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EQUIVARIANT EXPONENTIALLY NASH
VECTOR BUNDLES

Tomohiro Kawakami

Abstract. Let G be a compact affine exponentially Nash group and let
η be a C∞G vector bundle over a compact affine exponentially Nash G
manifold X. We prove that η admits a unique strongly exponentially
Nash G vector bundle structure ζ, and that η admits a non-strongly ex-
ponentially Nash G vector bundle structure if dim X ≥ 1, rank η ≥ 1 and
X has a 0-dimensional orbit. Moreover we show that every exponentially
Nash G vector bundle structure of η which is not necessarily strongly
exponentially Nash is exponentially Nash G vector bundle isomorphic to
ζ if the action on X is transitive.

1. Introduction

Nash manifolds have been studied over the field IR of real numbers with
the standard structure Rstan := ( IR, <,+, ·, 0, 1) (e.g. [16], [17], [18], [20]).
Moreover they are considered over any real closed field (e.g. [2], [4]). Since
every real closed field admits quantifier elimination [22], the family of semial-
gebraic sets coincides with that of definable sets (with parameters) in Rstan.
Let Rexp be the structure (IR, <,+, ·, exp, 0, 1) obtained by adding the expo-
nential function exp : IR −→ IR to Rstan. In [7] exponentially Nash manifolds
and equivariant exponentially Nash manifolds are defined in Rexp, which are
generalizations of the usual Nash ones, and equivariant exponentially Nash
manifold structures of equivariant C∞ manifolds are studied.

By [24] Rexp is model complete, namely any subset of IRn definable in
Rexp is the image of a subset of IRn × IRm definable in Rexp without quanti-
fier by the natural projection IRn × IRm −→ IRn for some m ∈ IN . In Rstan,
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each non-polynomially bounded function IR −→ IR is not definable, where
a polynomially bounded function means a function f : IR −→ IR satisfying
|f(x)| ≤ xN , x > x0 for some N ∈ IN and some x0 ∈ IR. Moreover if there ex-
ists a non-polynomially bounded function definable in an 0-minimal expansion
(IR, <,+, ·, 0, 1, · · ·) of Rstan, then in this structure the exponential function
is definable [13].

In the present paper, we define exponentially Nash vector bundles (See
Definition 2.3) and exponentially Nash G vector bundles (See Definition 2.6),
and we investigate exponentially Nash G vector bundle structures of C∞G
vector bundles.

Let G be an affine exponentially Nash group (See Definition 2.5) and let X
be an affine exponentially Nash G manifold (See Definition 2.5). We say that
a C∞G vector bundle η over X admits an exponentially Nash G vector bundle
structure (resp. a strongly exponentially Nash G vector bundle structure) if η
is C∞G vector bundle isomorphic to some exponentially Nash G vector bundle
(resp. strongly exponentially Nash G vector bundle (See Definition 2.8)) over
X. The corresponding notion of strongly exponentially Nash G vector bun-
dles in the non-equivariant algebraic category (resp. in the non-equivariant
(standard) Nash category, in the equivariant (standard) Nash category) was
introduced by [1] (resp. [2], [9]). It is known that there exists a non-strongly
algebraic vector bundle over IR2 (resp. a non-strongly Nash vector bundle over
IR2, a non-strongly Nash G vector bundle over a positive-dimensional repre-
sentation of G when G is a compact affine Nash group) [21] (resp. [2, 12.7.9.],
[9]).

Theorem. Let G be a compact affine exponentially Nash group and let η
be a C∞G vector bundle over a compact affine exponentially Nash G manifold
X.

(1) η admits exactly one strongly exponentially Nash G vector bundle struc-
ture ξ up to exponentially Nash G vector bundle isomorphism.

(2) If dim X ≥ 1, X has a 0-dimensional orbit, and rank η ≥ 1, then η
admits a non-strongly exponentially Nash G vector bundle structure.

(3) If the action on X is transitive, then any exponentially Nash G vector
bundle structure of η (which is not necessarily strongly exponentially
Nash) is exponentially Nash G vector bundle isomorphic to ξ. 2

We obtain the following as a corollary of Theorem.

