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SOME FURTHER RESULTS ON ENTIRE FUNCTIONS
SHARING A POLYNOMIAL WITH THEIR LINEAR

DIFFERENTIAL POLYNOMIALS

Xiao-Min Li and Hong-Xun Yi

Abstract. In this paper, we study the growth of all solutions of a linear
differential equation. From this we obtain some uniqueness theorems of a
nonconstant entire function and its linear differential polynomials having the
same fixed points. The results in this paper also improve some known results.
Two example are provided to show that the results in this paper are best
possible.

1. INTRODUCTION AND MAIN RESULTS

In this paper, by meromorphic functions we will always mean meromorphic
functions in the complex plane. We adopt the standard notations in the Nevanlinna
theory of meromorphic functions as explained in [5],[7],[9]. It will be convenient to
let E denote any set of positive real numbers of finite linear measure, not necessarily
the same at each occurrence. For any nonconstant meromorphic function h(z), we
denote by S(r, h) any quantity satisfying

S(r, h) = o(T (r, h)) (r → ∞, r �∈ E).

Let h be a nonconstant meromorphic function, and k a positive integer. We use
Nk)(r, h) to denote the reduced counting function of poles of h, whose multiplicities
are not greater than k. Likewise, we use N (k(r, h) to denote the reduced counting
function of poles of h, whose multiplicities are not less than k. When multiplicities
are duly counted in the above notations, we use Nk)(r, h) and N(k(r, h) to indicate
them (see [11]).
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Let f and g be two nonconstant meromorphic functions, and let P be a poly-
nomial. We say that f and g share P CM, provided that f − P and g − P have
the same zeros with the same multiplicities. Similarly, we say that f and g share
P IM, provided that f − P and g − P have the same zeros ignoring multiplicities
(see[11]). In this paper, we also need the following two definitions.

Definition 1.1. Let f be a nonconstant entire function, the order of f, denoted
σ(f), is defined by

σ(f) = lim sup
r→∞

logT (r, f)
logr

= lim sup
r→∞

loglogM(r, f)
logr

,

where and in what follows, M(r, f) = max
|z|=r

{|f(z)|}.

Definition 1.2. Let f be a nonconstant meromorphic function, the hyper-order
of f, denoted σ2(f), is defined by

σ2(f) = lim sup
r→∞

loglogT (r, f)
logr

== lim sup
r→∞

logloglogM(r, f)
logr

.

In 1976, L. A. Rubel and C. C. Yang proved the following theorem.

Theorem A. (see [8]). Let f be a nonconstant entire function. If f and f ′

share two finite distinct values CM, then f ≡ f ′.
In 1996, R.Brück proved the following theorems.

Theorem B. (see [1]). Let f be a nonconstant entire function satisfying
σ2(f) < ∞, and σ2(f) is not a positive integer. If f and f ′ share the value 0 CM,
then f ≡ cf ′ for some constant c �= 0.

Theorem C. (see [1]). Let f be a nonconstant entire function. If f and f ′

share 1 CM, and if N (r, 1
f ′ ) = S(r, f), then f − 1 ≡ c(f ′ − 1) for some constant

c �= 0.

In the same paper, Brück made the following conjecture.

Conjecture 1.1. (see [1]). Let f be a nonconstant entire function satisfying
σ2(f) < ∞, and σ2(f) is not a positive integer. If f and f ′ share one finite value
a CM, then f − a ≡ c(f ′ − a) for some constant c �= 0.

Consider the differential equation

(1.1) f ′ − eQ(z)f = 1,

where Q(z) is an entire function.
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In 1998, G. G. Gundersen and L. Z. Yang proved that the conjecture is true for
a �= 0, provided that f satisfies the additional assumption σ(f) < ∞. In fact, they
proved the following results.

Theorem D. (see [4, Lemma 1]). Let Q(z) be a nonconstant polynomial.
Then every solution of (1.1) is an entire function of infinite order.

Theorem E. (see [4, Theorem 1]). Let f be a nonconstant entire function of
finite order. If f and f ′ share one finite value a CM, then f − a ≡ c(f ′ − a) for
some constant c �= 0.

Let

(1.2) L[f ] = f (k) + ak−1f
(k−1) + · · ·+ a1f

′ + a0f,

where k is a positive integer, and a0, a1, · · ·ak−1, ak are k finite complex numbers.

In this paper, we will prove the following results, which improve Theorem D
and Theorem E.

