{N}$. It follows from Proposition 3.2 that we have $j_0 * T_m(\cdot)x \to j_0 * T(\cdot)x$ uniformly on compact subsets

of $[0,\infty)$ for each $x \in X$. Now if $\lambda > \omega$ is fixed, then for each $w \in X$ we set $z = (\lambda - A)^{-1}Cw$ and $z_m = (\lambda - A_m)^{-1}Cw$ for $m \in \mathbb{N}$, so that

$$T_m(t)z - T(t)z = T_m(t)(z - z_m) + T_m(t)z_m - T(t)z,$$

$$T_m(t)z_m - T(t)z = j_\alpha(t)(Cz_m - Cz) + j_0 * T_m(t)A_m z_m - j_0 * T(t)Az,$$

$$j_0 * T_m(t)A_m z_m - j_0 * T(t)Az$$

$$= \lambda(j_0 * T_m(t)z_m - j_0 * T(t)z) - (j_0 * T_m(t)Cw - j_0 * T(t)Cw)$$

and

$$j_0 * T_m(t) z_m - j_0 * T(t) z$$

= $j_0 * T_m(t) (z_m - z) + (j_0 * T_m(t) z - j_0 * T(t) z)$

for each $t \geq 0$ and $m \in \mathbb{N}$. Hence $T_m(\cdot)z \to T(\cdot)z$ uniformly on compact subsets of $[0,\infty)$, which together with the uniform boundedness of $\{T_m(\cdot)|m\in\mathbb{N}\}$ on compact subsets of $[0,\infty)$ implies that $T_m(\cdot)v \to T(\cdot)v$ uniformly on compact subsets of $[0,\infty)$ for each $v\in\overline{(\lambda-A)^{-1}C(X)}$.

Definition 3.5. A sequence of α -times integrated C-semigroups $\{T_m(\cdot)\}_{m=1}^{\infty}$ on X is said to be uniformly locally Lipschitz continuous, if for each $t_0 > 0$ there exists a $K_{t_0} > 0$ such that

$$||T_m(t+h) - T_m(t)|| \le K_{t_0}h$$

for each $m \in \mathbb{N}$ and $0 \le t, h \le t + h \le t_0$.

Theorem 3.6. Let the hypotheses of Corollary 2.13 hold for $T(\cdot)$, A, g, x, y and z(=Ax+y), and also for $T_m(\cdot)$, A_m , g_m , x_m , y_m and $z_m(=A_mx_m+y_m)$ in place of $T(\cdot)$, A, g, x, y and z, respectively. Assume that

- (i) $\{T_m(\cdot)\}_{m=1}^{\infty}$ is uniformly locally Lipschitz continuous and $\lim_{m\to\infty} T_m(\cdot)v = T(\cdot)v$ uniformly on compact subsets of $[0,\infty)$ for each $v\in X$;
- (ii) $x_m \to x$ in X and $A_m^i z_m \to A^i z$ in X for each integer $0 \le i \le k$;
- (iii) $g_m \to g$ in $L^1_{loc}([0,\infty),X)$. That is, $\|g_m g\|_{L^1([0,t_0],X)} (= \int_0^{t_0} \|g_m(s) g(s)\|ds) \to 0$ in \mathbb{R} for each $t_0 > 0$.

Then the strong solution u_m of $ACP(A_m, Cy_m + j_{\alpha-1} * Cg_m, Cx_m)$ converges to the strong solution u of $ACP(A, Cy + j_{\alpha-1} * Cg, Cx)$ in $C^1([0, \infty), X)$, that is, $u_m \to u$ and $u'_m \to u'$ uniformly on compact subsets of $[0, \infty)$.

