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A COMPARISON OF THE ORDER COMPONENTS IN FROBENIUS
AND 2-FROBENIUS GROUPS WITH FINITE SIMPLE GROUPS

A. R. Moghaddamfar

Abstract. Let G be a finite group. Based on the Gruenberg-Kegel graph
GK(G), the order of G can be divided into a product of coprime positive
integers. These integers are called the order components of G and the set of
order components is denoted by OC(G). In this article we prove that, if S is
a non-Abelian finite simple group with a disconnected graph GK(S), with an
exception of U4(2) and U5(2), and G is a finite group with OC(G) = OC(S),
then G is neither Frobenius nor 2-Frobenius. For a group S isomorphic to
U4(2) or U5(2), we construct examples of 2-Frobenius groups G such that
OC(S) = OC(G). In particular, the simple groups U4(2) and U5(2) are not
recognizable by their order components.

1. INTRODUCTION

Throughout this article, all groups are assumed to be finite and all simple groups
are non-Abelian. The spectrum ω(G) of a group G is the set of element orders of
G. The set ω(G) determines the Gruenberg-Kegel graph GK(G), or the prime
graph of G, whose vertices are all prime divisors of the order of G, and two
vertices p and q are adjacent if pq ∈ ω(G). We denote by s(G) the number
of connected components of GK(G) and by πi(G), i = 1, 2, . . . , s(G), the ith
connected component of GK(G). For a group G of even order, we set 2 ∈ π1(G).

For a natural number n, let π(n) be the set of prime divisors of n. Now, we
can write

|G| =
s(G)∏
i=1

ni(G),
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where ni(G)’s are positive integers with π(ni(G)) = πi(G). These ni(G)’s are
called the order components of G. The set of order components of G will be denoted
by OC(G).

Gruenberg and Kegel gave the following description for finite groups with dis-
connected prime graph.

Gruenberg-Kegel Theorem (See [12]). If G is a finite group with a discon-
nected graph GK(G), then one of the following assertions holds:

(a) s(G) = 2 and G is a Frobenius group;
(b) s(G) = 2 and G is a 2-Frobenius group, i.e., G = ABC, where A and AB

are the normal subgroups of G and AB and BC are Frobenius groups with
kernels A and B and complements B and C, respectively.

(c) There exists a non-Abelian simple group P such that P ≤ G = G/K ≤
Aut(P ), where K is the maximal normal soluble subgroup of G; further-
more, K and G/P are π1(G)-groups, the Gruenberg-Kegel graph GK(P ) is
disconnected and s(P ) > s(G).

The recognition of finite groups through their order components was first in-
troduced by G. Y. Chen in [3]. A group G is said to be recognizable by its order
components if H ∼= G for every group H such that OC(H) = OC(G). There are
scattered results in the literature showing that certain groups are recognizable by
their order components. For example, the following simple groups are recognizable
by their order components: All sporadic simple groups [3], Suzuki-Ree groups [4],
PSL(2, q) [5]. Evidently, a simple group S with one connected component is not
recognizable by its order component, because OC(S) = OC(Z|S|) = {|S|} but
S � Z|S|.

Let S be a simple group with a disconnected Gruenberg-Kegel graph GK(S),
which is recognizable by its order components. Usually, the proof of this statement

“ OC(G) = OC(S) =⇒ G ∼= S ”

can be divided into the following steps:

Step 1. G is neither Frobenius nor 2-Frobenius,

Step 2. The condition (c) of Gruenberg-Kegel Theorem holds for G, and

Step 3. G = P ∼= S, which implies that G ∼= S.

According to three steps, one may pose a question: Let S be a simple group
with s(S) > 1. Is there any Frobenius or 2-Frobenius group F such that OC(F ) =
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OC(S)? In this article we demonstrate that for all simple groups S with s(S) > 1,
except U4(2) and U5(2), the answer to this question is negative. In fact, by using
the classification of the finite simple groups with a disconnected Gruenberg-Kegel
graph, we prove the following theorem.

Main Theorem. Let S be a simple group with a disconnected Gruenberg-
Kegel graphGK(S), except U4(2) and U5(2). If G is a finite group with OC(G) =
OC(S), then G is neither Frobenius nor 2-Frobenius.

Concerning U4(2) and U5(2) we will show that there exist no Frobenius group
G such thatOC(G) = OC(U4(2)) or OC(G) = OC(U5(2)). But, we will construct
2-Frobenius groups F1 and F2 such that OC(F1) = OC(U4(2)) and OC(F2) =
OC(U5(2)). In this way we can conclude that:

Corollary. The simple groups U4(2) and U5(2) are not recognizable by their
order components.

Of course this corollary can specify a mistake made in [8]. In fact the simple
group U5(2) is not recognizable by its order component and should be omitted from
these simple groups.

Here, it should be mentioned that a similar research concerning finite simple
groups with the same spectrum as a Frobenius group or a 2-Frobenius group has
been done by M.R. Aleeva in [1].

We finally introduce some notations. Given a group G, we put π(G) := π(|G|)
the set of all prime divisors of the order of G. Also, Sylp(G) denotes the set of
Sylow p-subgroups of G for each p ∈ π(G). We denote by N � H a semidirect
product of N by H . If m and n are natural numbers and p is a prime, the notation
pm‖n means that pm|n and pm+1 � n. By �x� we denote the integer part of x, i.e.,
the greatest integer that is less than or equal to x. We denote by r[x] the largest
prime not exceeding x. All further unexplained notations are standard and can be
found in [6] and [7], for instance.

2. PRELIMINARY RESULTS

In this section we collect all the results that we need to prove our main results.
We start with some definitions. A Frobenius group with kernel K and complement
C is a semidirect product F = K � C such that CK(x) = 1 for every non-identity
element x of C. Also, G is a 2-Frobenius group if G = ABC, where A and AB

are the normal subgroups of G and AB and BC are Frobenius groups with kernels
A and B and complements B and C, respectively.

Lemma 1. (See [7, 11, 13, 14]). If F = K � C is a Frobenius group with the
kernel K and complement C, then the following assertions hold:
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(1) K is nilpotent and the prime graph GK(K) is a complete graph;
(2) If H is a subgroup of order rs in C, where r, s ∈ π(C) (not necessary

distinct), then H is a cyclic group; in particular, the Sylow r-subgroup of C
is cyclic for any odd prime r ∈ π(C);

(3) If 2 ∈ π(C) then C has a unique element z of order 2, in particular, the
Sylow 2-subgroup of C is either cyclic or a (generalized) quaternion group
and the subgroup K is Abelian.

(4) Either the group C is soluble and the prime graph GK(C) is complete or C

contains a normal subgroup L ∼= SL(2, 5) such that (|L|, |C : L|) ≤ 2 and
the prime graph GK(C) can be obtained from the complete graph on π(C)
by deleting the edge {3, 5}.