Theorem 1.1. Let P (z) and Qj(z) (j = 1, 2) be polynomials. If f is a
nonconstant solution of the equation

(1.3) L[f ]− Q1 = (f − Q2) · eP (z),

where L[f ] is defined by (1.2), then one of the following three cases will occur.
(i) If f is a polynomial or P (z) is a constant, then L[f ] − Q 1 = c(f − Q2),

where c is a finite nonzero complex number;
(ii) If P (z) is not a constant and µ(f) > 1, then σ(f) = ∞ and σ 2(f) = γP ,

where and in what follows, µ(f) denotes the lower order of f, γ P denotes
the degree of P (z);

(iii) If P (z) is not a constant and µ(f) ≤ 1, then µ(f) = 1 and P (z) =
p1z +p0, where p1( �== 0) and p0 are two finite complex numbers, moreover,
a0, a1, · · ·ak−2 and ak−1(k ≥ 2) are not all equal to zero.

From Theorem 1.1 we get the following three corollaries, of which Corollary
1.1 improves Theorem D, Corollary 1.2 improves Theorem E.

Corollary 1.1. Let P (z) be a nonconstant polynomial such that γ p ≥ 2. Then
every solution of (1.3) is an entire function of infinite order, and σ 2(f) = γP , where
γP is the degree of P (z).

Corollary 1.2. Let f be a nonconstant entire function of finite order, and let
Qj(z) (j = 1, 2) be two polynomials. If f − Q2 and L[f ] − Q1 share 0 CM, then
µ(f) = σ(f) = 1 and one of the following two cases will occur.
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(i) L[f ]− Q1 = c(f − Q2), where c is a finite nonzero complex number;
(ii) L[f ] − Q1 = (f − Q2) · ep1z+p0 , where p1( �== 0) and p0 are two finite

complex numbers, a0, a1, · · ·ak−2 and ak−1(k ≥ 2) are not all equal to zero.

Corollary 1.3. Let P (z) and Qj(z) (j = 1, 2) be polynomials. If f is a
solution of (1.3) such that σ2(f) is not a positive integer, then the conclusions (i)
and (ii) of Corollary 1.2 hold.

Proceeding as in the proof of Theorem 1.1 in Section 3 of this paper, we get the
following theorem.

Theorem 1.2. Let P (z) and Qj(z)(j = 1, 2) be polynomials. If f is a
nonconstant solution of the equation f (k) − Q1 = (f − Q2) · eP (z), where k(≥ 1)
is a positive integer, then σ2(f) = γp.

Example 1.1. Let f be a solution of the differential equation

(1.4) f ′ − z = (f − z) · ezn
,

where n is a positive integer. Since (1.4) can be rewritten by

(1.5) f ′ − f · ezn
= z(1− ezn

),

from (1.5) and Lemma 2.3 in Section 2 of this paper we can see that every solution
of (1.5) is a nonconstant entire function. Moreover, it follows from (1.4) that f − z
and f ′ − z share 0 CM. From Lemma 1.1.2 in [7] and in the same manner as in
the proof of (3.16) in the proof of Theorem 1.1 in Section 3 of this paper, we get
µ2(f) = n, where and in what follows, µ2(f) denotes the lower hyper order of f .
This example shows that the condition “a0, a1, ...ak−2 and ak−1(k ≥ 2) are not all
equal to zero” in (iii) of Theorem 1.1 and (ii) of Corollaries 1.2-1.3 is best possible.

Example 1.2. Let f = (ez − 1)2 and L[f ] = f (3) − 3f” + 5
3f ′ − f . Then we

verify that µ(f) = σ(f) = 1 and L[f ] − 1 = (f − 1) · e−z . This example shows
that the conclusion (iii) of Theorem 1.1 and (ii) of Corollaries 1.2-1.3 can occur.

Corollary 1.4. Let P (z) be a polynomial such that γ P �= 1, and let a ( �= 0) be
a finite complex number. Suppose that f is a nonconstant solution of the differential
equation

(1.6)
L[f ] − z

f − z
= eP (z),

where L[f ] is defined as in (1.2), and that σ2(f) is not a positive integer. If f and
L[f ] share the value a IM, then f ≡ L[f ].
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Proof of Corollary 1.4. First, from Corollary 1.3 and the condition γP �= 1 we
get L[f ]−z = c(f−z). On the other hand, from the condition that f and L[f ] share
a IM and Milloux<¦s inequality (see [5, Theorem 3.2]) we see that there exists one
point z0 such that L[f ](z0) = f(z0) = a �= z0. From this and L[f ]− z = c(f − z)
we get the conclusion of Corollary 1.4.

Corollary 1.5. Let P (z) be a polynomial, such that γP �= 1, and a0 be a
constant. Suppose that f is a nonconstant solution of the differential equation
(1.6), such that σ2(f) is not a positive integer, where

(1.7) L[f ] = f ′ + a0f.

If f and L[f ] share 0 IM, then f ≡ L[f ].