Proof. Indeed, if $\widetilde{T}_m(\cdot)$ denotes the k-times integrated C-semigroup on X generated by A_m which is given as in either (2.6) or (2.7), then from (2.8) and

(2.9), we have

$$(3.3) \ u_m(t) = T_m * g_m(t) + Cx_m + \begin{cases} j_0 * \widetilde{T}_m(t) z_m & \text{if } k = 0 \\ \widetilde{T}_m(t) z_m & \text{if } k = 1 \\ \widetilde{T}_m(t) A_m^{k-1} z_m + \sum_{i=0}^{k-2} j_{i+1}(t) C A_m^i z_m & \text{if } k \geq 2 \end{cases}$$

and

(3.4)
$$u'_m(t) = \frac{d}{dt}T_m * g_m(t) + \begin{cases} \widetilde{T}_m(t)z_m & \text{if } k = 0\\ \widetilde{T}_m(t)A_m^k z_m + \sum_{i=0}^{k-1} j_i(t)CA_m^i z_m & \text{if } k \ge 1 \end{cases}$$

for each $t \geq 0$ and $m \in \mathbb{N}$. We observe from (3.3), (3.4) and (i)-(iii) that we need only to be shown that $T_m * g_m \to T * g$, $(T_m * g_m)' \to (T * g)'$ and $\widetilde{T}_m(\cdot) A_m^i z_m \to \widetilde{T}(\cdot) A^i z$ uniformly on compact subsets of $[0, \infty)$ for each integer $0 \leq i \leq k$, and shall first show that

$$(3.5) T_m * \phi \to T * \phi$$

uniformly on compact subsets of $[0,\infty)$ for each $\phi\in L^1_{loc}([0,\infty),X)$. Here $\widetilde{T}(\cdot)$ denotes the k-times integrated C-semigroup on X generated by A. Indeed, if $t_0>0$ is fixed, then for each $\phi\in C([0,t_0],X)$ we deduce from the uniform continuity of ϕ on $[0,t_0]$, the uniform boundedness of $\{\|T_m(\cdot)\|\}_{m=1}^\infty$ on $[0,t_0]$ and (i) that $T_m(t-\cdot)\phi(\cdot)\to T(t-\cdot)\phi(\cdot)$ uniformly on [0,t] for each $0< t< t_0$, so that $T_m*\phi(t)\to T*\phi(t)$ in X for each $0\le t\le t_0$. The uniform Lipschitz continuity of $\{T_m(\cdot)\}_{m=1}^\infty$ on $[0,t_0]$ implies that $\{T_m*\phi(\cdot)\}_{m=1}^\infty$ is uniformly bounded and equicontinuous on $[0,t_0]$. It follows from the pointwise convergence of $\{T_m*\phi(\cdot)\}_{m=1}^\infty$ to $T*\phi(\cdot)$ on $[0,t_0]$ and Arzela-Ascoli's theorem that each subsequence of $\{T_m*\phi\}_{m=1}^\infty$ contains a subsequence which converges to $T*\phi$ uniformly on $[0,t_0]$. Hence $T_m*\phi\to T*\phi$ uniformly on $[0,t_0]$ for each $\phi\in C([0,t_0],X)$. Combining this, and the uniform boundedness of $\{\|T_m(\cdot)\|\}_{m=1}^\infty$ on $[0,t_0]$ with the denseness of $C([0,t_0],X)$ in $L^1([0,t_0],X)$, we have $T_m*\phi\to T*\phi$ uniformly on $[0,t_0]$ for each $\phi\in L^1([0,t_0],X)$. Consequently, $T_m*\phi\to T*\phi$ uniformly on compact subsets of $[0,\infty)$ for each $\phi\in L^1([0,t_0],X)$. In particular,

$$T_m * g_m = T_m * (g_m - g) + T_m * g \rightarrow 0 + T * g = T * g$$

uniformly on compact subsets of $[0, \infty)$. Next, we shall show that $(T_m * \phi)'(\cdot) \to (T * \phi)'(\cdot)$ uniformly on compact subsets of $[0, \infty)$ for each $\phi \in L^1_{loc}([0, \infty), X)$. Indeed, if $t_0 > 0$ is fixed, then from (3.5) and (i), we have

$$(T_m * \phi)'(\cdot) = T_m(\cdot) * \phi'(\cdot) + T_m(\cdot)\phi(0) \to T * \phi'(\cdot) + T(\cdot)\phi(0) = (T * \phi)'(\cdot)$$

uniformly on $[0, t_0]$ for each $\phi \in C^1([0, t_0], X)$. Combining this, and the denseness of $C^1([0, t_0], X)$ in $L^1([0, t_0], X)$ with the fact that