Corollary. Any C∞ vector bundle of positive rank over a compact affine
exponentially Nash manifold of positive dimension admits a non-strongly ex-
ponentially Nash vector bundle structure. 2
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2. Exponentially Nash G vector bundles

We recall definitions of exponentially definable sets (cf. [11]) and locally
exponentially definable sets [7].

Let <n = IR[x1, · · · , xn, exp(x1), · · · , exp(xn)]. A subset X of IRn is called
<n−semianalytic if

X = ∪k
i=1{x ∈ IRn|fi(x) = 0, gj(x) > 0, 1 ≤ j ≤ ai, ai ∈ IN},

where fi, gj ∈ <n. A subset Y ⊂ IRn is said to be exponentially defin-
able if Y is the image of an <n+m-semianalytic set by the natural projection
π : IRn × IRm −→ IRn for some m ∈ IN . We say that a subset X ′ ⊂ IRn is
locally exponentially definable if for any x ∈ X ′ there exists an open exponen-
tially definable neighborhood U of x in IRn such that X ′⋂ U in exponentially
definable.

Let X ⊂ IRn and Y ⊂ IRm be exponentially definable sets (resp. locally
exponentially definable sets). A map f : X −→ Y is said to be exponentially
definable (resp. locally exponentially definable) if the graph of f ⊂ X × Y (⊂
IRn × IRm) is exponentially definable (resp. locally exponentially definable).

The next proposition is a collection of basic properties of exponentially
definable sets.

Proposition 2.1 (cf. [7]). (1) Any exponentially definable set consists
of only finitely many connected components.

Let X ⊂ IRn and Y ⊂ IRm be exponentially definable sets.
(2) The closure Cl(X) and the interior Int(X) of X are exponentially

definable.
(3) The distance function d(x,X) from x to X defined by d(x,X) =

inf{‖x − y‖|y ∈ X} is a continuous exponentially definable function, where
‖ · ‖ denotes the standard norm of IRn.

(4) Let f : X −→ Y be an exponentially definable map. Then f(A) is
exponentially definable if so is A ⊂ X, and f−1(B) is exponentially definable
if so is B ⊂ Y .

(5) Let Z ⊂ IRl be an exponentially definable set and let f : X −→ Y
and h : Y −→ Z be exponentially definable maps. Then the composition
h ◦ f : X −→ Z is also exponentially definable.

(6) The set of exponentially definable functions on X forms a ring.
(7) Any two disjoint closed exponentially definable subsets of IRk can be

separated by a continuous exponentially definable function on IRk. 2
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Let U ⊂ IRn and V ⊂ IRm be open exponentially definable sets (resp.
open locally exponentially definable sets). We say that a Cω map f : U −→
V is an exponentially Nash map (resp. a locally exponentially Nash map)
if it is exponentially definable (resp. locally exponentially definable). An
exponentially Nash map (resp. A locally exponentially Nash map) f : U −→ V
is called an exponentially Nash diffeomorphism (resp. a locally exponentially
Nash diffeomorphism) if there exists an exponentially Nash map (resp. a
locally exponentially Nash map) h : V −→ U such that f ◦ h = id and
h ◦ f = id.

Remark 2.2. (1) Any usual Nash map between open semialgebraic sets
is exponentially Nash.

(2) The function f : IR −→ IR defined by

f(x) =

{
0 if x ≤ 0
e−

1
x if x > 0

is C∞ and exponentially definable but not analytic. Remark that any C∞

semialgebraic map between open semialgebraic sets is analytic.
(3) Every non-constant periodic function IR −→ IR (eg. h : IR −→

IR, h(x) = sinx) is not exponentially Nash.

Definition 2.3 ([7]). (1) We say that an n-dimensional Cω manifold with
a finite system of charts {φi : Ui −→ IRn} is an exponentially Nash manifold
if for each i and j φi(Ui ∩ Uj) is an open exponentially definable subset of
IRn, and that the map φj ◦ φ−1

i |φi(Ui ∩Uj) : φi(Ui ∩Uj) −→ φj(Ui ∩Uj) is an
exponentially Nash diffeomorphism. We call these charts exponentially Nash.