Proof. First, from Corollary 1.3 and the assumptions of Corollary 1.5 we get

(1.8)
f ′(z) + a0f(z) − z

f(z) − z
≡ c,

where c is a nonzero constant. If c = 1, then from (1.8) we can get the conclusion
of Corollary 1.5. Next we assume that c �= 1. Since (1.8) can be rewritten as

(1.9) f ′ + (a0 − c)f = (1− c)z,

which is a linear ODE of order 1. Suppose that there exists a finite complex number
z0 such that f(z0) = 0, then from the condition that f and L[f ] share 0 IM we
have L[f ](z0) = f ′(z0) + a0f(z0) = 0, and so f ′(z0) = 0. Combining (1.9) we
deduce z0 = 0. That is, f and L[f ] have at most one zero z = 0. We discuss the
following two cases.

Case 1. Suppose that a0 = c. Then from (1.9) and the condition that f has at
most one zero z = 0, we deduce

(1.10)
f(z) =

1
2
(1 − c)z2,

L[f ] = f ′ + cf =
1
2
c(1− c)z2 + (1 − c)z.

Noting that c �= 1 and that L[f ] has at most one zero z = 0, from (1.10) we get a
contradiction.

Case 2. uppose that a0 �= c. Then the general solution (1.9) is

(1.11) f = c1e
(c−a0)z +

(1− c)z
a0 − c

+
c − 1

(a0 − c)2
,
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where c1 is a finite complex number. Noting that c �= 1 and that f has at most one
zero z = 0, from (1.11) we get a contradiction.

In 1995, H. X. Yi and C. C. Yang posed the following question.

Question 1.1. (see [11, pp. 398]). Let f be a nonconstant meromorphic
function, and let a be a nonzero constant. If f, f(n) and f (m) share the value a
CM, where n and m (n < m) are distinct positive integers not all even or odd, then
can we get the result f ≡ f (n)?

Regarding Question 1.1, G. G. Gundersen and L. Z. Yang proved the following
result in 1998.

Theorem F. (see [4, Theorem 2]). Let f be a nonconstant entire function of
finite order, let a be a nonzero constant, and let n be a positive integer. If the value
a is shared by f, f (n) and f (n+1) IM, and shared by f (n) and f (n+1) CM, then
f ≡ f ′.

In this paper,we will prove the following result,which supplements Theorem F.

Theorem 1.3. Let f be a nonconstant solution of the differential equation

(1.12)
L′[f ]− z

L[f ]− z
= eP ,

where L[f ] is defined as in (1.7), and P (z) is a polynomial. If σ2(f) is not a
positive integer, and if f(z) and L[f ] share z IM, then eP is a constant, and f is
given by one of the following two expressions.

(i) f = c1z + a0c1(1 − c1) and a2
0 − a0 + 1 = 0, where c1 ( �= 0, 1, 1/a0) is a

finite complex number, and eP ≡ 1/(1− a0c1).
(ii) f = d1e

z and a0 = 0, where d1 ( �= 0) is a finite complex constant, and
eP ≡ 1.

2. SOME LEMMAS

Lemma 2.1. (see [6, pp36-37] or [7, Theorem 3.1]). If f is an entire function
of order σ(f), then

σ(f) = lim sup
r→∞

logν(r, f)
logr

,

where, and in the sequel, ν(r, f) denotes the central-index of f(z).

Lemma 2.2. (see [2, Lemma 2] or [3, Lemma 4]). If f is a transcendental
entire function of hyper-order σ2(f), then

σ2(f) = lim sup
r→∞

loglogν(r, f)
logr

.
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Lemma 2.3. (see[7, Proposition 8.1]). Let

(2.1) f (n) + an−1f
(n−1) + · · ·+ a1f

′ + a0f = F (z),

where a0 ( �≡ 0), a1, · · · , an−1 and F ( �≡ 0) are entire functions. Then all solutions
of (2.1) are entire functions.

Lemma 2.4. (see [11, Theorem 1.49]). Suppose that f1, f2, · · · , fn are
linearly independent meromorphic functions satisfying the following identity

n∑
i=1

fi ≡ 1.

If
n∑

i=1

N(r, fi) = S(r),

where
S(r) = o(T (r)) (r → ∞, r /∈ E), T (r) = max

1≤i≤n
{T (r, fi)},

then

T (r) ≤
n∑

i=1

N (r,
1
fi

) + S(r).

Lemma 2.5. Let fj (j = 1, 2, · · · , n) be nonconstant meromorphic functions
satisfying

(2.2) N (r,
1
fj

) + N (r, fj) = S(r, fj) (j = 1, 2, · · · , n),

and let

(2.3) F ≡ a +
n∑

j=1

fj ,

where a is a meromorphic function satisfying a �≡ 0. If F is not constant, and
T (r, a) = S(r, F ), then

(2.4) T (r, F ) = N (r,
1
F

) + S(r, F ).