(3.6)
$$||(T_m * \phi)'(t)|| \le K_{t_0} \int_0^t ||\phi(s)|| ds$$

for each $\phi \in L^1([0,t_0],X)$, $m \in \mathbb{N}$ and $0 \le t \le t_0$, we have $(T_m * \phi)' \to (T * \phi)'$ uniformly on $[0,t_0]$ for each $\phi \in L^1([0,t_0],X)$, where K_{t_0} is given as in (3.2). Consequently, $(T_m * \phi)' \to (T * \phi)'$ uniformly on compact subsets of $[0,\infty)$ for each $\phi \in L^1_{loc}([0,\infty),X)$. In particular,

$$\widetilde{T}_m(\cdot)A^iz = (T_m * j_{k-\alpha}(\cdot)A^iz)' \to (T * j_{k-\alpha}(\cdot)A^iz)' = \widetilde{T}(\cdot)A^iz$$

uniformly on compact subsets of $[0, \infty)$ for each integer $0 \le i \le k$. Applying (i)-(iii) and (3.6) again, we have

$$(T_m * q_m)' = (T_m * (q_m - q))' + (T_m * q)' \rightarrow 0 + (T * q)' = (T * q)'$$

and

$$\begin{split} \widetilde{T}_m(\cdot)A_m^i z_m &= \widetilde{T}_m(\cdot)(A_m^i z_m - A^i z) + \widetilde{T}_m(\cdot)A^i z \\ &= (T_m * j_{k-\alpha}(\cdot)(A_m^i z_m - A^i z))' + \widetilde{T}_m(\cdot)A^i z \to \widetilde{T}(\cdot)A^i z \end{split}$$

uniformly on compact subsets of $[0, \infty)$ for each integer $0 \le i \le k$. Hence the proof of this theorem is complete.

By slightly modifying the proof of Theorem 3.6 the next result is also attained.

Theorem 3.7. Let the hypotheses of Corollary 2.14 hold for $T(\cdot)$, A, g, x, y and z = Ax + y, and also for $T_m(\cdot)$, A_m , g_m , x_m , y_m and $z_m = A_m x_m + y_m$ in place of $T(\cdot)$, A, g, x, y and z, respectively. Assume that

- (i) $\{T_m(\cdot)\}_{m=1}^{\infty}$ is uniformly locally Lipschitz continuous and $\lim_{m\to\infty} T_m(\cdot)v = T(\cdot)v$ uniformly on compact subsets of $[0,\infty)$ for each $v\in X$;
- (ii) $x_m \to x$ in X and either $y_m \to y$ in X if $0 \le \alpha < 1$; or $A_m^i z_m \to A^i z$ in X for each integer $0 \le i \le k-1$ if $\alpha \ge 1$;
- (iii) $g_m \to g$ in $L^1_{loc}([0,\infty),X)$.

Then the strong solution u_m of $ACP(A_m, Cx_m + j_1Cy_m + j_{\alpha-1}*Cg_m, 0)$ converges to the strong solution u of $ACP(A, Cx + j_1Cy + j_{\alpha-1}*Cg, 0)$ in $C^1([0, \infty), X)$.