(2) An exponentially definable subset of IRn is called an exponentially Nash
submanifold of dimension d if it is a Cω submanifold of dimension d of IRn.
Remark that an exponentially Nash submanifold is of course an exponentially
Nash manifold by the similar way of 1.3.9. [20].

(3) Let X (resp. Y ) be an exponentially Nash manifold with exponentially
Nash charts {φi : Ui −→ IRn}i (resp. {ψj : Vj −→ IRm}j). A Cω map f :
X −→ Y is said to be an exponentially Nash map if for any i and j φi(f−1(Vj)∩
Ui) is open and exponentially definable in IRn, and that the map ψj ◦ f ◦φ−1

i :
φi(f−1(Vj) ∩ Ui) −→ IRm is an exponentially Nash map.

(4) Let X and Y be exponentially Nash manifolds. We say that X is
exponentially Nash diffeomorphic to Y if one can find exponentially Nash maps
f : X −→ Y and h : Y −→ X such that f ◦ h = id and h ◦ f = id.

(5) An exponentially Nash manifold is said to be affine if it is exponentially
Nash diffeomorphic to some exponentially Nash submanifold of IRl.
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(6) A topological vector bundle (E, p, X) of rank k is called an exponentially
Nash vector bundle if the following three conditions are satisfied:

(a) The total space E is an exponentially Nash manifold and the base
space X is an affine exponentially Nash manifold.

(b) The projection p is an exponentially Nash map.
(c) There exists a family of finitely many local trivializations {φi : Ui

× IRk −→ p−1 (Ui)}i such that {Ui}i is an open exponentially
definable cover of X, and that for any i and j the map φ−1

i ◦φj |(Ui∩
Uj)× IRk : (Ui ∩ Uj)× IRk −→ (Ui ∩ Uj)× IRk is an exponentially
Nash map.

We call these local trivializations exponentially Nash.
(7) Let η = (E,P, X) (resp. ξ = (F, q, X)) be an exponentially Nash

vector bundle of rank n (resp. m) and let {φi : Ui × IRn −→ p−1(Ui)}i (resp.
{ψj : Vj × IRm −→ q−1(Vj)}j) be exponentially Nash local trivializations of η
(resp. ξ). A vector bundle map f : η −→ ξ is said to be an exponentially Nash
vector bundle map if for any i and j the map (ψj)−1 ◦ f ◦ φi|(Ui ∩ Vj)× IRn :
(Ui ∩ Vj)× IRn −→ (Ui ∩ Vj)× IRm is an exponentially Nash map.

(8) A Cω section s : X −→ E of η is said to be exponentially Nash if for
any i (φi)−1 ◦ s|Ui : Ui −→ Ui × IRn is exponentially Nash.

It is proved in [7] using [10] that any compact affine exponentially Nash
manifold X of positive dimension admits an infinite family of nonsingular
algebraic sets {Yn}n∈IN of some IRk such that each Yn is exponentially Nash
diffeomorphic to X and that Yn is not birationally isomorphic to Ym for n 6= m.

Remark 2.4. (1) Every usual Nash manifold is of course an exponentially
Nash one.

(2) An affine exponentially Nash manifold is not always subanalytic (eg.
{(x, y) ∈ IR2|x > 0, y = exp(−(1/x))}). Remark that every affine Nash mani-
fold in IRn is semialgebraic in IRn.

(3) Let IR>(resp. IR≥) denote {x ∈ IR|x > 0} (resp. {r ∈ IR|x ≥ 0}).
The functions f1 : IR> −→ IR and f2 : IR≥ −→ R defined by f1(x) = logx
and, f2(x) = xα, α ∈ IR, respectively, are exponentially Nash functions but
not Nash ones unless α is rational.

Definition 2.5 ([7]). (1) An exponentially Nash group (resp. An affine
exponentially Nash group) is a group G such that G itself is an exponentially
Nash manifold (resp. an affine exponentially Nash manifold), and that the
multiplication G × G −→ G and the inversion G −→ G are exponentially
Nash.