(5) s(F ) = 2 and OC(F ) = {|K|, |C|}.
(6) Every non-identity element of C induces by conjugation an automorphism of

K which is fixed-point-free.
(7) |K| ≡ 1 (mod |C|).
The following lemma deals with the structure of 2-Frobenius groups and their

Gruenberg-Kegel graphs. One may find its proof in [10].

Lemma 2. In case (b) of the Gruenberg-Kegel Theorem:

(1) C and B are cyclic groups, and |B| is odd;
(2) G is soluble, and
(3) GK(B) and GK(AC) are connected components of the prime graphGK(G),

and both of them are complete graphs. In particular, s(G) = 2, π 1(G) =
π(AC), π2(G) = π(B), and OC(G) = {|AC|, |B|}.

The following lemma will be used so as to analyze the finite simple groups of
Lie type.

Lemma 3. (Zsigmondy [15]). Let q and f be integers greater than 1. There
exists a prime divisor r of q f−1 such that r does not divide q e−1 for all 0 < e < f ,
except in the following cases:

(a) f = 6 and q = 2;

(b) f = 2 and q = 2l − 1 for some natural number l.

Such a prime r is called a primitive prime divisor of q f − 1. If q > 1 is fixed,
we denote by qf any primitive prime divisors of qf − 1. Of course, there may be
more than one primitive prime divisor of qf − 1, however the symbol qf denotes
any one of these primes. For example, the primitive prime divisors of 535 − 1 are
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11, 131, 5581 and thus 535 denotes any one of these primes. Evidently, f divides
qf − 1, thus qf ≥ f + 1.

The following lemma is an immediate consequence of Lemma 3.

Lemma 4. Let p and q be two primes and m, n be natural numbers such that
pm − qn = 1. Then one of the following holds:

(a) (p, n) = (2, 1), and q = 2m − 1 is a Mersenne prime;
(b) (q, m) = (2, 1), and p = 2n + 1 is a Fermat prime;
(c) (p, n) = (3, 3) and (q, m) = (2, 2).

Lemma 5. Let q be a power of a prime and n ≥ 2 be an odd natural number.
Then the primitive prime divisor qn−1 does not divide the numbers qn−2i + 1 for
all natural numbers i, 1 ≤ i ≤ (n − 1)/2.

Proof. Suppose that s := qn−1. Then s does not divide q(n−1)/2 − 1, therefore
s divides q(n−1)/2 + 1. Assume that our claim is false. Then s divides qn−2i + 1
for some i with 1 ≤ i ≤ (n − 1)/2, and so

s | (qn−2i + 1)− (q(n−1)/2 + 1) = qn−2i − q(n−1)/2.

Furthermore, we have

qn−2i−q(n−1)/2 =




q(n−1)/2(q(n−4i+1)/2 − 1) if 1 ≤ i ≤ (n + 1)/4;

qn−2i(1− q(4i−n−1)/2) if (n + 1)/4 < i ≤ (n − 1)/2,

and since (s, q) = 1, we deduce that s divides q (n−4i+1)/2 − 1 or q(4i−n−1)/2 − 1.
On the other hand, since we have (n−4i+1)/2 < n−1 and (4i−n−1)/2 < n−1,
this contradicts with the primitivity of s.

Lemma 6. Let q, n ≥ 2 be integers. Then for all i, 0 < i < n, we have
(qn, qn+i − 1) = 1.

Proof. It is easy to notice that (qn − 1, qn+i − 1) = q(n,n+i) − 1 = q(n,i) − 1.
Now, considering (n, i) < n, we obtain (qn, q(n,i) − 1) = 1, therefore we can see
that (qn, qn+i − 1) = 1.

The next two lemmas reduce the problem to a study of simple groups of Lie
type or alternating groups with two connected components in their prime graphs.

Lemma 7. (See [2]). Let G be a finite group with more than or equal 3 prime
graph components. Then G is neither Frobenius nor 2-Frobenius.
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Lemma 8. (See [3]). Let S be a sporadic simple group. If G is a group with
OC(G) = OC(S), then G is neither Frobenius nor 2-Frobenius.

The following lemma presents the order components for simple groups of Lie
type or alternating groups with two connected components in their prime graphs.

Lemma 9. (See [9, Lemma 4]). LetS be a finite simple group of Lie type or an
alternating group with s(S) = 2. Thenn1(S) andn2(S) are as shown in Table 1.

3. MAIN RESULTS

As mentioned before, the problem under study can be reduced to investigat-
ing the finite simple groups of Lie type or alternating groups with two connected
components. We prefer to examine the cases, Frobenius and 2-Frobenius, separately.

Theorem 1. Let S be a simple group of Lie type or an alternating group with
s(S) = 2. If G is a finite group with OC(G) = OC(S), then G is not a Frobenius
group.

Proof. Let S be a finite simple group with s(S) = 2 and let G be a finite group
with OC(G) = OC(S) = {n1(S), n2(S)}. Clearly |G| = |S| = n1(S).n2(S).
We must show that G is not a Frobenius group. Assume the contrary that G is a
Frobenius group with the kernelK and complement C. Then by Lemma 1, parts (5)
and (7), s(G) = 2, OC(G) = {|K|, |C|}, and |C| divides |K|−1. From |C| < |K|
and Table 1 we can easily conclude that |K| = n1(S) and |C| = n2(S). Notice
that, if r ∈ π(K) and s ∈ π(C), then Sylr(G) = Sylr(K) and Syls(G) = Syls(C).

Now, suppose that R ∈ Sylr(K). Since K is nilpotent, R � G. Hence, C acts
on R by conjugation. By Lemma 1(6), this action is fixed-point-free on R, and so
R � C is a Frobenius group. Therefore

(1) |R| ≡ 1 (mod |C|).

On the basis of the information provided above, the proof is made through a case
by case analysis.

(1) S ∼= An, where 6 < n = p, p + 1, or p + 2 and n or n− 2 is not a prime. In
this case |K| = (n!)/(2p) and |C| = p. Assume r := r[p] and R ∈ Sylr(G).
Clearly r > �(p + 1)/2� and it follows that |R| = r. Now by (1), we must
have p|r − 1, which is a contradiction.

(2) S ∼= Ap−1(q), (p, q) /∈ {(3, 2), (3, 4)}. In this case we have

|K| = qp(p−1)/2
p−1∏
i=1

(qi − 1) and |C| =
qp − 1

(q − 1)(p, q − 1)
.
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Table 1. The order components of alternating groups and simple groups of Lie type
with two connected components.

First, assume that p = 3 and S ∼= A2(q) ∼= PSL(3, q). Here, we have

|K| = q3(q − 1)(q2 − 1) and |C| = (q2 + q + 1)/(3, q − 1).