Theorem 3.8. Let the hypotheses of Theorem 2.10 hold for $T(\cdot)$, A, g, x, y and z(=Ax+y), and also for $T_m(\cdot)$, A_m, g_m, x_m, y_m and $z_m(=A_mx_m+y_m)$ in place of $T(\cdot)$, A, g, x, y and z, respectively. Assume that $\alpha \in \mathbb{N}$ and

- (i) $T_m(\cdot) \in \epsilon(M,\omega)$ for all $m \in \mathbb{N}$ and $\lim_{m \to \infty} T_m(\cdot)v = T(\cdot)v$ uniformly on compact subsets of $[0, \infty)$ for each $v \in X$;
- (ii) $x_m \to x$ and $A_m^i z_m \to A^i z$ in X for each integer $0 \le i \le k-1$; (iii) $A^{k-1}z \in \overline{(\lambda A)^{-1}C(X)}$ and $(\lambda A)^{-1}C(X) \subset \overline{D(A_m)}$ for all $m \in \mathbb{N}$ and for some $\lambda > \omega$;
- (iv) $g_m \to g$ in $L^1_{loc}([0,\infty),X)$.

Then the conclusion of Theorem 3.6 holds.

Proof. Indeed, we observe from (2.8) and (2.9) that u_m is given as in (3.3) and

$$u'_m(t) = \frac{d}{dt}T_m * g_m(t) + \begin{cases} \frac{d}{dt}\widetilde{T}_m(t)z & \text{if } k = 1\\ \frac{d}{dt}\widetilde{T}_m(t)A_m^{k-1}z_m + \sum_{i=0}^{k-2} j_i(t)CA_m^i z_m & \text{if } k \ge 2 \end{cases}$$

for each $t \geq 0$ and $m \in \mathbb{N}$. Just like in the proof of Theorem 3.6, we need only to show that $(\widetilde{T}_m(\cdot)A_m^{k-1}z_m)' \to (\widetilde{T}(\cdot)A^{k-1}z)'$ uniformly on compact subsets of $[0,\infty)$. Since $k=\alpha$ we have $\widetilde{T}(\cdot)=T(\cdot)$ and $\widetilde{T}_m(\cdot)=T_m(\cdot)$ for $m\in\mathbb{N}$. Now if $w \in (\lambda - A)^{-1}C(X)$ is given, then from Proposition 3.1, we have $w_m \to 0$ w and $A_m w_m \to A w$ in X for some $w_m \in D(A_m)$, which together with the uniform boundedness of $\{\|T_m(\cdot)\|\}_{m=1}^{\infty}$ on compact subsets of $[0,\infty)$ implies that $(T_m(\cdot)w_m)' = j_{\alpha-1}(\cdot)Cw_m + T_m(\cdot)A_mw_m \to j_{\alpha-1}(\cdot)Cw + T(\cdot)Aw = (T(\cdot)w)'$ uniformly on compact subsets of $[0,\infty)$. Combining this with the fact that

(3.7)
$$||(T_m(\cdot)v)'|| \le K_{t_0}||v|| on [0, t_0]$$

for each $m \in \mathbb{N}$, $v \in \overline{D(A_m)}$ and $t_0 > 0$, we have

$$(T_m(\cdot)w)' = (T_m(\cdot)(w - w_m))' + (T_m(\cdot)w_m)' \to (T(\cdot)w)'$$

uniformly on compact subsets of $[0, \infty)$, which together with (3.7) and the denseness of $(\lambda - A)^{-1}C(X)$ in $\overline{(\lambda - A)^{-1}C(X)}$ implies that $(T_m(\cdot)w)' \to (T(\cdot)w)'$ uniformly on compact subsets of $[0, \infty)$ for each $w \in \overline{(\lambda - A)^{-1}C(X)}$. Combining this, and (3.7) with the assumption that $A^{k-1}z \in \overline{(\lambda - A)^{-1}C(X)}$, we have

$$(T_m(\cdot)A_m^{k-1}z_m)' = (T_m(\cdot)(A_m^{k-1}z_m - A^{k-1}z))' + (T_m(\cdot)A^{k-1}z)' \to (T(\cdot)A^{k-1}z)'$$
 uniformly on compact subsets of $[0,\infty)$.

Similarly the next theorem is also attained.