Proof. Obviously,
n∑

j=1
fj �≡ 0. Without loss of generality, let

(2.5)
n∑

j=1

fj ≡
k∑

j=1

cjfj ,
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where f1, f2, · · · , fk are linearly independent, and c1, c2, · · · , ck are nonzero con-
stants. Let

(2.6) gj = −cjfj

a
(j = 1, 2, · · · , k) and gk+1 =

F

a
.

From (2.3), (2.5) and (2.6) we have

(2.7)
k+1∑
j=1

gj ≡ 1.

It is easy to see that g1, g2, · · · , gk+1 are linearly independent. By Lemma 2.4, (2.2),
(2.3), (2.6) and (2.7) we obtain

(2.8) T (r) ≤
k+1∑
i=1

N (r,
1
fi

) + S(r) ≤ N (r,
1
F

) + S(r) ≤ T (r, F ) + S(r),

where

T (r) = max
1≤j≤k+1

{T (r, gj)} and S(r) = o(T (r)) (r → ∞, r /∈ E).

From (2.8) we can obtain (2.4).

Lemma 2.6. (see [11, Theorem 1.57]). Suppose that f1, f2, f3 are meromor-
phic functions satisfying

f1 + f2 + f3 ≡ 1.

If f1 is not a constant and

3∑
i=1

N (r,
1
fi

) + 2
3∑

i=1

N(r, fi) < λT (r, f1) + S(r, f1),

where λ < 1, then f2 ≡ 1 or f3 ≡ 1.

Lemma 2.7. Suppose that α and β are nonconstant entire functions, and
that a1, a2, b1 and b2 are meromorphic functions satisfying T (r, a 1) + T (r, a2) =
S(r, eα), T (r, b1) + T (r, b2) = S(r, eβ) and a1a2b1b2 �≡ 0. If a1e

α − a2 and
b1e

β − b2 share 0 IM, then one of the following relations holds:

(i) a1b2e
α ≡ a2b1e

β ,

(ii) a1b1e
α+β ≡ a2b2.
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Proof. By the second fundamental theorem, we have

(2.9) T (r, eα) = N (r,
1

a1eα − a2
) + S(r, eα) = N1)(r,

1
a1eα − a2

) + S(r, eα)

and

(2.10) T (r, eβ) = N (r,
1

b1eβ − b2
) + S(r, eβ) = N1)(r,

1
b1eβ − b2

) + S(r, eβ).

Let

(2.11) H =
a1e

α − a2

b1eβ − b2
.

Noting that a1e
α − a2 and b1e

β − b2 share 0 IM, from (2.9)-(2.11) we obtain

(2.12) N (r, H) = S(r, eα) and N (r,
1
H

) = S(r, eα).

By (2.11) we get

(2.13)
a1

a2
eα − b1

a2
Heβ +

b2

a2
H = 1.

From (2.12) and (2.13), by Lemma 2.6 we obtain b2
a2

H = 1 or − b2
a2

Heβ = 1.
If b2

a2
H = 1, from (2.13) we have a1

a2
eα = b1

a2
Heβ. From this we have the

relation (i) of Lemma 2.7.
If − b1

a2
Heβ = 1, from (2.13) we have a1

a2
eα = − b2

a2
H . From this we have the

relation (ii) of Lemma 2.7.

Lemma 2.8. Suppose that R1 and R2 are rational functions, and that a 1 and
a2 are two constants satisfying 0 < |a 1| ≤ |a2| and a1 �= a2. Then there exists a
constant A (> 1) such that

(2.14) AT (r, ea1z) ≤ T (r, R1e
a1z + R2e

a2z) + O(log r).

Proof. It is easy to see that

(2.15) T (r, ea1z) =
|a1|r

π
, T (r, ea2z) =

|a2|r
π

.

Let aj = |aj|eiθj (j = 1, 2), where 0 ≤ θj < 2π (j = 1, 2). We have

(2.16)

T (r, R1e
a1z + R2e

a2z)

=
r

2π

∫ 2π

0
max{|a1| cos(θ + θ1), |a2| cos(θ + θ2), 0}dθ + O(log r)

=
r

2π

∫ 2π

0
max{|a1| cos(θ + θ1 − θ2), |a2| cos θ, 0}dθ + O(log r).
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Suppose that |a1| < |a2|. From (2.16) we have

(2.17)
T (r, R1e

a1z + R2e
a2z) ≥ r

2π

∫ 2π

0
max{|a2| cosθ, 0}dθ + O(log r)

= T (r, ea2z) + O(log r).