First, we assume that q is not a Mersenne prime. Then, by Lemma 3, we can
consider the primitive prime divisor r := q2 ∈ π(q+1). Now, if R ∈ Sylr(G), then
|R| divides q+1, and by (1) we deduce that (q2+q+1)/(3, q−1) ≤ |R|−1 ≤ q+1,
which is a contradiction. Next, we suppose 3 
= q is a Mersenne prime. In this
case if R ∈ Syl2(G), then |R| = 4(q + 1). Moreover, by (1) we must have
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(q2 + q + 1)/(3, q− 1) ≤ |R| − 1 ≤ 4(q + 1), which is a contradiction. For q = 3,
we have |K| = 33.24 and |C| = 13. Again, by (1) we obtain 13 | 16 − 1, which is
a contradiction.

Next, we assume that p > 3. We consider two cases separately.

(a) Let (p, q − 1) = 1. Assume first that q 
= 2. Now, we consider the primitive
prime divisor r := qp−1. Clearly r|q(p−1)/2+1. Assume that rm ‖ q(p−1)/2+1
and R ∈ Sylr(G). Then |R| = rm and by (1) we must have (qp −1)/(q−1)
divides rm − 1. Thus, we deduce that

qp−1 + qp−2 + · · ·+ q + 1 ≤ rm − 1 ≤ q(p−1)/2 + 1,

which is a contradiction.

Next, suppose q = 2. In this case, if p 
= 7, we may similarly derive a
contradiction as the previous case. Now, we assume that p = 7. In this
case we have S ∼= A6(2) ∼= PSL(7, 2), |K| = 27(7−1)/2

∏6
i=2(2

i − 1) and
|C| = 27 − 1. Let R ∈ Syl7(G). Then |R| = 72 and by (1) we must have
27 − 1|31− 1, which is a contradiction.

(b) (p, q− 1) = p. In this case q 
= 2 and p < q. Now, we consider the primitive
prime divisor r := qp−1. Evidently r|q(p−1)/2 + 1. Let R ∈ Sylr(G). Then
|R| divides q(p−1)/2+1. By (1), we obtain that (qp−1)/p(q−1) ≤ |R|−1 ≤
q(p−1)/2 + 1, and through an easy calculation, we get

qp−1 + qp−2 + · · ·+ q + 1 ≤ p(q(p−1)/2 + 1) ≤ q(p+1)/2 + q,

which is impossible.

(3) S ∼= Ap(q), (q − 1)|(p + 1). Here, we have

|K| = qp(p+1)/2(qp+1 − 1)
p−1∏
i=1

(qi − 1) and |C| =
qp − 1
q − 1

.

First assume that (p, q) 
= (5, 2). Then, by Lemma 3, the number qp+1 − 1
has a primitive prime divisor r := qp+1; in particular, r divides q

p+1
2 +1. Let

R ∈ Sylr(G). Then |R| divides q
p+1
2 + 1, and by (1) we must have

qp−1 + qp−2 + · · ·+ q + 1 ≤ |R| − 1 ≤ q(p+1)/2 + 1,

which is a contradiction.

For the case (p, q) = (5, 2), we have |K| = 215.34.5.72 and |C| = 31. In this
case, we take R = Syl7(G) and we similarly obtain 31|72−1, a contradiction.



Order Components in Frobenius and 2-Frobenius Groups 75

(4) S ∼= 2Ap−1(q). Here, the orders of K and C are

|K| = qp(p−1)/2
p−1∏
i=1

(qi − (−1)i) and |C| =
qp + 1

(q + 1)(p, q + 1)
.

First we assume that p = 3. Then

|K| = q3(q + 1)2(q − 1) and |C| =
q2 − q + 1
(3, q + 1)

.

Since 2A2(2) ∼= PSL(3, 2) is a solvable group, we may assume that q > 2.
Now, by Lemma 3, the number q6 − 1 has a primitive prime divisor r := q6;
in particular, 5 < r ∈ π(q2 − q + 1). Let R ∈ Sylp′(G), where p′ ∈ π(q).
Then |R| = q3, and by (1), (q2 − q + 1)/(3, q + 1) must divides q3 − 1. But
this is a contradiction, since (r, q3 − 1) = 1.

Henceforth, we may assume that p ≥ 5.

First assume that q 
= 2. Then, we consider the primitive prime divisor
r := qp−1. Obviously r divides q(p−1)/2+1. Note that, by Lemma 5 we have
(r, qp−2i +1) = 1, where i = 1, 2, . . . , (p−1)/2. Now, if R ∈ Sylr(G), then
|R| divides q(p−1)/2 +1. Moreover, by (1) we must have |C| divides |R| −1,
which implies the following

qp + 1
(q + 1)(p, q + 1)

≤ |R| − 1 ≤ q(p−1)/2 + 1,

and it is a contradiction.

Next, suppose q = 2. In this case, if p 
= 7, the proof is similar as in the
previous paragraph. For p = 7 we have |K| = 221.38.5.7.11 and |C| = 43.
Now, if R ∈ Syl11(G) then it follows that 43|11−1, which is a contradiction.

(5) S ∼= 2Ap(q), (q + 1)|(p + 1), (p, q) /∈ {(3, 3), (5, 2)}. In this case

|K| = qp(p+1)/2(qp+1−1)
p−1∏
i=2

(qi−(−1)i) and |C| = (qp+1)/(q+1).

Here, we consider the primitive prime divisor r := qp+1. An argument similar
to that in case (4) shows that the case under consideration is impossible.

(6) S ∼= 2A3(2). Here, |K| = 26.34 and |C| = 5. Let R ∈ Syl2(G). Then by
(1), we get 5|26 − 1, which is impossible.
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(7) S ∼= Bn(q), n = 2m ≥ 4, q is odd. Here, we have

|K| = qn2
(qn − 1)

n−1∏
i=1

(q2i − 1) and |C| =
qn + 1

2
.

By Lemma 3, the number q2(n−1) − 1 has a primitive prime divisor r :=
q2(n−1); in particular, r divides qn−1 + 1. If R ∈ Sylr(G) then |R| divides
qn−1 + 1, and by (1) we must have

qn + 1
2

≤ |R| − 1 ≤ qn−1 + 1,

which is false.

(8) S ∼= Cn(q), n = 2m ≥ 2. In this case we have

|K| = qn2
(qn − 1)

n−1∏
i=1

(q2i − 1) and |C| = (qn + 1)/(2, q − 1).

If (q, n) /∈ {(2, 4), (a Mersenne prime, 2)}, then we consider the primitive
prime divisor r := q2(n−1). Clearly r divides qn−1 + 1 and (r, qn − 1) = 1.
Now, if R ∈ Sylr(G), then |R| divides qn−1 + 1, and by (1) we obtain that

(qn + 1)/(2, q− 1) ≤ |R| − 1 ≤ qn−1 + 1,

which is a contradiction.