Theorem 3.9. Let the hypotheses of Theorem 2.11 hold for $T(\cdot)$, A, g, x, yand z(=Ax+y), and also for $T_m(\cdot)$, A_m , g_m , x_m , y_m and $z_m(=A_mx_m+y_m)$ in place of $T(\cdot)$, A, g, x, y and z, respectively. Assume that $\alpha \in \mathbb{N} \setminus \{1\}$ and

- (i) $T_m(\cdot) \in \epsilon(M, \omega)$ for $m \in \mathbb{N}$ and $\lim_{m \to \infty} T_m(\cdot)v = T(\cdot)v$ uniformly on compact subsets of $[0, \infty)$ for each $v \in X$;
- (ii) $x_m \to x$ and $A_m^i z_m \to A^i z$ in X for each integer $0 \le i \le k-2$;
- (iii) $A^{k-2}z \in \overline{(\lambda A)^{-1}C(X)}$ and $(\lambda A)^{-1}C(X) \subset \overline{D(A_m)}$ for all $m \in \mathbb{N}$ and for some $\lambda > \omega$; $g_m \to g$ in $L^1_{loc}([0,\infty),X)$.

Then the conclusion of Theorem 3.7 holds.

Remark 3.10. The conclusion of Theorem 3.9 has been deduced by Xiao and Liang in [19] when $C = I_X$.

Corollary 3.11. Let the hypotheses of Corollary 2.15 hold for $T(\cdot)$, A, g, x, y and z(= Ax + y), and also for $T_m(\cdot)$, A_m , g_m , x_m , y_m and z_m (= $A_m x_m + y_m$) in place of $T(\cdot)$, A, g, x, y and z, respectively. Assume that

- (i) $T(\cdot)$, $T_m(\cdot) \in g(M, \omega)$ for $m \in \mathbb{N}$, $\overline{R(C)} = X$ and for each $\lambda > \omega$ there exists a core D of A such that for each $w \in D_{\lambda}(= D \cap (\lambda A)^{-1}C(X))$, we have $w_m \to w$ and $A_m w_m \to Aw$ in X for some $w_m \in D(A_m)$;
- (ii) $x_m \to x$ and $A_m^i z_m \to A^i z$ in X for each integer $0 \le i \le k-1$;
- (iii) $g_m \to g$ in $L^1_{loc}([0,\infty),X)$.

Then the strong solution u_m of $ACP(A, Cy_m + j_\alpha * Cg_m, Cx_m)$ converges to the strong solution u of $ACP(A, Cy + j_\alpha * Cg, Cx)$ in $C^1([0, \infty), X)$.

Proof. From the denseness of D(A) in X, we have $\overline{R(C)} \subset \overline{(\lambda-A)^{-1}C(X)}$ for each $\lambda > \omega$. Combining this, and Proposition 3.3 with the assumption that $\overline{R(C)} = X$, we also have $(\lambda - A_m)^{-1}Cw \to (\lambda - A)^{-1}Cw$ in X for each $w \in X$ and $\lambda > \omega$. Applying Proposition 3.4, we have $T_m(\cdot)v \to T(\cdot)v$ uniformly on compact subsets of $[0,\infty)$ for each $v \in X$, which together with (ii)-(iii) and Theorem 3.8 implies that the conclusion of Theorem 3.6 holds.

Similarly the next corollary is also attained.

Corollary 3.12. Let the hypotheses of Corollary 2.16 hold for $T(\cdot)$, A, g, x, y and z(= Ax + y), and also for $T_m(\cdot)$ A_m , g_m , x_m , y_m and z_m (= $A_m x_m + y_m$) in place of $T(\cdot)$, A, g, x, y and z, respectively. Assume that $\alpha \ge 1$ and

- (i) $T(\cdot)$, $T_m(\cdot) \in g(M, \omega)$ for $m \in \mathbb{N}$, $\overline{R(C)} = X$ and for each $\lambda > \omega$ there exists a core D of A such that for each $w \in D_{\lambda}(= D \cap (\lambda A)^{-1}C(X))$, we have $w_m \to w$ and $A_m w_m \to Aw$ in X for some $w_m \in D(A_m)$;
- (ii) $x_m \to x$ and $A_m^i z_m \to A^i z$ in X for each integer $0 \le i \le k-2$;
- (iii) $g_m \to g$ in $L^1_{loc}([0,\infty),X)$.