From (2.15) and (2.17) we can obtain (2.14).
Suppose that |a1| = |a2|. Noting a1 �= a2, we may assume, without loss of

generality, 0 ≤ θ2 < θ1 < 2π. If θ1 − θ2 ≤ π, then π
2 ≤ 3π

2 − θ1 + θ2 < 3π
2 . From

(2.16) we have

(2.18)

T (r, eR1a1z + R2e
a2z)

=
|a1|r
2π

∫ 2π

0
max{cos(θ + θ1 − θ2), cosθ, 0}dθ + O(log r)

≥ |a1|r
2π

{∫ π
2

0
cos θdθ +

∫ 3π
2

3π
2
−θ1+θ2

cos(θ + θ1 − θ2)dθ

+
∫ 2π

3π
2

cos θdθ

}
+ O(log r)

=
|a1|r
2π

(3− cos(θ1 − θ2)) + O(log r).

From (2.15) and (2.18) we can obtain (2.14). If π < θ1−θ2, then π
2 < 5π

2 −θ1+θ2 <
3π
2 . From (2.16) we have

(2.19)

T (r, R1e
a1z + R2e

a2z)

=
|a1|r
2π

∫ 2π

0
max{cos(θ + θ1 − θ2), cosθ, 0}dθ + O(log r)

≥ |a1|r
2π

{∫ π
2

0
cos θdθ +

∫ 5π
2
−θ1+θ2

π
2

cos(θ + θ1 − θ2)dθ

+
∫ 2π

3π
2

cos θdθ

}
+ O(log r)

=
|a1|r
2π

(3− cos(θ1 − θ2)) + O(log r).

From (2.15) and (2.19) we can obtain (2.14).

This completes the proof of Lemma 2.8.
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3. PROOF OF THEOREMS

Proof of Theorem 1.1. Suppose that f is a polynomial, then from (1.3) we see
that there exists a nonzero constant c such that eP (z) ≡ c. So σ2(f) = γP = 0,

thus the conclusion (i) of Theorem 1.1 is valid. Next we suppose that f is a
transcendental entire function. We discuss the following two cases.

Case 1. Suppose that

(3.1) σ(f) = ∞.

From (3.1) and Lemma 2.1 we see that

(3.2) σ(f) = lim sup
r→∞

logν(r, f)
logr

= ∞,

where ν(r, f) denotes the central-index of f(z). If P (z) is a constant, by (1.3) and
Theorem 4.1 in [7] we deduce that all solutions of

f (k) + ak−1f
(k−1) + · · ·+ a2f

′′ + a1f
′ + (a0 − eP )f = Q1 − Q2e

P

have finite order, this is a contradiction. Thus, P (z) is a nonconstant polynomial.
Let

(3.3) P (z) = pnzn + pn−1z
n−1 + · · ·+ p1z + p0,

where pn( �= 0), pn−1, · · · , p1 and p0 are complex constants. It follows from (3.3)
that

(3.4) lim
|z|→+∞

|P (z)|
|pnzn| = 1.

From (3.4) we see that there exists a sufficiently large positive number r0, such that

(3.5)
|P (z)|
|pnzn| >

1
e

(|z| > r0).

From (1.3) and (3.5) we deduce

(3.6)

n log r + log |pn| − 1

= log
|pnzn|

e
≤ log |P (z)| = log | log eP (z)| ≤ | log log eP (z)|

= | log log
L[f ] − Q1

f − Q2
| (|z| > r0),
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On the other hand, since f is a nonconstant entire function, thus

(3.7) M(r, f) → +∞,

as r → +∞, where M(r, f) = max
|z|=r

|f(z)|. Again let

(3.8) M(r, f) = |f(zr)|,

where zr = reiθ(r), and θ(r) ∈ [0, 2π). From (3.8) and the Wiman-Valiron theory
(see [7, Theorem 3.2]), we see that there exists a subset Ej ⊂ (1,∞) (1 ≤ j ≤ n)
with finite logarithmic measure, i.e.,

∫
Ej

dt
t < ∞, such that for some point zr =

reiθ(r) (θ(r) ∈ [0, 2π)) satisfying |zr| = r �∈ Ej and M(r, f) = |f(zr)|, we have

(3.9)
f (j)(zr)
f(zr)

= (
ν(r, f)

zr
)j(1 + o(1)) (1 ≤ j ≤ n),

as r → +∞. Noting that f is a transcendental entire function, and Q i (i = 1, 2)
are polynomials, from (3.1) and (3.8) we deduce

(3.10) lim
r→∞

|Qi(zr)|
|f(zr)| = lim

r→∞
|Qi(zr)|
M(r, f)

= 0 (i = 1, 2).