In the case that (q, n) = (2, 4), we have |K| = 216.35.52.7 and |C| = 17. If
R = Syl7(G) then by (1) we must have 17 | 7−1, which is clearly impossible.

Finally, suppose q is a Mersenne prime and n = 2. In this case, we get
|K| = q4(q2 − 1)2 and |C| = (q2 + 1)/2. Now, if there exists a prime
2 
= r ∈ π(q − 1), then r|(q − 1)/2. Let rm‖(q − 1)/2 and R ∈ Sylr(G).
Clearly, the order of R is r2m. Therefore, by (1) we obtain (q2+1)/2|r2m−1,
which implies (q2 + 1)/2 ≤ r2m − 1 ≤ (q − 1)2/4, a contradiction. Thus,
we must have π(q − 1) = {2}. Now it is easy to see that q − 1 = 2, because
q is a Mresenne prime. Hence q = 3, |K| = 26.34 and |C| = 5. In this case
we consider R = Syl2(G). Clearly, |R| = 26 and by (1) we arrive at the
contradiction of 5 | 26 − 1.

For the cases Bp(3); 2Dp(3), 5 ≤ p 
= 2n + 1 we consider the primitive
prime divisor r := 32(p−1) and for the cases Cp(q), q = 2, 3; Dp(q), p ≥ 5,
q = 2, 3, 5; Dp+1(q), q = 2, 3, we assume r := q2(p−2), and similarly we get
a contradiction.
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(9) S ∼= 2Dn(q), n = 2m ≥ 4. Here, we have

|K| = qn(n−1)
n−1∏
i=1

(q2i − 1) and |C| =
qn + 1

(2, q + 1)
.

First, we assume that (n, q) 
= (4, 2). Then, by Lemma 3, the number
q2(n−1)−1 has a primitive prime divisor r := q2(n−1); in particular, r divides
(qn−1+1)/(q+1). Now, if R ∈ Sylr(G), then |R| divides (qn−1+1)/(q+1),
and by (1) we must have

qn + 1
(2, q − 1)

≤ |R| − 1 ≤ qn−1 + 1
q + 1

,

which is a contradiction. Next, we suppose (n, q) = (4, 2) and S ∼= 2D4(2).
In this case we have |K| = 212.34.5.7 and |C| = 17; and we take R ∈
Syl7(G). Therefore, by (1) we must have 17 | 7−1, which is a contradiction
again.

(10) S ∼= 2Dn(2), 5 ≤ n = 2m + 1. In this case we have

|K| = 2n(n−1)(2n + 1)(2n−1 − 1)
n−2∏
i=1

(22i − 1) and |C| = 2n−1 + 1.

If n 
= 5, we consider the primitive prime divisor r := 22(n−2). Evidently
r|2n−2 + 1. Let rm‖2n−2 + 1 and R ∈ Sylr(G). Clearly |R| = rm. On
the other hand, since |C| divides |R| − 1, we must have 2n−1 + 1 ≤ rm −
1 ≤ 2n−2 + 1, but this is a contradiction. Now, we assume n = 5, then
|K| = 220.36.52.7.11 and |C| = 17. Clearly, K contains a normal subgroup
of order 11, and we must have 17 | 11− 1, which is a contradiction.

(11) S ∼= 2Dn(3), 5 ≤ n = 2m + 1 
= p. Then

|K| = 3n(n−1)(3n+1)(3n−1−1)
n−2∏
i=1

(32i−1) and |C| = (3n−1+1)/2.

Now, we consider the primitive prime divisor r := 32(n−2). Therefore, similar
to the previous case, we get a contradiction.

(12) S ∼= G2(q), where 2 < q ≡ 1 (mod 3). In this case we have

|K| = q6(q2 − 1)2(q2 + q + 1) and |C| = q2 − q + 1.

Obviously (q − 1, q2 + q + 1) = 1 or 3 and (q − 1, q + 1) = 1 or 2.
First assume that there exists a prime r such that r ∈ π(q − 1)\{2, 3} and
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rm‖q − 1. Now, we consider the Sylow r-subgroup R of K. Therefore, we
may easily see that |R| = r2m and R ∈ Sylr(G). Therefore, from (1) we get
q2 − q + 1 ≤ rm − 1 ≤ (q − 1)2, which is a contradiction.
In what follows, we suppose that π(q − 1) ⊆ {2, 3} and we consider two
cases separately.

(a) q is an odd number. Since 3 ∈ π(q − 1), we consider the Sylow 3-
subgroup R of G. Let 3m‖q − 1. Since (q, 3) = (q + 1, 3) = 1 and
(q2 + q + 1, q − 1) = 3, we obtain |R| = 32m+1. According to (1) and
2|q − 1, we conclude

q2 − q + 1 ≤ 32m+1 − 1 < 4.32m ≤ (q − 1)2,

which is a contradiction.
(b) q = 2n. By our assumptions, we have π(2n − 1) = {3}, and hence

2n − 1 = 3m for some m ∈ N. Now, by Lemma 4, the only solution
is (m, n) = (1, 2), and we get S ∼= G2(4). In this case, we have
|K| = 212.33.52.7 and |C| = 13. Let R ∈ Syl7(G). Now, by (1) it
follows that 13|7− 1, which is impossible.

(13) S ∼= G2(q), where 2 < q ≡ −1 (mod 3). In this case we have

|K| = q6(q2 − 1)2(q2 − q + 1) and |C| = q2 + q + 1.

First, assume that there exists a prime 3 
= r ∈ π(q2 − q + 1). Since (q2 −
q + 1, q2 − 1) = 1 or 3, we get (r, q2 − 1) = 1. Therefore, if R ∈ Sylr(G)
then |R| divides q2 − q + 1. But as |C| divides |R| − 1 we must have
q2 + q + 1 ≤ rm − 1 ≤ q2 − q + 1, which is a contradiction.
Next, suppose π(q2 − q + 1) = {3}. Now we claim that π(q − 1) 
= {2}.
In fact, if this is false, then q − 1 = 2k for some k ∈ N. This yields that
22k + 2k + 1 = 3s, for some s ∈ N. But this is impossible as the equation
x2+x+1−3s = 0 where x is a power of 2, has no solution in natural numbers.
Now, we consider a prime 2 
= r ∈ π(q−1). Let rm‖q−1 and R ∈ Sylr(G).
Then |R| = r2m, and by (1) we must have q2 + q + 1 ≤ r2m − 1 ≤ (q − 1)2,
which is again a contradiction.

(14) S ∼= 3D4(q). In this case we have

|K| = q12(q2 − 1)2(q4 + q2 + 1)2 and |C| = q4 − q2 + 1.