Then the strong solution u_m of $ACP(A_m, Cx_m + j_1Cy_m + j_\alpha * Cg_m, 0)$ converges to the strong solution u of $ACP(A, Cx + j_1Cy + j_\alpha * Cg, 0)$ in $C^1([0, \infty), X)$.

REFERENCES

- 1. W. Arendt, C. J. K. Batty, H. Hieber and F. Neubrander *Vector-Valued Laplace Transforms and Cauchy Problems*, 96, Birkhauser Verlag, Basel-Boston-Berlin, 2001.
- 2. W. Arendt, Vector-Valued Laplace Transforms and Cauchy Problem, *Israel J. Math.*, **59** (1987), 327-352.
- 3. S. Busenberg and B.-H. Wu, Convergence Theorem for Integrated Semigroups *Diff* and Integ. Equations, **5** (1992), 509-520.
- 4. R. DeLaubenfels *Existence Families, Functional Calculi and Evolution Equations*, Lecture Notes in Mathematics 1570, Springer-Verlag, Berlin Heidelberg, 1994.
- 5. K. J. Engel and R. Nagel, *One Parameter Semigroups and Linear Evolution Equations*, 194, Springer, Berlin/New York, 1999.
- 6. J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford, 1985.
- 7. B. Hennig and F. Neubrander, On Representations, Inversion and Approximations of Laplace, Transforms in Banach Spaces, *Appl. Anal.*, **49** (1993), 151-170.
- 8. M. Hieber, Laplace Transforms and α -Times Integrated Semigroups, *Forum Math.*, **3** (1991), 595-612.
- 9. C.-C. Kuo and S.-Y. Shaw, On α -Times Integrated C-Semigroups and the Abstract Cauchy Problem, *Studia Math.*, **142** (2000), 201-217.
- 10. C.-C. Kuo and S.-Y. Shaw, On Strong and Weak Solutions of Abstract Cauchy Problems, *J. Concrete and Appl. Math.*, **2** (2004), 191-212.
- 11. C.-C. Kuo, On Perturbations of α -Times Integrated C-Semigroups, 2005, Preprint.
- 12. Y.-C. Li and S.-Y. Shaw, N-Times Integrated C-Semigroups and the Abstract Cauchy Problem, *Taiwanese J. Math.*, **1** (1997), 75-102.
- 13. C. Lizama , On the Convergence and Approximation of Integrated Semigroups, *J. Math. Anal. Appl.*, **181** (1994), 89-103.
- 14. M. Mijatović and S. Pilipović, α -Times Integrated Semigroups ($\alpha \in \mathbb{R}^+$), *J. Math. Anal. Appl.*, **210** (1997), 790-803.
- 15. I. Miyadera, M. Okubo and N. Tanaka, α-Times Integrated Semigroups and Abstract Cauchy Problems, *Mem. School Sci. Engrg. Waseda Univ.*, **57** (1993), 267-289.
- 16. F. Neubrander, Integrated Semigroups and their Applications to the Abstract Cauchy Problem, *Pacific J. Math.*, **135** (1988), 111-155.
- 17. S. Nicaise, The Hille-Yosida and Trotter-Kato Theorem for Integrated Semigroups, J. Math. Anal. Appl., **180** (1993), 303-316.

- 18. N. Tanaka and N. Okazawa, Local C-semigroups and Local Integrated Semigroups, *Proc. London Math. Soc.*, **61** (1990), 63-90.
- 19. T.-J. Xiao and J. Liang, Approximations of Laplace Transforms and Integrated Semigroups, *J. Funct. Anal.*, **172** (2000), 202-220.
- 20. T.-J. Xiao and J. Liang, *The Cauchy Problem for Higher-Order Abstract Differential Equations*, Lectures Notes in Math., 1701, Springer, 1998.

Chung-Cheng Kuo Department of Mathematics, Fu Jen University, Taipei 24205, Taiwan E-mail: cckuo@math.fju.edu.tw