(2) Let G be an exponentially Nash group. A representation of G means
an exponentially Nash group homomorphism G −→ GL(IRn) for some n. Here
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an exponentially Nash group homomorphism means a group homomorphism
which is an exponentially Nash map. We use a representation as a represen-
tation space.

(3) An exponentially Nash submanifold in a representation of G is called
an exponentially Nash G submanifold if it is G invariant.

(4) An exponentially Nash manifold X is said to be an exponentially Nash
G manifold if X admits a G action whose action map G×X −→ X is expo-
nentially Nash.

(5) Exponentially Nash G maps, exponentially Nash G diffeomorphisms,
and affine exponentially Nash G manifolds are defined in a similar way.

In the equivariant Nash category, it is known that any compact equivari-
ant C∞ manifold of positive dimension such that some connected component
of it consists of at least two orbits admits a continuous family of nonaffine
equivariant Nash manifold structures [8].

Definition 2.6. Let G be an exponentially Nash group.
(1) An exponentially Nash vector bundle η = (E, p, X) is said to be an

exponentially Nash G vector bundle if the following three conditions are satis-
fied:

(a) The total space E is an exponentially Nash G manifold and the
base space X is an affine exponentially Nash G manifold.

(b) The projection p is an exponentially Nash G map.
(c) For any x ∈ X and g ∈ G, the map p−1(x) −→ p−1(gx) is linear.

(2) Let η and ξ be two exponentially Nash G vector bundles. An exponen-
tially Nash vector bundle map f : η −→ ξ is called an exponentially Nash G
vector bundle map if f is a G map.

(3) Two exponentially Nash G vector bundles η and ξ are said to be expo-
nentially Nash G vector bundle isomorphic if there exist exponentially Nash
G vector bundle maps f : η −→ ξ and h : ξ −→ η such that f ◦ h = id and
h ◦ f = id.

(4) An exponentially Nash section s : X −→ E of η is called an exponen-
tially G section if it is G map.

We recall universal G vector bundles, and we define strongly exponentially
Nash G vector bundles.

Definition 2.7. Let Ω be an n-dimensional representation of G and let B
be the representation map G −→ GLn(IR) of Ω. Suppose that M(Ω) denotes
the vector space of n × n-matrices with the action (g, A) ∈ G × M(Ω) −→
B(g)−1AB(g) ∈ M(Ω). For any positive integer k, we define the vector bundle
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γ(Ω, k) = (E(Ω, k), u,G(Ω, k)) as follows:

G(Ω, k) = {A ∈ M(Ω)|A2 = A, A = A′, T rA = k},
E(Ω, k) = {(A, v) ∈ G(Ω, k)× Ω|Av = v},
u : E(Ω, k) −→ G(Ω, k) : u((A, v)) = A,

where A′ denotes the transposed matrix of A. Then γ(Ω, k) is an algebraic
one. Since the action on γ(Ω, k) is algebraic, it is an algebraic G vector bundle.
We call it the universal G vector bundle associated with Ω and k. Since G(Ω, k)
and E(Ω, k) are nonsingular [15], γ(Ω, k) is an exponentially Nash G vector
bundle.

Definition 2.8. Let G be an affine exponentially Nash group. An expo-
nentially Nash G vector bundle η = (E, p, X) of rank k is said to be strongly
exponentially Nash if there exist some representation Ω of G and an exponen-
tially Nash G map f : X −→ G(Ω, k) such that η is exponentially Nash G
vector bundle isomorphic to f∗(γ(Ω, k)).

The following two propositions are obtained in a similar way of the usual
equivariant Nash cases (cf. [8]).

Proposition 2.9. Let G be a compact affine exponentially Nash group
and let X be an affine exponentially Nash G submanifold in a representation
Ω of G. Then there exists an exponentially Nash G tubular neighborhood (U, p)
of X in Ω, namely U is an affine exponentially Nash G submanifold in Ω and
the orthogonal projection p : U −→ X is an exponentially Nash G map. 2

Proposition 2.10. Let G be a compact affine exponentially Nash group.
Any compact affine exponentially Nash G manifold X with boundary ∂X ad-
mits an exponentially Nash G collar, that is, there exists an exponentially Nash
G imbedding φ : ∂X × [0, 1] −→ X such that φ|∂X×0 = id∂X , where the action
on the closed unit interval [0, 1] is trivial. 2

3. Proof of our result

To prove Theorem (1), we prepare the following two propositions and a
theorem proved by A.G. Wasserman [23]. By the similar way of Proposition
3.1 [6] and Proposition 3.3 [6], we have Proposition 3.1 and Proposition 3.2,
respectively.