Obviously, (q2 − 1, q4 + q2 + 1) = 1 or 3. First, we assume that there exists
a prime 3 
= r ∈ π(q2− 1). Let R be a Sylow r-subgroup of G. Then by (1)
we have q4 − q2 + 1 ≤ |R| − 1 ≤ (q2 − 1)2, which is a contradiction. Next,
suppose π(q2 − 1) ⊆ {3}. Now, by Lemma 4, the only solution is q = 2.
Then S ∼= 3D4(2), |K| = 212.34.72 and |C| = 13. Let R ∈ Syl7(G). From
(1) we must have 13|72 − 1, which is a contradiction.
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(15) S ∼= F4(q), q is an odd number. In this case we have

|K| = q24(q6 − 1)2(q8 − 1)(q4 − 1) and |C| = q4 − q2 + 1.

Here, we consider the primitive prime divisor r := q8. We easily see that r
divides (q4 + 1)/2, because q is odd. Let R ∈ Sylr(G). Then |R| divides
(q4+1)/2 and from (1) we can conclude that q4−q2+1 ≤ |R|−1 ≤ (q4+1)/2,
which is a contradiction.

(16) S ∼= 2F4(2)′. In this case we have |K| = 211.33.52 and |C| = 13. Now, by
considering R ∈ Syl2(G), we must have 13 | 211 − 1, which is impossible.

(17) S ∼= E6(q). In this case we have

|K| = q36(q12 − 1)(q3 − 1)(q8 − 1)(q6 − 1)(q5 − 1)(q2 − 1) and |C|
= (q6 + q3 + 1)/(3, q − 1).

Now we consider the primitive prime divisor r := q12. Also, from

q12 − 1 = (q6 − 1)(q2 + 1)(q4 − q2 + 1),

we notice that r divides q4−q2+1. Now, if R ∈ Sylr(G), it is easy to see that
|R| divides q4 − q2 + 1 and by (1) we deduce that (q6 + q3 + 1)/(3, q− 1) ≤
|R| − 1 ≤ q4 − q2 + 1, which is a contradiction.

(18) S ∼= 2E6(q). In this case we have

|K| = q36(q12 − 1)(q3 + 1)(q8 − 1)(q6 − 1)(q5 + 1)(q2 − 1) and |C|
= (q6 − q3 + 1)/(3, q + 1).

Here, we consider the primitive prime divisor r := q10. Certainly, r divides
(q5 +1)/(q+1). By Lemma 6, (r, q12−1) = 1 and so (r, |K|/(q5+1)) = 1.
Now if R ∈ Sylr(G), then |R| divides (q5 + 1)/(q + 1), and by (1) we must
have

q6 − q3 + 1
(3, q + 1)

≤ |R| − 1 ≤ q5 + 1
q + 1

= q4 − q3 + q2 − q + 1,

which is a contradiction.

In this way, the case by case analysis has been done and the proof is finished.

Theorem 2. Let S be a simple group of Lie type or an alternating group over
n letters (n ≥ 5), with s(S) = 2, with the exception of U4(2) and U5(2). If G is
a finite group with OC(G) = OC(S), then G is not a 2-Frobenius group.
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Proof. Assume that S is a finite simple group of Lie type or an alternating
group with s(S) = 2, except U4(2) and U5(2). Also, we suppose G is a finite
group with OC(G) = OC(S) = {n1(S), n2(S)}. Now, we must show that G is
not a 2-Frobenius group.

On the contrary, suppose that G is a 2-Frobenius group. Then G = ABC,
where A and AB are the normal subgroups of G and AB and BC are Frobenius
groups with the kernels A and B and complements B and C, respectively. By
Lemma 2(3), we know that the connected components of GK(G) are:

π1(G) = π(AC) and π2(G) = π(B).

Put a := |A|, b := |B|, c := |C|, and c′ := |C : A∩C|. Then by the definition and
Lemma 1(7), c divides b−1 and b divides a−1. Moreover, we have a = |G|/(bc′).
Notice that for all r ∈ π(A)\π(C), Sylr(A) = Sylr(G). Since AB is a Frobenius
group with the kernel A and complement B, by Lemma 1(6), B acts fixed-point-
freely on A and this is true for every Sylow r-subgroup of A, say R ∈ Sylr(A).
Hence, the semidirect product R�B is also a Frobenius group and by Lemma 1(7)
we have

(2) |R| ≡ 1 (mod b).

On the basis of the information provided above, the proof is made by a case by case
study.

(1) Suppose S ∼= An, where 6 < n = p, p + 1 or p + 2 and one of n, n − 2
is not a prime number. In this case we have |G| = (n!)/2, |B| = p, and
|A| = (n!)/(2pc′), where c′|p − 1. Now we consider r := r[p]. Since
π(c) ⊆ π(p−1

2 ) ∪ {2} and r > p−1
2 , we deduce that r ∈ π(A)\π(C). Now,

if R ∈ Sylr(G), then |R| = r, and by (2) we must have p|r − 1, which is a
contradiction.

(2) Suppose S ∼= Ap−1(q), (p, q) 
= (3, 2), (3, 4). In this case we have

a =
1
c′

qp(p−1)/2
p−1∏
i=1

(qi − 1) and b = (qp − 1)/(q − 1)(p, q − 1),

where c′|b − 1. First, we assume that p = 3, and S ∼= A2(q) ∼= PSL3(q).
Here, we have

a =
1
c′

q3(q − 1)2(q + 1) and b = (q2 + q + 1)/(3, q − 1),

where c′ | q(q+1) if (3, q−1) = 1, and c′ | (q+2)(q−1)/3 if (3, q−1) = 3.
We consider two cases separately.
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Case 1. (3, q − 1) = 1. If there exists an odd prime number r ∈ π(q − 1),
then (r, c′) = 1, i.e., r ∈ π(A)\π(C). Let R ∈ Sylr(G). Then |R| divides
(q−1)2 and by (2) we must have q2 +q +1 ≤ |R|−1 ≤ (q−1)2, which is a
contradiction. Hence, we may assume that π(q− 1) = {2}. Now, by Lemma
4(b), it follows that q is a Fermat prime. Let R ∈ Syl2(A). If (2, c′) = 1,
then |R| = 2(q − 1)2. Moreover, by (2) we must have q2 + q + 1 divides
2(q − 1)2 − 1, i.e., 2(q − 1)2 − 1 = k(q2 + q + 1) for some k ∈ N. Now by
easy calculations we obtain that

(k − 2)q2 + (k + 4)q + k − 1 = 0.