Since

(3.11)
L[f ]− Q1

f − Q2
=

L[f ]
f − Q1

f

1 − Q2
f

,

from (1.2), (1.3), (3.2) and (3.6)-(3.11) we deduce

(3.12) n log |zr| + log |pn| − 1 ≤ | log log((
ν(r, f)

zr
)k(1 + o(1)))|

and

(3.13)

log
((

ν(r, f)
zr

)k(1 + o(1)
))

= k
(
log ν(r, f)− log reiθ(r)

)
+ o(1)

= k (log ν(r, f)− log r − iθ(r)) + o(1)

= k

(
1 − log r

log ν(r, f)
− iθ(r)

log ν(r, f)

)
log ν(r, f) + o(1),
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as r → +∞. Noting that θ(r) ∈ [0, 2π), from (3.2), (3.13) and Lemma 2.2 we
deduce

(3.14)

lim sup
r→∞

| log log(( ν(r,f)
zr

)k(1 + o(1)))|
log r

.

≤ lim sup
r→∞

log log ν(r, f)
log r

+ lim sup
r→∞

| log(1 − log r
log ν(r,f)

− iθ(r)
log ν(r,f)

)|
log r

+ lim
r→∞

log 2
log r

+ lim
r→∞

2k1π

log r

= lim sup
r→∞

log log ν(r, f)
log r

= σ2(f),

where k1 is some nonnegative integer. Noting that |zr| = r, from (3.12) and (3.14)
we deduce

(3.15) n ≤ lim sup
r→∞

log log ν(r, f)
log r

= σ2(f).

From (3.3) we obtain

(3.16) σ(eP ) = γP (z) = n.

From (3.15) and (3.16) we get

(3.17) σ(eP ) ≤ σ2(f).

If lim inf
r→∞ (log ν(r, f))/(logr) > 1, from (1.3), (3.2) and (3.9)-(3.11) we deduce

(3.18) (
ν(r, f)

zr
)k(1 + o(1)) = eP (zr),

as r → ∞, and so it follows from (3.18) that

(3.19)
lim sup

r→∞
log log ν(r, f)

log r
= lim sup

r→∞
log log( ν(r,f)

2r )k

log r

≤ lim sup
r→∞

log logM(r, eP )
log r

.

From (3.19) and Lemma 2.2 we get

(3.20) σ2(f) ≤ σ(eP ).

From (3.16), (3.17) and (3.20) we get the conclusion (ii) of Theorem 1.1.
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Case 2. Suppose that

(3.21) σ(f) < ∞.

First, from (3.21) we can deduce

(3.22) σ2(f) = 0.

On the other hand, from (1.2), (1.3), (3.7)-(3.11), (3.21) and Lemma 2.1 we deduce

(3.23)

|P (zr)|2 = | log
L[f(zr)] − Q1(zr)
f(zr) − Q2(zr)

|2

= (log |L[f(zr)] − Q1(zr)
f(zr) − Q2(zr)

|)2 + O(1)

≤ (log((
ν(r, f)

r
)k + |ak−1|(ν(r, f)

r
)k−1 + · · ·

+|a2|(ν(r, f)
r

)2 + |a1|(ν(r, f)
r

)))2 + O(1)

≤ O((log r)2),

as r → +∞. Since P (z) is a polynomial, from (3.23) we deduce that P (z) is a
constant, and so rP = 0. From this and (3.22) we see that the conclusion of Theorem
1.1 is valid. If lim infr→∞(log ν(r, f))/(logr) ≤ 1, then from µ(f) = lim infr→∞
(log ν(r, f))/(logr) which can be verified in the same manner as in the proof
of Lemma 2.2 in [2], we have µ(f) ≤ 1. On the other hand, from (1.2) and
(1.3) we get T (r, eP) ≤ O(T (r, f) + logT (r, f) + log r)(r �∈ E). From this
and Lemma 1.1.1 in [7] we see that for sufficiently large positive number r0, we
have T (r, eP ) ≤ O(T (2r, f) + logT (2r, f) + log r + log 2)(r ≥ r0). From this
we get 1 ≤ n = rP = σ(eP ) = µ(eP ) ≤ µ(f). Combining µ(f) ≤ 1, we
get µ(f) = n = 1. Combining (1.3) and (3.3) we get P (z) = p1z + p0. If
aj = 0(0 ≤ j ≤ k−1), then (1.3) can be rewritten by f (k)−Q1 = (f−Q2)·ep1z+p0 .
From this, Lemma 1.1.2 in [7] and in the same manner as in the proof of (3.16) we
get µ2(f) = rP = 1. This contradicts µ(f) = 1. Thus a0, a1, · · ·ak−2 and ak−1

are not all equal to zero. From the above analysis we get (iii) of Theorem 1.1.