Proposition 3.1. Let G be an affine exponentially Nash group and let
X be an affine exponentially Nash G manifold. If η1 and η2 are strongly
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exponentially Nash G vector bundles over X, then the exponentially Nash G
vector bundle Hom(η1, η2) is strongly exponentially Nash. 2

Proposition 3.2. Let G be a compact affine exponentially Nash group
and let η be a strongly exponentially Nash G vector bundle over a compact
affine exponentially Nash G manifold. Then every CrG section (r < ∞) of η
can be Cr approximated by an exponentially Nash G one. 2

Theorem 3.3 [23]. Let G be a compact Lie group and let X be a C∞G
manifold. Suppose that η is a C∞G vector bundle over a C∞G manifold Y . If
two C∞G maps f1, f2 : X −→ Y are C∞G homotopic, then f∗1 (η) and f∗2 (η)
are C∞G vector bundle isomorphic. 2

Proof of Theorem (1). Since G and X are compact, there exist a repre-
sentation Ω of G and a C∞G map f : X −→ G(Ω, k) ⊂ M(Ω) such that η
is C∞G vector bundle isomorphic to f∗(γ(Ω, k)), where k denotes the rank
of η. Thus i ◦ f : X −→ M(Ω) is C1 approximated by a polynomial map
h : X −→ M(Ω). Here i denotes the inclusion G(Ω, k) −→ M(Ω). By Lemma
4.1 [5], we may assume that h is a G map. One can find an exponentially
Nash G tubular neighborhood (U, q) of G(Ω, k) in M(Ω) by Proposition 2.9.
If the approximation is sufficiently close then the image of h lies in U . Hence
an exponentially Nash G map q ◦ h is an approximation of f . In particular
q ◦ h is C∞G homotopic to f . Therefore ξ := (q ◦ h)∗(γ(Ω, k)) is a strongly
exponentially Nash G vector bundle structure of η by Theorem 3.3.

Let ξ1 and ξ2 be two strongly exponentially Nash G vector bundles over
X which are C∞G vector bundle isomorphic. Then a C∞G vector bundle
isomorphism between ξ1 and ξ2 defines a C∞G section s of Hom(ξ1, ξ2). By
Proposition 3.1 and 3.2, s is approximated by an exponentially Nash G section
σ of Hom(ξ1, ξ2). Since Iso(ξ1, ξ2) is open in Hom(ξ1, ξ2) and X is compact,
σ determines an exponentially Nash G vector bundle isomorphism ξ1 −→ ξ2

if the approximation is sufficiently close. 2

We prove the following theorem which is more general than Theorem (2).

Theorem 3.4. Let G be a compact affine exponentially Nash group and let
η be a C∞G vector bundle of positive rank over a compact affine exponentially
Nash G manifold X of positive dimension. If there exist a representation of Ξ
of G and G invariant open exponentially definable subsets U and V of X with
V ⊂ ∪ 6= X such that η|U is exponentially Nash G vector bundle isomorphic
to U × Ξ, then η admits a non-strongly exponentially Nash G vector bundle
structure.
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The following lemma is useful to prove the existence of nonaffine expo-
nentially Nash G manifolds, which is a generalization of the usual Nash case
(I.22.XV [20]).

Proposition 3.5 [7]. Let M and N be exponentially Nash manifolds and
let h : M −→ N be a locally exponentially Nash map. If N is affine then h is
an exponentially Nash map. 2

Proof of Theorem 3.4. By Theorem (1) one can find a unique strongly
exponentially Nash G vector bundle structure of η over X. Hence we may
assume that η is a strongly exponentially Nash G vector bundle over X. Since
the total space of a strongly exponentially Nash G vector bundle over X is
affine, we only have to find an exponentially Nash G vector bundle structure
of η whose total space is nonaffine.