Thus k < 2 and q divides k−1, and so we deduce that k = 1 and q = 5. In this
case, ifG = ABC is a 2-Frobenius group of order 25·53·31·3, then it is easy to
see that a = 25 ·53, b = 31 and c = 3. In particular, this means that GL(5, 2)
contains a Frobenius subgroup of order 31.3, which is a contradiction. Now
we assume that (2, c′) = 2. Then |R| = (q − 1)2 and by (2) we deduce that
q2 + q +1 divides |R| −1, and so q2 + q +1 ≤ |R| −1 ≤ (q−1)2−1, which
is a contradiction.

Case 2. (3, q−1) = 3. If there exists an odd prime number r ∈ π(q+1), then
(r, c′) = 1 since (q + 1, q− 1) = 1 and (q + 1, q + 2) = 1. Let R ∈ Sylr(G).
Then |R| divides q+1 and by (2) we must have (q2+q+1)/3 ≤ |R|−1 ≤ q+1,
which is a contradiction. Hence, we may assume that π(q + 1) = {2}. Now,
by Lemma 4(a), it follows that q is a Mersenne prime, say q = 2s−1 where s

is a prime number. Evidently q2 +q+1 = 22s−2s +1. Now we consider the
primitive prime divisor 26s. Since 26s − 1 = (23s − 1)(2s + 1)(22s− 2s + 1),
it is easy to see that 26s ∈ π(22s − 2s + 1) = π(q2 + q + 1). Now we
assume that R ∈ Syl2(A). Then |R| divides 4(q + 1) = 2s+2 and by (2) we
deduce that (q2 + q + 1)/3 divides |R| − 1. But this is a contradiction, since
26s /∈ π(|R| − 1).

Now, we may assume that p ≥ 5. We study the two following cases sepa-
rately:

(a) (p, q − 1) = 1. In this case we consider the primitive prime divisor
r := qp−2. Since b−1 = q(qp−1−1)/(q−1), it follows that (r, b−1) =
(r, c′) = 1, hence r ∈ π(A)\π(C). Let R ∈ Sylr(G). Therefore from
(2) we have |R| ≡ 1 (mod b), thus (qp−1)/(q−1) ≤ |R|−1 < qp−2+1,
which is a contradiction.

(b) (p, q − 1) = p. In this case we have

b − 1 =
qp − 1 − p(q − 1)

p(q − 1)
.
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If d = (qp−1 − 1, qp − 1 − p(q − 1)), it follows that

d | q(qp−1 − 1) − [qp − 1 − p(q − 1)] = (q − 1)(p− 1).

Now we consider the primitive prime divisor r := qp−1. Evidently r
divides q(p−1)/2 +1. Since qp−1 ≥ p, (r, p−1) = 1. Thus, (r, b−1) =
(r, c′) = 1. Let R ∈ Sylr(G). Then |R| divides q(p−1)/2 + 1, and by
(2) we must have (qp − 1)/p(q − 1) ≤ |R| − 1 ≤ q(p−1)/2 − 1, which
is impossible.

(3) S ∼= Ap(q), (q − 1)|(p + 1). Here, we have

a =
1
c′

qp(p+1)/2(qp+1 − 1)
p−1∏
i=1

(qi − 1) and b =
qp − 1
q − 1

,

where c′ divides b− 1 = q(qp−1 − 1)/(q− 1). First, we assume that (p, q) 
=
(5, 2). By Lemma 3, the number qp+1 − 1 has a primitive prime divisor
r := qp+1; in particular, r divides q(p+1)/2−1. Clearly (r, b−1) = (r, c′) = 1.
Let R ∈ Sylr(G). Then |R| divides q(p+1)/2 + 1, and by (2) we must have
(qp − 1)/(q − 1) ≤ |R| − 1 ≤ q(p+1)/2 − 1, which is impossible. Next, we
assume that (p, q) = (5, 2), i.e., S ∼= A5(2) ∼= PSL(6, 2). In this case we
have a = 1

c′ 2
15.34.72 and b = 31, where c′ | 30. Now, if R ∈ Syl7(G), then

|R| = 72 and by (2) we must have 31 | 72 − 1, which is a contradiction.

(4) S ∼= 2Ap−1(q). In this case, we have

a =
1
c′

qp(p−1)/2
p−1∏
i=1

(qi − (−1)i) and b =
qp + 1

(q + 1)(p, q + 1)
,

where c′ divides b − 1. Here, we consider two cases separately.

(a) (p, q + 1) = 1. In this case, c′ divides b − 1 = q(qp−1 − 1)/(q + 1).
Since we assumed before S � U5(2), we have (p, q) 
= (5, 2), and
by Lemma 3, the number q2(p−2) − 1 has a primitive prime divisor
r := q2(p−2); in particular, r divides qp−2 + 1. Moreover, it is easy to
see that (r, b− 1) = (r, c′) = 1. Now, assume that R ∈ Sylr(G). Then
|R| divides qp−2 + 1, and by (2) we must have

qp + 1
q + 1

≤ |R| − 1 ≤ qp−2 + 1,

which is a contradiction.
(b) The case when (p, q + 1) = p is the same.
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(5) S ∼= 2Ap(q), (q + 1)|(p + 1), (p, q) /∈ {(3, 3), (5, 2)}. In this case

a =
1
c′

qp(p+1)/2(qp+1 − 1)
p−1∏
i=2

(qi − (−1)i) and |C| = (qp + 1)/(q + 1).

Here, we consider the primitive prime divisor r := qp+1. An argument similar
to that in case (4) shows that the case under consideration is impossible.

(6) S ∼= Bn(q), n = 2m ≥ 4 and q is an odd number. Here, we have

a =
1
c′

qn2
(qn − 1)

n−1∏
i=1

(q2i − 1) and b =
qn + 1

2
,

where c′ divides b − 1 = (qn − 1)/2. Now, we consider the primitive prime
divisor r := q2(n−1). Evidently r divides qn−1+1 and (r, b−1) = (r, c′) = 1.
Let R ∈ Sylr(G). Then |R| divides qn−1 + 1 and by (2) we deduce that

qn + 1
2

≤ |R| − 1 ≤ qn−1 + 1,

which of course is impossible, since n ≥ 4.
(7) S ∼= Bp(3). Since by the assumption S � U4(2) ∼= B2(3), we may assume

that p 
= 2. In this case we have

a =
1
c′

3p2
(3p + 1)

p−1∏
i=1

(32i − 1) and b =
3p − 1

2
,

where c′ divides b − 1 = 3(3p−1 − 1)/2. Since p 
= 2, we may consider
the primitive prime divisor r := 32(p−1) > 2. Hence r ∈ π((3p−1 + 1)/2)
and (r, b − 1) = (r, c′) = 1. Assume that R ∈ Sylr(G). Then |R| divides
(3p−1 + 1)/2 and by (2) we must have