Theorem 1.1 is thus completely proved.

Proof of Theorem 1.3. Suppose that f is a nonconstant polynomial. If a0 = 0,

it follows by (1.7) and (1.12) that f is a polynomial of degree 2. Let

(3.24) f(z) = b2z
2 + b1z + b0,
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where b2 ( �= 0), b1 and b0 are three finite complex numbers. From (1.7), (1.12) and
(3.24) we deduce

z − 2b2

(1 − 2b2)z − b1
= eP ,

where ep is a constant. From this we deduce

(3.25) 2b2 − 1 �= 0

and

(3.26) b1 = 2b2(1− 2b2).

Noting that

(3.27) f(z) − z = b2z
2 + (b1 − 1)z + b0

and

(3.28) L[f ]− z = f ′ − z = (2b2 − 1)z + b1,

from (3.27), (3.28) and the condition that f(z)− z and L[f ](z)− z share 0 IM we
can get

(b1 − 1)2 − 4b0b2 = 0

and

(3.29) b1 + 2b2 = 1.

From (3.25), (3.26) and (3.29) we get a contradiction. Thus,

(3.30) a0 �= 0.

Then it follows from (1.7), (1.12) and (3.30) that f is a polynomial of degree 1. Let

(3.31) f(z) = c1z + c0,

where c1 ( �= 0) and c0 are two finite complex numbers. From (1.7), (1.12) and
(3.31) we deduce

(3.32) L′[f ](z)− z = a0c1 − z

and
a0c1 − z

(a0c1 − 1)z + a0c0 + c1
= eP ,
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which implies that 1 − a0c1 �= 0,

(3.33) eP ≡ 1
1 − a0c1

and

(3.34)
a0c0 + c1

1 − a0c1
= a0c1.

Noting that f(z)−z and L′[f ](z)−z share 0 IM, from (3.31) and (3.32) we deduce

(3.35) c1 − 1 �= 0

and

(3.36) c0 = a0c1(1− c1).

Substituting (3.36) into (3.34) we deduce

(3.37) a2
0 − a0 + 1 = 0.

From (3.31), (3.33) and (3.35)-(3.37) we can get the conclusion (i) of Theorem 1.3.
Next we suppose that f is a transcendental entire function. First, by Milloux’s

inequality (see [5, Theorem 3.2]) we have

(3.38) T (r, f) < N (r,
1

f(z)− z
) + N (r,

1
L′[f ](z)− z

) + S(r, f).

Let z0 be a zero of f(z)−z with multiplicity≥ 2. Then f(z0) = z0 and f ′(z0) = 1.
Since f and L[f ] share z IM, we have L[f ](z0) = z0. Thus 1 + a0z0 = z0, and
hence f(z) − z has at most one zero with multiplicity≥ 2. From this we obtain

(3.39) N (r,
1

f(z) − z
) = N(r,

1
f(z) − z

) + O(log r)

(3.40) = N(r,
1

L[f ](z)− z
) + O(log r).

From (1.12) we have

(3.41) N(r,
1

L′[f ](z)− z
) = N(r,

1
L[f ](z)− z

).

From (3.38), (3.40) and (3.41) we obtain

(3.42)
T (r, f) ≤ 2N(r,

1
L[f ](z)− z

) + S(r, f)

≤ 2T (r, L[f ])+ S(r, f) ≤ 2T (r, f) + S(r, f).
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From (3.42) we deduce

(3.43) σ2(f) = σ2(L[f ]).

From (3.43) and the condition that σ2(f) is not a positive integer we know that
σ2(L[f ]) is not a positive integer, and so it follows from (1.12) and Theorem 1.2
that there exists a finite nonzero complex number d such that

(3.44)
L′[f ] − z

L[f ]− z
≡ d.

We discuss the following three cases.

Case 1. Suppose that a0 = 0. Then it follows from (1.7) that (3.44) can be
rewritten by

(3.45) f ′′ − df ′ = (1 − d)z.

From (3.45) we deduce

(3.46) f = d1e
dz +

d− 1
2d

z2 +
d − 1
d2

z + d2,

where d1( �= 0) and d2 are constants. Thus,

(3.47) f − z = d1e
dz +

d − 1
2d

z2 +
d − 1 − d2

d2
z + d2,

(3.48) L[f ] − z = d1dedz − 1
d
z +

d − 1
d2

.