By Proposition 2.10 there exists an exponentially Nash G collar of ∂V in
V ⊂ U, φ : ∂V × [0, 1] −→ V . Let D(ε) (0 < ε < 1) denote φ(∂V × (0, ε)).

Take an order-preserving exponentially Nash diffeomorphism f : IR −→
(0, 1) (e.g. the inverse map of the composition of f1 : (0, 1) −→ (−1, 1), f1(x) =
2x− 1 with f2 : (−1, 1) −→ IR, f2(x) = x/(1− x2)). Let

N1 = (0, f(1)), N2 = (f(0), 1), N3 = (f(0), f(1)).

Define the exponentially Nash maps h1 : N3 −→ N1, h2 : N3 −→ N2 by

h1(t) = f((f−1(t))2) and h2(t) = f(2f−1(t)− (f−1(t))2).

Then h1 and h2 are exponentially Nash imbeddings such that h1(N3) =
h2(N3) = N3.

Let

U1 = D(f(1)), U2 = U −D(f(0)), U3 = D(f(1))−D(f(0)).

Then each Ui is an open affine exponentially Nash G submanifold of X. We
define exponentially Nash G vector bundle maps H1 and H2 as follows:

H1 : U3 × Ξ −→ U1 × Ξ, H1(x, t) = (x, (h1(p ◦ φ−1(x)))t),

H2 : U3 × Ξ −→ U2 × Ξ, H2(x, t) = (x, (h2(p ◦ φ−1(x)))t),

where p : ∂V ×(f(0), f(1)) −→ (f(0), f(1)) denotes the natural projection. Let
W be the quotient space of the disjoint union

∐3
i=1(Ui×Ξ), and the equivalence

relation (x, t) ∼ H1(x, t) ∼ H2(x, t), (x, t) ∈ U3 × Ξ. Then ξ1 = (W,p′, U) is
an exponentially Nash G vector bundle, where p′ is the natural projection
W −→ U . Replacing the local trivialization U×Ξ over U by ξ1 over U , we get
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the exponentially Nash G vector bundle ξ′ = (F, q,X), where q is the natural
projection F −→ X. Clearly ξ′ is C∞G vector bundle isomorphic to η.

We now prove that F is nonaffine. To prove this, we use Proposition 3.5.
Fix z ∈ ∂V and 0 6= t0 ∈ Ξ. Let ψ : (f(0), f(1)) −→ F be the composition

(f(0)), f(1)) −→ ∂V × (f(0), f(1)) −→ U3 −→ U3 × Ξ −→ F,

where the first map is x −→ (z, x), the second is φ|(∂V × (f(0), f(1))), the
third is x −→ (x, t0), and the last is the natural imbedding from U3×Ξ into F .
Then ψ is an imbedding. We extend ψ as widely as possible as an exponentially
Nash map. Let li (i = 1, 2, 3) be the natural imbedding Ui × Ξ −→ F and let
Vi (i = 1, 2, 3) denote its image. Then

p1 ◦ l−1
1 ◦ ψ(x) = (h1(x))t0 and

p2 ◦ l−1
2 ◦ ψ(x) = (h2(x))t0 on (f(0), f(1)),

where pi(i = 1, 2) is the projection Ui×Ξ −→ Ξ. We extend ψ to (f(0), f(1+
ε)) for small positive ε. It suffices to consider p2◦l−1

2 ◦ψ(x) = (h2(x))t0 because
the image of ψ lies in V2 and limt→f(1) ψ(t) ∈ V2. Now p2 ◦ l−1

2 ◦ ψ(x) =
(f(2f−1(x) − (f−1(x))2))t0 on (f(0), f(1)). Thus p2 ◦ l−1

2 ◦ ψ(x) and ψ are
extensible to (f(0), f(2)) and

p2 ◦ l−1
2 ◦ ψ(x) = (f(2f−1(x)− (f−1(x))2))t0 on [f(1), f(2)).