3p − 1
2

≤ |R| − 1 ≤ 3p−1 + 1
2

,

which is a contradiction.
(8) S ∼= Cn(q), n = 2m ≥ 2. In this case we have

a =
1
c′

qn2
(qn − 1)

n−1∏
i=1

(q2i − 1) and b = (qn + 1)/(2, q − 1),

where c′ divides b − 1. First, we assume that (q, n) 
= (2, 4). Now, by
Lemma 3, we may consider the primitive prime divisor r := q2(n−1); in



84 A. R. Moghaddamfar

particular, r divides qn−1 + 1. Since b − 1 = qn if q is an odd number and
b−1 = (qn−1)/2 if q is an even number, it follows that (r, b−1) = (r, c′) =
1. Let R ∈ Sylr(G). Then |R| divides qn−1 + 1, and by (2) we deduce
that b ≤ |R| − 1 ≤ qn−1 + 1, which is a contradiction. Next, we suppose
(q, n) = (2, 4) and S ∼= C4(2). In this case, we have a = 1

c′ 2
16.35.52.7 and

b = 17, where c′ divides 16. Now, if R ∈ Syl7(G), then by (2) we must have
17 | 7 − 1, which is a contradiction.

(9) S ∼= Cp(q), q = 2, 3. For S ∼= Cp(3) the proof is similar to the case (6). Let
S ∼= Cp(2), p > 2. In this case we have

a =
1
c′

2p2
(2p + 1)

p−1∏
i=1

(22i − 1) and b = 2p − 1,

where c′ divides b−1 = 2(2p−1−1). Now by Lemma 3, we may consider the
primitive prime divisor r := 22(p−1) ∈ π(2p−1 + 1). Evidently (r, b − 1) =
(r, c′) = 1. Hence, if R ∈ Sylr(G), then |R| divides 2p−1 +1, and by (2) we
get 2p − 1 ≤ |R| − 1 ≤ 2p−1 + 1, which is a contradiction.

(10) S ∼= Dp(q), p ≥ 5, q = 2, 3, 5.

a =
1
c′

qp(p−1)
p−1∏
i=1

(q2i − 1) and b =
qp − 1
q − 1

,

where c′ divides b−1. For these simple groups of Lie type we may consider the
primitive prime divisor r := q2(p−1), and the proof is similar to the previous
cases.

(11) S ∼= Dp+1(q), q = 2, 3. In this case we have

a =
1
c′

qp(p+1)(qp + 1)(qp+1 − 1)
p−1∏
i=1

(q2i − 1) and b =
qp − 1

(2, q − 1)
,

where c′ divides b− 1. First, we assume that q = 2 and S ∼= Dp+1(2). Now,
by Lemma 3 we may consider the primitive prime divisor r := 22(p−1) ∈
π(2p−1+1). Since b−1 = 2(2p−1−1), it follows that (r, b−1) = (r, c′) = 1.
Let R ∈ Sylr(G). Then |R| divides 2p−1 + 1 and by (2) we obtain that
2p −1 ≤ |R| −1 ≤ 2p−1 +1, which is a contradiction. The case when q = 3
is the same therefore we can omit its proof.

(12) S ∼= 2Dn(q), n = 2m ≥ 4. In this case we have

a =
1
c′

qn(n−1)
n−1∏
i=1

(q2i − 1) and b =
qn + 1

(2, q + 1)
,
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where c′ divides qn or (qn−1)/2 according to (2, q−1) = 1 or 2 respectively.
First we assume that (n, q) 
= (4, 2). Now, by Lemma 3, we consider the
primitive prime divisor r := q2(n−1) ∈ π(qn−1 + 1). Evidently (r, b − 1) =
(r, c′) = 1, and if R ∈ Sylr(G), then |R| divides qn−1 + 1. Now, by (2) we
deduce that (qn+1)/(2, q+1) ≤ |R|−1 ≤ qn−1+1, which is a contradiction.
Next, we suppose that (n, q) = (4, 2) and S ∼= 2D4(2). In this case we have
a = 1

c′ 2
12.34.5.7 and b = 17, and also c′ | 16. Now, if R ∈ Syl5(G), then by

(2) we must have 17 | 5− 1, a contradiction.
(13) S ∼= 2Dn(2), 5 ≤ n = 2m + 1. In this case we have

a =
1
c′

2n(n−1)(2n + 1)(2n−1 − 1)
n−2∏
i=1

(22i − 1) and b = 2n−1 + 1,

where c′ | 2n−1. By Lemma 3, the number 22n − 1 has a primitive prime
divisor r := 22n; in particular, r ∈ π((2n + 1)/3) and (r, c′) = 1. Let
R ∈ Sylr(G). Then |R| divides (2n + 1)/3, and by (2) we must have
2n−1 + 1 ≤ |R| − 1 ≤ (2n + 1)/3, which is a contradiction.

(14) S ∼= 2Dp(3), 5 ≤ p 
= 2m + 1. Then

a =
1
c′

3p(p−1)
p−1∏
i=1

(32i − 1) and b =
3p + 1

4
,

where c′ divides 3(3p−1 − 1)/4. By Lemma 3, the number 32(p−1) − 1 has
a primitive prime divisor r := 32(p−1); in particular, r ∈ π((3p−1 + 1)/2)
and (r, c′) = 1. Assume that R ∈ Sylr(G). Then |R| divides 3p−1 + 1, and
from (2) it follows that (3p + 1)/4 ≤ |R| − 1 ≤ (3p−1 + 1)/2, which is a
contradiction.

(15) S ∼= 2Dn(3), 5 ≤ n = 2m + 1 
= p. Then

a =
1
c′

3n(n−1)(3n + 1)(3n−1 − 1)
n−2∏
i=1

(32i − 1) and b = (3n−1 + 1)/2,

where c′ divides (3n−1 − 1)/2. By Lemma 3, the number 32(n−2) − 1 has
a primitive prime divisor r := 32(n−2); in particular, r ∈ π((3n−2 + 1)/4)
and (r, c′) = 1. Let R ∈ Sylr(G). Then |R| divides (3n−2 + 1)/4, because
(32(n−2) − 1, 32n − 1) = 3(2(n−2),2n) − 1 = 34 − 1, and by (2) we must have
(3n−1 + 1)/2 ≤ |R| − 1 ≤ (3n−2 + 1)/4, which is a contradiction.

(16) S ∼= G2(q), where 2 < q ≡ 1 (mod 3). In this case we have

a =
1
c′

q6(q2 − 1)2(q2 + q + 1) and b = q2 − q + 1,
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where c′ divides q(q − 1). Since q > 2, by Lemma 3, the number q6 − 1 has
a primitive prime divisor r := q6; in particular, r ∈ π((q2 + q + 1)/3) and
(r, c′) = 1. Let R ∈ Sylr(G). Then |R| divides (q2 + q + 1)/3, because 3
divides q2+q+1, and by (2) we must have q2−q+1 ≤ |R|−1 ≤ (q2+q+1)/3,
which is a contradiction.