Assume that d �= 1. Since f(z) − z and L[f ] − z share 0 IM, by Lemma 2.7,
(3.47) and (3.48) we get a contradiction. Thus d = 1, and so it follows from (3.47)
and (3.48) that f − z = d1e

z − z + d2 and L[f ] − z = d1e
z − z. Combining the

condition that f − z and L[f ]− z share 0 IM we deduce d2 = 0, and so it follows
that f = d1e

z, which reveals the conclusion (ii) of Theorem 1.3.

Case 2. Suppose that a0 �= 0 and a0 = −d. Then it follows from (1.7) and
(3.44) that

(3.49) f ′′ − 2df ′ + d2f = (1− d)z.

From (3.49) we deduce

f(z) = (d3z + d4)edz +
1 − d

d2
z +

2(1− d)
d3

,
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where d3 and d4 are constants satisfying d3z + d4 �≡ 0. Thus,

(3.50) f(z)− z = (d3z + d4)edz +
1 − d − d2

d2
z +

2(1− d)
d3

,

(3.51) L[f ]− z = d3e
dz − 1

d
z +

d − 1
d2

.

By Lemma 2.7, (3.50) and (3.51) we get a contradiction.

Case 3. Suppose that a0 �= 0 and a0 �= −d. Then it follows from (1.7) and
(3.44) that

(3.52) f ′′ + (a0 − d)f ′ − a0df = (1 − d)z.

From (3.52) we deduce

f = d5e
−a0z + d6e

dz +
d − 1
a0d

z +
(a0 − d)(d− 1)

a2
0d

2
,

where d5 and d6 are constants satisfying d5e
−a0z + d6e

dz �≡ 0. Thus,

(3.53) f − z = d5e
−a0z + d6e

dz + P1(z),

(3.54) L[f ] − z = d6(d + a0)edz + P2(z),

where
P1(z) =

d − 1 − a0d

a0d
z +

(a0 − d)(d− 1)
a2

0d
2

,

P2(z) = −1
d
z +

d − 1
d2

.

If d5 = 0, then d6 �= 0. By Lemma 2.7, (3.53) and (3.54) we get a contradiction.
If d6 = 0, then d5 �= 0. From (3.53) and (3.54) we obtain a contradiction. Next,
we suppose that d5 �= 0 and d6 �= 0.

Let z0 be a zero of L[f ] − z. From (3.54) we obtain

(3.55) d6(d + a0)edz0 + P2(z0) = 0.

Since f − z and L[f ] − z share 0 IM, from (3.53) we deduce

(3.56) d5e
−a0z0 + d6e

dz0 + P1(z0) = 0.

From (3.55) and (3.56) we have

(3.57) d5(d + a0)e−a0z0 + (d + a0)P1(z0) − P2(z0) = 0.



Some Further Results on Entire Functions 2423

Noting that z0 is a zero of L[f ] − z, from (3.55) and (3.57) we obtain

(3.58)

N(r,
1

d6(d + a0)edz + P2(z)
)

≤ N (r,
1

d5(d + a0)e−a0z + (d + a0)P1(z) − P2(z)
).

It is easy to see that

(3.59) T (r, edz) = N (r,
1

d6(d + a0)edz + P2(z)
) + O(log r),

(3.60)
T (r, e−a0z)

= N(r,
1

d5(d + a0)e−a0z + (d + a0)P1(z)− P2(z)
) + O(log r).

From (3.58)-(3.60) we deduce

(3.61) T (r, edz) ≤ T (r, e−a0z) + O(log r).

Since
T (r, edz) =

|d|r
π

and T (r, e−a0z) =
|a0|r

π
,

from (3.61) we get |d| ≤ |a0|. Noting that d �= −a0, by Lemma 2.8, (3.53) and
(3.54) we know that there exists a constant A (> 1) such that

(3.62) AT (r, L[f ]) ≤ T (r, f) + O(log r).

On the other hand, from (3.54) we have

(3.63) T (r, L[f ]) = N(r,
1

L[f ]− z
) + O(log r).

By Lemma 2.7 and the condition that f − z and L[f ] − z share 0 IM, we deduce
P1(z) �≡ 0. Combining (3.53), (3.54) and Lemma 2.5 we deduce

(3.64) T (r, f) = N (r,
1

f − z
) + O(log r).

Again from (3.39) and (3.64) we obtain

(3.65) T (r, f) = N(r,
1

f − z
) + O(log r).

Since f − z and L[f ]− z share 0 IM, we have

(3.66) N (r,
1

f − z
) = N(r,

1
L[f ]− z

).
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From (3.63), (3.65) and (3.66) we obtain

(3.67) T (r, L[f ]) = T (r, f) + O(log r).

Noting that f is a transcendental entire function, from (3.62) and (3.67) we get a
contradiction.

Theorem 1.3 is thus completely proved.
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