Clearly we can extend ψ to [f(0), f(1)], and ψ((f(0), f(2)) ⊂ ψ([f(0), f(1)]).
Hence

ψ−1
0 ◦ ψ(x) = f(2− f−1(x)) on [f(1), f(2)),

where ψ0 denotes the homeomorphism ψ : [f(0), f(1)] −→ ψ([f(0), f(1)]). In
the same way, ψ can be defined on (f(−1), f(0)] satisfying

ψ−1
0 ◦ ψ(x) = f(−f−1(x)) for x ∈ (f(−1), f(0)].

Repeating this argument, we obtain

ψ−1
0 ◦ ψ(x) =





...
f(−(2 + f−1(x))) on [f(−3), f(−2)]
f(2 + f−1(x)) on [f(−2), f(−1)]
f(−f−1(x)) on [f(−1), f(0)]
x on [f(0), f(1)]
f(2− f−1(x)) on [f(1), f(2)]
f(−(2− f−1(x))) on [f(2), f(3)]
f(2 + (2− f−1(x))) on [f(3), f(4)]

...
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Thus ψ is extensible on (0,1), ψ is locally exponentially Nash, and the image
of ψ is ψ([f(0), f(1)]). Moreover for any e ∈ (f(0), f(1)), (ψ−1

0 ◦ ψ)−1(e) is
discrete and consists of infinitely many elements. Since ψ is locally exponen-
tially Nash but not exponentially Nash and by Proposition 3.5, F is nonaffine.
Therefore ξ′ is a non-strongly exponentially Nash G vector bundle structure
of η. 2

Proof of Theorem (2). By Theorem (1) we may assume that η is a strongly
exponentially Nash G vector bundle over X. The assumption of Theorem (2)
implies that there exists an orbit G(x) = {x1, · · · , xn}. Let B(a, r) denote
the open ball in X of radius r and center a ∈ X. We can find a positive
real number r such that the disjoint unions U :=

∐n
i=1 B(xi, r) and V :=∐n

i=1 B(xi, r/2) are exponentially Nash G tubular neighborhoods of G(x) by
means of Proposition 2.9. Hence shrinking r, if necessary, η|U is exponentially
Nash G vector bundle isomorphic to U × Ξ for some representation Ξ of G.
Therefore Theorem (2) follows from Theorem 3.4. 2

Proof of Theorem (3). Let ξ be the strongly exponentially Nash G vector
bundle structure of η constructed in (1) and let ξ′ be another exponentially
Nash G vector bundle structure of η which is not necessarily strongly expo-
nentially Nash. Let x ∈ X. By the assumption, ξ|x is isomorphic to ξ′|x as
a Gx representation. Since ξ and ξ′ are exponentially Nash G vector bundle
structures of η over X, there exists a Gx invariant open exponentially de-
finable neighborhood U of x in X such that ξ|U is exponentially Nash Gx

vector bundle isomorphic to ξ′|U . Translating this isomorphism, we have an
exponentially Nash G vector bundle isomorphism between ξ and ξ′. 2

Finally, we consider exponentially Nash group structures of compact cen-
terless Lie groups.

It is known in [3] that every compact Lie group admits a unique algebraic
group structure up to algebraic group isomorphism. Thus in particular it ad-
mits an affine Nash group structure. Notice that all connected one-dimensional
Nash groups and locally Nash groups are classified by [12] and [19], respec-
tively. In particular the standard unit circle S1 admits a nonaffine exponen-
tially Nash group structure.

Let G be a compact centerless Lie group and let G′ be an exponentially
Nash group structure of G. Then the adjoint representation Ad : G′ −→
Gln(IR) is exponentially definable by a similar proof of Lemma 2.2 [14], and it
is analytic. Here n denotes the dimension of G. Thus Ad is an exponentially
Nash map and its kernel is the center of G′. Hence the image G′′ of Ad is
an affine exponentially Nash group and Ad is an exponentially Nash group
isomorphism from G′ to G′′. Therefore we have the following remark.
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Remark 3.6. Let G be a compact centerless Lie group. Then G does not
admit any nonaffine exponentially Nash group structure. 2
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