(17) S ∼= G2(q), where 2 < q ≡ −1 (mod 3). Here we have

a =
1
c′

q6(q2 − 1)2(q2 − q + 1) and b = q2 + q + 1,

where c′ divides b − 1 = q(q + 1). Evidently (q2 − q + 1, q(q2 − 1)) = 1
or 3. First, assume that there exists a prime 3 
= r ∈ π(q2 − q + 1). Then
(r, q(q2 − 1)) = (r, b − 1) = (r, c′) = 1. Now, we assume R ∈ Sylr(G).
From (2) we must have |R| ≡ 1 (mod q2 + q + 1), which implies that
q2 + q + 1 < |R| − 1 < q2 − q + 1, which is a contradiction. Next, suppose
q2−q+1 is a power of 3. In this case we claim that π(q−1) 
= {2}. Otherwise,
in a similar way as in the proof of Theorem 1(7), we get a contradiction .
Now, we consider an odd prime r ∈ π(q − 1). Clearly (r, c′) = 1. Let
R ∈ Sylr(G). Then, since (r, q(q + 1)(q2 − q + 1)) = 1, it follows that |R|
divides (q−1)2. Now, by (2) we must have q2 + q +1 ≤ |R| −1 ≤ (q−1)2,
which is a contradiction.

(18) S ∼= 3D4(q). In this case we have

a =
1
c′

q12(q−1)2(q2 + q +1)2(q +1)2(q2− q +1)2 and b = q4 − q2 +1,

where c′ divides b − 1 = q2(q2 − 1). Note that (q2 − q + 1, q + 1) = 1 or
3, (q2 − q + 1, q − 1) = 1 and (q2 − q + 1, q2 + q + 1) = 1. First, assume
that there exists a prime 3 
= r ∈ π(q2 − q + 1). Now, we can easily see that
(r, c′) = 1 and if R ∈ Sylr(G), then |R| divides (q2 − q + 1)2. From (2) we
get q4 − q2 + 1 ≤ |R| − 1 ≤ (q2 − q + 1)2, which is a contradiction. Next,
suppose that π(q2 − q + 1) ⊆ {3}. If q 
= 2, then we consider the primitive
prime divisor r := q6. Clearly r divides q2 − q + 1 and r 
= 3. Since, it
is impossible, we must have q = 2. In this case, S ∼= 3D4(2) and we have
a = 1

c′ 2
12.34.72 and b = 13, where c′ | 12. Now, we consider a Sylow 7-

subgroup of G, and by (2) it follows that 13|72− 1, which is a contradiction.

(19) S ∼= F4(q), q is an odd number. In this case we have

a =
1
c′

q24(q6 − 1)2(q8 − 1)(q4 − 1) and b = q4 − q2 + 1,

where c′ divides q2(q2 − 1). Now, we consider the primitive prime divisor
r := q8. It is not difficult to see that r ≥ 11, (r, b− 1) = (r, c′) = 1, and for
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R ∈ Sylr(G), |R| divides (q4 + 1)/2. Also, from (2) we get q4 − q2 + 1 ≤
|R| − 1 ≤ (q4 + 1)/2, which is a contradiction.

(20) S ∼= 2F4(2)′. In this case we have a = 1
c′ 2

11.33.52 and |C| = 13. Now, by
considering R ∈ Syl2(G), we must have 13 | 211 − 1, which is impossible.

(21) S ∼= E6(q). In this case we have

a =
1
c′

q36(q12 − 1)(q3 − 1)(q8 − 1)(q6 − 1)(q5 − 1)(q2 − 1) and

b = (q6 + q3 + 1)/(3, q − 1),

where c′ divides b − 1. By Lemma 3, the number q12 − 1 has a primitive
prime divisor r := q12; in particular, r divides q4 − q2 +1 and r ≥ 13. Since

b − 1 =




q3(q3 + 1) if (3, q − 1) = 1;

(q3 − 1)(q3 + 2)
3

if (3, q − 1) = 3,

and (q6 + 1, q3 + 2) = 1 or 5, we may easily see that (r, b− 1) = (r, c′) = 1.
Now suppose that R ∈ Sylr(G). Then |R| divides q4 − q2 + 1, hence by (2)
we obtain the contradiction of

q6 + q3 + 1
(3, q − 1)

≤ |R| − 1 ≤ q4 − q2 + 1.

(22) S ∼= 2E6(q), q > 2. In this case we have

a =
1
c′

q36(q12 − 1)(q3 + 1)(q8 − 1)(q6 − 1)(q5 + 1)(q2 − 1) and

b = (q6 − q3 + 1)/(3, q + 1),

where c′ divides b − 1. By Lemma 3, the number q12 − 1 has a primitive
prime divisor r := q12; in particular, r divides q4 − q2 +1 and r ≥ 13. Since

b − 1 =




q3(q3 − 1) if (3, q + 1) = 1;

(q3 + 1)(q3 − 2)
3

if (3, q + 1) = 3,

and (q6 + 1, q3 − 2) = 1 or 5, we may easily see that (r, b− 1) = (r, c′) = 1.
Now suppose that R ∈ Sylr(G). Then |R| divides q4 − q2 + 1, hence by (2)
we must have

q6 − q3 + 1
(3, q − 1)

≤ |R| − 1 ≤ q4 − q2 + 1,

which is a contradiction.
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Now the proof of theorem is complete.
Through Theorems 1 and 2, the Main Theorem can be proved.
At the end, we should focus on the simple groups U4(2) and U5(2). As men-

tioned before, we construct the 2-Frobenius groups having the same order as U4(2)
and U5(2). The existence of these 2-Frobenius groups shows that the simple groups
U4(2) and U5(2) are not recognizable by their order components.

Some Examples. (V. D. Mazurov).

(a) There exists a 2-Frobenius group F1 with OC(F1) = OC(U4(2)). Indeed,
we consider the general linear groups GL(4, 2) and GL(4, 3). In the general
linear group GL(4, 2) and also in GL(4, 3) there exists a Frobenius group
E := K �C of order 20 such that K acts fixed-point-freely on corresponding
natural modules V1 and V2. Now, we take (V1×V2) ·E with the natural action
of E on direct factors. Then we obtain a required group (24 × 34) : 5 : 4.

(b) There exists a 2-Frobenius group F2 with OC(F2) = OC(U5(2)). Similarly,
in the general linear group GL(10, 2) and also in GL(5, 3) there exists a
Frobenius group E := K � C of order 55 such that K acts fixed-point-freely
on corresponding natural modules V1 and V2. Again, we take (V1 × V2) · E
with the natural action of E on direct factors. Now we obtain a required
group (210 × 35) : 11 : 5.
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